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We present a phenomenological model for the γγ → πþπ−π0 reaction by including the production
mechanism of the a2ð1320Þ resonance, as well as the contributions from the σ=f0ð500Þπ0 and f2ð1270Þπ0
production channels. Furthermore, the γγ → ρ�π∓ → πþπ−π0 channel, which is essential for a description
in the low-energy region, is investigated carefully by introducing the complete set of gauge invariant and
Lorentz-covariant tensors for the γγ → ρ�π∓ subprocess. The full amplitude is constructed to yield a
correct high-energy Regge behavior. Within our model, we achieve a very reasonable description of
ARGUS and L3 data of the total cross section, as well as of the π�π0 and πþπ− invariant mass distributions.
We also predict the invariant mass distributions in the γγ center-of-mass energy range from 0.8 to 2.0 GeV,
which will be studied by the forthcoming data of the BESIII Collaboration.
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I. INTRODUCTION

With the precision measurement of the anomalous
magnetic moment of the muon, aμ ¼ ðg − 2Þ=2, released
by the Muon g − 2 Collaboration [1] at Fermi National
Accelerator Laboratory (Fermilab) and combined with the
measurement of Brookhaven National Laboratory experi-
ment [2], a discrepancy of 4.2σ is found in comparison with
the current Standard Model (SM) prediction [3]. To meet
the accuracy (∼1 part-per-million) of the ongoing Fermilab
experiment, further efforts are needed to bring down the
theoretical error of the SM value. One of the major sources
of uncertainty is the hadronic light-by-light (HLbL) scat-
tering contribution. The contributions due to the single
pole, the one-loop box diagram, the two-particle cuts, are
all well studied, especially for pions, e.g., [4–9].
Contributions beyond that, in particular the three-pion
intermediate states and higher ones, are required to achieve
a good control of the uncertainty, as stressed in the recent
review by the Muon g − 2 Theory Initiative [3].
Towards this goal, a next step is to investigate the two-

photon fusion to three pions in detail. This will eventually
pave the way towards estimating the four-point contribu-
tions to HLbL with the three pion intermediate states. From
the experimental side, the existing data for the γγ → πππ
process are rather old and have low statistics. Two early

experimental investigations of the γγ → πþπ−π0 reaction
were performed by the ARGUS and the L3 Collaborations
around 25 years ago [10,11]. An updated analysis of L3
data was carried out in Ref. [12]. A comparison between the
updated L3 and the ARGUS cross section data shows a
significant difference in the low-energy region, which is the
most relevant for the HLbL contribution to aμ. The prospect
of new data from the BESIII experiment motivates a
renewed interest in this reaction [13,14].
On the theoretical side, the studies of the γγ → πþπ−π0

process are also limited. Based on the current algebra and
the linear sigma model, the γγ → πþπ−π0 amplitude has
been investigated at lowest order [15–18] in the 1970s.
With the chiral perturbation theory (ChPT) founded as a
powerful tool to describe processes involving low-energy
pions, Bos et al. [19] applied ChPT to estimate the total
cross section for the γγ → πþπ−π0 process at tree level.
Subsequently, the one-loop calculation was carried out by
Talavera et al. [20] and extended within the “so-called”
generalized ChPT by incorporating the quark condensate
in Ref. [21].
However, those studies focused on the very low-energy

region, nearby the 3π threshold of the two-photon fusion
reaction. A phenomenological analysis of γγ → πþπ−π0
reaction of the experimental data of L3 and ARGUS,
covering the low- and intermediate-energy regions, is still
missing. Facing the ongoing BESIII experiment, we
develop a theoretical model of the γγ → πþπ−π0 process
by accounting for the contributions of the a2ð1320Þ
resonance, as well as the σ=f0ð500Þπ0, f2ð1270Þπ0, and
ρ�ð770Þπ∓ production channels. As a result, we obtain a
description for both the total cross section and the invariant
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mass distributions of ARGUS and L3 experiments [10–12]
with a single parameter to be fixed. The model is able to
provide predictions for the forthcoming BESIII data, and
can serve as a starting point for further improvements once
new data are available.
Our paper is organized as follows: InSec. II,we present the

γγ → πþπ−π0 amplitude in our phenomenological model.
Within this approach, the existing data ofARGUS andL3 are
described and predictions for the energy range of the forth-
coming BESIII data are given in Sec. III. We summarize the
main results in Sec. IV with perspectives.

