
Predictions of superexotic heavy mesons from K�Bð�ÞB� interactions

M. Bayar *

Department of Physics, Kocaeli University, 41380 Izmit, Turkey

N. Ikeno†

Department of Agricultural, Life and Environmental Sciences, Tottori University, Tottori 680-8551, Japan
and Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA

L. Roca‡

Departamento de Física, Universidad de Murcia, E-30100 Murcia, Spain

(Received 30 January 2023; accepted 15 March 2023; published 28 March 2023)

We make a theoretical study of the three-body system composed of K̄�B̄�B̄� and K̄�B̄B̄� to look for
possible bound states, which could be associated to mesonic resonances of very exotic nature, containing
open strange and double-bottom flavors. The three-body interaction is evaluated by using the fixed center
approach to the Faddeev equations where the B̄�B̄� or B̄B̄� is bound forming an IðJPÞ ¼ 0ð1þÞ state,
as it was found in previous works, and the third particle, the K̄�, of much smaller mass, interacts with
the components of the cluster. We obtain bound states for all the channels considered: spin J ¼ 0, 1, and 2,
all of them with isospin I ¼ 1=2 and negative parity.
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I. INTRODUCTION

The meson spectrum in the heavy flavor sector has
gained a renewed impetus in the last two decades thanks to
a significant increase of experimental results (see Ref. [1,2]
for reviews). Of special interest and repercussion has been
the proliferation of exotic states, which cannot be explained
as ordinary qq̄ mesons, like the hidden heavy flavor XYZ
resonances, with theoretical interpretations ranging from
tetraquarks to molecular states [2–6]. Even more challeng-
ing has been the recent discovery of non-qq̄ open flavor
mesons like the X0ð2900Þ [7,8] with an open charm and
strange flavor, which is undoubtedly exotic since it contains
at least a c and an s quark and then needs at least two other
antiquarks to form a color singlet. The theoretical inter-
pretations of the X0ð2900Þ range from the picture of
tetraquarks [9–12] to a molecular structure [13–22] or
even a kinematic triangle singularity [23,24]. Especially,
sound has been the recent discovery of the manifestly
exotic open double charm Tccð3875Þ [25,26] also with a
natural interpretation as a molecular D�D state [27–31].

The success of the molecular interpretation has triggered
the search for possible bound states for other exotic heavy
flavor combinations like open double bottom from B�B,
B�B�, B�

sB� interaction [32]; open c and b from B̄D, B̄�D,
B̄D�, B̄D̄� [33]; and open b and s flavors from BK, B�K,
BK�, B�K� interaction [34]. Most of these molecular
interpretations are based on the implementation of unitarity
to the amplitudes obtained from extensions of the lowest
order chiral Lagrangians from where, in many cases, bound
states and resonances appear dynamically without the need
to include them as explicit degrees of freedom (see [35] for
a classical early review and [36–38] for recent reviews of
results in the heavy sector).
A natural and challenging step forward is to consider the

extension to three-body systems. In the last decade dozens
of works have found many states theoretically, even with
open or hidden heavy flavors (see Ref. [39] for a review and
list of references). The three-body system allows for even
the possibility to have super exotic mesons with three open
flavors like for instance bbb, which was found to bind
in the BB�B� − B�B�B� interaction in [40] or ccs, where
bound states were found for several total spins in the
D�D�K̄� system in [41]. These states would require at least
three extra antiquarks to get the color singlet, then would
correspond to hexaquarks in the standard quark picture.
In the present work we take advantage of the findings of
this latter work and extend the formalism to the K̄�B̄�B̄�
interaction to look for possible bound states which would
have open bbs flavors. The K̄�B̄�B̄� system is very
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interesting since it is significantly different from the K̄B�B�

[42] and K̄ð�ÞBð�ÞB̄ð�Þ [43] systems with hidden bottom
flavors. On the other hand, in Ref. [32], it was also found
that the B�B system also forms a bound state with a binding
energy similar to that of the B�B� case. Therefore we can
also expect to obtain bound states for the K̄�B̄B̄� system,
with the same quantum numbers as for the K̄�B̄�B̄� case,
and thus we also evaluate it in the present paper.
The standard way to tackle the three-body scattering

