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We investigate the nature of the complex retarded potential of a heavy quarkonium moving in a hot and
dense static deconfined nuclear medium. The well-known concept of the retarded potential in
electrodynamics is extended to the context of the heavy-quark by modifying the static vacuum Cornell
potential through Lorentz transformation to the static frame of the medium. The resulting potential in the
vacuum is further corrected to incorporate the screening effect offered by the thermal medium. To do so, the
retarded Cornell potential is modified by the dielectric function of the static quark-gluon plasma (QGP)
medium. We present the numerical results for the real and imaginary parts of the potential along with the
analytical expression of the potential approximated by a small velocity limit. Finally, we present the
thermal width of quarkonia in the QGP medium derived using the imaginary part of the potential and study
its dependence on velocity and temperature.
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I. INTRODUCTION

The quark gluon-plasma (QGP) is the primordial matter
at high temperature and density composed of elementary
particles known as quarks, antiquarks, and gluons, free to
move beyond the nucleon volume. This phase is believed to
exist after the big bang when the universe was of the age of
a few microseconds. During the evolution of the universe
i.e., on further cooling and spatial expansion, the QGP
underwent a phase transition to the hadronic matter i.e.,
confined state of quarks and gluons known as hadrons.
Their dynamics could be governed by the laws of strong
interactions where the corresponding theory is quantum
chromodynamics (QCD). The advanced experimental
facilities for heavy-ion collisions (HIC), such as the
Relativistic Heavy Ion Collider at the Brookhaven
National Laboratory and the Large Hadron Collider at
CERN, provide us a unique opportunity to study the
strongly interacting deconfined quark and gluon matter
but within some limitations, viz., the QGP medium formed

in these experiments has a very small size (∼10 fm) and
very short-lived (∼10−23 sec) [1–4]. Therefore, the very
short persistence of the medium created in HIC restricts the
possibility of exploring it through external probes to
quantitatively characterize its properties. Therefore, we
mostly rely on internal probes to look through the created
matter. In this context, the heavy quarks (charm and
bottom) and their bound states, i.e., heavy quarkonia, have
a huge significance [5–9]. They are mostly created, due to
their higher masses, at the very early stages after
the collisions and behave almost as an independent degree
of freedom while passing through the several phases of the
created matter. Though they get merely affected by the
QGP medium while passing through it, resulting in dis-
tinctive signatures in their final yields observed at the
detectors. In Ref. [10], Matsui and Satz suggested that the
heavy quarkonium production would be suppressed in
high-energy heavy-ion collisions due to the Debye screen-
ing offered by the plasma that reduces the effective
interaction between constituent particles.
In a similar scenario, we want to invite some attention

toward the velocity dependence on the heavy quarkonium
potential moving in the QGP medium. To study that the
Cornell potential [11,12] which is a linear combination of
the Coulomb and linear potentials, plays an important role
as it successfully takes into account the two crucial features
of QCD, namely the asymptotic freedom (at a small
distance or high energy) and the quark confinement (at a
large distance or low energy) [13]. The Cornell potential
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also played an important role in the study of various aspects
of the heavy quarkonia. That includes the transition
between the confined and deconfined phases of matter
[14] and the calculation of the masses of various heavy
quarkonium states. The authors in Ref. [15] first applied the
potential models to study various quarkonia states at finite
temperatures. Later, the quarkonium spectral functions and
the meson current correlators have also been obtained from
potential models [16–23] and are compared to the first-
principle lattice QCD calculations [24–26]. Additionally, it
has also been studied that the imaginary part of the potential
due to the interaction with the medium leads to the thermal
dissociation width of quarkonia states [27,28]. The authors
in Refs. [29,30] have studied the quarkonia dissociation in
the anisotropic QCD medium. Several analysis on the
velocity dependence of the screening properties have been
carried out in Refs. [31–35]. The medium modified
potential of a static quarkonium in a moving thermal bath
and its velocity dependence were studied in Ref. [36] when
the quark-antiquark pair is along or perpendicular to the
direction of the velocity of the medium.
In this article, we aim to study the heavy quarkonium

