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We study the stability of first-order dissipative spin-hydrodynamic frameworks. We considered two
different first-order dissipative spin-hydrodynamic frameworks. The first one considers the spin-chemical
potential (ωαβ) to be first order [Oð∂Þ] in the hydrodynamic gradient expansion. The hydrodynamic
gradient ordering of the spin-chemical potential is a debatable issue within the frameworks of spin
hydrodynamics. Therefore, as a second choice, we also consider the spin-hydrodynamic equations with
ωαβ ∼Oð1Þ. We find that, for both frameworks, at the level of linear perturbations some spin modes can
be unstable. To remove these generic instabilities, we consider the Frenkel condition. We argue that the
Frenkel condition helps get rid of the unstable solutions in both cases but with a physical drawback for the
case where ωμν ∼Oð∂Þ.
DOI: 10.1103/PhysRevD.107.054043

I. INTRODUCTION

Experimental observations of spin-polarized weakly
decaying hyperons have given us a unique opportunity to
explore the vortical structure of the strongly coupled plasma
produced in relativistic heavy-ion experiments [1–10].Moti-
vated by the successes of the relativistic dissipative hydro-
dynamic framework in heavy-ion phenomenology [11], it is
naturally desirable to generalize the hydrodynamic frame-
work to include spin as a dynamical degree of freedom.
Several spin-hydrodynamic frameworks have been deve-
loped using relativistic kinetic theory [12–25], entropy
current analysis [26–31], quantum statistical density oper-
ators [32–36], effective Lagrangian approach [37–40], holog-
raphy [41,42], and equilibrium partition functions [43], etc.
Spin-hydrodynamic frameworks are based on the

conservation of the total angular momentum and the con-
servation of the total energy-momentum tensor. The quan-
tity that separates the spin-hydrodynamic framework
from the standard hydrodynamic framework is the “spin-
chemical potential.” In the Navier-Stokes limit of the spin-
hydrodynamic framework, the spin-chemical potential is a
hydrodynamic variable similar to the temperature, chemical
potential, and fluid four-velocity. In local thermodynamic
equilibrium, the hydrodynamic gradient ordering of the
spin-chemical potential is not a settled topic, and different
derivative counting schemes have been considered in the
literature [26,27,29–31,44]. Hydrodynamic gradient order-
ing of the spin-chemical potential plays a crucial role in the
thermodynamic as well as a hydrodynamic description with

spin; e.g., if one considers that the spin-chemical potential
is Oð1Þ or Oð∂Þ, then this affects the first-order spin-
hydrodynamic description significantly. Since the spin-
hydrodynamic framework depends on the derivative
ordering of the spin-chemical potential, it is natural to
investigate its effect on the propagation properties of linear
perturbations.
Linear mode analysis of various hydrodynamic theories

has been extensively discussed in the context of the stability
and causality of fluid-dynamical theories. Generically, one
performs the stability and causality analysis around a
hydrostatic state, where the spatial components of the flow
velocity vanish.However, it shouldbepointed out that even if
a theory is causal and stable in the hydrostatic limit, it does
not necessarily imply stability in a boosted frame. Linear
mode analysis of a generic first-order theory [45–47], as
well as second-order Israel-Stewart theory, have been scruti-
nized in various literature for a generic Lorentz-boosted
frame [48–54]. Moreover, using such studies it was found
that causality and stability of various hydrodynamic models
are intimately related. Note that in a hydrodynamic theory
instability may appear due to various factors, but it has been
explicitly shown that for a parameter space where the theory
gives rise to acausal mode theory also shows some insta-
bilities [51,55]. Such theoretical intricacies associated with
the mode analysis have also been studied for the relativistic
magnetohydrodynamics [56], spin hydrodynamics [57–60],
chiral hydrodynamics [61], etc.
In the present work, we investigate the properties of

various linear perturbations of the first-order dissipative
spin-hydrodynamic framework. We show that the linear
mode analysis crucially depends on the spin-hydrodynamic
framework and the derivative ordering of the spin-chemical
potential. In our analysis, we consider two different
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spin-hydrodynamic descriptions; one considers the spin-
chemical potential to beOð1Þ in the hydrodynamic gradient
expansion [29], and the other theory considers the spin-
chemical potential to be Oð∂Þ [26,27,30,31,44]. We also
argue that both theories can give rise to linear modes which
are unstable. Note that the spin-chemical potential, denoted
as ωμν, is a two-rank antisymmetric tensor that has six
independent components. Our calculations suggest that the
instabilities appear in the spin-hydrodynamic description
due to the boost degrees of freedom ω0i. In principle, such
unstable modes can be removed from the theory by suitably
eliminating ω0i degrees of freedom. This can be achieved
by incorporating the “Frenkel condition” [62,63].
The paper is organized as follows. We begin by studying

the stability of the first-order spin-hydrodynamic [26],
which considers the spin-chemical potential ωμν to be of
the first order in gradient expansion in Sec. II. In this
section, we apply linear perturbation on top of a specified
global equilibrium background for the spin-hydrodynamic
equations, and then we solved them in Fourier space where
we find that some spin modes can be unstable. We then
show that imposing the Frenkel condition gets rid of
the unstable solutions while leading to some physical
drawbacks to the system. In Sec. III, we repeat the same
procedure but for the spin-hydrodynamic formulation [29],
that follows the spin-chemical potential at the leading order
in the hydrodynamic gradient expansion. We also find that
some spin modes are unstable. For such a case, imposing
the Frenkel condition gets rid of the unstable solution
without any physical disadvantages. In Sec. IV, we sum-
marize and conclude.

II. SPIN-CHEMICAL POTENTIAL FIRST
ORDER IN THE HYDRODYNAMIC

GRADIENT EXPANSION

A. Formulation

Often, it has been argued that in global equilibrium the
spin-chemical potential should be proportional to the thermal
vorticity [21,26]. Hence, one can consider a situation where
ωαβ ∼Oð∂Þ. Such a spin-hydrodynamic description has
been discussed in Refs. [26,27,44]. It will be similarly
interesting to study the linear modes for the spin-hydro-
dynamic description whereωαβ ∼Oð∂Þ. It should be empha-
sized that, although the spin-chemical potential is argued to
beOð∂Þ, the spin density is Oð1Þ [31]. Considering that the
spin density is proportional to the spin-chemical potential
brings nontriviality to this framework. We start with the
energy-momentum tensor and spin tensor having the follow-
ing form [26,27,44]:

Tμν ¼ εuμuν − pΔμν þ hμuν þ hνuμ

þ τμν þ qμuν − qνuμ þ ϕμν; ð1Þ
Sμαβ ¼ uμSαβ þ Sμαβð1Þ : ð2Þ

We emphasize that in the above equation the energy-
momentum tensor is not completely symmetric. Rather, it
contains an antisymmetric part. Moreover, the spin tensor is
antisymmetric only in the last two indices. Such a phenom-
enological energy-momentum tensor and spin tensor can be
obtained from the canonical energy-momentum tensor and
spin tensor using a proper pseudogauge transformation [44].
hμ is the heat flow, and τμν ¼ πμν þ ΠΔμν is the dissipative
corrections to the symmetric part of the energy-momentum
tensor. πμν is the traceless part of τμν, and it is related to
the shear viscosity (η). On the other hand, Π is related to
bulk viscosity (ζ). The dissipative corrections to the anti-
symmetric part of the energy-momentum tensor are qμ and
ϕμν. hμ, τμν, qμ, and ϕμν satisfy the following conditions:
hμuμ ¼ 0, τμν ¼ τνμ, τμνuν ¼ 0, qμuμ ¼ 0,ϕμν ¼ −ϕνμ, and
ϕμνuν ¼ 0. The dissipative correction to the spin tensor, i.e.,
Sλμνð1Þ , is not fixed at the level of first-order dissipative spin

hydrodynamics, as it does not contribute to the nonequili-
brium entropy current1 [26,27,44]. Various dissipative cur-
rents can be uniquely determined by using the condition that
for an isolated dissipative system entropy will be produced.
In terms of the hydrodynamic variables, i.e.,T,uμ, andωμν, it
can be shown that [26,27,44]

hμ ¼ −κðDuμ − β∇μTÞ; ð3Þ

qμ ¼ λðDuμ þ β∇μT − 4ωμνuνÞ; ð4Þ

τμν ¼ η

�
Δμα

∂αuν þ Δνα
∂αuμ −

2

3
ΔμνΔαβ

∂βuα

�
þ ζð∂αuαÞΔμν; ð5Þ

ϕμν ¼ γ̃ð∇μuν −∇νuμ þ 4ΔμαΔνβωαβÞ: ð6Þ

Here, D≡ uμ∂μ, ∇μ ¼ Δμν
∂ν, and γ̃ ¼ βγ=2. Note that hμ,

qμ, τμν, and ϕμν are Oð∂Þ in the hydrodynamic gradient
expansion. Dissipative currents hμ and qμ as given in
Eqs. (3) and (4) can be further simplified by using the
leading-order hydrodynamic equations. Conservation of
Tμν
ð0Þ ≡ εuμuν − pΔμν gives us

1Recall that the ansatz for the nonequilibrium entropy current
can be expressed as Sμ ¼ βνTμν þ pβμ − βωαβSμαβ. For the first-
order dissipative spin-hydrodynamic framework, Sμ can contain
terms up to the order of Oð∂Þ. Such Oð∂Þ terms can come from
both Tμν and Sμαβ. But if we consider ωαβ to be of the order of
Oð∂Þ, then ωαβS

μαβ
ð1Þ terms will be of the order of Oð∂2Þ. There-

fore, we can conclude that if ωαβ is of the order of Oð∂Þ, then the
dissipative part of the spin tensor would not contribute to the
entropy current. On the other hand, if ωαβ is of the order of Oð1Þ,
then Sμαβð1Þ will contribute to the first-order spin-hydrodynamic
framework. This is the most striking difference between various
frameworks considered here.
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uμ∂μεþ ðεþ pÞð∂μuμÞ ¼ 0; ð7Þ

ðεþ pÞDuα −∇αp ¼ 0: ð8Þ

Using Eq. (8) back into Eq. (3), it can be easily shown that

hμ ¼ 0þOð∂2Þ: ð9Þ

In order to obtain the above equation, we have used the
thermodynamic relation TsþSαβωαβ ¼ εþp, dp ¼ sdTþ
Sμνdωμν. Here, we consider ωμν ∼Oð∂Þ, and Sμν ∼Oð1Þ
in the hydrodynamic gradient expansion [26,27,44].
Furthermore,

qμ ¼ λðDuμ þ β∇μT − 4ωμνuνÞ

¼ λ

�
2
∇μp
εþ p

− 4ωμνuν

�
þOð∂2Þ: ð10Þ

To obtain the linear-order hydrodynamic perturbation
with respect to a global equilibrium, we consider uμð0Þ≡
ð1; 0; 0; 0Þ, ωμν

ð0Þ ¼ 0, and Sμνð0Þ ¼ 0 [26].2 Some comments

on the choice of global equilibrium are in order here. Note
that for a (most general) global equilibrium the following
conditions must be fulfilled: ∂μβν þ ∂νβμ ¼ 0, βν ¼ b0ν þ
ϖνλxλ, and ϖμν ¼ ð∂νβμ − ∂μβνÞ=2 ¼ const [15]. Here,
βν ≡ uν=T, b0ν is a constant four-vector, and ϖνλ is the
thermal vorticity. In terms of hydrodynamic gradient expan-
sion, thermal vorticity is Oð∂Þ. Therefore, a generic global
equilibrium allows for Oð∂Þ terms. This is one of the most
nontrivial features of spin-hydrodynamic frameworks as
compared to the hydrodynamics for “spinless” fluids, where
all the Oð∂Þ terms vanish in global equilibrium [45]. If we
identify the spin-chemical potential with thermal vorticity in
global equilibrium, then it is natural to consider the spin-
chemical potential to be Oð∂Þ in hydrodynamic gradient
expansion. However, such identification crucially depends
on the symmetry of the energy-momentum tensor [26,29].
One could, in principle, consider the spin-chemical potential
to be either Oð1Þ [29] or Oð∂Þ [26] in the hydrodynamic
gradient expansion. Similar to other thermodynamic quan-
tities, e.g., temperature (T) or chemical potential (μ), the
value of the spin-chemical potential can also be considered to
be zero in global equilibrium (analogous to μ ¼ 0 corre-
sponding to a baryon-free QCD plasma). Zero spin-chemical
potential also implies zero spin density. Such a situation
represents unpolarized (zero spin polarization) global

equilibrium, as considered in the present article. All pertur-
bations are considered around the unpolarized global
equilibrium.
For such a global equilibrium configuration, various

dissipative currents vanish, i.e., qμð0Þ ¼ 0, ϕμν
ð0Þ ¼ 0, and

τμνð0Þ ¼ 0. Note that τμν, qμ, and ϕμν are already Oð∂Þ.
Therefore, we consider δτμν, δqμ, and δϕμν up toOð∂2Þ, and
we neglect all higher-order terms:

δτμν ¼ η

�
Δμα

ð0Þ∂αδu
ν þ Δνα

ð0Þ∂αδu
μ −

2

3
Δμν

ð0ÞΔ
αβ
ð0Þ∂βδuα

�
þ ζð∂αδuαÞΔμν

ð0Þ þOð∂3Þ; ð11Þ

δqμ ¼ λ

�
2
Δμα

ð0Þ∂αδp

εð0Þ þ pð0Þ
− 4δωμνuð0Þν

�
þOð∂3Þ; ð12Þ

δϕμν ¼ γ̃ðΔμα
ð0Þ∂αδu

ν − Δνα
ð0Þ∂αδu

μ

þ 4Δμ
ρð0ÞΔν

λð0ÞδωρλÞ þOð∂3Þ: ð13Þ

In global equilibrium, it is easy to show that T0i
ð0Þ ¼ 0. The

perturbation δT0i can be expressed as

δT0i ¼ ðεð0Þ þ pð0ÞÞδui þ δτ0i − δqi þ δϕ0i: ð14Þ

For the flow perturbation of the form δuμ ¼ ð0; δuiÞ,
using Eqs. (11)–(13) it can be shown that δτ0i ¼ 0,
δq0 ¼ 0, and δϕ0i ¼ 0. But δqi is nonvanishing, and it
can be expressed as

δqi ¼ λ

�
2

∇i
ð0Þδp

εð0Þ þ pð0Þ
− 4δωiνuð0Þν

�
þOð∂3Þ

¼ λ0c2s∂iδε −
4λ

χb
δSi0 þOð∂3Þ

¼ λ0c2s∂iδε −DbδSi0 þOð∂3Þ: ð15Þ

Here, we have defined λ0 ¼ 2λ
εð0Þþpð0Þ

, c2s ¼ ∂p=∂ε, Db ¼
4λ=χb, and χb ¼ ∂Si0=∂ωi0. We consider c2s, χb, and Db to
be constants, as any space-time derivative of these quan-
tities will give rise to higher-order terms. Therefore, the
perturbation δT0i ≡ δπi can be expressed as

δπi ¼ ðεð0Þ þ pð0ÞÞδui − λ0c2s∂iδεþDbδSi0 þOð∂3Þ: ð16Þ

Note that δπi contains terms of the order of Oð∂Þ and
higher. Moreover, λ0 and Db originate from the antisym-
metric part of the energy-momentum tensor. Conservation
of the total angular momentum can be used to write the
evolution equation for the spin tensor:

uμ∂μSαβ þ Sαβ∂μuμ ¼ −2ðqαuβ − qβuα þ ϕαβÞ: ð17Þ

2Throughout the calculation, we have considered Sμν ∼Oð1Þ.
However, the spin-chemical potential can be either considered as
Oð1Þ orOð∂Þ in the hydrodynamic gradient expansion depending
on the symmetry of the energy-momentum tensor. Such a choice
of global equilibrium configuration is independent of the hydro-
dynamic gradient ordering of Sμν and ωμν. As a result, we can
choose ωμν

ð0Þ ¼ 0 for ωμν ∼Oð1Þ as well as for ωμν ∼Oð∂Þ.

STABILITY STUDIES OF FIRST-ORDER SPIN-HYDRODYNAMIC … PHYS. REV. D 107, 054043 (2023)

054043-3



Noting that we are considering the global equilibrium with
Sμνð0Þ ¼ 0 and ωμν

ð0Þ ¼ 0, at the level of linear-order pertur-

bation we can write

∂0δSαβ ¼ −2ðδqαuβð0Þ − δqβuαð0Þ þ δϕαβÞ þOð∂3Þ: ð18Þ
Using the above equation, we can obtain the evolution
equation for δS0i and δSij. The evolution equation of δS0i is

∂0δS0i ¼ −2ðδq0uið0Þ − δqiu0ð0Þ þ δϕ0iÞ þOð∂3Þ
¼ 2δqi þOð∂3Þ
¼ 2λ0c2s∂iδε − 2DbδSi0 þOð∂3Þ: ð19Þ

Using Eq. (18), the evolution equation of δSij can be
written as

∂0δSij ¼ −2δϕij þOð∂3Þ
¼ −2DsδSij − 2γ0ð∂iδπj − ∂

jδπiÞ þOð∂3Þ: ð20Þ
Here, Ds ¼ 4γ̃=χs and χs ¼ ∂Sij=∂ωij. The longitudinal
projection of the conservation of the total energy-momentum
tensor uν∂μTμν ¼ 0 implies

uμ∂μεþ ðεþ pÞ∂μuμ ¼ −uν∂μT
μν
ð1Þ: ð21Þ

Note that the lhs of the above equation isOð∂Þ, but the rhs is
Oð∂2Þ. Therefore, for the perturbation equation, the lhs will
be up to the order of Oð∂2Þ and the rhs will be up to Oð∂3Þ.
Such a perturbation equation can be expressed as

∂0δεþ ðεð0Þ þ pð0ÞÞ∂iδui
¼ −∂0δτ00 − ∂i½δτi0 þ δqi þ δϕi0�: ð22Þ

In order to obtainEq. (22),we drop some terms, e.g., δuμ∂μδε
and ðδεþ δpÞ∂μδuμ, which areOð∂3Þ. Since we are restrict-
ing our analysis for only linear modes, we have dropped
terms which are nonlinear in perturbations. Using the
conditions that δτ00 ¼ 0, δτ0i ¼ 0, and δϕi0 ¼ 0 and the
expression of δqi back into Eq. (22), it can be shown that

∂0δεþ ∂iδπ
i þ 2ðλ0c2s∂i∂iδε −Db∂iδSi0Þ ¼ 0: ð23Þ

In the above equation, we have not consideredOð∂4Þ terms.
Taking the normal projection of total energy-momentum
tensor Δα

ν∂μTμν, we find

ðεþ pÞDuα − Δαβ
∂βpþ Δα

ν∂μτ
μν þ Δα

ν∂μðqμuνÞ
− Δα

ν∂μðqνuμÞ þ Δα
ν∂μϕ

μν ¼ 0: ð24Þ

We should emphasize that Eq. (24) contains terms up to
Oð∂2Þ. Therefore, the linear-order perturbation of Eq. (24)
must contain terms up to the order of Oð∂3Þ, and we can
neglect higher-order terms. The perturbation equation asso-
ciated with Eq. (24) can be expressed as

ðεð0Þ þ pð0ÞÞ∂0δuα − Δαβ
ð0Þ∂βδp

þ ηΔα
νð0ÞΔ

μβ
ð0Þ∂μ∂βδu

ν þ ηΔαβ
ð0Þ∂μ∂βδu

μ

−
2

3
ηΔαμ

ð0Þ∂μ∂δδu
δ þ ζΔαμ

ð0Þ∂μ∂δδu
δ

− Δα
νð0Þ∂0δqν þ Δα

νð0Þ∂μδϕμν ¼ 0: ð25Þ
For α ¼ 0, the lhs of the above equation identically vanishes.
For α ¼ i, we find

∂0δπ
i − c2s∂iδεþ ðγ⊥ þ γ0Þðδij∂k∂k − ∂

i
∂jÞδπj

þ γk∂i∂kδπk þDs∂kδSki ¼ 0: ð26Þ
Throughout the derivation, we use the following notations:

c2s ≡ ∂p
∂ε

; χs ≡ ∂Sij

∂ωij ; Ds ≡ 4γ̃

χs
; γ0 ≡ γ̃

εð0Þ þpð0Þ
;

χb ≡ ∂Si0

∂ωi0 ; Db ≡ 4λ

χb
; λ0 ≡ 2λ

εð0Þ þpð0Þ
;

γk ≡ 1

εð0Þ þpð0Þ

�
ζþ 4

3
η

�
; γ⊥ ≡ η

εð0Þ þpð0Þ
: ð27Þ

Equations (19), (20), (23), and (26) along with Eq. (16) are
the main perturbation equations. We emphasize that for this
framework the standard fluid perturbations, i.e., δε and δui,
are coupled with the spin perturbation δS0i and δSij.