problem has traditionally been to try to solve the Faddeev
equations [44] implementing approximate methods, due to
the practical impossibility of solving them exactly. This is
indeed a well-known problem in nuclear and hadron
physics like in the three-nucleon interaction [45,46], systems
involving baryons and mesons [47–50], or three-meson
interaction [51–53]. However, when two of the three
particles are strongly correlated among themselves, and
the third particle is lighter than the other particles [54],
the Faddeev equations can be strongly simplified, and one
can make use of a formalism called fixed center approxi-
mation (FCA) to the Faddeev equations [55–59]. The FCA
have been successfully applied to dozens of three-body
systems (see Table 1 in Ref. [39] for a list of different works).
It is worth mentioning here that in related problems the FCA
has been compared to the variational method, and similar
results have been found. This is the case of theDD̄K system
studied in [60] with the variational method and in [61] with
the FCA, or the case of the D�D�D� system studied in [62]
with the variational method and in [63] with the FCA.
In the present work we will study the K̄�B̄�B̄� and

K̄�B̄B̄� within the FCA, because in a previous work [32] it
was found that the B̄�B̄� in IðJPÞ ¼ 0ð1þÞ was bound with
a binding energy of about 40 MeV. In addition, the K̄�B̄�
was also found to be strongly attractive in [34] for all
possible spins in I ¼ 0. Then we can expect with confidence
that the three-body K̄�B̄�B̄� will present bound states. It adds
even more confidence the fact that bound states were found
in [41] in the D�D�K̄� system, where analogously to our
case theD�D� is bound [17] and theD�K̄� is also attractive.
Advancing some results, we find three-body states for all
three spin channels, J ¼ 0, 1, and 2.

II. FORMALISM

A. Three-body scattering

The FCA to the Faddeev equations is an effective way to
evaluate the three-body scattering when two of the particles
form a bound state, which will be called cluster, and it is not
excited in the intermediate states [54]. If the third particle
is much lighter than the constituents of the cluster it is
unlikely to have enough available energy to excite it. Let us
explain first the formalism for the K̄�B̄�B̄� case, for which
we are in this situation. Indeed in Ref. [32] it was obtained,
among other states, that the B̄�B̄� system in IðJPÞ ¼ 0ð1þÞ
was bound with about 40 MeV [64], and the third particle

of the three-body system is a K̄�, which is much lighter than
the B̄� making up the cluster. The projectile, K̄�, rescatters
repeatedly with each component of the cluster. This is
depicted diagrammatically in Fig. 1, and the total three-
body scattering amplitude, T, can then be formally written
as a system of coupled equations

T1 ¼ t1 þ t1G0T2

T2 ¼ t2 þ t2G0T1

T ¼ T1 þ T2 ð1Þ

where the two partition functions, Ti, account for all the
diagrams starting with the interaction of the K̄� with the
ith B̄� particle in the cluster. In the present case, since
the two particles in the clusters are the same, we have
t1 ¼ t2, T1 ¼ T2, and, hence Eq. (1) decouples. Figure 1(a)
represents the single scattering, t1, and Fig. 1(b) represents
the double scattering contribution, t1G0t2. The infinite
sum in Fig. 1(c) represents the rest of the rescattering to
get the full T1 amplitude in the FCA. In Eq. (1), G0 stands
for the Green function representing the exchange of a K̄�

between the B̄� mesons inside the compound system,
and is represented by a dashed line in Fig. 1, which is
given by [65–67]

G0ðq0Þ ¼
1

2Mc

Z
d3q⃗
ð2πÞ3

Fðq⃗Þ
ðq0Þ2 − ω2

K� ðq⃗Þ þ iϵ
; ð2Þ

1 2
1

K*

K*

K*

K*

K*

2

+ . . .++

B* B* B* B*

B* B* B* B*

+

(c)

(a) (b)

FIG. 1. Representation of the fixed center approximation to
the Faddeev equations for the interaction of a K̄� meson with a
B̄�B̄� bound state. (a) The single scattering contribution.
(b) The double scattering contribution. ðbÞ þ ðcÞ The multiple
scattering contribution.
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with ωK�ðq⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jq⃗j2 þm2

K�
p

. In Eq. (2), q0 is the energy
carried by the K̄� meson between the components of the
cluster, given by

q0 ¼ 1

2Mc
ðs −m2

K� −M2
cÞ; ð3Þ

and Mc is the mass of the B̄�B̄� bound state (cluster)
from Ref. [32], the value of which is explained in the
Results section.
The form factor Fðq⃗Þ in Eq. (2) encodes the information

about the B̄�B̄� bound state, which is related to the
cluster wave function, Ψcðr⃗Þ, by means of a Fourier
transform [65,68],