potential in a context where the QGP medium is static and
uniform, and the heavy quarkonia are moving with respect
to the rest frame of the medium. It is similar to the situation
of the retarded potential of a moving charged particle in
electromagnetic plasma (EMP) or the general Liénard-
Wiechert potential in the context of the QCD. The results
obtained here for a static and uniform medium do not
automatically refer to a clean suppression signal in a rapidly
expanding QGP. But it serves the purpose of seeing the
relative motion between a heavy quarkonia and the QGP
medium that breaks the spherical symmetry of the poten-
tial. It further helps to understand the modification of the
binding of quark and antiquark pairs that, in turn, modify
the survival probabilities of quarkonia states observed in an
asymmetric emission pattern called “anisotropic flow.” The
motivation behind the current analysis is to study the effects
of temperature, screening, and velocity on the retarded
potential of the moving quarkonia in the static QGP
medium and its angular dependence while in motion. In
this article, we provide a framework to study the Liénard-
Wiechert/retarded potential of an open heavy flavor that
will lead to quarkonium bound states potential inside the
QGP. To do so, we write the Cornell potential in a covariant
form and then perform a Lorentz transformation to go to the
static QGP frame where the heavy quark is moving. Later,
we modify this potential using the dielectric permittivity of
the QGP medium. There we observed both the real and the
imaginary parts of the retarded potential. In the current
manuscript our aim is to study the chromoelectric inter-
actions only. Incorporating the color magnetic field effects
will be beyond the scope of this article. In our framework,
we studied the full angular dependence of the retarded
potential and showed the corresponding plots in the results

section. Along with the derivation of the analytical expres-
sion within the small velocity limit, we also present the full
numerical results to compare and check for the validity of
the assumption. Further, we use the imaginary part of the
potential to calculate the thermal width of the quarkonia
and study its dependence on velocity and temperature.
The paper is organized as follows. In Sec. II, we present

the derivation of the retarded potential of a heavy quark
moving in the vacuum. In Sec. III, we obtain the complex
form of in-medium quarkonium retarded potential using the
static dielectric permittivity of the QGP medium.
Section IV is dedicated to the derivation of the potential
at small velocities. In Sec. V, we obtain the thermal width of
both charmonium and bottomonium states. Section VI is
the results section where we discuss the velocity,
temperature, and angular dependence of the medium-
modified retarded potential and the thermal width.
Section VII is devoted to a summary and conclusion of
the present work. Natural units are used throughout the text
with c ¼ kB ¼ ℏ ¼ 1. We use a bold typeface to indicate
three-vectors and a regular font to indicate four-vectors.
The center dot depicts the four-vector scalar product with
the formula gμν ¼ diagð1;−1;−1;−1Þ.

II. FORMALISM

Correspondence from the QED with theoretical consis-
tency makes it easier to understand the hot QCD medium.
Specifically, the QED plasma resembles QCD plasma
(QGP) in some special cases, such as at the soft scale
where the field fluctuation is of the order of

ffiffiffi
g

p
and small

coupling [37]. Here, we are employing the analogy of
Liénard-Wiechert potential from the electrodynamics and
proceeding to obtain the retarded potential for the heavy
quarkonium inside the QGP medium. For that, we first
consider the (static) Cornell potential that binds the
quark-antiquark pair in the vacuum and write it in a
covariant form. Next, we know that the four-potential in
a particular frame can be transformed into any other frame
using Lorentz transformations. The four-potential corre-
sponds to heavy quark-antiquark interaction in its
rest frame with the Cornell potential as the scalar part is
given by

Aμ
0 ¼

�
−
α

r
þ σr; 0

�
; ð1Þ

where r ¼ jrj is the distance from heavy quark to the field
point; α ¼ CFαs with CF ¼ ðN2

c − 1Þ=2Nc and αs is the
strong coupling constant; σ is the string tension; and Nc is
the number of color degrees of freedom. The four-potential
Aμ
0 in Eq. (1) can be written in the covariant form by

introducing the four-velocity uμ0 ≡ ð1; 0Þ in the rest frame
of the heavy quark. So, in the rest frame of the heavy quark
the four-potential is
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Aμ
0 ¼

