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Stability studies of first-order spin-hydrodynamic frameworks
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We study the stability of first-order dissipative spin-hydrodynamic frameworks. We considered two
different first-order dissipative spin-hydrodynamic frameworks. The first one considers the spin-chemical
potential (w®) to be first order [O(d)] in the hydrodynamic gradient expansion. The hydrodynamic
gradient ordering of the spin-chemical potential is a debatable issue within the frameworks of spin
hydrodynamics. Therefore, as a second choice, we also consider the spin-hydrodynamic equations with

@ ~ O(1). We find that, for both frameworks, at the level of linear perturbations some spin modes can
be unstable. To remove these generic instabilities, we consider the Frenkel condition. We argue that the
Frenkel condition helps get rid of the unstable solutions in both cases but with a physical drawback for the

case where o ~ O(0).
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I. INTRODUCTION

Experimental observations of spin-polarized weakly
decaying hyperons have given us a unique opportunity to
explore the vortical structure of the strongly coupled plasma
produced in relativistic heavy-ion experiments [1-10]. Moti-
vated by the successes of the relativistic dissipative hydro-
dynamic framework in heavy-ion phenomenology [11], it is
naturally desirable to generalize the hydrodynamic frame-
work to include spin as a dynamical degree of freedom.
Several spin-hydrodynamic frameworks have been deve-
loped using relativistic kinetic theory [12-25], entropy
current analysis [26-31], quantum statistical density oper-
ators [32-36], effective Lagrangian approach [37-40], holog-
raphy [41,42], and equilibrium partition functions [43], etc.

Spin-hydrodynamic frameworks are based on the
conservation of the total angular momentum and the con-
servation of the total energy-momentum tensor. The quan-
tity that separates the spin-hydrodynamic framework
from the standard hydrodynamic framework is the “spin-
chemical potential.” In the Navier-Stokes limit of the spin-
hydrodynamic framework, the spin-chemical potential is a
hydrodynamic variable similar to the temperature, chemical
potential, and fluid four-velocity. In local thermodynamic
equilibrium, the hydrodynamic gradient ordering of the
spin-chemical potential is not a settled topic, and different
derivative counting schemes have been considered in the
literature [26,27,29-31,44]. Hydrodynamic gradient order-
ing of the spin-chemical potential plays a crucial role in the
thermodynamic as well as a hydrodynamic description with
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spin; e.g., if one considers that the spin-chemical potential
is O(1) or O(d), then this affects the first-order spin-
hydrodynamic description significantly. Since the spin-
hydrodynamic framework depends on the derivative
ordering of the spin-chemical potential, it is natural to
investigate its effect on the propagation properties of linear
perturbations.

Linear mode analysis of various hydrodynamic theories
has been extensively discussed in the context of the stability
and causality of fluid-dynamical theories. Generically, one
performs the stability and causality analysis around a
hydrostatic state, where the spatial components of the flow
velocity vanish. However, it should be pointed out that even if
a theory is causal and stable in the hydrostatic limit, it does
not necessarily imply stability in a boosted frame. Linear
mode analysis of a generic first-order theory [45-47], as
well as second-order Israel-Stewart theory, have been scruti-
nized in various literature for a generic Lorentz-boosted
frame [48-54]. Moreover, using such studies it was found
that causality and stability of various hydrodynamic models
are intimately related. Note that in a hydrodynamic theory
instability may appear due to various factors, but it has been
explicitly shown that for a parameter space where the theory
gives rise to acausal mode theory also shows some insta-
bilities [51,55]. Such theoretical intricacies associated with
the mode analysis have also been studied for the relativistic
magnetohydrodynamics [56], spin hydrodynamics [57-60],
chiral hydrodynamics [61], etc.

In the present work, we investigate the properties of
various linear perturbations of the first-order dissipative
spin-hydrodynamic framework. We show that the linear
mode analysis crucially depends on the spin-hydrodynamic
framework and the derivative ordering of the spin-chemical
potential. In our analysis, we consider two different
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spin-hydrodynamic descriptions; one considers the spin-
chemical potential to be O(1) in the hydrodynamic gradient
expansion [29], and the other theory considers the spin-
chemical potential to be O(d) [26,27,30,31,44]. We also
argue that both theories can give rise to linear modes which
are unstable. Note that the spin-chemical potential, denoted
as @, is a two-rank antisymmetric tensor that has six
independent components. Our calculations suggest that the
instabilities appear in the spin-hydrodynamic description
due to the boost degrees of freedom @”. In principle, such
unstable modes can be removed from the theory by suitably
eliminating »* degrees of freedom. This can be achieved
by incorporating the “Frenkel condition” [62,63].

The paper is organized as follows. We begin by studying
the stability of the first-order spin-hydrodynamic [26],
which considers the spin-chemical potential w,, to be of
the first order in gradient expansion in Sec. II. In this
section, we apply linear perturbation on top of a specified
global equilibrium background for the spin-hydrodynamic
equations, and then we solved them in Fourier space where
we find that some spin modes can be unstable. We then
show that imposing the Frenkel condition gets rid of
the unstable solutions while leading to some physical
drawbacks to the system. In Sec. III, we repeat the same
procedure but for the spin-hydrodynamic formulation [29],
that follows the spin-chemical potential at the leading order
in the hydrodynamic gradient expansion. We also find that
some spin modes are unstable. For such a case, imposing
the Frenkel condition gets rid of the unstable solution
without any physical disadvantages. In Sec. IV, we sum-
marize and conclude.