Fðq⃗Þ ¼
Z

d3r⃗e−iq⃗·r⃗Ψ2
cðr⃗Þ: ð4Þ

The form factor can be derived in a similar way as was done
in [65,68] and gives

Fðq⃗Þ ¼ 1

N

Z
Ω
d3q⃗0

1

Mc − 2ωB̄� ðq⃗0Þ
1

Mc − 2ωB̄�ðq⃗− q⃗0Þ ; ð5Þ

where Ω specifies the conditions jq⃗0j < qmax and
jq⃗ − q⃗0j < qmax. The normalization factor N in Eq. (5)
guarantees that Fðq⃗ ¼ 0Þ ¼ 1, and thus it is given by

N ¼
Z
jq⃗0j<qmax

d3q⃗0
�

1

Mc − 2ωB̄� ðq⃗0Þ

�
2

: ð6Þ

In the Results section we discuss the value used for the
cutoff qmax in the three-momentum integration. In Fig. 2
we show the form factor as a function of the modulus of
the momentum for qmax ¼ 420 MeV, and in Fig. 3 the
real and imaginary parts of the G0 function, which close
to threshold resemble very much the typical shape of the
two meson loop function, in this case the K̄� and the
meson made of two B̄�.

Finally, there is an important issue regarding the normali-
zation of the amplitudes that one has to take into account
when mixing, in the same expression, Eq. (1), three-body
amplitudes, T, with two-body ones. Using the Mandl-Shaw
[69] normalization for the mesonic fields, the S matrix for
the single-scattering contribution can be written as

Sð1Þ ¼ Sð1Þ1 þ Sð1Þ2 ; ð7Þ

with

Sð1Þi ¼ −itAbi
1

V2

1ffiffiffiffiffiffiffiffiffi
2ωpi

p 1ffiffiffiffiffiffiffiffiffi
2ωp0

i

q 1ffiffiffiffiffiffiffiffi
2ωk

p 1ffiffiffiffiffiffiffiffiffi
2ωk0

p

× ð2πÞ4δðkþ kc − k0 − k0cÞ; ð8Þ

where tAbi are the single-scattering two-body amplitudes, V

is an irrelevant normalization volume, ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
is

the on shell energy of a particle with momentum p and mass
m, pi (p0

i) is the initial (final) momentum of the particle bi in
the cluster, k (k0) represents the initial (final) momentum of
the projectile A, and kc (k0c) represents the total momentum
of the initial (final) cluster. On the other hand, the general
form of the S matrix of the three-body interaction is

S ¼ −iTð2πÞ4δðkþ kc − k0 − k0cÞ
1

V2

×
1ffiffiffiffiffiffiffiffi
2ωk

p 1ffiffiffiffiffiffiffiffiffi
2ωk0

p 1ffiffiffiffiffiffiffiffiffi
2ωkc

p 1ffiffiffiffiffiffiffiffiffi
2ωk0c

p ; ð9Þ

and comparing this equation with Eq. (8), we get that the
FCA equations (1) take the form

T̄1 ¼ t̄1 þ t̄1G0T̄2

T̄2 ¼ t̄2 þ t̄2G0T̄1

T̄ ¼ T̄1 þ T̄2 ð10Þ

0 200 400 600 800

q [MeV]

0

0,2

0,4

0,6

0,8

1

F(
q)

FIG. 2. Form factor of the B̄�B̄� bound state.

FIG. 3. Real and imaginary parts of the G0 function, Eq. (2).
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with

t̄i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkcωk0c
ωpi

ωp0
i

s
tAbiðsiÞ; ð11Þ

which in our case can be approximated by

t̄1 ¼ t̄2 ¼
Mc

mB̄�
t1: ð12Þ

With all these ingredients, Eq. (10) can be algebraically
solved and gives, for the total three-body amplitude,

T̄ ¼ 2T̄1 ¼
2

t̄−11 −G0

: ð13Þ

B. Two-body interaction

For the evaluation of the two-body ti amplitudes, repre-
sented by the full squares in Fig. 1, we need the K̄�B̄�
interaction, whose amplitudes are obtained from Ref. [32].
Note that the amplitudes in Ref. [34] are provided for a given
isospin and spin; therefore, we have to write the total isospin
state of the global system in terms of the coupled isospin
state of the K̄� and a B̄� of the cluster. For a general situation
where the incident particle is called A and the cluster B is
made of two particles, b1 and b2, the amplitudes ti in Eq. (1)
actually stand for matrix elements between the eigenstates

