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We investigate the fluctuations of the net-baryon number density in dense hadronic matter. Chiral
dynamics is modeled via the parity doublet Lagrangian, and the mean-field approximation is employed to
account for chiral criticality. We focus on the qualitative properties and systematics of the second-order
susceptibility of the net-baryon number density for individual positive- and negative-parity nucleons
whose masses become degenerate at the chiral restoration. It is shown that the second-order susceptibility
of the positive-parity state can become negative when the chiral symmetry is restored, as a natural
consequence of the unique relationship of the mass to the order parameter. Moreover, we find that such
negative fluctuations are indicative of approaching the critical point on the chiral phase boundary. Our
results may have consequences for the interpretation of the experimental data on net-proton fluctuations
in heavy-ion collisions.
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I. INTRODUCTION

Understanding the thermodynamic properties of strongly
interacting matter, described by quantum chromodynamics
(QCD), is a formidable task. One of the challenges in
modern high-energy physics is to determine the QCD phase
diagram with an anticipated critical point at finite net-
baryon density. At vanishing net-baryon number density, a
reliable description has been provided through the first-
principle lattice QCD (LQCD) calculations, which shows
that the equation of state (EOS) exhibits a smooth crossover
from confined hadronic matter to deconfined quark-gluon
plasma [1–4]. This transition is linked to the simultaneous
onset of chiral symmetry restoration and quark deconfine-
ment [5,6]. However, the LQCD approach remains insuf-
ficient to determine the nature of the EOS at finite density
owing to the sign problem, and the existence of any QCD
critical point(s) is unresolved.
Observables associated with fluctuations and correlations

of conserved charges are promising for the search of the
chiral-critical behavior at the QCD phase boundary [7–10]
and the chemical freeze-out of produced hadrons in heavy-
ion collisions (HICs) [11–16]. In particular, fluctuations
have been proposed to probe the QCD critical point, as well
as the remnants of theOð4Þ criticality at vanishing and finite
net-baryon densities [10,16–19]. The search for a critical

point has been extensively conducted in HICs within the
beam energy scan (BES) programs at the Relativistic Heavy
Ion Collider (RHIC) at BNL [20] and the Super Proton
Synchrotron (SPS) at CERN [21]. However, no conclusive
evidence has been observed so far for a critical point.
At small net-baryon number density, the QCD thermo-

dynamics in the confined phase is well described by the
hadron resonance gas (HRG) model [22,23]. The HRG
model explains satisfactorily the LQCD data below the
crossover to the quark-gluon plasma, as well as various
hadron yields in HICs [23]. Several extensions of the HRG
model have been proposed to quantify the LQCD EOS and
various fluctuation observables up to near-chiral crossover.
They account for consistent implementation of hadronic
interactions within the S-matrix approach [24–28], a more
complete implementation or a continuously growing expo-
nential mass spectrum and/or possible repulsive interactions
among constituents [29–35]. Nevertheless, it is challenging
to identify the role of different in-medium effects and
hadronic interactions on the properties of higher-order
fluctuations of conserved charges. Recently, it was argued
that deviations of the LQCD data on higher-order fluctua-
tions of net-baryon number density from the HRG baseline
in the near vicinity of the chiral transition can be attributed
to repulsive interactions [36]. However, an adequate
description of the higher-order susceptibilities of the net-
baryon density in the chiral crossover requires a more
refined framework that accounts for a self-consistent*michal.marczenko@uwr.edu.pl
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treatment of the chiral in-medium effects and repulsive
interactions [37].
How does the chiral symmetry restoration become mani-

fest in the baryon masses? The LQCD results [38–40]
exhibit a clear emergence of the parity-doubling structure for
the low-lying baryons around the chiral crossover. The
masses of the positive-parity ground states are found to
be rather weakly temperature dependent, while the masses of
negative-parity states drop substantially when approaching
the chiral crossover temperature Tc. The parity doublet states
become almost degenerate with a finite mass in the vicinity
of the chiral crossover. Even though these LQCD results are
still not obtained in the physical limit, the observed behavior
of parity partners is likely an imprint of the chiral symmetry
restoration in the baryonic sector of QCD. Such properties of
the chiral partners can be described in the framework of the
parity doublet model [41–43]. The model has been applied
to the vacuum phenomenology of QCD, and hot and dense
hadronic matter, as well as neutron stars [44–70].
In this work, we analyze the qualitative properties