B. Fourier space equations

Equations (19), (20), (23), and (26) can be solved in
momentum space to obtain different dispersion relations
associated with different perturbation modes. Various
perturbations δε, δπk, δSij, and δS0i can be expressed as
plane waves in the following way:

δε ¼ δ̃εe−iωtþik⃗·x⃗;

δπk ¼ fδπke−iωtþik⃗·x⃗;

δSij ¼ gδSije−iωtþik⃗·x⃗;

δS0i ¼ gδS0ie−iωtþik⃗·x⃗: ð28Þ
Because of the rotational symmetry of the system, we can
consider waves which are propagating only along the z
direction, i.e., k⃗ ¼ ð0; 0; kzÞ. For such a choice of plane
wave, Eqs. (19), (20), (23), and (26) become

−iωδ̃εþ ikz fδπz þ 2λ0c2sk2z δ̃εþ 2Dbikz
gδS0z ¼ 0; ð29Þ

−iωfδπx þ ðγ⊥ þ γ0Þk2z fδπx þ ikzDs
gδSzx ¼ 0; ð30Þ

−iωfδπy þ ðγ⊥ þ γ0Þk2z fδπy þ ikzDs
gδSzy ¼ 0; ð31Þ

−iωfδπz þ ikzc2s δ̃εþ γkk2z fδπz ¼ 0; ð32Þ
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−iωgδSxy þ 2Ds
gδSxy ¼ 0; ð33Þ

−iωgδSzx þ 2Ds
gδSzx − 2γ0ðikzÞfδπx ¼ 0; ð34Þ

−iωgδSyz þ 2Ds
gδSyz þ 2γ0ðikzÞfδπy ¼ 0; ð35Þ

−iωgδS0x − 2Db
gδS0x ¼ 0; ð36Þ

−iωgδS0y − 2Db
gδS0y ¼ 0; ð37Þ

−iωgδS0z þ 2λ0c2sðikzÞδ̃ε − 2Db
gδS0z ¼ 0: ð38Þ

These equations can be represented as a matrix equation
M × v ¼ 0 such that

v ¼ ðδ̃ε; fδπz; gδS0z; fδπx; gδSzx; fδπy; gδSzy; gδS0x; gδS0y; gδSxyÞT:
For such a choice, δ̃ε, fδπz, and gδS0z can be grouped together
to write0
B@

−iωþ 2λ0c2sk2z ikz 2Dbikz
ic2skz −iωþ γkk2z 0

2λ0c2sikz 0 −iω − 2Db:

1
CA
0
B@

δ̃εfδπzgδS0z
1
CA

≡A

0
B@

δ̃εfδπzgδS0z
1
CA: ð39Þ

Similarly, fδπx, gδSzx and fδπy, gδSzy can be grouped together
in the following way:�
−iωþ ðγ⊥ þ γ0Þk2z ikzDs

−2γ0ikz −iωþ 2Ds

�� fδπxgδSzx
�
≡ B

� fδπxgδSzx
�

ð40Þ
and�
−iωþ ðγ⊥ þ γ0Þk2z ikzDs

−2γ0ikz −iωþ 2Ds

�� fδπygδSzy
�
≡B

� fδπygδSzy
�
:

ð41Þ

The spin parts gδS0x, gδS0y, and gδSxy are not coupled to other
perturbations. Therefore, Eqs. (33), (36), and (37) can be
written as0
B@

−iω − 2Db 0 0

0 −iω − 2Db 0

0 0 −iωþ 2Ds

1
CA
0
B@

gδS0xgδS0ygδSxy
1
CA

≡ C

0
B@

gδS0xgδS0ygδSxy
1
CA: ð42Þ

Various dispersion relations can be obtained by solving
detM ¼ 0, where

M ¼

0
BBB@

A 03×2 03×2 03×3

02×3 B 02×2 02×3

02×3 02×2 B 02×3

03×3 03×2 03×2 C

1
CCCA: ð43Þ

Using the advantage of M being a block diagonal matrix,
we can directly obtain the determinant such that

detðAÞ detðBÞ2ð−iω − 2DbÞ2ð−iωþ 2DsÞ ¼ 0 ð44Þ

and can be summarized as

ω ¼ −2iDs; ð45Þ

ω ¼ þ2iDb ðtwo modesÞ; ð46Þ

ω ¼ −2iDs − iγ0k2z þOðk4zÞ ðtwo modesÞ ð47Þ

ω ¼ −iγ⊥k2z þOðk4zÞ ðtwo modesÞ; ð48Þ

ω ¼ þcskz −
i
2
γkk2z þOðk3zÞ; ð49Þ

ω ¼ −cskz −
i
2
γkk2z þOðk3zÞ; ð50Þ

ω ¼ 2iDb − 2ic2sλ0k2z þOðk4zÞ: ð51Þ

Note that a physical plane wave of the form e−iωtþik⃗·x⃗ must
not give a solution which is growing with time.3 But from