�
−

α

rνuν0
þ σðrνuν0Þ; 0

�
; ð2Þ

Note that rνuν0 ¼ r. Now, the Lorentz transformations of
Eq. (2) to a frame where the heavy quark is moving with a
velocity, v is given as

Aμ ¼
�
−

γα

rνuν
þ γσ rνuν;−

γαv
rνuν

þ γσv rνuν
�
; ð3Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is the Lorentz factor. Rewriting

Eq. (3) in a more compact form, one gets

Aμ ¼
�
−

α

ðrνuνÞ
þ σ ðrνuνÞ

�
uμ: ð4Þ

Here, rμ is the position four-vector from the heavy quark
ðtr; x0Þ at retarded time to some field point ðt; xÞ, and
uμ ¼ γð1; vÞ with v ¼ jvj. It is important to note that the
two events which define rμ are connected by a signal
propagating at the velocity of the light. Therefore, the
events have null separation and rμ is a lightlike vector. The
modified form of the Cornell potential shown in Eq. (4) is
similar to the form of the Liénard–Wiechert potential in the
electrodynamics but the string part is missing there. Now
we have,

rνuν ¼ rγ − γr · v ¼ γrð1 − r̂ · vÞ; ð5Þ

where r̂ is the unit vector along r. Then the scalar potential,
i.e., the zeroth component of the four-potential can be
written as

Vvacðr; vÞ ¼ −
α

rð1 − r̂ · vÞ þ γ2σ rð1 − r̂ · vÞ: ð6Þ

This formalism is valid even when the heavy quark velocity
is nonuniform. The calculation in this section uses a
sequence of independent Lorentz transformations, each
performed at a different point along the trajectory of the
particle. To fulfill our purpose of heavy quark traveling in
QGP medium, we can take the velocity to be constant, and
further, if we orient our z-axis along the direction of
velocity, then at t ¼ 0 [38],

rð1 − r̂ · vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ð1 − v2Þðx2 þ y2Þ

q
: ð7Þ

Here, for convenience, the heavy quark is set to pass
through the origin at t ¼ 0 and used the fact that rμ is a
lightlike vector. Now using Eq. (7) in Eq. (6) the retarded
potential in Cartesian coordinates becomes,

Vvacðx; y; z; vÞ ¼ −
αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ ð1 − v2Þðx2 þ y2Þ
p

þ γ2σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ð1 − v2Þðx2 þ y2Þ

q
: ð8Þ

The medium modification of the retarded potential can be
done in the Fourier space by dividing the potential with the
dielectric permittivity of the medium. Thus, the vacuum
potential in Fourier space is obtained as

Vpðpx; py; pz; vÞ ¼ −
ffiffiffi
2

π

r
α

p2
x þ p2

y þ ð1 − v2Þp2
z

− 2

ffiffiffi
2

π

r
σ

½p2
x þ p2

y þ ð1 − v2Þp2
z �2

: ð9Þ

In spherical polar coordinates, the above equation becomes

Vpðp; vÞ ¼ −
ffiffiffi
2

π

r
α

p2ð1 − v2 cos2 θÞ

− 2

ffiffiffi
2

π

r
σ

p4ð1 − v2 cos2 θÞ2 ; ð10Þ

where θ is the polar angle in momentum space, i.e.,
the angle between the pz and p. This expression gives
the retarded scalar potential of a moving quark in the
vacuum. As discussed earlier, when a charged particle
passes through a thermal medium, its properties are
affected by the response of that medium. Therefore, when
a heavy quark passes through the QGP medium (which is at
rest in this scenario), the retarded potential associated with
it will be affected by the response of the QGP medium.
Therefore, next, we shall discuss the modification of
the heavy quark potential given in Eq. (10) through the
dielectric permittivity of the QGP medium in the
Fourier space.