and systematics of the fluctuations of conserved charges
in the context of the parity doublet model, which incorpo-
rates the chiral symmetry restoration and repulsive inter-
actions via the exchanges of the scalar and vector mesons,
respectively. To account for critical behaviors, the mean-
field approximation is employed, which captures the same
characteristics as those of the Oð4Þ criticality, albeit with
different critical exponents. We study the properties of the
second-order susceptibility of the net-baryon number den-
sity for positive- and negative-parity nucleons, individually.
Their qualitative behavior is examined near the chiral, as
well as the nuclear liquid-gas phase transitions.
This paper is organized as follows. In Sec. II, we

introduce the parity doublet model. In Sec. III, we discuss
the structure of the susceptibilities of the net-baryon
number density. In Sec. IV, we present our results and
clarify the role of the nucleon parity doublet near the two
phase transitions. Finally, Sec. V is devoted to summary
and conclusions.

II. PARITY DOUBLET MODEL

In the conventional Gell-Mann–Levy model of mesons
and nucleons [71], the nucleon mass is entirely generated
by the nonvanishing expectation value of the sigma field.
Thus, the nucleon inevitably becomes massless when the
chiral symmetry gets restored. This is led by the particular
chirality assignment to the nucleon parity doublers, where
the nucleons are assumed to be transformed in the same
way as the quarks are under chiral rotations.
More general allocation of the left- and right-handed

chiralities to the nucleons, the mirror assignment, was
proposed in Ref. [41]. This allows an explicit mass term
for the nucleons, and consequently, the nucleons stay
massive at the chiral restoration point. For more details,
see Refs. [41–43].

In the mirror assignment, under SUð2ÞL × SUð2ÞR
rotation, two chiral fields ψ1 and ψ2 are transformed as
follows:

ψ1L → Lψ1L; ψ1R → Rψ1R;

ψ2L → Rψ2L; ψ2R → Lψ2R; ð1Þ

where ψ i ¼ ψ iL þ ψ iR, L ∈ SUð2ÞL, and R ∈ SUð2ÞR. In
this work, we consider a system with Nf ¼ 2; hence,
relevant for this study are the lowest nucleons and their
chiral partners. The hadronic degrees of freedom are
coupled to the chiral fields ðσ; πÞ and the isosinglet vector
field ωμ. The nucleon part of the Lagrangian in the mirror
model reads

LN ¼ iψ̄1=∂ψ1 þ iψ̄2=∂ψ2 þm0ðψ̄1γ5ψ2 − ψ̄2γ5ψ1Þ
þ g1ψ̄1ðσ þ iγ5τ · πÞψ1 þ g2ψ̄2ðσ − iγ5τ · πÞψ2

− gωψ̄1=ωψ1 − gωψ̄2=ωψ2; ð2Þ

where g1, g2, and gω are the baryon-to-meson coupling
constants and m0 is a mass parameter.
The mesonic part of the Lagrangian reads

LM ¼ 1

2
ð∂μσÞ2 þ

1

2
ð∂μπÞ2 −

1

4
ðωμνÞ2 − Vσ − Vω; ð3Þ

where ωμν ¼ ∂μων − ∂νωμ is the field-strength tensor of the
vector field, and the potentials read