II. SPIN-CHEMICAL POTENTIAL FIRST
ORDER IN THE HYDRODYNAMIC
GRADIENT EXPANSION

A. Formulation

Often, it has been argued that in global equilibrium the
spin-chemical potential should be proportional to the thermal
vorticity [21,26]. Hence, one can consider a situation where
o ~ O(0). Such a spin-hydrodynamic description has
been discussed in Refs. [26,27,44]. It will be similarly
interesting to study the linear modes for the spin-hydro-
dynamic description where @™ ~ O(9). It should be empha-
sized that, although the spin-chemical potential is argued to
be O(9), the spin density is O(1) [31]. Considering that the
spin density is proportional to the spin-chemical potential
brings nontriviality to this framework. We start with the
energy-momentum tensor and spin tensor having the follow-
ing form [26,27,44]:

™" = eu'u” — pA*™ + W'u” + h*u#
T gt — gt (1)

Stel = uSP + S (2)

We emphasize that in the above equation the energy-
momentum tensor is not completely symmetric. Rather, it
contains an antisymmetric part. Moreover, the spin tensor is
antisymmetric only in the last two indices. Such a phenom-
enological energy-momentum tensor and spin tensor can be
obtained from the canonical energy-momentum tensor and
spin tensor using a proper pseudogauge transformation [44].
h* is the heat flow, and 7#¥ = #** + [1A* is the dissipative
corrections to the symmetric part of the energy-momentum
tensor. 7 is the traceless part of 7#¥, and it is related to
the shear viscosity (7). On the other hand, II is related to
bulk viscosity (£). The dissipative corrections to the anti-
symmetric part of the energy-momentum tensor are g* and
" ht, T, g*, and @M satisfy the following conditions:

Wu, = 0,7 =, 7"u, =0, ¢"u, = 0, P = —¢", and
@"'u, = 0. The dissipative correction to the spin tensor, i.e.,
S?’f;’ , s not fixed at the level of first-order dissipative spin

hydrodynamics, as it does not contribute to the nonequili-
brium entropy current' [26,27,44]. Various dissipative cur-
rents can be uniquely determined by using the condition that
for an isolated dissipative system entropy will be produced.
In terms of the hydrodynamic variables, i.e., T, u*, and o, it
can be shown that [26,27,44]

W = —x(Du* — pVHT), (3)

g" = A(Du* + pVFT — 4 u,)), (4)

2
™=np <A/“’aau” + A0 ut — 3 M”A“ﬁaﬁua>

+ $(0u”)AH, (5)
P =7 (VFu? = Vul + 40 AP @, 5). (6)

Here, D = u*d,, V¥ = A"9,, and 7 = fy/2. Note that h*,
q", 7, and ¢* are O(d) in the hydrodynamic gradient
expansion. Dissipative currents h* and ¢* as given in
Egs. (3) and (4) can be further simplified by using the
leading-order hydrodynamic equations. Conservation of

T’Zg) = eufu’ — pA" gives us

'Recall that the ansatz for the nonequilibrium entropy current
can be expressed as S* = f,T* + pp+ — ﬂa)aﬂS’“’ﬂ . For the first-
order dissipative spin-hydrodynamic framework, S* can contain
terms up to the order of O(d). Such O(0) terms can come from
both T7# and $**. But if we consider @ to be of the order of

0O(0), then waﬁS’(’;’)ﬁ terms will be of the order of O(d?). There-

fore, we can conclude that if @ is of the order of O(9), then the
dissipative part of the spin tensor would not contribute to the
entropy current. On the other hand, if @ is of the order of o(1),
then S’(;’)ﬁ will contribute to the first-order spin-hydrodynamic
framework. This is the most striking difference between various
frameworks considered here.
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u'o,e + (e + p)(9,u*) = 0, (7)

(e 4+ p)Du*—=Vep = 0. (8)
Using Eq. (8) back into Eq. (3), it can be easily shown that
=0+ O(?). 9)

In order to obtain the above equation, we have used the
thermodynamic relation T's + S% W3 =€+ p,dp = sdT +
S*dw,,. Here, we consider @ ~ O(d), and S ~ O(1)
in the hydrodynamic gradient expansion [26,27.44].
Furthermore,

q¢* = M(Du* + pVFT — 4w u,)

VH
- z(z P 4a)"”ul,> +O@).  (10)
E+p

To obtain the linear-order hydrodynamic perturbation
with respect to a global equilibrium, we consider u’{o)z
(1,0,0,0), a)’('(';) =0, and S5 =0 [26].> Some comments
on the choice of global equilibrium are in order here. Note
that for a (most general) global equilibrium the following
conditions must be fulfilled: 9,8, + 9,4, =0, , = b0 +
- 0,p,)/2 = const [15]. Here,
B, =u,/T, bY is a constant four-vector, and w,, is the
thermal vorticity. In terms of hydrodynamic gradient expan-
sion, thermal vorticity is O(d). Therefore, a generic global
equilibrium allows for O(9) terms. This is one of the most
nontrivial features of spin-hydrodynamic frameworks as
compared to the hydrodynamics for “spinless” fluids, where
all the O(9) terms vanish in global equilibrium [45]. If we
identify the spin-chemical potential with thermal vorticity in
global equilibrium, then it is natural to consider the spin-
chemical potential to be O(9d) in hydrodynamic gradient
expansion. However, such identification crucially depends
on the symmetry of the energy-momentum tensor [26,29].
One could, in principle, consider the spin-chemical potential
to be either O(1) [29] or O(0) [26] in the hydrodynamic
gradient expansion. Similar to other thermodynamic quan-
tities, e.g., temperature (7)) or chemical potential (u), the
value of the spin-chemical potential can also be considered to
be zero in global equilibrium (analogous to y = 0 corre-
sponding to a baryon-free QCD plasma). Zero spin-chemical
potential also implies zero spin density. Such a situation
represents unpolarized (zero spin polarization) global