3If the hydrodynamic perturbations are represented as
expð−iωtþ ik⃗ · x⃗Þ, then stability implies Imωðk⃗Þ≤0 for all k⃗ [45].
However, in the present work, we kept terms up to k2z considering
that hydrodynamics is a long-wavelength effective theory. Hence,
low-momentum modes correctly capture different features of the
hydrodynamic theory, e.g., diffusive modes, sound modes, etc.
Moreover, if we restrict ourselves to first-order theory, then
various algebraic equations in the momentum space and various
dispersion relations [ωðkzÞ] contain terms only up to k2z . Higher-
order terms in various dispersion relations can originate from
higher-order gradient terms in hydrodynamic constitutive rela-
tions for the energy-momentum tensor and spin tensor. In the
Navier-Stokes limit, we do not consider such higher-order terms.
Therefore, for consistency of hydrodynamic gradient expansion,
we kept the lowest-order terms up to k2z . For a most general
hydrodynamic theory with an arbitrary number of gradient terms,
one should analyze a series of the form ω ¼ P∞

n¼0 aðnÞk
n [64]. In

the present calculation, we do not intend to study such a
generalized dispersion relation.
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Eqs. (46) and (51) it is clear that an unstable mode exists
for Db > 0. Therefore, the spin-hydrodynamic equations
are not stable for the linear perturbation around the global
equilibrium considered here. The same observation has
been pointed out in Ref. [60].4 This problem may be
solved by appropriately defining Db. There could be a
physical reason to choose an appropriate sign of Db.
Throughout the calculation, Db and Ds are considered to
be positive. This implies that χb > 0 and χs > 0 Eq. (27).
This is very natural to argue using the equation of state
relating spin density tensor Sμν and ωμν [31,65].
Generically, the spin density tensor should be propor-
tional to the spin-chemical potential, i.e., Sμν ∼ ωμν. The
proportionality factor should be either positive or neg-
ative. If the proportionality factor is negative, then Db <
0 and Ds < 0. In this case, although Db < 0, due to
negative Ds some modes will remain unstable. On the
other hand, if the proportionality factor is positive, then
Db and Ds are both positive. In that case, also the theory
will give rise to unstable modes. Only if Db < 0 or
χb < 0, keeping χs > 0, then unstable modes will not
appear. This implies that the proportionality factor
appearing in the spin equation of state for the 0ith
components will be different from ijth components. This
is rather difficult to justify physically. But this needs to
be investigated thoroughly for a proper understanding of
the spin perturbation equations. We consider an alter-
native approach to remove this instability by imposing
the Frenkel condition. We know that this instability is
caused by the modes associated with Db, and it may be
possible to eliminate those problematic modes using the
Frenkel condition, i.e., Sμνuν ¼ 0 ¼ ωμνuν [63].

C. Frenkel condition to solve the problem
of instability

The “macroscopic” Frenkel condition uμSμν ¼ 0 has
been considered recently, for instance, in Ref. [63], to
develop a spin-hydrodynamic framework with a canonical

spin tensor.5 In the canonical framework, where the spin
tensor is totally antisymmetric, the Frenkel condition is
naturally built in the system, i.e., Sμν ≡ uλSλμν ⇒
uμSμν ¼ 0. Obviously, as Sμν is antisymmetric, the
Frenkel condition reduces the number of dynamical
degrees of freedom in the hydrodynamic framework
from six to three. In Ref. [44], we have argued that the
energy-momentum and spin tensors considered in the
present calculation can be obtained from a properly defined
canonical framework using a pseudogauge transformation.
Sμν appears in thermodynamic relations including spin-
chemical potential which are expected to be independent
of pseudogauge transformations. Hence, we also expect
the Frenkel condition to be applicable to the present
calculation.
If we impose the Frenkel condition, i.e., Sμνuν ¼ 0 or

ωμνuν ¼ 0, then various dissipative currents, i.e., hμ and τμν

as given in Eqs. (3) and (5), respectively, remain unaltered.
But qμ and ϕμν change to

qμ ¼ λðDuμ þ β∇μTÞ; ð52Þ

4Note that in Ref. [60] the authors considered a different
counting scheme than what we considered here. In this
reference, the authors could find next to the leading-order
contribution to the spin tensor and the associated transport
coefficient χ1. In the limit χ1 ¼ 0, various dissipative currents
as obtained in Ref. [60] match with the calculation as given in
Ref. [26]. In this limit, there exists an unstable mode if Db > 0
or χb > 0.

5The Frenkel theory was originally introduced to generalize
the definition of nonrelativistic spin to a covariant expression in a
quantum field theoretical system to describe the microscopic spin
degree of freedom. In an operator form, the microscopic Frenkel
condition can be expressed as hp; sjP̂μŜ

μνjp; si ¼ 0, where jp; si
denotes a single-particle state with momentum p and spin s [20].
In the particle rest frame (PRF), it can be argued that the
expectation value of Ŝμν has only spacelike components, which
for the case of a canonical spin tensor give rise to the non-
relativistic spin vector operator [20]. Hydrodynamic descriptions
are different from single-particle dynamics. Hydrodynamics is a
classical field theory resulting from the coarse-graining of
quantum field dynamics. Therefore, for a hydrodynamic theory,
the generalization of the concepts applicable to single-particle
dynamics needs to be provided. Such a generalization of the
microscopic Frenkel condition for a fluid element can be ex-
pressed as uμSμν ¼ 0. One should emphasize that in quantum
field theory Ŝμν is defined as a volume-integrated operator. On the
other hand, in hydrodynamics, one deals with densities of
macroscopic quantities. Note that, at the hydrodynamic level,
dealing with the concept of PRF can be misleading. Rather, the
notion of a fluid rest frame (FRF) is more suitable. While, in the
case of massless particles, the PRF does not exist, one can
certainly define the FRF. Therefore, Sμν should be considered as
the spin density tensor characterizing the fluid element, contrary
to the spin tensor for an individual particle. In the FRF with
uμ ≡ ð1; 0; 0; 0Þ, only spacelike components of Sμν survive, i.e.,
Sij ≠ 0. It can be considered analogous (not the same) to the PRF
condition for a massive particle.
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ϕμν ¼ γ̃ð∇μuν −∇νuμ þ 4ωμνÞ: ð53Þ

Neglecting all higher-order terms, δqμ and δϕμν up toOð∂2Þ
can be expressed as

δqμ ¼ λ

�
2
Δμα

ð0Þ∂αδp

εð0Þ þ pð0Þ

�
þOð∂3Þ; ð54Þ

δϕμν ¼ γ̃ðΔμα
ð0Þ∂αδu

ν − Δνα
ð0Þ∂αδu

μ þ 4δωμνÞ þOð∂3Þ: ð55Þ

Using the evolution equation of δSαβ as given in Eq. (18),
we find

∂0δS0i ¼ 2λ0c2s∂iδε: ð56Þ

Using the linear-order perturbation of the Frenkel con-

dition Sμνuν ¼ 0 ¼ ωμνuν gives us δSμνu
ð0Þ
ν ¼ 0. Therefore,

due to the use of the Frenkel condition, we find
δω0i ¼ 0 ¼ δS0i. Using the condition that δS0i ¼ 0 in
the above equation, we get ∂iδε ¼ 0. Note that for the
linear model analysis we are interested in the plane wave
solution of various hydrodynamic perturbations of the form
e−ik·x. Thus, ∂iδε ¼ 0 implies that δε itself vanishes, i.e.,
δε ¼ 0 and δqi ¼ 0. Using Eq. (18), the evolution equation
of δSij can be written as