II. THEORETICAL FRAMEWORK

In this section, we present the amplitude of the real
photon fusion process γγ → πþπ−π0, which will be used to
describe the current experimental data within the relatively
large γγ center-of-mass (c.m.) energy range of 0.8 to 2 GeV.
As shown in Refs. [10,11], this process is dominated by
the a2ð1320Þ resonance. Besides that, the σ=f0ð500Þ,
f2ð1270Þ, and ρ�ð770Þ resonances are involved as the
intermediate states of quasi-two-body production channels
due to their strong decay mode to the ππ states. Therefore,
in our model for the γðk1Þγðk2Þ → πþðpπþÞπ−ðpπ−Þπ0ðpπ0Þ
reaction, we parametrize the total amplitude by several
contributing subprocesses: γγ → a2ð1320Þ → ρ�π∓ →
πþπ−π0 resonance production in the s-channel,
γγ → σ=f0ð500Þ½f2ð1270Þ�π0 → πþπ−π0 production, and
γγ → ρ�π∓ → πþπ−π0 with the ρ and π exchanges in the t
and u channel, in order to cover the energy region up to
2 GeV. The kinematical invariants which we will use in this
work in describing the two-photon fusion process are
defined as

s ¼ ðk1 þ k2Þ2; t ¼ ðk1 − pπþ − pπ0Þ2;
u ¼ ðk2 − pπþ − pπ0Þ2; M2

πþπ− ¼ ðpπþ þ pπ−Þ2;
M2

πþπ0 ¼ ðpπþ þ pπ0Þ2; M2
π−π0

¼ ðpπ− þ pπ0Þ2: ð1Þ

We denote the total amplitude of γγ → πþπ−π0 as

Mγγ→πþπ0π− ¼ Ma2 þMf2 þMσ þMρπ; ð2Þ

where each contribution is described in the following
subsections and represented by the corresponding
Feynman diagrams in Fig. 1.

A. γγ → a2ð1320Þ → ρ�π∓ → π +π − π0 channel

The s-channel contribution of the a2ð1320Þ resonance
production, as the dominant feature of the γγ → πþπ−π0
reaction, via the ρπ decay in Fig. 1(a) is displayed first.
Assuming that the a2ð1320Þ resonance is predominantly
produced in a state with helicity-2, the effective Lagrangian
for the γγ → a2ð1320Þ amplitude can be written as [22]

Lγγa2 ¼ e2
ga2γγ
ma2

ΦμνFμλFλ
ν; ð3Þ

where Φμν is the symmetric and traceless tensor describing
the spin-2 field, and Fμν ¼ ∂

μAν − ∂
νAμ is the electromag-

netic tensor. The dimensionless coupling ga2γγ is deter-
mined from the two photon decay width

Γa2→γγ ¼
πα2

5
g2a2γγma2 ; ð4Þ

where α ¼ e2=ð4πÞ denotes the fine-structure constant.
Using the experimental value Γexp

a2→γγ ¼ 1.00� 0.06 keV
from PDG [23], the absolute value of ga2γγ is fixed as
jga2γγj ¼ 0.151� 0.005. Note that the PDG average value
of Γa2→γγ are dominated by the results of ARGUS and L3
shown in this paper.
The effective Lagrangian of a2ð1320Þ decay to ρπ is

written as [24],

La2ρπ ¼
ga2ρπffiffiffi

2
p ϵμνλσð∂μΦνα − ∂

νΦμαÞ

· ½∂απ × ð∂λρσ − ∂
σρλÞ�; ð5Þ

where Φ, π, ρ stand for the isovector a2ð1320Þ, π, and ρ
fields, respectively. From Eq. (5) we can calculate the decay
width for a2 → ρπ

(a) (b) (c)

(d) (e) (f)

FIG. 1. Feynman diagrams for the γγ → πþπ−π0 reaction in our model. The diagrams with crossed photon lines are not shown, but
included in the calculation.
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Γa2→ρπ ¼
4

5π
g2a2ρπ

�
λðm2

a2 ; m
2
ρ; m2

πÞ
4m2

a2

�
5=2

; ð6Þ

with λ being the Gunnar-Källén function

λðx; y; zÞ≡ x2 þ y2 þ z2 − 2xy − 2xz − 2yz: ð7Þ

The coupling ga2ρπ is estimated via the partial decay width of
Γa2→ρπ ¼ 75.0� 4.5 MeV, which is obtained by assuming
that the branch ratio Bða2 → 3πÞ ¼ 70.1� 2.7% [23] is
only from a2 → ρð770Þπ decay channel, similar to Ref. [25].
As a result, one obtains the value jga2ρπj ¼ 4.9� 0.2.
The Lagrangian of the rho-meson decay into two pions is

given by

Lρππ ¼ gρππðπ × ∂
μπÞ · ρμ; ð8Þ

with the coupling gρππ ¼ 5.97, which is fixed by the
corresponding decay width Γρππ ¼ 149 MeV, as the iso-
spin average value.
Combining the vertices above, the s-channel amplitude

of γðk1Þγðk2Þ → πþðpπþÞπ−ðp−
π Þπ0ðpπ0Þ via the a2ð1320Þ

resonance is given by

Ma2 ¼ Ma2
ρþπ− þMa2

ρ−πþ ; ð9Þ

where

Ma2
ρþπ− ¼

ffiffiffi
2

p
e2

ma2

ga2γγga2ρπgρππ½kμ1ελðk1; λ1Þ − kλ1ε
μðk1; λ1Þ�½ðk2Þλενðk2; λ2Þ − ðk2Þνελðk2; λ2Þ�

×
ϵδωξη½PδΛωα;μνðP; λa2Þ − ðδ ↔ ωÞ�

s −m2
a2 þ ima2Γa2ðsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2½qa2→γγðsÞRa2 �

D2½qa2→γγðm2
a2ÞRa2 �

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2½qa2→ρπðsÞRa2 �

D2½qa2→ρπðm2
a2ÞRa2 �

s

×
ð−gβηðpρþÞξ þ gβξðpρþÞηÞðpπ−Þαðpπ0 − pπþÞβ

p2
ρþ −m2

ρ þ imρΓρðp2
ρþÞ

D1½qρ→ππðp2
ρþÞRρ�

D1½qρ→ππðm2
ρÞRρ�

;

Ma2
ρ−πþ ¼ Ma2

ρþπ−

���
pπþ↔pπ−

; ð10Þ

with the a2ð1320Þ momentum P≡ k1 þ k2 and the ρþ
momentum pρþ ¼ pπþ þ pπ0 . In Eq. (10), εμðki; λiÞ de-
notes the polarization vector of the incoming photons with
helicity λi. The sum over the helicities of a2ð1320Þ is
denoted by [26]

Λωα;μνðP; λa2Þ≡
X
λa2

εωαðP; λa2Þε�μνðP; λa2Þ

¼ 1

2
ðKωμKαν þ KωνKαμÞ − 1

3
KωαKμν;

Kμν ¼ −gμν þ PμPν

P2
; ð11Þ

where εμνðP; λa2Þ is the spin-2 polarization tensor with
helicity λa2. The Blatt-Weisskopf form factors DlðxÞ [27]
are taken into account in the amplitude for resonances
which decay in channels with l ≠ 0. For P and D waves,
they are given by D1ðxÞ ¼ 1=ðx2 þ 1Þ and D2ðxÞ ¼
1=ðx4 þ 3x2 þ 9Þ. The constants Ra2;ρ are the effective
interaction radii (range parameters), which we fixed to
Ra2 ¼ 3.1 GeV−1 [25] and Rρ ¼ 5.3 GeV−1 [23]. Corre-
spondingly, the energy dependent widths of the intermedi-
ate a2ð1320Þ and ρ� resonances appearing in the
propagators are

Γa2ðsÞ ¼ Γa2ðm2
a2Þ

�
Bða2 → ρπÞma2ffiffiffi

s
p

�
qa2→ρπðsÞ

qa2→ρπðm2
a2Þ

�
5

×
D2½qa2→ρπðsÞRa2 �

D2½qa2→ρπðm2
a2ÞRa2 �

Θðs − ðmπ þ pρþÞ2Þ

þ ηπ; KK̄;ωππ channels
�
;

Γρðp2
ρþÞ ¼ Γρðm2

ρÞ
mρffiffiffiffiffiffiffi
p2
ρþ

q �qρ→ππðp2
ρþÞ

qρ→ππðm2
ρÞ
�3

×
D1½qρ→ππðp2

ρþÞRρ�
D1½qρ→ππðm2

ρÞRρ�
Θðp2

ρþ − 4m2
πÞ: ð12Þ

The explicit forms of the subdominant ηπ, KK̄, ωππ
contributions to the a2ð1320Þ width can be found in
Ref. [25]. The rest frame momenta of the considered
channels are written as

qa2→γγðsÞ ¼
ffiffiffi
s

p
2

; qa2→ρπðsÞ ¼
λ1=2ðs; p2

ρþ ; m
2
πÞ

2
ffiffiffi
s

p ;

qρ→ππðp2
ρþÞ ¼

λ1=2ðp2
ρþ ; m

2
π; m2

πÞ
2

ffiffiffiffiffiffiffi
p2
ρþ

q : ð13Þ
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B. γγ → σ=f 0ð500Þπ0 → π +π −π0 channel

Besides the dominant a2ð1320Þ production channel, we
need to account for the contributions to the γγ → πþπ−π0
process in the low-energy region. The effective Lagrangian
which describes the “sigma”1 contribution to γγ → πþπ−π0
in the linear sigma model is given by [15]

Lσ-model ¼
e2

16
FWZW
3π ϵμναβFμνFαβπ0ðπ · πÞ; ð14Þ

where FWZW
3π ≡ 1=ð4π2f3πÞ with the pion decay constant

fπ ¼ 92.4 MeV. The chiral contact amplitude is then
given by

Mσ-model ¼ ie2FWZW
3π ϵμναβk

μ
1k

ν
2ε

αðk1; λ1Þεβðk2; λ2Þ: ð15Þ

The contact term in the effective field theory can be
thought of as the heavy vector meson exchange as shown
in Fig. 1(b). Therefore, including one effective vector
meson mass, which we approximate by mρ, the amplitude,
corresponding with Fig. 2, can be generalized to