w,x', and w,, = (0,5,

Throughout the calculation, we have considered $* ~ O(1).
However, the spin-chemical potential can be either considered as
O(1) or O(0) in the hydrodynamic gradient expansion depending
on the symmetry of the energy-momentum tensor. Such a choice
of global equilibrium configuration is independent of the hydro-
dynamic gradient ordering of $** and w**. As a result, we can
choose /g = 0 for @ ~ O(1) as well as for @ ~ O(0).

equilibrium, as considered in the present article. All pertur-
bations are considered around the unpolarized global
equilibrium.

For such a global equilibrium configuration, various
dissipative currents vanish, i.e., ‘1,(40) =0, qﬁ’(’g) =0, and

r?’(';) = 0. Note that 7#*, ¢*, and ¢* are already O(0).

Therefore, we consider 67+, 5¢*, and 6¢** up to O(d?), and
we neglect all higher-order terms:

2
v a v va v A aff
ot =n (A’Zo)aazsu + A 001" — 3 A’(‘O)A(O)()ﬂéua>

+£(0,0u)Alg) + O(0%). (11)
A 0,5p
8q" =1 <2 0= _ 4660"”14,(,0)) +0(), (12
€0) t P
S = (Al 0u0u” — AL 901"

+ 4A”p(0>A”l(0)5a)”’1) + O(0%). (13)
In global equilibrium, it is easy to show that T%> = 0. The
perturbation 67% can be expressed as

8T = (e(0) + p(o))ou’ + 67" = 5q' + 6¢%.  (14)

For the flow perturbation of the form &u¥ = (0, 6ui),
using Egs. (11)-(13) it can be shown that 67% =0,
6¢° =0, and 8¢ = 0. But ¢’ is nonvanishing, and it
can be expressed as

. Vi 6p .
5q' =2 <2(0> - 45a)lvu£°)> +0(8)

€0) t P
Y
= Vc2oise —— 5850 + O(d°)
Xb
= N c2dise — D85S + O(). (15)

2 2 —
s = 0p/oe, Dy =

42/yp, and y, = 05 /0w™. We consider c2, y,, and D), to
be constants, as any space-time derivative of these quan-
tities will give rise to higher-order terms. Therefore, the
perturbation 7% = &z’ can be expressed as

Here, we have defined 1/ =

1’ = (e) + po))du' — ¥70'6e + D85 + O(2%). (16)

Note that §z' contains terms of the order of O(d) and
higher. Moreover, /' and D, originate from the antisym-
metric part of the energy-momentum tensor. Conservation
of the total angular momentum can be used to write the
evolution equation for the spin tensor:

u0,8% + SPo,ut = =2(q*w’ — ¢Pu + ¢P).  (17)
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Noting that we are considering the global equilibrium with
S’Zg) =0 and a)’(’g) =0, at the level of linear-order pertur-

bation we can write
00887 = —2(8¢°uly — 8q"ufy + 57) + O(&°). (18

Using the above equation, we can obtain the evolution
equation for 5% and 6S%/. The evolution equation of 55 is

0y68% = —2(5q0ul('0) - 5qiu(()0) +6¢) + O(0%)
=26q" + O(2°)
= 2)c20'6e — 2D,55° + O(d%). (19)

Using Eq. (18), the evolution equation of §S” can be
written as

3,551 = 254 + O(°)
= 2D 58SV = 2y (d'6n/ — d/6x’) + O(%).  (20)

Here, D, = 47/y, and y, = 05" /0w’ . The longitudinal
projection of the conservation of the total energy-momentum
tensor u,d, 7" = 0 implies

w'd,e + (e + p)ou = —u,9,T()). (21)

Note that the lhs of the above equation is O(0), but the rhs is
O(0?). Therefore, for the perturbation equation, the lhs will
be up to the order of O(9?) and the rhs will be up to O(a%).
Such a perturbation equation can be expressed as

()058 + (8(0) + p(()))d,-éui
= —0y67%° — 9,[6¢° + 5q + 5¢"). (22)

In order to obtain Eq. (22), we drop some terms, e.g., 5u*d,, ¢
and (e + 6p)o,6u*, which are O(0*). Since we are restrict-
ing our analysis for only linear modes, we have dropped
terms which are nonlinear in perturbations. Using the
conditions that 67% = 0, 6% = 0, and 5¢™ = 0 and the
expression of 6g' back into Eq. (22), it can be shown that

900 + 0,01 + 2()'20;0'6¢ — D,0;65°) = 0.  (23)

In the above equation, we have not considered O(d*) terms.
Taking the normal projection of total energy-momentum
tensor A,?&,,T””, we find

(e 4+ p)Du* — A% d5p + A%,0,7 + A®,0,(q"u”)
- A%0,(q"w') + A%, 0,¢" = 0. (24)