Vσ ¼ −
λ2
2
Σþ λ4

4
Σ2 −

λ6
6
Σ3 − ϵσ; ð4aÞ

Vω ¼ −
m2

ω

2
ωμω

μ; ð4bÞ

where Σ¼ σ2þπ2, λ2 ¼ λ4f2π − λ6f4π −m2
π , and ϵ ¼ m2

πfπ .
mπ andmω are the π and ω meson masses, respectively, and
fπ is the pion decay constant. Note that the chiral symmetry
is explicitly broken by the linear term in σ in Eq. (4a).
The full Lagrangian of the parity doublet model is

given by

L ¼ LN þ LM: ð5Þ

In the diagonal basis, the masses of the positive- and
negative-parity baryonic chiral partners, N�, are given by

m� ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2σ2 þ 4m2

0

q
∓ βσ

�
; ð6Þ

where α ¼ g1 þ g2, β ¼ g1 − g2. From Eq. (6), it is
clear that, in contrast to the naive assignment under
chiral symmetry, the chiral symmetry breaking generates
only the splitting between the two masses. When the
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symmetry is restored, the masses become degenerate,
m�ðσ ¼ 0Þ ¼ m0.
To investigate the properties of strongly interacting

matter, we adopt the mean-field approximation [72].
Rotational invariance requires that the spatial component
of the ωμ field vanish,1 namely hωi ¼ 0. Parity conserva-
tion, on the other hand, dictates hπi ¼ 0. The mean-field
thermodynamic potential of the parity doublet model reads

Ω ¼ Ωþ þΩ− þ Vσ þ Vω; ð7Þ

with

Ω� ¼ γ�

Z
d3p
ð2πÞ3 T ½ln ð1 − f�Þ þ ln ð1 − f̄�Þ�; ð8Þ

where γ� ¼ 2 × 2 denotes the spin-isospin degeneracy
factor for both parity partners, and f� ðf̄�Þ is the particle
(antiparticle) Fermi-Dirac distribution function,

f� ¼ 1

1þ eðE�−μ�Þ=T ;

f̄� ¼ 1

1þ eðE�þμ�Þ=T ; ð9Þ

where T is the temperature, the dispersion relation
E� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

�
p

, and the effective baryon chemical poten-
tial μ� ¼ μB − gωω.
In-medium profiles of the mean fields are obtained by

extremizing the thermodynamic potential in Eq. (7), lead-
ing to the following gap equations:

0 ¼ ∂Ω
∂σ

¼ ∂Vσ

∂σ
þ sþ

∂mþ
∂σ

þ s−
∂m−

∂σ
;

0 ¼ ∂Ω
∂ω

¼ ∂Vω

∂ω
þ gωðnþB þ n−BÞ; ð10Þ

where the scalar and vector densities are

s� ¼ γ�

Z
d3p
ð2πÞ3

m�
E�

ðf� þ f̄�Þ ð11Þ

and

n�B ¼ γ�

Z
d3p
ð2πÞ3 ðf� − f̄�Þ; ð12Þ

respectively.
In the grand canonical ensemble, the thermodynamic

pressure reads

P ¼ −Ωþ Ω0; ð13Þ

whereΩ0 is the value of the thermodynamic potential in the
vacuum, and the net-baryon number density can be
calculated as follows:

nB ¼ ∂PðT; μBÞ
∂μB

¼ nþB þ n−B; ð14Þ

The positive-parity state, Nþ, corresponds to the
nucleon Nð938Þ. Its negative-parity partner is identified
with Nð1535Þ. Their vacuum masses are shown in Table I.
The value of the parameter m0 has to be chosen so that a
chiral crossover is realized at finite temperature and
vanishing chemical potential. The model predicts the chiral
symmetry restoration to be a crossover form0 ≳ 700 MeV.
Following the previous studies of the parity-doublet-
based models [44–55,58–70,73], as well as recent lattice
QCD results [38–40], we choose a rather large value,
m0 ¼ 750 MeV. We note, however, that the results pre-
sented in this work qualitatively do not depend on the choice
ofm0, as long as the chiral crossover appears at μB ¼ 0. The
parameters g1 and g2 are determined by the aforementioned
vacuum nucleon masses and the chirally invariant mass m0

via Eq. (6). The parameters gω, λ4, and λ6 are fixed by the
properties of the nuclear ground state at zero temperature—
i.e., the saturation density, binding energy, and compress-
ibility parameter at μB ¼ 923 MeV. The constraints are
as follows:

nB ¼ 0.16 fm−3; ð15aÞ

E=A −mþ ¼ −16 MeV; ð15bÞ

K ¼ 9n2B
∂
2ðE=AÞ
∂n2B

¼ 240 MeV: ð15cÞ

We note that the six-point scalar interaction term in
Eq. (4a) is essential to reproducing the empirical value
of the compressibility in Eq. (15c) [69]. A compilation
of the parameters used in this paper is found in Table I.
For this set of parameters, we obtain the pseudocritical