Mσ ¼ ie2F3πðtσ; uσÞϵμναβ
× kμ1k

ν
2ε

αðk1; λ1Þεβðk2; λ2ÞΩðM2
πþπ−Þ; ð16Þ

where the F3π is parametrized as

F3πðtσ; uσÞ ¼ FWZW
3π

�
−
m2

ρ

2

�
1

tσ −m2
ρ
þ 1

uσ −m2
ρ

	�
; ð17Þ

with tσ ¼ ðk1 − pπ0Þ2 and uσ ¼ ðk2 − pπ0Þ2. Note that the
Mσ amplitude reduces to the contact term in the limit
mρ → ∞. Besides, in the above amplitude, we considered
the rescattering effect of the final πþπ− by including the S-
wave isospin I ¼ 0 Omnès function,

ΩðxÞ ¼ exp

�
x
π

Z
∞

4m2
π

dx0

x0
δðx0Þ
x0 − x

�
; ð18Þ

with the elastic phase shift input from [28,29]. It accounts
for the rescattering through the σ=f0ð500Þ resonance.
Furthermore, to obtain the correct behavior of the

amplitude in the high-energy region, one needs to modify
the Lagrangian based amplitude. In our approximation, we
will use the vertices from the corresponding Lagrangians
and obtain the correct high-energy behavior by taking into
account the exchange of a Regge trajectory (representing
the exchange of a family of particles with the same internal
quantum numbers). More specifically, the usual polelike
Feynman propagator of a single particle is replaced by its

Reggezied counterpart. The details can be found in
Ref. [30]. For instance, for the ρ meson propagator it
amounts to the following replacements in Eq. (17),

1

p2 −m2
ρ
→ Pρðs; p2Þ; ð19Þ

where p stands either for k1 − p0
π (t channel) or for k2 − p0

π

(u channel). The Regge propagator of the ρ meson is given
by [30]

Pρðs;xÞ≡
�
s
s0

	
αρðxÞ−1 πα0ρ

sinðπαρðxÞÞ
�
−1þe−iπαρðxÞ

2ΓðαρðxÞÞ
	
; ð20Þ

where the Gamma function ΓðαðxÞÞ ensures that the
propagator only has poles in the timelike region. The ρ
Regge trajectory is given by αρðxÞ ¼ 0.55þ 0.8x and the
mass scale is conventionally taken as s0 ¼ 1 GeV2. Note
that the Regge propagator reduces to the Feynman propa-
gator when approaching the first pole on the trajectory, i.e.,
for p2 → m2

ρ.

C. γγ → f 2ð1270Þπ0 → π +π − π0 channel

The contribution of f2ð1270Þ resonance is dominated by
the vector-meson left-hand cut in the t and u channel,
as shown in Fig. 1(c). In the following, we explicitly
denote the ρ0 exchange contribution, and include the ω
counterpart in the effective coupling. The needed effective
Lagrangians for the amplitude of γγ → f2ð1270Þπ0 →
πþπ−π0 channel are

Lf2ργ ¼ e
gf2ργ
mf2

ΦμνFμλð∂λρ0;ν − ∂
νρ0λÞ;

Lf2ππ ¼
gf2ππ
mf2

Φμνð∂μπ · ∂νπÞ;

Lρπγ ¼ e
gρπγ
mπ

ϵμναβ∂
βAμðπ · ∂αρνÞ; ð21Þ

where the tensor Φμν denotes the f2ð1270Þ field. The
dimensionless coupling gf2ππ ≃ 23.67 is fixed by the

FIG. 2. Contact term corresponding to the σ contribution. The
bold solid line represents the quasi two-pion state, which is
described by the Omnès function, as explained in the text.

1Note that the sigma here stands for the contact interaction
with production of πþπ− in a J ¼ I ¼ 0 state.
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empirical decay width of Γf2→ππ ¼ 157.2 MeV [23] by
using

Γf2→ππ ¼
g2f2ππ
1280π

mf2

�
1 −

4m2
π

m2
f2

	
5=2

: ð22Þ

The coupling gρπγ is determined via the ρ meson decay
width Γρ0→π0γ ,

Γρ→πγ ¼
αg2ρπγ
24

m3
ρ

m2
π

�
1 −

m2
π

m2
ρ

	
3

: ð23Þ

Based on the isospin symmetry, we take Γρ0→π0γ ≃
Γρ�→π�γ [23] and fix its value from PDG Γρ�→π�γ ¼
68� 7 keV. The obtained coupling gρπγ ¼ 0.102�0.005
is also consistent with the value obtained from the extrapo-
lation of the lattice QCD result on γð�Þπ → ππ
Refs. [31,32]. The coupling gf2ργ is an unknown parameter,
which will be determined to a fit to the total cross section of
γγ → πþπ−π0 in the following.
Thus, one can obtain the contribution of

f2ð1270Þ resonance to the amplitude of γðk1Þγðk2Þ →
πþðpπþÞπ−ðpπ−Þπ0ðpπ0Þ in the t and u channel as