∂0δSij þ 2DsδSij þ 2γ0ð∂iδπj − ∂
jδπiÞ ¼ 0; ð57Þ

where δπi ¼ ðεð0Þ þ pð0ÞÞδui. Now let us look into the
conservation of the energy-momentum tensor. Using the
conditions δε ¼ 0 and δqi ¼ 0 in the longitudinal projec-
tion of the energy-momentum tensor, i.e., Eq. (22), we find
∂iδπ

i ¼ 0. On the other hand, the perturbation equation
associated with the normal projection of conservation of
total energy-momentum tensor gives us

ðεð0Þ þ pð0ÞÞ∂0δui þ η∂k∂kδui þ ∂kδϕ
ki ¼ 0: ð58Þ

Using the expression of δϕμν as given in Eq. (55), it can be
shown that

∂kδϕ
ki ¼ γ̃∂k∂

kδui þDs∂kδSki: ð59Þ

Using Eq. (59) back into Eq. (58), we obtain

∂0δπ
i þ ðγ⊥ þ γ0Þ∂k∂kδπi þDs∂kδSki ¼ 0: ð60Þ

In summary, considering the linear-order perturbations of
various hydrodynamic variables, the conservation of the
energy-momentum tensor and the total angular momentum
tensor gives us

∂0δπ
i þ ðγ⊥ þ γ0Þ∂k∂kδπi þDs∂kδSki ¼ 0; ð61Þ

∂0δSij þ 2DsδSij þ 2γ0ð∂iδπj − ∂
jδπiÞ ¼ 0; ð62Þ

∂iδπ
i ¼ 0: ð63Þ

Once again without the loss of generality, we consider
plane wave representation of various perturbations in the
momentum space:

δπk ¼ fδπke−iωtþikzz; ð64Þ

δSij ¼ gδSije−iωtþikzz: ð65Þ

In momentum space, Eq. (63) implies δπz ¼ 0. Therefore,

the perturbations δ̃ε, fδπz, gδS0x, gδS0y, and gδS0z decouple
from the theory, and the remaining nontrivial equations are

−iωfδπx þ ðγ⊥ þ γ0Þk2z fδπx þ ikzDs
gδSzx ¼ 0; ð66Þ

−iωfδπy þ ðγ⊥ þ γ0Þk2z fδπy þ ikzDs
gδSzy ¼ 0; ð67Þ

−iωgδSxy þ 2Ds
gδSxy ¼ 0; ð68Þ

−iωgδSzx þ 2Ds
gδSzx − 2γ0ðikzÞfδπx ¼ 0; ð69Þ

−iωgδSyz þ 2Ds
gδSyz þ 2γ0ðikzÞfδπy ¼ 0: ð70Þ

fδπx, gδSzx and fδπy, gδSzy can be grouped together as given in
Eqs. (40) and (41). But gδSxy does not couple to any other
perturbation. Various dispersion relations can be obtained
by solving the equation detðBÞ2ð−iωþ 2DsÞ ¼ 0 and can
be summarized as

ω ¼ −2iDs; ð71Þ

ω ¼ −2iDs − iγ0k2z þOðk2zÞ ðtwo modesÞ; ð72Þ

ω ¼ −iγ⊥k2z þOðk4zÞ ðtwo modesÞ: ð73Þ

Note that, unlike the previous case, the imaginary part of
the various dispersion relation is always negative, and
various perturbations will not grow with time. But this
comes with a drawback. Because of the use of the Frenkel
condition in this case, the standard hydrodynamic pertur-
bations, i.e., δε and δπz, do not appear in the theory, which
is not physically appealing.

III. SPIN-CHEMICAL POTENTIAL LEADING
ORDER IN THE HYDRODYNAMIC

GRADIENT EXPANSION

A. Formulation

We start our discussion with the hydrodynamic frame-
work with angular momentum where the spin-chemical
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potential (ωμν) is Oð1Þ in the hydrodynamic gradient
expansion [29]. In this framework, the energy-momentum
tensor is totally symmetric. Note that, in the absence of
any antisymmetric component of the energy-momentum
tensor, the spin angular momentum is separately conserved
even in the presence of interactions, which is otherwise
not possible. This drastically affects the dissipative spin-
hydrodynamic description, particularly various dissi-
pative currents in the energy-momentum tensor and spin
tensor [29]. Here, we proceed one step further to discuss
spin-hydrodynamic modes of this theory by performing
the linear mode analysis for the spin-hydrodynamic frame-
work. We consider the metric convention with gμν ¼
diagð1;−1;−1;−1Þ, and the projector orthogonal to the
fluid four-velocity uμ is Δμν ¼ gμν − uμuν with uμuμ ¼ 1.
For the Landau frame choice, the energy-momentum tensor
ðTμνÞ and the spin tensor ðSμαβÞ can be expressed as [29]

Tμν ¼ εuμuν − pΔμν þ τμν; ð74Þ

τμν ¼ πμν þ ΠΔμν; ð75Þ

Sμαβ ¼ uμSαβ þ Sμαβð1Þ : ð76Þ

τμν ¼ τνμ is the dissipative part of the energy-momentum
tensor which contains the shear and bulk viscous terms. τμν

satisfies the following condition: τμνuμ ¼ 0. Using the
entropy current analysis for the Navier-Stokes theory,
shear and bulk viscous terms can be expressed as
τμν ¼ πμν þ ΠΔμν,

πμν ¼ η

�
∇μuν þ∇νuμ −

2

3
Δμν∇βuβ

�
; ð77Þ

Π ¼ ζð∂αuαÞ: ð78Þ

Here, ∇μ ¼ Δμν
∂ν, and η and ζ are the coefficients of the

shear and bulk viscosity, respectively. Both η and ζ are
positive definite. The spin tensor Sμαβ is antisymmetric only
in the last two indices. Sμν can be considered as the spin
density, i.e., Sαβ ≡ uμSμαβ, and S

μαβ
ð1Þ is the dissipative part of

the spin tensor. The thermodynamic relations are given as
Tsþ Sαβωαβ ¼ εþ p, dε ¼ Tdsþ ωαβdSαβ. The dissipa-

tive part of the spin tensor Sμαβð1Þ ∼Oð∂Þ can be expressed

as6 [29,66]

Sμαβð1Þ ¼ −
qμ

εþ p
Sαβ þ uαΔμβΦ − uβΔμαΦ

þ uατμβðsÞ − uβτμαðsÞ þ uατμβðaÞ − uβτμαðaÞ þ Θμαβ: ð79Þ

Similar to Sμαβ, the dissipative part Sμαβð1Þ is also antisym-

metric in the last two indices. Various dissipative parts in
the spin tensor, i.e., qμ, Φ, τμνðsÞ, τ

μν
ðaÞ, and Θμαβ, are first

order in the hydrodynamic gradient expansion. These
dissipative currents satisfy the following properties: uμqμ ¼
uμτ

μβ
ðsÞ ¼ uμτ

μβ
ðaÞ ¼ uμΘμαβ ¼ 0; τμβðsÞ ¼ τβμðsÞ, τμβðaÞ ¼ −τβμðaÞ,

Θμαβ ¼ −Θμβα; trðτβμðsÞÞ ¼ 0. Note that τμνðsÞ is a symmetric

tensor. Hence, in general, it can be decomposed into a
trace part and a traceless part. The trace part of τμνðsÞ can be

absorbed in Φ; hence, we consider τμνðsÞ to be traceless.