TABLE I. Physical inputs in matter-free space and the model parameters used in this work. See Sec. II for details.

m0[MeV] mþ[MeV] m−[MeV] mπ[MeV] fπ[MeV] mω[MeV] λ4 λ6f2π gω g1 g2

750 939 1500 140 93 783 28.43 11.10 6.45 13.36 7.32

1Since ω0 is the only nonzero component in the mean-field
approximation, we simply denote it by ω0 ≡ ω.
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temperature of the chiral crossover at vanishing
chemical potential, Tc ¼ 209 MeV. At low temperature,
the model predicts sequential first-order liquid-gas
and chiral phase transitions with critical points located
at T lg ¼ 16 MeV, μB¼909MeV, (nB ¼ 0.053 fm−3 ¼
0.33n0) and Tch ¼ 7 MeV, μB ¼ 1526 MeV (nB¼
1.25 fm−3¼7.82n0), respectively.
In the next section, we discuss the general structure of

the second-order susceptibilities of the net-baryon number
density for positive- and negative-parity chiral partners to
quantify their roles near the second-order phase transition
at finite density.

III. NET-BARYON NUMBER SUSCEPTIBILITY

The main objective of the present studies is to analyze
and delineate the contribution of nucleon parity doublers to
fluctuations of the net-baryon number density at finite
temperature and baryon chemical potential. In general, the
fluctuations of conserved charges reveal more information
about the matter composition than the equation of state and
can be used as probes of a phase boundary. The critical
properties of chiral models, within the functional renorm-
alization group (FRG) approach [74–77], are governed by
the same universality classes as in QCD—i.e., the chiral
transition belongs to the Oð4Þ universality class, which, at
large values of the baryon chemical potential, may develop
a Zð2Þ critical point, followed by the first-order phase
transition [78–80]. This criticality is naturally encoded in
quark-based models [10,81–84], as well as the hadronic
parity doublet model. We note that the mean-field treatment
yields different critical exponents, albeit preserving the
structure of the phase diagram.
In the grand canonical ensemble, the generalized sus-

ceptibilities of the net-baryon number, χn, are defined as
derivatives with respect to the baryon chemical potential,

χnðT; μBÞ ¼
∂
n−1nBðT; μBÞ

∂μn−1B

����
T
¼ χþn þ χ−n : ð16Þ

The net-baryon number density, as well as any other
thermodynamic quantity, contains explicit dependence on
the mean fields. In this work, we consider the isospin-
symmetric matter; therefore, the scalar σ and vector ωmean
fields [i.e., nB ¼ nBðT; μB; σðT; μBÞ;ωðT; μBÞÞ] are rel-
evant. Consequently, the second-order susceptibility, χ�2 ,
can be written explicitly as

χ�2 ¼ ∂n�B
∂μB

þ ∂n�
∂m�

∂m�
∂σ

∂σ

∂μB
þ ∂n�

∂ω

∂ω

∂μB
: ð17Þ

The middle term in Eq. (17) is the chiral-critical mode:

χ�;crit
2 ∼

∂n�
∂m�

∂m�
∂σ

∂σ

∂μB
: ð18Þ

The derivative ∂m�=∂σ is readily calculated from Eq. (6),
namely

∂m�
∂σ

¼ 1

2

�
α2σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2σ2 þ 4m2
0

p ∓ β

�
: ð19Þ

Note that for the positive-parity state, a minimum value of
the mass, mminþ , exists at

σmin ¼
2βm0

α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − β2

p ; ð20Þ

while the mass of the negative-parity state monotonically
decreases with σ as the chiral symmetry gets restored. We
also note that σmin > 0; therefore, the chiral-critical mode for
positive-parity state χþ;crit