Mf2 ¼ Mf2
t-ch þMf2

u-ch; ð24Þ

with

Mf2
t-ch ¼

2e2

mπm2
f2

gf2ππgf2ργgρπγε
μðk1; λ1Þενðk2; λ2Þ

×
ðpπþÞαðpπ−ÞβΛαβ;δωðpf2 ; λf2Þ
p2
f2
−m2

f2
þ imf2Γf2ðp2

f2
Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2½qf2→ργðp2

f2
ÞRf2 �

D2½qf2→ργðm2
f2
ÞRf2 �

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2½qf2→ππðp2

f2
ÞRf2 �

D2½qf2→ππðm2
f2
ÞRf2 �

s

×

�
ϵμκξηððk2Þδðgκνðpρ0Þω − gκωðpρ0ÞνÞ

þ gνδðgκωk2 · pρ0 − ðk2Þκðpρ0ÞωÞÞ
ðpρ0Þξðk1Þη
p2
ρ0
−m2

ρ

�
;

Mf2
u-ch ¼ Mf2

t-ch

���
ðk1μ Þ↔ðk2ν Þ

; ð25Þ

with the f2ð1270Þ momentum pf2 ¼ pπþ þ pπ− , the ρ0

momentum pρ0 ¼ k1 − pπ0 for the t channel and pρ0 ¼
k2 − pπ0 for the u channel. The projector Λαβ;δωðpf2 ; λf2Þ
represents the sum over the helicities of f2ð1270Þ, which
follows the same definition as given in Eq. (11), with the
replacements a2 ↔ f2 and P ↔ pf2 . Note that the energy
dependent width Γf2ðp2

f2
Þ included in the propagator of the

f2ð1270Þ resonance has the following form:

Γf2ðp2
f2
Þ ¼ Γf2ðm2

f2
Þ mf2ffiffiffiffiffiffiffi

p2
f2

q �
qf2→ππðp2

f2
Þ

qf2→ππðm2
f2
Þ
�
5

×
D2½qf2→ππðp2

f2
ÞRf2 �

D2½qf2→ππðm2
f2
ÞRf2 �

Θðp2
f2
− 4m2

πÞ; ð26Þ

where the effective range radius Rf2 ¼ 3.6 GeV−1 was
taken from [33]. The rest frame momenta appearing in the
D2 functions are defined as

qf2→ργðp2
f2
Þ ¼ λ1=2ðp2

f2
; ðk1 − pπ0Þ2; 0Þ
2

ffiffiffi
s

p ;

qf2→ππðp2
f2
Þ ¼ λ1=2ðp2

f2
; m2

π; m2
πÞ

2
ffiffiffiffiffiffiffi
p2
f2

q : ð27Þ

Furthermore, to obtain the correct behavior in the high-
energy region, the ρ meson propagators, in the t and u
channel of Eq. (25), are replaced by their Reggezied
counterparts using the replacement of Eq. (19).

D. γγ → ρ�π∓ → π +π −π0 channel

For the γγ → ρ�π∓ → πþπ−π0 processes, the Feynman
diagrams are given in Figs. 1(d)–1(g), where the diagrams
with crossed photon lines are not shown but are included in
the calculation. The relevant effective Lagrangians are

Lγππ ¼ −eAμðπ × ∂
μπÞ3;

Lγρρ ¼ eAμðρν × ð∂μρν − ∂
νρμÞÞ3;

Lγγρπ ¼ e2
gρπγ
mπ

ϵμναβð∂βAμÞAαðπ × ρνÞ3; ð28Þ

where the symbol ðXÞ3 denotes the third component of
isovector X.
The amplitude of the γγ → ρ�π∓ → πþπ−π0 process can

be written as

Mρπ ¼ εμðk1; λ1Þενðk2; λ2ÞMρπ
μν: ð29Þ

The tensor Mρπ
μν is obtained by explicitly separating the

whole process into the subprocess γγ → ρ�π∓ with two-
body final states and the subprocess of ρ-meson decay to
ππ final states, as

Mρπ
μν ¼ Mγγ→ρþπ−

μνα
gρππðpπ0 − pπþÞβKαβ

ρ ðpπþ þ pπ0Þ
M2

πþπ0 −m2
ρ þ imρΓρðM2

πþπ0Þ

×
D1½qρ→ππðM2

πþπ0ÞRρ�
D1½qρ→ππðm2

ρÞRρ�

þMγγ→ρ−πþ
μνα

gρππðpπ− − pπ0ÞβKαβ
ρ ðpπ− þ pπ0Þ

M2
π−π0

−m2
ρ þ imρΓρðM2

π−π0
Þ

×
D1½qρ→ππðM2

π−π0
ÞRρ�

D1½qρ→ππðm2
ρÞRρ�

; ð30Þ
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with Kαβ
ρ ðpÞ≡ −gαβ þ pαpβ=p2. The amplitudes of the

subprocess γγ → ρ�π∓ are expressed through the tensor
decomposition,

Mγγ→ρ�π∓
μν;α ¼

X6
i¼1

Ti
μν;αðk1;k2;pρ�−pπ∓Þ

×Fρ�π∓
i ðM2

π�π0 ;ðk2−pπ∓Þ2;ðk1−pπ∓Þ2Þ; ð31Þ

where the invariant amplitudes Fρ�π∓
i are free of kinematic

constraints. The complete set of gauge invariant and
Lorentz-covariant tensors Ti