We should emphasize that Eq. (24) contains terms up to
O(0?). Therefore, the linear-order perturbation of Eq. (24)
must contain terms up to the order of O(d%), and we can
neglect higher-order terms. The perturbation equation asso-
ciated with Eq. (24) can be expressed as

(E(O) + p(o))aoﬁu“ - A?g)ﬁﬁﬁp

a p v ap
+ 7’]A y(0>A/Z0)dﬂ0ﬁ5u + nA(O)dﬂaﬁéu”

2 Q, Q,
~ 180,050 + LAT0,050u°
— A%, 0)003¢" + A%, 00,54 = 0. (25)

For a = 0, the lhs of the above equation identically vanishes.
For a = i, we find

0067 — 20'5e + (y, + 1) (8,040, — 9'9;)6n0
+ 70087t + D058k = 0. (26)

Throughout the derivation, we use the following notations:

, 0p 0S'i 4 7
Cy =—7» )(SE—Z“7 DSE_7 V=
de o' Xs £(0) T P(0)
aS0 “o, 2)
x :—17 5_7 577
" 0w " €0) + Do)
1 4 n
N=—— C+—11), yL=——r. 21
H €<0>+P<o>< 3 T e+ P )

Equations (19), (20), (23), and (26) along with Eq. (16) are
the main perturbation equations. We emphasize that for this
framework the standard fluid perturbations, i.e., ¢ and du',
are coupled with the spin perturbation 5% and 557 .

B. Fourier space equations
Equations (19), (20), (23), and (26) can be solved in
momentum space to obtain different dispersion relations
associated with different perturbation modes. Various
perturbations Je, 6z%, 55, and 5S% can be expressed as
plane waves in the following way:
Se — gee—iwml}'-}’
5ﬂk _ é;ce_inr”;},
58 — Eg?je—iwtﬂl?-z’
5501’ _ 5Soie—ia)l+ilz-f' (28)
Because of the rotational symmetry of the system, we can
consider waves which are propagating only along the z

direction, i.e., k= (0,0, k,). For such a choice of plane
wave, Egs. (19), (20), (23), and (26) become

—iwbe + ik.6n° + 202286 + 2D, ik.58% = 0,  (29)
—iwdr* + (v +7)K2n* + ik, D,6S* =0, (30)
—iwdr + (y, 4 7)k2om + ik,D,5S% =0, (31)

—iwdT® + ik,c25e + 7/Hk§5/7? =0, (32)
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—iw5S™ 4 2D 587 = 0, (33)
—iw8S™ +2D,58% — 2y (ik,)or* =0,  (34)
—iw5S" + 2D,58 + 2y (ik,)6r* =0, (35)

—iw8S™ — 2D,58% = 0, (36)

i8S — 2D, 58 = 0, (37)
—iw6S% 1+ 20/ c2(ik.)de — 2D,88% = 0. (38)

These equations can be represented as a matrix equation
M x v = 0 such that

v = (58,57?, (%50/2,57;’“,555‘,5’7;", (ﬁ’530x’c;ﬂ’g§5r)T_

For such a choice, 3¢, 577, and 55 can be grouped together
to write

—iw + 22 c2k? ik, 2D, ik, e
ic2k. —iw + ) k? 0 o
20 ik, 0 —iw—2D,.) \ 5%
e
=A| o |. (39)
5Soz

Similarly, (SAJ;’“, 557 and &n” , 557 can be grouped together

in the following way:
<—ia)+ (yL+7)  ik.D, ) (57?6 ) :B< ot )
—iw+2D; ) \65%) = \ 5%
(40)

=2Yik,
o )(E)-o()
(41)

The spin parts 5& , gojy, and 5S™ are not coupled to other
perturbations. Therefore, Eqs. (33), (36), and (37) can be
written as

and

<—iw + (rL+7)k:
=2y'ik,

—iw — 2D, 0 0 550x
0 —iw — 2D, 0 580y
0 0 —iw + 2D, 55
550
=C| ssv |- (42)
5%

Various dispersion relations can be obtained by solving
det M = 0, where

A 03><2 03><2 03><3

05 B 0y, 05y
M= 2x3 2x2 2x3 ] (43)
02><3 02><2 B 02><3

03><3 03><2 03><2 C

Using the advantage of M being a block diagonal matrix,
we can directly obtain the determinant such that

det(A) det(B)*(—iw — 2D,)*(—iw + 2D,) =0 (44)
and can be summarized as
w = =2iD, (45)

® = +2iD;, (two modes), (46)

o = =2iD; — iy'k? + O(k¥)  (two modes) (47)

w = —iy k> + O(k¥) (two modes), (48)
o = +cik, — %ynk% + O(k3), (49)
w = —cik, — éyuk% + O(k3), (50)
® = 20Dy, — 22K + O(KY). (51)

Note that a physical plane wave of the form e~"@+k¥ must
not give a solution which is growing with time.> But from