2 becomes negative when σ < σmin

is realized.
In Fig. 1, we show the threshold value of the order

parameter, δσ ≡m− −mþ ¼ βσ, at the minimum σmin, as a
function of the chirally invariant mass. In general, it grows
with m0, which means that χþ;crit

2 becomes negative when
the chiral symmetry is more readily broken. For instance,
for m0 ¼ mvacþ ¼ 939 MeV, δmin

σ ¼ 262 MeV and for
m0 ¼ 750 MeV, δmin

σ ¼ 133 MeV. We note that the value
of mminþ is always below but close to m0, regardless of
the choice of the chirally invariant mass. Thus, the mass
of the positive-parity nucleon attains its minimal value
near the chiral restoration.
In general, the chiral-critical mode itself becomes

negative at any temperature and baryon chemical potential
when σ < σmin. Only in the vicinity of the critical point
does it become substantially large as compared to the
other terms in Eq. (17), and divergent via the term ∂σ=∂μB.
Moreover, at densities close to the liquid-gas phase
transition, chiral symmetry is still to a large extent broken

FIG. 1. The minimum mass mminþ and the order parameter
δmin
σ ¼ mmin

− −mminþ as a function of the chirally invariant mass
m0. The black, solid line shows mminþ ¼ m0.
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(i.e., σ ≈ σvac > σmin), and the fluctuations of the positive-
parity state are expected to be positive as the critical
point of the liquid-gas phase transition is approached.
Therefore, χþ2 becomes negative in the vicinity of the
critical region of the chiral phase transition, where the
term χ�;crit

2 becomes dominant and changes sign. We note
that for m0 ¼ 0, the order parameter δmin

σ ¼ 0, which
means that the χþ2 is positive-defined. We also remark
that the minimal value of mþ is very close to m0 (see
Fig. 1) and depends only mildly on the value of m0.
We emphasize that, in general, if the minimum of mþðσÞ

is reached at values of T and μB which are close to the phase
boundary, the properties discussed above are expected to
appear independently of the position of the critical point on
the phase diagram. Although the dependence of mþ on σ is
not universal and model dependent, we stress that the
calculations with the functional renormalization group
techniques preserve the same in-medium behavior [85].
At present, however, the only reliable answer can be
obtained from the first-principle lattice QCD calculations.
In the following, we quantify the contributions of

positive- and negative-parity chiral partners to the second-
order susceptibility of the net-baryon number density in the
vicinity of the nuclear liquid-gas and chiral phase transitions
to identify the importance of the chiral criticality.

IV. RESULTS

In the left panel of Fig. 2, we show the net-baryon
number density at three different temperatures as a function
of the baryon chemical potential. In general, nB features a
rapid increase at small values of μB ≈ 0.9 GeV, which is a
remnant of the liquid-gas phase transition at smaller
temperatures. In the right panel of Fig. 2, we show the
corresponding second-order susceptibility, χ2, normalized
by the baryon chemical potential. It features a peak below
μB ∼ 1 GeV, which corresponds to the rapid increase of nB.

At higher baryon chemical potential, χ2 shows only a mild
peak around μB ≈ 1.3–1.4 GeV, which is a remnant of the
chiral phase transition. Note that χ2 stays positive at all
values of the baryon chemical potential.
More structure is revealed when contributions from