III. DIELECTRIC PERMITTIVITY AND MEDIUM
MODIFICATION OF THE POTENTIAL

The medium modified potential in the coordinate space
[Vðr; vÞ] can be obtained [39,40] by correcting the vacuum
potential with dielectric permittivity encoding the medium
screening effect in Fourier space followed by inverse
Fourier transformation, i.e.,

Vðr; vÞ ¼
Z

d3p

ð2πÞ3=2 ðe
ip·r − 1ÞVpðp; vÞ

ϵðpÞ ; ð11Þ

where Vpðp; vÞ is the Fourier transform of the potential in
coordinate space and ϵðpÞ is the dielectric permittivity of
the medium. Here, we subtract the r-independent terms in
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order to renormalize the heavy quark free energy [41]. The
inverse of the dielectric permittivity of the static QGP
medium is given as [28,42],

ϵ−1ðpÞ ¼ p2

p2 þm2
D
− iπT

m2
Dp

ðp2 þm2
DÞ2

; ð12Þ

where p ¼ jpj and mD is the Debye mass of QGP medium
obtained from the static limit of longitudinal polarization
tensor in the high-temperature limit [43],

mD ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παs

�
Nf

6
þ Nc

3

�s
; ð13Þ

where Nf is the number of flavor degrees of freedom and T
is the temperature of the medium. We use one-loop strong
coupling αs as [44–46],

αs ¼
12π

11Nc − 2Nf

1

ln ðΛ=ΛMSÞ2
; ð14Þ

where ΛMS ¼ 176 MeV is the QCD scale fixing factor
and Λ ¼ 2πT.
In order to calculate the exact real part of the potential we

decompose the potential into Coulombic part and string
part then perform integration separately,

ℜVðr; vÞ ¼ ℜVαðr; vÞ þℜVσðr; vÞ: ð15Þ

The Coulombic part is written as

ℜVαðr; vÞ ¼ −
ffiffiffi
2

π

r Z
d3p

ð2πÞ3=2
�

eip·r

p2 þm2
D

α

1 − v2cos2θ

−
m2

D

p2 þm2
D

α

p2ð1 − v2cos2θÞ
�
: ð16Þ

There are no diverging terms in the string part integration,
therefore,

ℜVσðr; vÞ ¼ −
Z

d3p
ð2πÞ3 ðe

ip·r − 1Þ 1

p2 þm2
D

×

ffiffiffi
2

π

r
2σ

p2ð1 − v2cos2θÞ2 : ð17Þ

In spherical polar coordinates,

p · r ¼ rp½sin Θ sin θ cosðΦ − ϕÞ þ cos Θ cos θ�;

where the angles θ and ϕ are polar and azimuthal angles in
Fourier space (momentum space), respectively; whereas the
angles Θ and Φ are polar and azimuthal angles in
coordinate space. Since the velocity of the heavy quark
is considered along the z-axis, Θ represents the angle
between the velocity v and the position of the field point r.
The integration over the azimuthal angle, ϕ can be done
analytically and one obtains,

ℜVðr; vÞ ¼ −
1

π

Z
sin θ d θ dp
p2 þm2

D

�
αðm2

D þ p2eipr cos θ cos ΘJ0ðpr sin θ sin ΘÞÞ
1 − v2 cos2 θ

−
2σð1 − eipr cos θ cos ΘJ0ðpr sin θ sin ΘÞÞ

ð1 − v2 cos2 θÞ2
�
; ð18Þ

where J0 represents the Bessel’s function of the first kind. The integration over p and θ in Eq. (18) can be computed
numerically, and the real part of the potential is plotted in Fig. 1. Similarly, the exact imaginary part of the potential is
calculated by substituting the imaginary part of the dielectric function in Eq. (11),

FIG. 1. Numerical results for real part of the potential at different velocities and angles [Θ ¼ 0 (left), Θ ¼ π=4 (middle), and Θ ¼ π=2
(right)].