jIA; IB; I;Mi ð14Þ

where IA is the isospin of the particle A, IB the isospin of
the cluster B, I is the total AB isospin, and M is the third
component of the total isospin I. This state must then be first
written in terms of the ket

jIA; Ii; IAi;MAii ð15Þ

where Ii is the isospin of particle bi and IAi the global
isospin of the A − bi system. In order to do this, one can first
write jIA; IB; I;Mi in terms of jIA;MA; IB;MBi, then write
jIB;MBi in terms of jI1;M1; I2;M2i, and finally
jIA;MA; Ii;Mii in terms of jIA; Ii; IAi;MAii. Thus the
expression of jIA; IB; I;Mi in terms of jIA; Ii; IAi;MAii ⊗
jIj;M −MAii is [67]

jIA; IB; I;MiðiÞ
¼

X
IAi

X
MAi

X
MA

CðIA; IB; IjMA;M −MA;MÞ

× CðIi; Ij; IBjMAi −MA;M −MAi;M −MAÞ
× CðIA; Ii; IAijMA;MAi −MA;MAiÞ
× jIA; Ii; IAi;MAii ⊗ jIj;M −MAii ð16Þ

where the superscript (i) indicates that we are correlating the
particle A with bi, and Cðj1; j2; j3jm1; m2; m3Þ represent
Clebsch-Gordan coefficients.
In the present case one has to consider that the B̄�B̄�

cluster is in isospin 0 (IB ¼ 0), that the total three-body
isospin is I ¼ 1=2, and that the isospin doublets are
ðK̄�0;−K̄�−Þ and ðB̄�0;−B̄�−Þ. Then using, Eq. (16), we
have

jK̄�ðB̄�B̄�Þið1ÞI¼1=2;M¼1=2 ¼ −
1

2
jK̄�B̄�iI¼0;M¼0jB̄�0i

−
1

2
jK̄�B̄�iI¼1;M¼0jB̄�0i − 1ffiffiffi

2
p jK̄�B̄�iI¼1;M¼1jB̄�−i: ð17Þ

The amplitude for the single-scattering contribution can

be written in terms of the two-body amplitudes, tðIAiÞAbi
, for

the transition Abi → Abi with isospin IAi:

hIA; IB; I;MjtijIA; IB; I;Mi ¼
X
IAi

�X
MAi

X
MA

X
M0

A

CðIA; IB; IjMA;M −MA;MÞCðIA; IB; IjM0
A;M −M0

A;MÞ

× CðIi; Ij; IBjMAi −MA;M −MAi;M −MAÞCðIi; Ij; IBjMAi −MA;M −MAi;M −MA0 Þ

× CðIA; Ii; IAijMA;MAi −MA;MAiÞCðIA; Ii; IAijMA0 ;MAi −MA0 ;MAiÞ
�
× tðIAiÞAbi

≡X
IAi

αit
ðIAiÞ
Abi

; ð18Þ

which is easily implementable for computer evaluation for a general case, and thus it is why we quote it here, since it may be
useful in other works. In our case it is more direct to obtain it from Eq. (17),

t1 ¼
1

4
tI¼0
K̄�B̄� þ 3

4
tI¼1
K̄�B̄� : ð19Þ
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On the other hand, we also have to consider the different
spin combinations and write the total three-body spin
amplitudes in terms of the spin of the two-body B̄�B̄�.
The reasoning is then totally analogous to the previous
discussion about the isospin, and hence we can use the
master formula [Eq. (18)], but changing isospin by spin.
Then, using the actual spins of the particles involved and
taking into account that the bound B̄�B̄� state has J ¼ 1, we
get, for the different possible values of the total spin,
J ¼ 0; 1; 2,