positive- and negative-parity chiral partners are considered
separately. This is shown in Fig. 3. In the left panel, we show
the net densities, n�. The net density nþ features a rapid
increase at small values of μB, which signals a population of
the positive-parity state. Likewise, a similar increase is seen
in the net density n− at higher μB. At T ¼ 50 MeV, the
population of the negative-parity state additionally softens
the EOS, which is also reflected in a slower increase of nþ.
On the other hand, at T ¼ 30 MeV and 40 MeV, nþ
develops a local maximum followed by a local minimum.
This is connected with a more rapid increase of n− at smaller
temperatures. At high baryon chemical potential, chiral
partners become equally populated due to chiral symmetry
restoration. In the right panel of Fig. 3, we show the
corresponding second-order susceptibilities of the net-
baryon number density. The susceptibility χþ features a
peak below μB ∼ 1 GeV, which is a remnant of the liquid-
gas phase transition. A similar peak is seen for χ− at higher
baryon chemical potential, which can be interpreted as a
remnant of the chiral phase transition. Notably, at a chemical
potential where χ− features a peak, χþ features a minimum.
The value of χþ at the minimum decreases with lowering
temperature and eventually becomes negative. Therefore, the
second-order susceptibility of the net-baryon number of the
positive-parity state behaves differently in the vicinity of
liquid-gas and chiral phase transitions.
The fluctuations of the positive-parity nucleon manifest

the onset of liquid-gas and chiral phase transitions in a
different manner. To quantify the differences, we calculate
the fluctuations as functions of temperature along the
trajectories obtained by tracing the remnants of these
two transitions—i.e., the corresponding peaks in χ�2 .

FIG. 2. Net-baryon density (left panel) and its baryon-chemical-potential-normalized second-order susceptibility (right panel) plotted
for fixed temperature.
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The temperature dependence of χ�2 along the remnant of the
liquid-gas phase transition is shown in the left panel of
Fig. 4. The susceptibility χþ2 increases toward the critical
point of the liquid-gas phase transition, located around
T ¼ 16 MeV. On the other hand, χ−2 stays roughly constant
around zero, due to thermal suppression of the negative-
parity state. Therefore, the fluctuations around the critical
point of the liquid-gas phase transition are entirely driven by
the fluctuations of the positive-parity state. In the right panel
of Fig. 4, we show χ�2 along the chiral crossover line. The
entire χ2 diverges at the critical point as it should, similarly
to the liquid-gas transition. In this case, the contribution from
N− is not negligible, as it is populated in the vicinity of the
chiral phase transition. In contrast, χþ2 becomes negative and
diverges at the critical point of the chiral phase transition.
This is a direct consequence of the mass formula, which
admits a minimum for Nþ at a finite value of σ and the

coefficient of the divergent ∂σ=∂μB becomes negative. We
note that, albeit our results are obtained under the mean-field
approximation, the inclusion of quantum fluctuations within
the functional renormalization group (FRG) approach quali-
tatively preserves the same in-medium behavior of the
baryon masses [85].
In Fig. 5, we show the low-temperature part of the phase

diagram as a function of baryon chemical potential. At zero
temperature, the system undergoes first-order liquid-gas
and chiral phase transitions. With increasing temperature,
both phase transitions develop their critical points, above
which there are no sharp transitions, and they continue as
smooth crossovers. At high temperature, they come closer
together and finally merge [63]. The red, dotted envelope
marks the region, where the susceptibility χþ2 becomes
negative. This happens at T ¼ 45 MeV. Therefore, neg-
ative χþ2 fluctuations signal approaching the region near the

FIG. 3. Net-baryon density (left panel) and its baryon-chemical-potential-normalized second-order susceptibility (right panel) for
positive- and negative-parity chiral partners separately plotted for fixed temperature. Solid and dash-dotted lines correspond to positive-
and negative-parity chiral partners, respectively.

FIG. 4. The temperature dependence of the temperature-normalized second-order susceptibility of the net-baryon number density
along the crossover liquid-gas (left panel) and chiral (right panel) transition lines. In the right panel, the inlet figure shows the same
quantities for higher temperatures.
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critical point of the chiral phase transition. We note that
outside of this region, χþ2 stays positive at all values of
temperature and baryon chemical potential. Clearly, our
study illustrates that the effects of chiral criticality can
become manifest differently in the properties of the
fluctuations, depending on which degrees of freedom
would be thermodynamically activated near the second-
order phase transition at all temperatures and chemical
potentials. We emphasize that one should also expect to
see qualitative differences between higher-order fluctua-
tions of positive- and negative-parity states. This is
because they are proportional to higher-order derivatives
χ�n ∼ ∂