If the hydrodynamic perturbations are represented as
exp(—iwt+ ik - X), then stability implies Imew(k) <0 for all k [45].
However, in the present work, we kept terms up to k? considering
that hydrodynamics is a long-wavelength effective theory. Hence,
low-momentum modes correctly capture different features of the
hydrodynamic theory, e.g., diffusive modes, sound modes, etc.
Moreover, if we restrict ourselves to first-order theory, then
various algebraic equations in the momentum space and various
dispersion relations [w(k.)] contain terms only up to k2. Higher-
order terms in various dispersion relations can originate from
higher-order gradient terms in hydrodynamic constitutive rela-
tions for the energy-momentum tensor and spin tensor. In the
Navier-Stokes limit, we do not consider such higher-order terms.
Therefore, for consistency of hydrodynamic gradient expansion,
we kept the lowest-order terms up to k2. For a most general
hydrodynamic theory with an arbitrary number of gradient terms,
one should analyze a series of the form w = > % a(,,)k” [64]. In
the present calculation, we do not intend to study such a
generalized dispersion relation.
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Egs. (46) and (51) it is clear that an unstable mode exists
for D, > 0. Therefore, the spin-hydrodynamic equations
are not stable for the linear perturbation around the global
equilibrium considered here. The same observation has
been pointed out in Ref. [60].* This problem may be
solved by appropriately defining D,. There could be a
physical reason to choose an appropriate sign of D,.
Throughout the calculation, D, and D, are considered to
be positive. This implies that y;, > 0 and y, > 0 Eq. (27).
This is very natural to argue using the equation of state
relating spin density tensor S$* and " [31,65].
Generically, the spin density tensor should be propor-
tional to the spin-chemical potential, i.e., S** ~ @**. The
proportionality factor should be either positive or neg-
ative. If the proportionality factor is negative, then D, <
0 and Dy < 0. In this case, although D, <0, due to
negative D; some modes will remain unstable. On the
other hand, if the proportionality factor is positive, then
D, and D, are both positive. In that case, also the theory
will give rise to unstable modes. Only if D, <0 or
xp <0, keeping y, > 0, then unstable modes will not
appear. This implies that the proportionality factor
appearing in the spin equation of state for the Oith
components will be different from ijth components. This
is rather difficult to justify physically. But this needs to
be investigated thoroughly for a proper understanding of
the spin perturbation equations. We consider an alter-
native approach to remove this instability by imposing
the Frenkel condition. We know that this instability is
caused by the modes associated with D, and it may be
possible to eliminate those problematic modes using the
Frenkel condition, i.e., $**u, = 0 = w*u, [63].

C. Frenkel condition to solve the problem
of instability

The “macroscopic” Frenkel condition u,$" =0 has
been considered recently, for instance, in Ref. [63], to
develop a spin-hydrodynamic framework with a canonical

“Note that in Ref. [60] the authors considered a different
counting scheme than what we considered here. In this
reference, the authors could find next to the leading-order
contribution to the spin tensor and the associated transport
coefficient y. In the limit y; = 0, various dissipative currents
as obtained in Ref. [60] match with the calculation as given in
Ref. [26]. In this limit, there exists an unstable mode if D, > 0
or y, > 0.

spin tensor.” In the canonical framework, where the spin
tensor is totally antisymmetric, the Frenkel condition is
naturally built in the system, ie., S¥ =u,S* =
uMS"” = 0. Obviously, as S* is antisymmetric, the
Frenkel condition reduces the number of dynamical
degrees of freedom in the hydrodynamic framework
from six to three. In Ref. [44], we have argued that the
energy-momentum and spin tensors considered in the
present calculation can be obtained from a properly defined
canonical framework using a pseudogauge transformation.
SH appears in thermodynamic relations including spin-
chemical potential which are expected to be independent
of pseudogauge transformations. Hence, we also expect
the Frenkel condition to be applicable to the present
calculation.

If we impose the Frenkel condition, i.e., $**u, = 0 or
@ u,, = 0, then various dissipative currents, i.e., #* and 7**
as given in Egs. (3) and (5), respectively, remain unaltered.
But ¢ and ¢** change to

q¢" = MDu* + pVFT), (52)

>The Frenkel theory was originally introduced to generalize
the definition of nonrelativistic spin to a covariant expression in a
quantum field theoretical system to describe the microscopic spin
degree of freedom. In an operator form, the microscopic Frenkel
condition can be expressed as (p, s|P,S"|p,s) = 0, where |p, s)
denotes a single-particle state with momentum p and spin s [20].
In the particle rest frame (PRF), it can be argued that the
expectation value of §* has only spacelike components, which
for the case of a canonical spin tensor give rise to the non-
relativistic spin vector operator [20]. Hydrodynamic descriptions
are different from single-particle dynamics. Hydrodynamics is a
classical field theory resulting from the coarse-graining of
quantum field dynamics. Therefore, for a hydrodynamic theory,
the generalization of the concepts applicable to single-particle
dynamics needs to be provided. Such a generalization of the
microscopic Frenkel condition for a fluid element can be ex-
pressed as u,$* = 0. One should emphasize that in quantum

field theory S is defined as a volume-integrated operator. On the
other hand, in hydrodynamics, one deals with densities of
macroscopic quantities. Note that, at the hydrodynamic level,
dealing with the concept of PRF can be misleading. Rather, the
notion of a fluid rest frame (FRF) is more suitable. While, in the
case of massless particles, the PRF does not exist, one can
certainly define the FRF. Therefore, $** should be considered as
the spin density tensor characterizing the fluid element, contrary
to the spin tensor for an individual particle. In the FRF with
w = (1,0,0,0), only spacelike components of S* survive, i.e.,
Si = 0. It can be considered analogous (not the same) to the PRF
condition for a massive particle.
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P =y(Viur =Vl + 4o). (53)

Neglecting all higher-order terms, 8g* and 6¢** up to O(d?)
can be expressed as
A’(‘g) 0,6p

ogt =2 (2
€0) T P(0)

) + O(2°), (54)