tJ¼0
1 ¼ tJ¼1

K̄�B̄�

tJ¼1
1 ¼ 1

3
tJ¼0
K̄�B̄� þ 1

4
tJ¼1
K̄�B̄� þ 5

12
tJ¼2
K̄�B̄�

tJ¼2
1 ¼ 1

4
tJ¼1
K̄�B̄� þ 3

4
tJ¼2
K̄�B̄� : ð20Þ

Combining Eqs. (19) and (20) we finally get

tJ¼0
1 ¼ 1

4
tðI¼0;J¼1Þ
K̄�B̄� þ 3

4
tðI¼1;J¼1Þ
K̄�B̄�

tJ¼1
1 ¼ 1

12
tðI¼0;J¼0Þ
K̄�B̄� þ 1

16
tðI¼0;J¼1Þ
K̄�B̄� þ 5

48
tðI¼0;J¼2Þ
K̄�B̄�

þ 1

4
tðI¼1;J¼0Þ
K̄�B̄� þ 3

16
tðI¼1;J¼1Þ
K̄�B̄� þ 5

16
tðI¼1;J¼2Þ
K̄�B̄�

tJ¼2
1 ¼ 1

16
tðI¼0;J¼1Þ
K̄�B̄� þ 3

16
tðI¼0;J¼2Þ
K̄�B̄�

þ 3

16
tðI¼1;J¼1Þ
K̄�B̄� þ 9

16
tðI¼1;J¼2Þ
K̄�B̄� : ð21Þ

Note that the argument of the function Ti in Eq. (1) is the
total invariant mass energy, s, of the three-body system.
However the argument of the two-body K̄�B̄� amplitudes in
Eq. (21), and hence t1 and t2 in Eq. (1), are s1 and s2, where
si (i ¼ 1, 2) is the invariant mass of the interacting particle
A and the particle bi of the B molecule and is given by [66]

si ¼ m2
A þm2

bi
þ 1

2m2
B
ðs −m2

A −m2
BÞðm2

B þm2
bi
−m2

bj≠i
Þ;

ð22Þ

which in our case gives

s1 ¼ s2 ¼ m2
K� þm2

B� þ 1

2
ðs −m2

K� −M2
cÞ; ð23Þ

where Mc is the mass of the B̄�B̄� bound state.
The tK̄�B̄� amplitudes for I ¼ 0 are obtained from

Ref. [34] by implementing unitarity by means of the
Bethe-Salpeter equation, starting with potential kernels, V,
obtained from the dominant vector meson exchange inter-
action plus four vector contact interaction:

tK̄�B̄� ¼ ½1 − VGK̄�B̄� �−1V: ð24Þ

The elementary vertices in the evaluation ofV are supplied by
local hidden gauge symmetry Lagrangians properly extended
to the bottom sector. In this model, the K̄�B̄� scattering
amplitudes present poles for IðJPÞ ¼ 0ð0þÞ, 0ð1þÞ, and
0ð2þÞ with binding energies of the order of 100 MeV.
In Ref. [34] the widths of the generated states were also
evaluated by identifying the main sources of the imaginary
part, which turned out to be the width of the K̄� and the box
diagrams with intermediate K̄ B̄ and K̄B̄� states. (See details
of the formalism and calculations in Ref. [34]).
The tK̄�B̄� amplitudes in I ¼ 1 are not calculated in

Ref. [34], and thus we evaluate them in the present work
considering the same contact term and exchange of ρ, ω,
and B�

s mesons. The contact term contribution is

VI¼1
contact ¼

8<
:

−4g2 for J ¼ 0;

0 for J ¼ 1;

2g2 for J ¼ 2:

ð25Þ

where g ¼ 800 MeV=ð2fπÞ, with fπ ¼ 93 MeV, and

VI¼1;J¼0;2
exch: ¼ g2

m2
B�
s

ðp1þp4Þðp2þp3Þ

þ1

2
g2
�

1

m2
ω
þ 1

m2
ρ

�
ðp1þp3Þðp2þp4Þ; ð26Þ

VI¼1;J¼1
exch: ¼ −

g2

m2
B�
s

ðp1 þ p4Þðp2 þ p3Þ

þ 1

2
g2
�

1

m2
ω
þ 1

m2
ρ

�
ðp1 þ p3Þðp2 þ p4Þ; ð27Þ

where we have to carry out an s-wave projection of the
momentum structures which gives [34,70]

ðp1 þp3Þðp2 þp4Þ→
1

2

�
3s− ðm2

1 þm2
2 þm3

2 þm4
2Þ:

−
1

s
ðm2

1 −m2
2Þðm3

2 −m4
2Þ
�
; ð28Þ

ðp1 þp4Þðp2 þp3Þ→
1

2

�
3s− ðm2

1 þm2
2 þm3

2 þm4
2Þ

þ 1

s
ðm2

1 −m2
2Þðm3

2 −m4
2Þ
�
; ð29Þ

with mi the mass of the particle with momentum pi, of the
process K̄�ðp1ÞB̄�ðp2Þ → K̄�ðp3ÞB̄�ðp4Þ. This potential at
threshold takes the value 29g2 for J ¼ 0, 30g2 for J ¼ 1,
and 35g2 for J ¼ 2, which are strongly repulsive, and then
the I ¼ 1 K̄�B̄� amplitudes do not develop bound states
unlike the I ¼ 0 ones when implementing the unitarization
procedure through the Bethe-Salpeter equation.
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For the evaluation of the K̄�B̄B̄� interaction the formal-
ism is similar but now the particles in the cluster are
different. This implies that now in Eq. (10) the partition
amplitudes t̄1 and t̄2 are different since t̄1 represents the
process where the projectile starts interacting with the B̄ in
the cluster and t̄2 with the B̄�, and they sum up to the total
three-body amplitude