SEBASTIAN, JAMAL, and HAQUE PHYS. REV. D 107, 054040 (2023)

054040-4



ℑVðr; vÞ ¼
Z

d3p

ð2πÞ3=2 ðe
ip·r − 1Þ πTm2

Dp
ðp2 þm2

DÞ2
ffiffiffi
2

π

r �
α

p2ð1 − v2 cos2 θÞ þ
2σ

p4ð1 − v2 cos2 θÞ2
�
: ð19Þ

After integrating over ϕ we obtain,

ℑVðr; vÞ ¼ −m2
DT

Z
sin θ dθ dp
ðp2 þm2

DÞ2
�

αp
1 − v2cos2θ

þ 2σ

pð1 − v2cos2θÞ2
�
f1 − eipr cos θ cos ΘJ0ðpr sin θ sin ΘÞg: ð20Þ

Both the real and imaginary parts of the potentials are
independent ofΦ after ϕ integration, i.e., potential has axial
symmetry about the z-axis. The rest of the integration is
done numerically, and the results are plotted as shown in
the figure for both real (Fig. 1) and imaginary (Fig. 2) parts
of the potential.

IV. POTENTIAL AT SMALL VELOCITIES

The real and imaginary parts of the potential as obtained
in Eqs. (18) and (20) can be simplified at small velocities.
Considering small velocity, one can expand the Vpðp; vÞ in
Eq. (10) and keep terms up to Oðv2Þ as,

1

1 − v2 cos2 θ
≈ 1þ v2 cos2 θ þOðv4Þ: ð21Þ

This approximation is valid for the case of a quarkonia
moving in the QGP medium with relatively small velocity.
Next, we can analytically perform the integration in
Eq. (11) using the approximation given in Eq. (21) to

obtain the real part and imaginary part of the potential. The
modified form of the potential in Eq. (10) in small velocity
limit is

Vpðp;θ;vÞ¼−
ffiffiffi
2

π

r
1

p2

�
αþαv2cos2θþ2σ

p2
þ4σv2cos2θ

p2

�
:

ð22Þ

Therefore the real part of the potential at small velocity is
obtained as

ℜVðr; vÞ ¼
Z

d3p

ð2πÞ3=2 ðe
ip·r − 1ÞVpðp; θ; vÞRe½ϵ−1ðpÞ�:

ð23Þ

The integration in Eq. (23) is easy to calculate in spherical
polar coordinates with cos θ ¼ pz=p. Doing so, the real
part of the potential is computed as,

ℜVðρ;Θ; vÞ ≈ −
αmDe−ρ

ρ
− αmD −

2σ

mDρ
ð1 − e−ρÞ þ 2σ

mD
−
αv2mD

3
−
αmDv2

ρ3
ð1 − 3 cos2ΘÞ

þ 4σv2

3mD
þ αmDv2e−ρ

ρ

�
1

ρ
þ 1

ρ2
−
�
1þ 3

ρ
þ 3

ρ2

�
cos2Θ

�
−
2σv2

mDρ
ð1 − cos2ΘÞ

þ 4σv2

mDρ
3
ð1 − 3 cos2 ΘÞ þ 4σv2e−ρ

mDρ

�
cos2 Θ −

1 − 3 cos2Θ
ρ

−
1 − 3 cos2Θ

ρ2

�
; ð24Þ

FIG. 2. Numerical results for imaginary part of the potential at different velocities and angles [Θ ¼ 0 (left), Θ ¼ π=4 (middle), and
Θ ¼ π=2 (right)].
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where ρ ¼ mDr. At v ¼ 0, the approximate real part of the
potential in Eq. (24) becomes the more familiar screened
Cornell potential where the angular dependence is also
disappeared,

ℜVðrÞjv¼0 ¼ −
αe−mDr

r
− αmD

−
2σ

m2
Dr

ð1 − e−mDrÞ þ 2σ

mD
: ð25Þ

The screened Cornell potential at v ¼ 0 further converges
to the vacuum Cornell potential asmD → 0with T → 0, we
have

ℜVðrÞjv¼0;T¼0 ¼ −
α

r
þ σr: ð26Þ

Similarly, the imaginary part of the retarded potential in the
small velocity approximation can be obtained as,

ℑVðr; vÞ ¼
Z

d3p

ð2πÞ3=2 ðe
ip·r − 1ÞVpðp; θ; vÞIm½ϵ−1ðpÞ�:

ð27Þ

After performing the ϕ and the θ integration, we obtain
the following results for the imaginary part of the potential.
For the static case, the potential is isotropic, and it is
obtained as

ℑV iso ¼ −2αT
Z

∞

0

z
ðz2 þ 1Þ2

�
1 −

sinðmDrzÞ
mDrz

�
dz

−
4σT
m2

D

Z
∞

0

dz
zðz2 þ 1Þ2

�
1 −

sinðmDrzÞ
mDrz

�
; ð28Þ

where z ¼ p=mD. In the small velocity limit, the imaginary
part of the potential can be expressed as [40,47]

ℑV ¼ Aðr; T; vÞ þ Bðr; T; vÞ cosð2ΘÞ: ð29Þ

In general, one can proceed with any angle Θ and evaluate
the integration over p numerically. Here we are showing
the results for Θ ¼ 0 (parallel case) and Θ ¼ π=2
(perpendicular case) in small velocity limits as

ℑVkðv; rÞ ¼ ℑV iso þ
2

3
v2T

�
α

3

Z
∞

0

zdz
ðz2 þ 1Þ2 þ

4σ

mD
2

Z
∞

0

dz
zðz2 þ 1Þ2

��
1 −

3 sinðρzÞ
ρz

−
6 cosðρzÞ

ρ2z2
þ 6 sinðρzÞ

ρ3z3

�
; ð30Þ

and

ℑV⊥ðv; rÞ ¼ ℑV iso þ
2

3
v2T

�
α

3

Z
∞

0

zdz
ðz2 þ 1Þ2 þ

4σ

mD
2

Z
∞

0

dz
zðz2 þ 1Þ2

�
×

�
1þ 3 cosðρzÞ

ρ2z2
−
3 sinðρzÞ
ρ3z3

�
: ð31Þ

Therefore we can write

Aðr; T; vÞ ¼ ½ℑVkðv; rÞ þ ℑV⊥ðv; rÞ�=2 ð32Þ

and

Bðr; T; vÞ ¼ ½ℑVkðv; rÞ − ℑV⊥ðv; rÞ�=2: ð33Þ

It is evident from Eqs. (30) and (31) that at v ¼ 0, the
approximate imaginary part of the potential will contain
only the isotropic part given in Eq. (28), which also vanishes
in the vacuum as T → 0. That means only the Cornell
potential given inEq. (1) remains after taking the limitv → 0
and T → 0, the original potential we started with.

V. THERMAL WIDTH

The thermal width of the quarkonium resonant state can
be studied from the imaginary part of the potential. We will
consider that the imaginary part of the potential is the
perturbation to the vacuum potential, and we calculate the
thermal width in the first order of perturbation as [36,48,49]

ΓQQ̄ðvÞ ¼ −hΨjℑVðv; r;ΘÞjΨi; ð34Þ

where ΨðrÞ is the wave function of the quarkonium bound
states. The leading contribution to the potential for the
deeply bound quarkonium states in QGP is Coulombic.
Therefore, the hydrogen atom wave function is a good
approximation in this context to calculate the thermal width
of quarkonium bound states. Now, quarkonium wave
function in the QGP frame is

ΨðrÞ ¼ 1ffiffiffiffiffiffiffiffi
πa30

q e−q=a0 ; ð35Þ

where q ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2cos2Θ

1−v2

q
is due to the Lorentz transfor-

mation of the wave function, a0 ¼ 2=ðCFmQαsÞ is the Bohr
radius corresponds to the quarkonia and mQ is the quark
mass. Note that one can get the exact wave function solving
Schrödinger equation with the real part of the potential (18)
and we intended to do that in near future. Substituting
Eq. (35) in Eq. (34) gives
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ΓQQ̄ðvÞ ¼ −
1

πa30

Z
d3re−2q=a0ℑVðr; v;ΘÞ: ð36Þ

Here we obtain the exact results using full imaginary
potential given in Eq. (20) as

ΓQQ̄ðvÞ ¼
2m2

DT
a30

Z
dr dΘ r2 sin Θe−2q=a0

Z
sin θ dθ dp
ðp2 þm2

DÞ2

×

�
αp

1 − v2 cos2 θ
þ 2σ

pð1 − v2 cos2 θÞ2
�
: ð37Þ

We plot the thermal width of the charmonium and the
bottomonium ground states as a function of temperature
and velocity using the expression derived above, which are
further discussed in the result sections.