S = 7 (g 0adtt” — Al 01t + 450) + O(d°). (55)
Using the evolution equation of 5S% as given in Eq. (18),
we find

0p0S% = 22/ 20 se. (56)

Using the linear-order perturbation of the Frenkel con-
dition $**u, = 0 = @w*u, gives us 6S"”u,(,0) = 0. Therefore,
due to the use of the Frenkel condition, we find
S’ =0 = §S%. Using the condition that 6S% =0 in
the above equation, we get d'Se = 0. Note that for the
linear model analysis we are interested in the plane wave
solution of various hydrodynamic perturbations of the form
e ®*_Thus, 0'de = 0 implies that Je itself vanishes, i.e.,
de = 0 and 5¢' = 0. Using Eq. (18), the evolution equation
of 88"/ can be written as

00081 + 2D8SU + 2/ (387 — ¥oni) =0, (57)

where 67’ = (g(g) + p(o))0u’. Now let us look into the
conservation of the energy-momentum tensor. Using the
conditions d¢ = 0 and g’ = 0 in the longitudinal projec-
tion of the energy-momentum tensor, i.e., Eq. (22), we find
0;6n' = 0. On the other hand, the perturbation equation
associated with the normal projection of conservation of
total energy-momentum tensor gives us

(8(0) + p(o))aoél/ll + n()kdkéui + ak5¢ki = O (58)

Using the expression of 6¢** as given in Eq. (55), it can be
shown that

0,6~ = y0,.0*6u’ + D0, 5SH. (59)

Using Eq. (59) back into Eq. (58), we obtain
0y’ + (v, + 700 n" + D0, 5SF = 0. (60)
In summary, considering the linear-order perturbations of
various hydrodynamic variables, the conservation of the
energy-momentum tensor and the total angular momentum

tensor gives us

0y + (v +7)0% 0,67 + D068 =0,  (61)

0058 + 2D,58' + 2y (0'6n) — disn) = 0,  (62)
d;5m = 0. (63)

Once again without the loss of generality, we consider
plane wave representation of various perturbations in the
momentum space:

Sk = 5ﬂ.ke—iwt+ikzz’ (64)
5Si — 5Si g=iontik.z (65)

In momentum space, Eq. (63) implies 6z° = 0. Therefore,

the perturbations Je, ort, 88%, 58% and 55% decouple
from the theory, and the remaining nontrivial equations are

—iwdr* + (y, + 7K1 + ik,D,5S* =0, (66)

—iwdn’ + (v, +7)k26m + ik,D,65% =0, (67)
—iw8S™ +2D,587 =0, (68)

—iw3ST + 2D,58 — 2/ (ik.)or* =0,  (69)
—iwdS” + 2D,58% + 2y (ik,)ém* = 0. (70)

57, 5% and 67”, 557 can be grouped together as given in
Egs. (40) and (41). But 5™ does not couple to any other
perturbation. Various dispersion relations can be obtained
by solving the equation det(B)?(—iw + 2D;) = 0 and can
be summarized as

w = —2iD;, (71)

w = =2iD; — iy'k? + O(k?)  (two modes), (72)

w = —iy k> + O(k¥) (two modes). (73)
Note that, unlike the previous case, the imaginary part of
the various dispersion relation is always negative, and
various perturbations will not grow with time. But this
comes with a drawback. Because of the use of the Frenkel
condition in this case, the standard hydrodynamic pertur-
bations, i.e., d¢ and dz°, do not appear in the theory, which
is not physically appealing.

III. SPIN-CHEMICAL POTENTIAL LEADING
ORDER IN THE HYDRODYNAMIC
GRADIENT EXPANSION

A. Formulation

We start our discussion with the hydrodynamic frame-
work with angular momentum where the spin-chemical
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potential (@**) is O(1) in the hydrodynamic gradient
expansion [29]. In this framework, the energy-momentum
tensor is totally symmetric. Note that, in the absence of
any antisymmetric component of the energy-momentum
tensor, the spin angular momentum is separately conserved
even in the presence of interactions, which is otherwise
not possible. This drastically affects the dissipative spin-
hydrodynamic description, particularly various dissi-
pative currents in the energy-momentum tensor and spin
tensor [29]. Here, we proceed one step further to discuss
spin-hydrodynamic modes of this theory by performing
the linear mode analysis for the spin-hydrodynamic frame-
work. We consider the metric convention with g, =
diag(1,-1,—1,-1), and the projector orthogonal to the
fluid four-velocity u* is A" = ¢ — u'u” with w'u, = 1.
For the Landau frame choice, the energy-momentum tensor
(T*) and the spin tensor ($#*) can be expressed as [29]

T" = eu!u’ — pA™ + o, (74)
o = a4 TIA, (75)
SHel = uSP + S (76)

o = ¥ is the dissipative part of the energy-momentum
tensor which contains the shear and bulk viscous terms. 7#¥
satisfies the following condition: 7*“u, = 0. Using the
entropy current analysis for the Navier-Stokes theory,
shear and bulk viscous terms can be expressed as
T = gt + TTAM,

2
o = n|Viur + VPuh — §A"”Vﬂuﬂ , (77)

II= g’(a(,u”). (78)
Here, V¥ = A#*9,, and 5 and { are the coefficients of the
shear and bulk viscosity, respectively. Both # and ¢ are
positive definite. The spin tensor $#* is antisymmetric only
in the last two indices. $** can be considered as the spin

density, i.e., S% = u, S#* and S’(’ f’)ﬁ is the dissipative part of
the spin tensor. The thermodynamic relations are given as
Ts + S%w,5 = €+ p, de = Tds + w,5dS™. The dissipa-
tive part of the spin tensor S’(f’)ﬁ ~ O(0) can be expressed
as® [29,66]

®In the standard hydrodynamic framework without a dynami-
cal spin degree of freedom, the nonequilibrium entropy current
can be expressed as S" = pfu* + pu,T*. In spin hydrodynam-
ics, the ansatz for the nonequilibrium entropy current can be
generalized to S* = ppt + B, TH — ﬁa)a/;SWﬂ . If we consider
@" ~ (1), then for the first-order theory of dissipative spin

hydrodynamics S’(‘;’f contributes to the entropy current.