T̄ ¼ t̄1 þ t̄2 þ 2t̄1 t̄2G0

1 − t̄1t̄2G2
0

; ð30Þ

with

t̄1 ¼
Mc

mB̄
t1;

t̄2 ¼
Mc

mB̄�
t2 ð31Þ

where now Mc ¼ 10583 MeV stands for the mass of the
B̄�B̄ cluster [32]. The amplitudes for the different total
three-body spins are

tJ¼0
1 ¼ 1

4
tðI¼0;J¼1Þ
K̄�B̄ þ 3

4
tðI¼1;J¼1Þ
K̄�B̄

tJ¼0
2 ¼ 1

4
tðI¼0;J¼0Þ
K̄�B̄� þ 3

4
tðI¼1;J¼0Þ
K̄�B̄�

tJ¼1
1 ¼ 1

4
tðI¼0;J¼1Þ
K̄�B̄ þ 3

4
tðI¼1;J¼1Þ
K̄�B̄

tJ¼1
2 ¼ 1

4
tðI¼0;J¼1Þ
K̄�B̄� þ 3

4
tðI¼1;J¼1Þ
K̄�B̄�

tJ¼2
1 ¼ 1

4
tðI¼0;J¼1Þ
K̄�B̄ þ 3

4
tðI¼1;J¼1Þ
K̄�B̄

tJ¼2
2 ¼ 1

4
tðI¼0;J¼2Þ
K̄�B̄� þ 3

4
tðI¼1;J¼2Þ
K̄�B̄� : ð32Þ

The amplitude tðI¼0;J¼1Þ
K̄�B̄ is taken from [34]. The isospin 1

amplitude tðI¼1;J¼1Þ
K̄�B̄ has not been previously calculated

within our formalism but can be easily evaluated from the
analogous Bethe-Salpeter equation (24) with the potential
given by

VI¼1;J¼1 ¼ 1

2
g2
�

1

m2
ω
þ 1

m2
ρ

�
ðp1 þ p3Þðp2 þ p4Þ: ð33Þ

III. RESULTS

For the numerical evaluation, the three-momentum cut-
off qmax of Eq. (5) is, in principle, a free parameter of the
model. However it is conceptually analogous to the
regularization cutoff used in the calculation of the B̄�B̄�
loop function needed in the Bethe-Salpeter equation to
obtain the B̄�B̄� bound state in Ref. [32]. Indeed it was
shown in Ref. [71] that the use of a separable two-body

potential in momentum space with a maximum momentum
qmax, V ¼ vθðqmax − qÞθðqmax − q0Þ, with q ðq0Þ the modu-
lus of the initial (final) scattering momenta, converts the
coupled integral Bethe-Salpeter equation into an algebraic
one with on shell prescriptions, and the qmax translate into
the cutoff of the loop function as in Eq. (5). Therefore we
use the same value qmax ∈ ½400; 450� as was used for the
evaluation of the B̄�B̄� and B̄B̄� loops in Ref. [32]. The
values obtained in Ref. [32] for the mass of the B̄�B̄� bound
state were 10612 MeV and 10607 MeV for qmax ¼
400 MeV and qmax ¼ 450 MeV respectively. On the other
hand, in the model for the two-body K̄�B̄� amplitudes [34]
there was also an uncertainty from the value of the cutoff
used in the K̄�B̄� loop function. This cutoff was obtained in
that work by fitting the experimental mass of the X0ð2866Þ
state, obtained in the K̄�D� interaction. The use of the same
value for the cutoff for K̄�B̄� as for K̄�D� is justified within
the heavy quark spin symmetry, since the value of the cutoff
is independent of the heavy quark flavor, up to corrections of
order Oð1=mQÞ with mQ the mass of the heavy quark [72].
This value of the K̄�B̄� cutoff found in [34] was 1050 MeV,
which we will call qK̄

�B̄�
max in the following to distinguish it

from the qmax of the B̄�B̄� regularization and form factor
described above. For the estimation of uncertainties, a range
between 900MeVand 1050MeV was used in [34], and then
wewill also use that range for qK̄