μν;α for the γγ → VP process
is given in Eq. (A1) of the Appendix. The six scalar
functions corresponding to Eq. (28) are also given in
Eqs. (A2)–(A7).
To extend the above amplitude into the high-energy

region, we will again assume the amplitude to be dominated
by Regge poles, and calculate the residues of the pion and
rho Regge exchanges based on the amplitudes calculated
with Feynman propagators. This amounts to drop the
polynomial term in the scalar amplitude Fρ�π∓

2 , as it does
not contribute to the residues, and to replace the ρ and π

propagators in the scalar amplitudes Fρ�π∓
1−6 by their regge-

zied counterparts. The Reggeized ρ-meson propagator is
already given in Eq. (19). In turn, the Reggeized π
propagator has the following form [30]:

1

p2 −m2
π
→ Pπðs; p2Þ; ð32Þ

where p2 stands again for the squared momentum transfer
of the corresponding t or u channel processes and

Pπðs;xÞ≡
�
s
s0

	
απðxÞ πα0π

sinðπαπðxÞÞ
�

1þe−iπαπðxÞ

2Γð1þαπðxÞÞ
	
; ð33Þ

where the pion Regge trajectory is given by απðxÞ ¼
0.7ðx −m2

πÞ.
It is worthy to point out that the contribution of the Deck

mechanism [34] via the double-exchange of ρ and π mesons
in t and u channels is also relevant to the γγ → πþπ−π0
process.We have evaluated their contributions and found the
corresponding effects to be around 10% or less of the γγ →
ρπ contribution in the energy region 0.8 < W < 1.0 GeV.
Facing the current significant uncertainty when comparing
the L3 andARGUS data in the low-energy region (see Fig. 3
in the range 0.8 < W < 1.0 GeV), we do not include the
contribution of Deck mechanism in the present work. Their
effects will be carefully investigated with the more accurate
forthcoming data from the BESIII experiment.

III. RESULTS AND DISCUSSION

We are now in the position to describe the experimental
observables of the γγ → πþπ−π0 reaction using the con-
structed amplitude. The differential cross section for
γðk1Þγðk2Þ → πþðpπþÞπ−ðp−

π Þπ0ðpπ0Þ process is given by

d4σ
dM2

πþπ0dM
2
πþπ−dtdϕ

�
πþ

¼ 1

ð2πÞ4
P̄

i

P
fjMγγ→πþπ−π0 j2

32s2λ1=2ðs;M2
πþπ0 ; m

2
πÞ
; ð34Þ

where the kinematical invariants are defined in Eq. (1). In
the following, we denote the total energy in the γγ c.m.
frame as W ≡ ffiffiffi

s
p

. The above form is convenient to
generate the Dalitz plot and to calculate the projected
invariant mass distributions dσ=dMπþπ0 and dσ=dMπþπ− .
The solid angle Ω�

πþ ¼ ðθ�πþ ;ϕ�
πþÞ is defined in the rest

frame of πþπ0, with respect to the direction of the πþπ0
momentum in the γγ c.m. frame.
The average over both photon helicities of the squared

amplitude can be written as

X
i

X
f

jMγγ→πþπ−π0 j2

≡ 1

4
ðjMþþj2 þ jMþ−j2 þ jM−þj2 þ jM−−j2Þ; ð35Þ

where the Mλ1;λ2 denotes the helicity amplitude of the
photon fusion process. Following the definition of the total
amplitude in Eq. (2), the s-channel a2ð1320Þ amplitude
only contributes to the Mþ− and M−þ amplitudes, while
the σ=f0ð500Þπ0 channel has only Mþþ and M−−
components. Therefore, these contributions do not inter-
fere. The other two channels with f2ð1270Þπ0 and ρ�π∓
contribute to all helicity amplitudes. Thus, one needs to
specify the relative phases of amplitudes from those four
channels. The phases of Mσ and Mρπ are determined by
reproducing the chiral amplitudes at low energy. While, the
relative phases of amplitudesMa2 andMf2 are a priori not
known. We find a slightly better description of total
cross section around W ¼ 1.3 GeV for the case of the
constructive interference between the Mρπ and Ma2 , thus
fixing the phase of Ma2 , which fixes the sign of the
product ga2γγga2ρπ.
To describe the total cross section and the invariant mass

distributions, we need to determine the effective couplings
in our model. As discussed in Sec. II, most couplings are
obtained by reproducing the corresponding decay widths.
The only unknown coupling in our description is gf2ργ,
which is determined by reproducing the total cross section
σðW ¼ 1.85Þ ≈ 28 nb, because the ARGUS and L3 data
are consistent in this energy region and the contribution
of the f2ð1270Þπ0 channel is dominant. Furthermore, the
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description of the πþπ− invariant mass distribution prefers a
destructive interference between Mf2 and Ma2 , thus
fixing the sign of gf2ργ. In Table I, we list the values of
couplings and the PDG values of masses and widths of
resonances [23] as used in our calculation.
First we present the description of the total cross section