ETp

p p
Ty — e + ey — e + O (79)
Similar to S#%, the dissipative part S’(’;’)ﬁ is also antisym-
metric in the last two indices. Various dissipative parts in
the spin tensor, i.e., q¥, @, r’(‘:’) f’(’Z) and @ are first

order in the hydrodynamic gradient expansion. These
dissipative currents satisfy the following properties: u,q" =

Tl = sy = w4, = 0 o) =<, ) = =7y,
HP = —@Hbe, tr(rl(z‘)) = 0. Note that 7{;) is a symmetric
tensor. Hence, in general, it can be decomposed into a
trace part and a traceless part. The trace part of r’(’f) can be
absorbed in ®; hence, we consider 1’(‘;’) to be traceless.

Considering that for a dissipative system entropy will be
produced, the analytic expressions for ¢, @, r’(‘sy) T’(‘Z) and

©"% can be given as [29]
) VT .
@ = AT (== D),

D= —)(Wavﬂ(ﬁwaﬁ),

(80)
(81)

2
1—’;{}) = —you® [Aﬂﬂ AT - AR AP — 3 AHB Aﬂr] YV, (fwa,),

(82)

8 = e AT (). (55
O = —y, WP uP A% — uu AP\ ATV, (Pwrs,)

+ x5 AaﬁA/}/’AW’Vy (ﬂa)ﬁp) . (84)

Here, D = u"d,. Various transport coefficients 4., y1, ¥2,
X3, X4, and ys are all positive. We should emphasize the
relative sign difference between two terms in the expression
of ® % Although ®“ is orthogonal to the fluid four-
velocity, in the fluid rest frame it is not totally spacelike. In
the fluid rest frame, terms associated with ys have only
spacelike indices, but the terms associated with y, can have
spacelike and timelike indices. This gives rise to a relative
sign difference.

To study the linear mode analysis of the spin-hydro-
dynamic description, we consider the global equilibrium
background flow ”/(lo) = (1,0,0,0), with S’(& =0 and
(g = 0. All other dissipative currents vanish in the global
equilibrium background. Fluid flow perturbation is given as
su* = (0, 6u'). Taking the projection of the conservation of
T* along with the fluid velocity and orthogonal to the fluid
velocity, we find
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u'd,e + (e + p)(0,ut) = —u,0,7", (85)

(e + p)Du® — A%dyp + A2, =0.  (86)

The corresponding linear-order perturbation equations can
be expressed as

dpde + 0,67 = 0, (87)

605n'i - c?diée —|— yan [5§6k0k - 6idl]5ﬂl + y||6i0k57rk = 0
(88)

Here, 67’ = (g(0) + p(o))ou’s v1 =n/(g0) + p()). and

v =Gn+0)/(eo) + po)s s =0p/de. gg) and p
are the background energy density and pressure, respec-
tively. To obtain the above perturbation equations, we have
used the following equation:

a v va 2 v
5T = | Al da0u” + AL 0,5ut — 3 Alg,

+ CAlY 0,6u% + O(0%).

d,0u”
(89)

It should be emphasized that, for the background flow
with ”i(lo) = (1,0,0,0), 67% = 0 as well as 57°° = 0. Since
the energy-momentum tensor does not have any antisym-
metric part, the spin tensor $** is separately conserved.
This follows from the conservation of the total angular
momentum, i.e.,

w9, 5% + S (9,u") + 9,1 = 0. (90)

For the global equilibrium condition with S‘(’g) =0, the

perturbation equation corresponding to the conservation of
the spin tensor can be expressed as

) 0,65 + 9,88/ = 0. (91)

In the above equation, 55’51“)/} can be obtained systematically

by taking the linear-order perturbation of Eq. (79) for the

given global equilibrium conditions. To obtain 557{’)/3, we
use the following relations:
5O = —y 15 p)0:60", (92)
SR = Py |G + AT
2 a AP, 0
~346 A’@] V504, (93)
a 0
oefly = ~Proptsuly (MG A — AlG AG)VY oy, (94)

Q, P ﬂ e
001 = —raf (o) i) (o) AT)

a 0 po (0)
~ Ufyy (o) A(0)Af0) V7 05y

@ 0
+ 150/ A% Al AV 6w, (95)