�B̄�
max in the present work. The

reason for the consideration also of the lower value of qK̄
�B̄�

max
is that one expects the value of the cutoff to be of the order
of the inverse of the range of the interaction, and since
the potential is dominated by vector meson exchange one
expects to be closer to the mass of the vector mesons
considered. The value of qK̄

�B̄�
max is the largest source of

uncertainty of the present calculation.
In Fig. 4 we show the results for the three-body

scattering amplitudes jT̄j2 for the K̄�B̄�B̄� system as a
function of the total invariant mass energy,

ffiffiffi
s

p
, for the three

possible values of the global spin, J ¼ 0, 1, and 2. We show
the calculations for the extreme values, 900 MeV and
1050 MeV, of the range considered for qK̄

�B̄�
max . The differ-

ence between these results can be considered as an
estimation of the largest uncertainty of our calculation.
The consideration of the value of qmax for B̄�B̄� in the range
400–450 MeV has an effect of a shift in the peaks of less
than 10 MeV which is smaller than the uncertainty from
qK̄

�B̄�
max , and hence we show the results only for an inter-

mediate value of qmax ¼ 420 MeV. Note, however, that
the uncertainty from these cutoffs comes inherited from the
two-body amplitudes, and thus it is not genuine of the
three-body model.
For J ¼ 0 we can see a sharp peak at

ffiffiffi
s

p ¼ 11393 MeV,
for qK̄

�B̄�
max ¼ 1050 MeV, which is below the K̄�½B̄�B̄��

correlated threshold, 11503 MeV. This peak can thus be
considered as a three-body K̄�B̄�B̄� bound state, with a
binding energy of about 150 MeV defined from the
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uncorrelated threshold mK̄� þ 2mB̄� ¼ 11543 MeV. Out of
this energy, 40 MeV comes from the binding of the B̄�B̄�
cluster [32], and the rest comes from the three-body
dynamics.
The results, also for J ¼ 1 and J ¼ 2, are summarized in

Table I, where we show the binding energies, EB, and the

widths obtained for the two values of qK̄
�B̄�

max considered.
The binding energies shown in the table are defined as the
difference between the position of the maximum of
the peak and the uncorrelated threshold mK̄� þ 2mB̄� ¼
11543 MeV.
According to Eq. (21) the single-scattering three-body

J ¼ 0 amplitude is proportional to the two-body J ¼ 1 one.
Therefore, the origin of the three-body peak found for total
J ¼ 0 can be traced to the bound K̄�B̄� IðJPÞ ¼ 0ð1þÞ
state which has a mass of 6113 MeV, (see Table I in
Ref. [34]). This value for the two-body energy,

ffiffiffiffiffi
s1

p
,

corresponds, using Eq. (23), to a three-body energyffiffiffi
s

p ¼ 11392 MeV, which is almost where the three-body
state is located. This is an indication that the multiple
scattering [Figs. 1(b) and (c)] is small since, if this were the
case, we could neglect G0 in Eq. (13) and then T̄ ≃ 2t̄1.
The state found for J ¼ 1 and J ¼ 2 can be traced to the

K̄�B̄� two-body states following a similar argument as
done above for J ¼ 0. For J ¼ 1 the three-body amplitude
depends on a combination of the three possible two-body
spin amplitudes, and for J ¼ 2 on the three two-body
spins, Eq. (21). According to the results of Ref. [34] (see
Table I in Ref. [34]) three K̄�B̄� states were found with
energies 6125 MeV (J ¼ 0), 6113 MeV (J ¼ 1), and
6074 MeV (J ¼ 2) and widths 160 MeV, 98 MeV, and
138 MeV respectively. These energies correspond toffiffiffi
s

p ¼ 11405 MeV, 11392 MeV, and 11351 MeV respec-
tively, from Eq. (23). Therefore, up to effects of the
nonresonant isospin I ¼ 1 amplitudes, and the multiple
scattering mechanisms, the three-body pole found is
essentially the effect of an overlap of these three states
due to their large width. Indeed if, for illustrative purposes,
we artificially reduced the main source of imaginary part
of the K̄�B̄� amplitudes, which are the box diagrams with
intermediate K̄ B̄ and K̄B̄� [34], to 5% of its true value, then
we would see three clear narrow peaks in the three-body
amplitudes, as is shown in Fig. 5 for the J ¼ 1 case. The
J ¼ 2 case is qualitatively analogous.