as compared to the ARGUS and L3 data in Fig. 3. As
mentioned in the introduction, the experimental data of
ARGUS and L3 show significant differences in the low-
energy region. Our theoretical prediction is consistent with
L3 data up to 1.1 GeV. The unsatisfactory state of the data
in the low-energy region will hopefully be resolved by the
forthcoming BESIII data. The σ=f0ð500Þπ0 contribution
dominates around 0.8 GeV and gradually decreases with
increasing energy. Subsequently, the ρπ channel starts
contributing at 0.8 GeV and dominates up to 1.15 GeV
before the effect of the a2ð1320Þ production in the
s-channel takes over. In the energy region around
1.2–1.4 GeV, the a2ð1320Þ production provides the dom-
inant contribution to the cross section. In our description,
we do not include the contribution of the πð1300Þ reso-
nance [10,11], because the parameters of such large width

πð1300Þ state come with large uncertainties. Its inclusion,
however, might account for some deviations in the total
cross section observed at both sides of the a2ð1320Þ
resonance peak. In the energy region beyond 1.4 GeV,
the f2ð1270Þπ0 production mechanism in the t and u
channel starts contributing and becomes important beyond
1.6 GeV. Its inclusion yields a rather good description of the
total cross section in that region. Our results are more
consistent with ARGUS data rather than L3 data. In our
analysis, no indication is found for a significant contribu-
tion from the π2ð1670Þ and a2ð1700Þ resonances.
Furthermore, in Fig. 4 we present our result of total cross

section in the low energy region: 3mπ < W < 0.9 GeV.
The results of the LO and NLO ChPT [20] are also shown
for comparison. One can see that the γγ → πþπ−π0 cross
section obtained at one loop in ChPT is significantly larger
than the LO predictions. The rather small LO result is due
to the drastic destructive interference between the π0-pole
and contact diagrams in the LO amplitude, as stated in
Ref. [20]. Our prediction is also larger than the NLO cross
section of this energy region. Our amplitude contains the
physics of the γγ → σπ channel, i.e. the physical σ=f0ð500Þ
contribution by taking into account the rescattering effect of
the final πþπ− states through the Omnès function. This
leads to a significant enhancement as compared to the chiral
calculations. Going to the energy region where the exper-
imental data of L3 and ARGUS are available, our result is
consistent with the L3 data by including the contributions
of the σπ0 and the ρπ channels. Upon naive extrapolation,
the chiral calculation seems to fall significantly below the
data points around 0.8 GeV. This likely indicates that such
extrapolation is unreliable and that the range of validity of
the chiral amplitude is much more limited for this process.
Next, we show the prediction of our model for the

invariant mass distributions dσ=dMπþπ0 and dσ=dMπþπ−

and the Dalitz plot (M2
πþπ0 versus M2

πþπ−) for different γγ

FIG. 3. Total cross section for γγ → πþπ−π0. The gray dots and
brown squares are the data points from ARGUS [10] and L3 [12],
respectively. The solid line denotes the full results of our model.
The different contributions of σ=f0ð500Þπ0, ρ�π∓, a2ð1320Þ, and
f2ð1270Þπ0 channels are also presented.

FIG. 4. Our prediction of total cross section (black solid line) in
the low energy region: 3mπ < W < 0.9 GeV. The chiral results
of Ref. [20] at LO (red dashed line) and NLO (blue dotted line)
are shown.

TABLE I. Values of resonance (R) parameters used in our
model.

mR [MeV] ΓR [MeV]

ga2γγ ga2ρπ
a2ð1320Þ 1316.9 105 0.151 4.9

gf2ργ gf2ππ
f2ð1270Þ 1275.5 186.7 −27.5 23.67

gρπγ gρππ
ρð770Þ 775 149 0.102 5.97
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c.m. energies. In Fig. 5, several values of the total energy
(W ¼ 0.8, 1.0, 1.3, 1.7, and 2.0 GeV) are presented to
cover the current and forthcoming experimental energy
range.

(i) The mass distributions at W ¼ 0.8 GeV are satu-
rated by the σ=f0ð500Þπ0 and ρπ contributions. The
behavior of the σ=f0ð500Þ production channel
resembles a phase space distribution. A similar
phenomenon is observed in the Mπþπ0 spectrum
of the ρπ channel, since the ρ resonance cannot be
produced on-shell at this energy. In the Mπþπ−

distribution, the ρπ contribution presents the typical
behavior of the kinematic reflection of the ρπ
channel as shown in the Dalitz plot, which will
be explained in detail in the following.