In Eq. (79), q* appears with S?. Since for global equilib-

rium ¢# as well as S% vanishes, in 5S’;f’)ﬂ , 0q* does not

contribute. The 0ith component of Eq. (91) can be
expressed as

750060 — y1(0)00,60"
) ) . 2
— Boyx2 | 0;060° + 0;0'60% — 3 /0,80

= Bloyr3(0;0'60" — 0,0'60"7) — foy40;0/60* = 0,
(96)

and the ijth component of Eq. (91) can be expressed as

)?5005(1)"/ +ﬁ(0)}(5016150)” = O (97)
In Egs. (96) and (97), we define 7, = dS% /00" and
75 = 0S7/0w". Bo) denotes the inverse global equilibrium
temperature. Equations (87), (88), (96), and (97) are the
perturbation equations which we can analyze in the
momentum space. From these equations, one may observe
that perturbation in the standard hydrodynamic variables,
i.e., ¢ and 67', are decoupled from the perturbation in the
spin degree of freedom, i.e., 5%, 657 or 0", dw'/. This is
the artifact of the following factors: (i) in this framework,
the energy-momentum tensor is symmetric, (ii) the spin-
chemical potential and spin density are both O(1) in the
hydrodynamic gradient expansion, and (iii) we consider the
v

global equilibrium with S5 = 0 and @y = 0.

B. Fourier space equations
We look for the plane wave solution of the form

e~@*ikX Various perturbations de, 67%, dw', and S

can be expressed as plane waves in the following way:

o ~ —iwt »E'a
Se = dee iwt+i x’

57[k — (Sﬂ.ke—i(uﬂrik-x’

Sl — &Uz‘je—imtﬂ/?)?
SV — Saipmiwi+ikT (98)
Again, for the rotational symmetry of the system, one may

consider a plane wave along the z direction, i.e., k=
(0,0, k) [26]. For such a waveform, Egs. (87), (88), (96),
and (97) can be expressed as
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—iwde + ik,0m° = 0, (99)

—iwdr* 4y k26w = 0, (100)

—iwdr + v k26m =0, (101)

~iwdn® + ik, de + y k2on = 0, (102)
—iw)?b&;./x ~ Bkl + 13 +)(4)5a:0/x =0, (103)
_iw)?b&;o} ~ Bk + 13 +)(4)5070/y =0, (104)
—iw)?héaﬁz - Boyk? ()(1 + gm +)(4> 5 = 0, (105)
—iag, 00t + 5P o k250! = 0. (106)

Equations (99)—(102) give us the standard hydrodynamic
modes:
(107)

w = —iy k* (two modes),

w = ek, — %y”kf +O(K). (108)

Similarly, the spin-wave modes associated with w®* and
5® are the same and can be given as

X2+ X3 +J{4>

w = lﬁ(mk%( )?b (109)

The wave mode associated with 50% can be expressed as

. X500 s
o = i)k (34) (110)
Ab
Finally, the wave modes associated with "’ are
0 =i po)k2. (111)

N

Note that yy, y», ¥3» X4 X55 ¥5» and ¥, are all considered to
be positive. Wave modes associated with @ or S% have a
positive imaginary part. Therefore, these modes are not
stable, and the corresponding modes will not decay in time.
Such growing modes are not physically appealing. Such
modes can be removed if we use the Frenkel condition
with $*’u, = 0. At the linear-order perturbation level, for
global equilibrium with S’(‘g> the Frenkel condition gives us

55" u”) = 0. This implies 8S® = 0 for the background
flow with u# = (1,0,0,0). Interestingly, if we impose the
Frenkel condition, then the problematic spin modes will no
longer appear in the calculation. Moreover, this does not

affect any standard hydrodynamic modes, as the standard
hydrodynamic mode and the spin modes are decoupled in
this framework.

IV. SUMMARY

We examine the solutions of the spin-hydrodynamic
equations in Fourier space for two different first-order
spin-hydrodynamic formulations. The first considers the
spin-chemical potential @), to be first order in gradient
expansion [26], while the other is of leading order [29]. Our
calculation suggests that unstable solutions for the spin S
component may emerge from spin-hydrodynamic equations.
The Frenkel condition can be used to get rid of such generic
instabilities. But when we consider the Frenkel condition
along with @* ~ O(0), then the standard hydrodynamic
modes also get affected. Such an unwanted feature is absent
when we consider the case with @** ~ O(1). The stability of
spin modes is not a settled issue in the literature, and some
physical understanding may be required to construct a proper
model of first-order spin hydrodynamics. One such possibil-
ity is to look into second-order spin-hydrodynamic formu-
lation unless the first-order spin-hydrodynamic formulation
can be shown to be stable for generic configurations [67,68].
In the context of standard hydrodynamic theory, it has been
argued that instability can arise due to acausal modes. In this
calculation, we have not studied the causality of linear
modes. Moreover, the stability property has been considered
at the linear level for an unpolarized background. It will be
interesting to investigate the stability property of a generic
polarized background. Finally, we mention that the stability
studies shown in the present article are strictly valid in the
fluid rest frame. Here, we have argued that Oith components
(the boost degree of freedom) of spin-chemical potential are
responsible for instability in linearized spin-hydrodynamic
equations. With the Frenkel condition, these unstable modes
can be removed in the fluid rest frame. In a boosted frame, the
Frenkel condition mixes Oith and ijth components of spin-
chemical potential. Hence, in the boosted frame, the Frenkel
condition does not necessarily imply stability, and it requires
further investigations. We emphasize here that spin modes
can have instabilities different from standard hydrodynamic
instabilities. Moreover, these instabilities seem to be very
generic and intimately related to the spin equation of state
(relation between spin density tensor and spin-chemical
potential). To develop a phenomenologically appropriate
model of spin hydrodynamics, we have to pay attention to
these spin modes and the spin equation of state.
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