Considering that for a dissipative system entropy will be
produced, the analytic expressions for qμ, Φ, τμνðsÞ, τ

μν
ðaÞ, and

Θμαβ can be given as [29]

qμ ¼ λqT

�∇μT
T

−Duμ
�
; ð80Þ

Φ ¼ −χ1uα∇βðβωαβÞ; ð81Þ

τμβðsÞ ¼ −χ2uα
�
ΔβρΔμγ þ ΔμρΔβγ −

2

3
ΔμβΔργ

�
∇γðβωαρÞ;

ð82Þ

τμβðaÞ ¼ −χ3uαðΔβρΔμγ − ΔμρΔβγÞ∇γðβωαρÞ; ð83Þ

Θμαβ ¼ −χ4½uβuρΔαδ − uαuρΔβδ�Δμγ∇γðβωδρÞ
þ χ5ΔαδΔβρΔμγ∇γðβωδρÞ: ð84Þ

Here, D≡ uμ∂μ. Various transport coefficients λq, χ1, χ2,
χ3, χ4, and χ5 are all positive. We should emphasize the
relative sign difference between two terms in the expression
of Θμαβ. Although Θμαβ is orthogonal to the fluid four-
velocity, in the fluid rest frame it is not totally spacelike. In
the fluid rest frame, terms associated with χ5 have only
spacelike indices, but the terms associated with χ4 can have
spacelike and timelike indices. This gives rise to a relative
sign difference.
To study the linear mode analysis of the spin-hydro-

dynamic description, we consider the global equilibrium
background flow uμð0Þ ≡ ð1; 0; 0; 0Þ, with Sμνð0Þ ¼ 0 and

ωμν
ð0Þ ¼ 0. All other dissipative currents vanish in the global

equilibrium background. Fluid flow perturbation is given as
δuμ ¼ ð0; δuiÞ. Taking the projection of the conservation of
Tμν along with the fluid velocity and orthogonal to the fluid
velocity, we find

6In the standard hydrodynamic framework without a dynami-
cal spin degree of freedom, the nonequilibrium entropy current
can be expressed as Sμ ¼ pβuμ þ βuνTμν. In spin hydrodynam-
ics, the ansatz for the nonequilibrium entropy current can be
generalized to Sμ ¼ pβμ þ βνTμν − βωαβSμαβ. If we consider
ωμν ∼Oð1Þ, then for the first-order theory of dissipative spin
hydrodynamics Sμαβð1Þ contributes to the entropy current.
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uμ∂μεþ ðεþ pÞð∂μuμÞ ¼ −uν∂μτμν; ð85Þ

ðεþ pÞDuα − Δαβ
∂βpþ Δα

ν∂μτ
μν ¼ 0: ð86Þ

The corresponding linear-order perturbation equations can
be expressed as

∂0δεþ ∂iδπ
i ¼ 0; ð87Þ

∂0δπ
i − c2s∂iδεþ γ⊥½δil∂k∂k − ∂

i
∂l�δπl þ γk∂i∂kδπk ¼ 0:

ð88Þ

Here, δπi ¼ ðεð0Þ þ pð0ÞÞδui, γ⊥ ≡ η=ðεð0Þ þ pð0ÞÞ, and
γk ≡ ð4

3
ηþ ζÞ=ðεð0Þ þ pð0ÞÞ, c2s ¼ ∂p=∂ε. εð0Þ and pð0Þ

are the background energy density and pressure, respec-
tively. To obtain the above perturbation equations, we have
used the following equation:

δτμν ¼ η

�
Δμα

ð0Þ∂αδu
ν þ Δνα

ð0Þ∂αδu
μ −

2

3
Δμν

ð0Þ∂αδu
α

�
þ ζΔμν

ð0Þ∂αδu
α þOð∂3Þ: ð89Þ

It should be emphasized that, for the background flow
with uμð0Þ ≡ ð1; 0; 0; 0Þ, δτ00 ¼ 0 as well as δτi0 ¼ 0. Since

the energy-momentum tensor does not have any antisym-
metric part, the spin tensor Sμαβ is separately conserved.
This follows from the conservation of the total angular
momentum, i.e.,

uμ∂μSαβ þ Sαβð∂μuμÞ þ ∂μS
μαβ
ð1Þ ¼ 0: ð90Þ

For the global equilibrium condition with Sαβð0Þ ¼ 0, the

perturbation equation corresponding to the conservation of
the spin tensor can be expressed as

uμð0Þ∂μδS
αβ þ ∂μδS

μαβ
ð1Þ ¼ 0: ð91Þ

In the above equation, δSμαβð1Þ can be obtained systematically

by taking the linear-order perturbation of Eq. (79) for the
given global equilibrium conditions. To obtain δSμαβð1Þ , we
use the following relations:

δΦ ¼ −χ1βð0Þ∂iδω0i; ð92Þ

δτμαs ¼ −βð0Þχ2uað0Þ

�
Δαρ

ð0ÞΔ
μγ
ð0Þ þ Δμρ

ð0ÞΔ
αγ
ð0Þ

−
2

3
Δμα

ð0ÞΔ
ργ
ð0Þ

�
∇ð0Þ

γ δωaρ; ð93Þ

δτμβðaÞ ¼ −βð0Þχ3uαð0ÞðΔβρ
ð0ÞΔ

μγ
ð0Þ − Δμρ

ð0ÞΔ
βγ
ð0ÞÞ∇ð0Þ

γ δωαρ; ð94Þ

δΘμαβ ¼ −χ4βð0Þ½uβð0Þuρð0ÞΔαδ
ð0Þ

− uαð0Þu
ρ
ð0ÞΔ

βδ
ð0Þ�Δμγ

ð0Þ∇ð0Þ
γ δωδρ

þ χ5βð0ÞΔαδ
ð0ÞΔ

βρ
ð0ÞΔ

μγ
ð0Þ∇ð0Þ

γ δωδρ: ð95Þ

In Eq. (79), qμ appears with Sαβ. Since for global equilib-
rium qμ as well as Sαβ vanishes, in δSμαβð1Þ , δq