VI. RESULTS

The heavy-quarkonium potential in the QGP medium is
studied analytically and numerically with respect to various
parameters, primarily the quarkonia velocity and angular
dependence. The thermal width of the quarkonium ground
state is reobtained, and its dependence on velocity and
temperature is studied. The illustration of results in various
plots used different temperature T ¼ 1.5Tc, 2Tc, and 2.5Tc
where the crossover temperature, Tc ¼ 0.155 GeV.
The number of quark flavors Nf ¼ 3 and σ ¼ 0.18 GeV2.
The temperature dependence in the potential arises through
the strong coupling (αs), dielectric function ϵðpÞ, and
Debye mass (mD).
Figure 1 shows the variation of the real part of the

potential with distance r at angle Θ ¼ 0 (left), Θ ¼ π=4
(middle), and Θ ¼ π=2 (right) and temperature T ¼ 1.5Tc.
We can observe that the potential and its variation are
different in all three directions. Initially, the potential
increases sharply and then saturate as the distance
increases. The potential decreases with an increase in
velocity at a very short distance, whereas at a large distance,
the potential increases as velocity increases; this switching
is more noticeable in the Θ ¼ π=2 case in Fig. 1. At small

velocities, the deviation of the potential from the static case
(v ¼ 0) is very small, but as the velocity becomes very
high, a rapid shift in potential is observed. As distance r
increases, the potential becomes positive, and this sign
flipping happens quickly as velocity increases. This means
the negative potential region is less for fast-moving heavy
quarks, and the probability of quarkonia formation is less.
Also, as we move from Θ ¼ 0 to Θ ¼ π=2, the potential
becomes positive rather slowly. Similarly, Fig. 2 shows the
imaginary part of the potential against r at the same
parameters mentioned above. Here, the imaginary potential
is always negative as expected, and its magnitude increase
as velocity increases. The quarkonium potential is more
sensitive to the velocity along the direction of motion, i.e.,
at Θ ¼ 0.
Figure 3 illustrates the comparison between Cornell

potential and Coulomb potential (σ ¼ 0 case) along the
direction of motion of the heavy quark. Both the real and
imaginary parts of the Coulomb potential have nominal
dependence on velocity, whereas the string part of the
potential have substantial dependence on velocity from
static to relativistic case. This implies the velocity depend-
ence of the Cornell potential is almost solely due to the
string part of the potential.
Figure 4 shows the angular dependence of the real (left)

and imaginary (right) part of the potential at r ¼ 1 fm and
T ¼ 1.5Tc, respectively. Both parts are symmetric about
the plane containing the particle and perpendicular to the
direction of motion. It is interesting to note that velocity
dependence is most prominent along the direction of the
velocity of heavy quark for both real and imaginary parts of
the potential. At low velocities, there is little variation in
potential, but as velocity increases, the spherical symmetry
breaks down, leading to an increase in anisotropy. The real
part is minimum, and the imaginary part is maximum at
Θ ¼ π=2 direction. Therefore, the quarkonia are most
likely to be oriented in a plane perpendicular to its direction
of motion.
In Fig. 5 we have made a comparison between velocity

dependence and temperature dependence of the real part of

FIG. 3. Numerical results for real (left) and imaginary (right) parts of the potential, a comparison of Cornell and Coulomb potential.
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the potential. It is interesting to note that the effect of
velocity decreases with an increase in temperature in the
case of the real part of the potential, especially at Θ ¼ 0,
i.e., the variation of potential with change in velocity is
more at T ¼ 1.5Tc than T ¼ 2.5Tc. In comparison to the
static case, v ¼ 0, the potential changes more at finite/high
velocity with temperature. Our results show that the
velocity dependence of the real part is as important as
temperature dependence. Similarly, in Fig. 6 we compare

velocity dependence and temperature dependence of the
imaginary part of the potential. The variation of the
potential with temperature at different angles and different
velocities is more or less the same. The potential changes
rapidly along the direction of motion Θ ¼ 0 of the heavy
quark than the perpendicular direction Θ ¼ π=2. Our
results show that the heavy quark velocity, as well as
the medium temperature, highly influence the quarkonium
potential.