nm�=∂σn. Therefore, it is essential to utilize a
framework with a self-consistent treatment of the chiral
in-medium effects for a reliable description of the fluctua-
tions of conserved charges.
To summarize, we have established for the first time the

contribution to net-baryon fluctuations from baryonic chiral
partners of opposite parity. We find that the previously
unexplored inclusion of the nucleon’s chiral partner in a
systematic way leads to a qualitative change in the structure
of the fluctuations in the vicinity of the critical point.
Namely, the critical fluctuations due to positive- and
negative-parity baryonic chiral partners still carry the same
critical exponents; however, with different coefficients and
signs, such that their sum shows the expected critical scaling
behavior of the net-baryon number due to long-range
correlations. Our conclusion is based on an assumption
of mean-field dynamics, where we can split contributions
from positive- and negative-parity states. Nevertheless, this
allows indicating that the assumption about net-proton
fluctuations being a good proxy for net-baryon fluctuations
is not necessarily correct and requires further study.

V. CONCLUSIONS

We have studied the qualitative structure of the fluctua-
tions of conserved charges at finite density, focusing on the
chiral-critical properties of the nucleon parity doublet.
Utilizing the parity doublet model in the mean-field
approximation, we have analyzed the second-order gener-
alized susceptibilities of the net-baryon number density in
the vicinity of the nuclear liquid-gas and chiral phase
transitions.
Our results are based on an assumption of mean-field

dynamics, where the generalized susceptibilities are
expressed as a sum of contributions from different species.
This allowed us to consistently delineate the contributions
from positive- and negative-parity chiral partners to the
fluctuations of the net-baryon density. As expected, we have
found that the fluctuations of the positive-parity state
dominate the contribution in the vicinity of the liquid-gas
phase transition, and its second-order susceptibility increases
as the critical point is approached from high temperature.
Contrarily, the second-order susceptibility of the positive-
parity state turns negative in the vicinity of the first-order
chiral phase transition and diverges negatively at its critical
point. At the same time, the susceptibility of the negative-
parity state stays positive at all values of temperature and
baryon chemical potential. This qualitative difference is
traced back to the mass modification of the parity doublet
due to in-medium chiral effects. One possible next step
beyond mean-field approximation would be the inclusion of
mesonic fluctuations within the functional renormalization
group (FRG) approach. Interestingly, the FRG results
qualitatively preserve the same in-medium behavior of the
baryon masses [85]. If the fluctuations of negative-parity
states would turn out to be dominant over various beyond-
mean-field correlations, one should expect to see deviations
from the net-proton to net-baryon correspondence.
The qualitative differences in the sign of the positive- and

negative-parity state fluctuations can also be useful in
searching for possible critical points in the QCD phase
diagram. In particular, our results bring significant and
nontrivial differences of the critical behavior of the net-
proton fluctuations in the vicinity of the liquid-gas and
chiral phase transitions. This strongly suggests that in order
to fully interpret the critical properties of the matter created
in heavy-ion collisions, especially in the forthcoming large-
scale nuclear experiments FAIR at GSI and NICA in Dubna,
it is essential to consistently incorporate and understand the
chiral in-medium effects carried by the parity doublers.
Our results revealed that in dense baryonic matter, the

effects of chiral criticality can manifest themselves differ-
ently in the properties of the fluctuations depending on the
parity of baryons. It is conceivable that remnants of such
effects can be present also at finite temperature and small or
vanishing chemical potential. Consequently, measuring
properties of net-proton number fluctuations in high-energy
heavy-ion collisions is not necessarily sufficient to fully

FIG. 5. Low-temperature part of the phase diagram. Shown are
the liquid-gas (black solid/dashed-dotted line) and chiral (blue
solid/dashed line) phase transition/crossover lines. Circles indicate
critical points, below which the transitions are of the first order.
The red envelope shows the region where χþ2 is negative.
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describe criticality due to chiral phase transition or its
remnant. Further study to identify the role of chiral
symmetry restoration and other hadronic interactions on
the properties of fluctuations of parity doublets is in
progress and will be reported elsewhere.
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