μ does not

contribute. The 0ith component of Eq. (91) can be
expressed as

χ̃b∂0δω
0i − χ1βð0Þ∂i∂lδω0l

− βð0Þχ2

�
∂j∂

jδω0i þ ∂j∂
iδω0j −

2

3
∂
i
∂kδω

0k

�
− βð0Þχ3ð∂j∂jδω0i − ∂j∂

iδω0jÞ − β0χ4∂j∂
jδω0i ¼ 0;

ð96Þ

and the ijth component of Eq. (91) can be expressed as

χ̃s∂0δω
ij þ βð0Þχ5∂l∂lδωij ¼ 0: ð97Þ

In Eqs. (96) and (97), we define χ̃b ≡ ∂S0i=∂ω0i and
χ̃s ≡ ∂Sij=∂ωij. βð0Þ denotes the inverse global equilibrium
temperature. Equations (87), (88), (96), and (97) are the
perturbation equations which we can analyze in the
momentum space. From these equations, one may observe
that perturbation in the standard hydrodynamic variables,
i.e., δε and δπi, are decoupled from the perturbation in the
spin degree of freedom, i.e., δS0i, δSij or δω0i, δωij. This is
the artifact of the following factors: (i) in this framework,
the energy-momentum tensor is symmetric, (ii) the spin-
chemical potential and spin density are both Oð1Þ in the
hydrodynamic gradient expansion, and (iii) we consider the
global equilibrium with Sμνð0Þ ¼ 0 and ωμν

ð0Þ ¼ 0.

B. Fourier space equations

We look for the plane wave solution of the form

e−iωtþik⃗·x⃗. Various perturbations δε, δπk, δωij, and δω0i

can be expressed as plane waves in the following way:

δε ¼ δ̃εe−iωtþik⃗·x⃗;

δπk ¼ fδπke−iωtþik⃗·x⃗;

δωij ¼ gδωije−iωtþik⃗·x⃗;

δω0i ¼ gδω0ie−iωtþik⃗·x⃗: ð98Þ

Again, for the rotational symmetry of the system, one may
consider a plane wave along the z direction, i.e., k⃗≡
ð0; 0; kzÞ [26]. For such a waveform, Eqs. (87), (88), (96),
and (97) can be expressed as
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−iωδ̃εþ ikz fδπz ¼ 0; ð99Þ

−iωfδπx þ γ⊥k2z fδπx ¼ 0; ð100Þ

−iωfδπy þ γ⊥k2z fδπy ¼ 0; ð101Þ

−iωfδπz þ c2sikzδ̃εþ γkk2z fδπz ¼ 0; ð102Þ

−iωχ̃bδfω0x − βð0Þk2zðχ2 þ χ3 þ χ4Þδfω0x ¼ 0; ð103Þ

−iωχ̃bδfω0y − βð0Þk2zðχ2 þ χ3 þ χ4Þδfω0y ¼ 0; ð104Þ

−iωχ̃bδfω0z − βð0Þk2z

�
χ1 þ

4

3
χ2 þ χ4

�
δfω0z ¼ 0; ð105Þ

−iωχ̃sgδωkl þ χ5βð0Þk2z gδωkl ¼ 0: ð106Þ

Equations (99)–(102) give us the standard hydrodynamic
modes:

ω ¼ −iγ⊥k2z ðtwo modesÞ; ð107Þ

ω ¼ �cskz −
i
2
γkk2z þOðk3zÞ: ð108Þ

Similarly, the spin-wave modes associated with δω0x and
δω0y are the same and can be given as

ω ¼ iβð0Þk2z

�
χ2 þ χ3 þ χ4

χ̃b

�
: ð109Þ

The wave mode associated with δω0z can be expressed as

ω ¼ iβð0Þk2z

�
χ1 þ 4

3
χ2 þ χ4
χ̃b

�
: ð110Þ

Finally, the wave modes associated with δωkl are

ω ¼ −i
χ5
χ̃s

βð0Þk2z : ð111Þ

Note that χ1, χ2, χ3, χ4, χ5, χ̃b, and χ̃s are all considered to
be positive. Wave modes associated with ω0i or S0i have a
positive imaginary part. Therefore, these modes are not
stable, and the corresponding modes will not decay in time.
Such growing modes are not physically appealing. Such
modes can be removed if we use the Frenkel condition
with Sμνuν ¼ 0. At the linear-order perturbation level, for
global equilibrium with Sμνð0Þ the Frenkel condition gives us

δSμνuð0Þν ¼ 0. This implies δS0i ¼ 0 for the background
flow with uμ ¼ ð1; 0; 0; 0Þ. Interestingly, if we impose the
Frenkel condition, then the problematic spin modes will no
longer appear in the calculation. Moreover, this does not

affect any standard hydrodynamic modes, as the standard
hydrodynamic mode and the spin modes are decoupled in
this framework.

IV. SUMMARY

We examine the solutions of the spin-hydrodynamic
equations in Fourier space for two different first-order
spin-hydrodynamic formulations. The first considers the
spin-chemical potential ωμν to be first order in gradient
expansion [26], while the other is of leading order [29]. Our
calculation suggests that unstable solutions for the spin S0i

componentmay emerge from spin-hydrodynamic equations.
The Frenkel condition can be used to get rid of such generic
instabilities. But when we consider the Frenkel condition
along with ωμν ∼Oð∂Þ, then the standard hydrodynamic
modes also get affected. Such an unwanted feature is absent
when we consider the case withωμν ∼Oð1Þ. The stability of
spin modes is not a settled issue in the literature, and some
physical understandingmay be required to construct a proper
model of first-order spin hydrodynamics. One such possibil-
ity is to look into second-order spin-hydrodynamic formu-
lation unless the first-order spin-hydrodynamic formulation
can be shown to be stable for generic configurations [67,68].
In the context of standard hydrodynamic theory, it has been
argued that instability can arise due to acausal modes. In this
calculation, we have not studied the causality of linear
modes. Moreover, the stability property has been considered
at the linear level for an unpolarized background. It will be
interesting to investigate the stability property of a generic
polarized background. Finally, we mention that the stability
studies shown in the present article are strictly valid in the
fluid rest frame. Here, we have argued that 0ith components
(the boost degree of freedom) of spin-chemical potential are
responsible for instability in linearized spin-hydrodynamic
equations. With the Frenkel condition, these unstable modes
can be removed in the fluid rest frame. In a boosted frame, the
Frenkel condition mixes 0ith and ijth components of spin-
chemical potential. Hence, in the boosted frame, the Frenkel
condition does not necessarily imply stability, and it requires
further investigations. We emphasize here that spin modes
can have instabilities different from standard hydrodynamic
instabilities. Moreover, these instabilities seem to be very
generic and intimately related to the spin equation of state
(relation between spin density tensor and spin-chemical
potential). To develop a phenomenologically appropriate
model of spin hydrodynamics, we have to pay attention to
these spin modes and the spin equation of state.
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