FIG. 4. Numerical results for the angular variation of real (left) and imaginary (right) parts of the potential at different velocities. Here,
Θ is in radians.

FIG. 5. Numerical results for real potential at different temperatures and velocities, a comparison.

FIG. 6. Numerical results for imaginary potential at different temperatures and velocities, a comparison.
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Figure 7 shows the variation of the thermal width with
velocity (left) and temperature (right) of charmonium
ðJ=ΨÞ and bottomonium (ϒ) ground states. Even though
the magnitude of the imaginary part of the potential
increases with velocity, the thermal width decrease with
velocity due to the phenomenon of time dialation. Note that
the thermal width obtained here qualitatively agrees with
the thermal width calculated in Ref. [36] within the real-
time formalism using the hard thermal loop approximation
and also with results in Ref. [48] at the leading order in
perturbative QCD. The width increases with temperature
for the both charmonium and bottomonium states. The
mass of the charm quark (taken Mc ¼ 1.27 GeV) is less as
compared to the bottom (taken Mb ¼ 4.18 GeV), one can
notice that the thermal width of J=Ψ is higher thanϒ for the
same parameters. This preserves the fact that the lighter
bound state, i.e., cc̄ dissociates faster than the compara-
tively heavier one.

VII. SUMMARY AND CONCLUSION

In the current analysis, we have studied the potential of a
moving heavy quarkonium in a static QGP medium. First,
we derived the retarded potential of a uniformly moving
heavy quark in the vacuum following the analogy of the
Liénard-Wiechert potential in the electrodynamics, where
we performed Lorentz transformation on the static potential
to find its form in a boosted frame. The resulting velocity
and angular-dependent potential are further modified for
the inclusion of the QGP medium screening effect. This has
been done through the medium dielectric permittivity, a
complex quantity, which leads to a complex potential. We
presented the exact numerical results and derived the
analytical expression in the small velocity limit for both
the real and imaginary parts of the potential. We have
shown in the plots the variation of potential with respect to
several parameters, such as distance between quark-anti-
quark, temperature, velocity, and also angular dependence.
We have also presented a comparison of Coulombic and
Cornell potential, considering the presence and absence of

string terms. As expected, the Coulombic contribution
dominates at the short distance, whereas the string term
dominates at a large quarkonium separation distance. Next,
it is observed that the motion of quarkonium through the
QGP breaks down the spherical symmetry of the potential,
and the anisotropy of the potential increases with the
increase in velocity. It has also been noted that the velocity
dependence of the potential is as important as the temper-
ature dependence. The maximum variation of both the real
and imaginary part of the potential from the corresponding
static case is found to be along the direction of motion of
the quarkonium. Finally, we obtained thermal width, which
decreases with velocity and increases with temperature.
This tells us that the lifetime of a quarkonium bound-state is
determined by the velocity of the quarkonium and temper-
ature of the medium. The real part of the potential becomes
positive quickly as distance increases with velocity, more
prominent in the direction of quarkonium motion than
perpendicular, i.e., Debye sphere shrinks and deformed.
As a continuation of the present work, we would like to

use the potential derived in this article to study the
dynamics of the heavy quarkonia propagating in the
QGP medium. The binding energy can be calculated by
solving the Schrödinger equation using the real part of the
potential. The velocity and the angular dependence of the
potential are expected to modify the survival probabilities
of the quarkonia. This will be a matter of investigation in
the near future.
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FIG. 7. Decay width of the J=ψð1sÞ and ϒð1sÞ with velocity (left) and temperature (right).
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