FIG. 4. The three-body amplitude jT̄j2 for the K̄�B̄�B̄� system
as a function of the three-body invariant mass energy,

ffiffiffi
s

p
, for

the three different values of the total spin, J, and for qK̄
�B̄�

max ¼
900 MeV and qK̄

�B̄�
max ¼ 1050 MeV.

TABLE I. Binding energy, EB, and width, Γ, of the three-body
systems for the three different possible total spins J. The first
number in the numerical cells represents the value obtained
with the cutoff qK̄

�B̄�
max ¼ 900 MeV, and the second one using

1050 MeV. All units are MeV. The binding energies refer to the
uncorrelated thresholds, mK̄� þ 2mB̄� ¼ 11543 MeV and mK̄� þ
mB̄ þmB̄� ¼ 11498 MeV for K̄�B̄�B̄� and K̄�B̄B̄� respectively.

J EB Γ

K̄�B̄�B̄� 0 109–150 72–104
1 118–158 106–153
2 130–174 103–149

K̄�B̄B̄� 0 94–144 11–4
1 95–144 16–6
2 92–143 13–5
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Another point worth commenting on is that in [41] the
bound states for the D�D�K̄� follow a behavior similar to
ours, as far as the number of poles found and its nature is
concerned, but their binding energies are smaller than the
values that we obtain for the K̄�B̄�B̄� system. This trend of
the binding energy with the heavy meson mass has also
been commonly observed in other studies when passing
from the charm to the bottom sector [73–76].
In Fig. 6 we show the results for the K̄�B̄B̄� amplitude for

the different channels calculated with a cutoff for the K̄�B̄�

and K̄�B̄ loops of 1050 MeV (the use of the other cutoff,
900 MeV produces a similar shift as in the previous figures).
We can appreciate that we find states peaking around
11350 MeV for the three different spins. This corresponds
to a binding energy about 145 MeV below the uncorrelated
K̄�B̄B̄� threshold (see Table I). Note that the binding
energies are similar for the K̄�B̄�B̄� and K̄�B̄B̄� cases,
and the difference between both thresholds is of about
45 MeV. In principle this could imply that it could be
difficult to differentiate experimentally between the states
associated to the K̄�B̄�B̄� and those corresponding to
K̄�B̄B̄�. However note that the widths of the K̄�B̄B̄� states
are about 1 order of magnitude smaller than those of the
K̄�B̄�B̄� case, and then this could be a criterion to distinguish
them. Anyway, the possible experimental difficulties of
differentiating the states do not weaken our theoretical
prediction that there must be exotic states with open strange
and double-bottom flavors, and for the three different spins,
around that energy (within the given uncertainties).

IV. SUMMARY

We have studied theoretically the three-body system
K̄�B̄�B̄� and the similar K̄�B̄B̄� to look for possible

mesonic states with open s and two b flavors. The work
is motivated by the results of a previous work where the
B̄�B̄� and B̄B̄� interactions with IðJPÞ ¼ 0ð1þÞ were
found to bind, and in other work, the K̄�B̄� and K̄�B̄
interactions were also found to be attractive in I ¼ 0. This
allows us to apply the fixed center approximation (FCA)
to the Faddeev equations where the K̄� interacts with each
of the particles in the B̄�B̄� or B̄B̄� cluster and undergoes
multiple rescattering. The total three-body amplitude can
then be written algebraically in terms of the two-body
K̄�B̄� and K̄�B̄ obtained from the unitarization of inter-
acting potentials obtained from suitable extensions to
the heavy bottom of local hidden gauge symmetry
Lagrangians. The method contains no further degrees
of freedom besides the uncertainties already implied in the
two-body scattering amplitudes.
We find resonant three-body structures with quantum

numbers IðJPÞ ¼ 1=2ð0−Þ, 1=2ð1−Þ, and 1=2ð2−Þ with
binding energies and widths of the order of 100 MeV
(see Table I and Fig. 4). We hope that these superexotic
mesons, with open strange and double-bottom flavor,
can be experimentally found in the not very distant
future.
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FIG. 5. Three-body amplitude jT̄j2 for J ¼ 1 and qK̄
�B̄�

max ¼
1050 MeV reducing artificially the main source of the imaginary
part of the K̄�B̄� amplitudes to 5% its true value.

FIG. 6. Three-body amplitude jT̄j2 for the K̄�B̄B̄� system for
the three different values of the total spin and qK̄

�B̄
max ¼ 1050 MeV.
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