(ii) Going to W ¼ 1.0 GeV, both distributions are
dominated by the ρπ channel. Although the con-
tribution from σ=f0ð500Þπ0 is relatively small, its
interference with the ρπ channel cannot be ne-
glected. For the ρπ distributions, besides a ρþ
resonance peak clearly showing up in the
dσ=dMπþπ0 distribution, an interesting observation
is the increasing bump structures of both distribu-
tions at low invariant masses. This is due to the
kinematic reflection of the production of ρþ and ρ−

resonances. Such mechanism is clearly presented in
the Dalitz plot: the spin-1 ρþ resonance gives two
enhancements at the edges of the Daltiz plot with
M2

πþπ0 ∼ ðmρ � Γρ=2Þ2, and the ρ− resonance pro-
duces the off-diagonal distribution at the edges of
M2

πþπ0 ∼ ðmρ � Γρ=2Þ2 and M2
πþπ− ∼ ðmρ � Γρ=2Þ2.

Furthermore, the broad peak in dσ=dMπþπ− is
mainly due to the constructive interference of ρπ
and σ=f0ð500Þ channels.

(iii) At W ¼ 1.3 GeV, the s channel of a2ð1320Þ pro-
duction plays the leading role for both mass dis-
tributions. The ρπ channel has a relatively small
contribution. The ρþ resonance peak is clearly seen
in theMπþπ0 distribution because of the intermediate
decay mode of a2ð1320Þ → ρ�π∓. The Dalitz plot
also shows the bands due to the ρ� states. Then, the
integration over Mπþπ0 leads to a broad peak at
dσ=dMπþπ− around Mπþπ− ¼ 0.9 GeV.

(iv) For total energy ofW ¼ 1.7 GeV, the contribution of
the f2ð1270Þπ0 channel is dominant. Through the in-
terplay between the ρ�π∓, a2ð1320Þ, and f2ð1270Þπ0
channels, the mass distributions present several
characteristic features: the asymmetric shapes with
enhancements at both end points of Mπþπ0 and
Mπþπ− . For the Mπþπ0 spectrum, the ρ resonance
peak is enhanced by the constructive interference
between ρπ and a2ð1320Þ [f2ð1270Þπ0] channels
in combination with the destructive interference
between a2ð1320Þ and f2ð1270Þπ0 channels.

A notable shoulder beyond the ρ peak is mainly
due to the f2ð1270Þπ0 contribution. At small Mπþπ0

value, the shape is determined by f2ð1270Þπ0
channel, while at large Mπþπ0 value, the spectrum is
enhanced by the ρπ channel, which originates from
the kinematic reflection of the ρ resonance pro-
duction. For the Mπþπ− distribution, the f2ð1270Þ
resonance peak is prominent, which is not affected
by the destructive interference with the a2ð1320Þ
channel. The enhancement at both edges of the
Mπþπ− distribution is mainly from the ρπ channel,
which has the “two-peak” structure due to the
kinematic reflection. A similar observation of the
ρπ channel was recently found by Belle II
Collaboration in the study of the Bþ → πþπ0π0
process [35].

(v) At W ¼ 2 GeV, the role of the f2ð1270Þ channel is
the main feature in both distributions, which is also
represented in the Dalitz plot. In addition, the small ρ
peak is shown in theMπþπ0 spectrum. For theMπþπ−

distribution, besides the pronounced f2ð1270Þ peak,
there is also a visible enhancement at the largest
Mπþπ− due to the edge bump of the ρπ channel.

In summary, the evolution with energy of the Dalitz plots in
Fig. 5 demonstrates the different underlying physical
mechanisms in the energy range from 0.8 to 2.0 GeV. It
can be probed in more detail by the forthcoming experi-
ment data from BESIII.
Finally, we present the description of the invariant mass

distributions dσ=dMπþπ0 and dσ=dMπþπ− as compared to
the ARGUS and L3 data. The existing experimental data
have unfortunately low statistics, particularly for the L3
results [12]. As a result, both measurements do not report
the Mπþπ0 and Mπþπ− distributions at a single total energy
but within some energy intervals: ARGUS gives the mass
distributions in Fig. 6 of Ref. [10] within two intervals,
1.05 ≤ W ≤ 1.45 and 1.45 ≤ W ≤ 1.90 GeV; while L3
reports the data within the energy intervals, 1.2 ≤ W ≤
1.4 and 1.6 ≤ W ≤ 1.9 GeV, as shown in Figs. 6 and 7 of
Ref. [12]. Furthermore, the angular distribution and effi-
ciency of their detectors are unknown, which causes
difficulty to perform an exact comparison.
Therefore, in order to carry out a meaningful compari-

son, we first perform the weighted average of our theo-
retical prediction of the invariant mass distributions via the
following formula:

�
dσ

dMπþπ0;−

	
avg

¼ 1

n

Xn
i¼1

σi
σmax

dσi
dMπþπ0;−

; ð36Þ

in each energy interval Wmin ≤ W ≤ Wmax. The number of
the selected points n is n ¼ 1þ ðWmax −WminÞ=ΔW,
where the energy step is taken as ΔW ¼ 0.5 GeV
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FIG. 5. The predictedMπþπ0 andMπþπ− mass distributions of γγ → πþπ−π0 and the Dalitz plot (M2
πþπ0 versusM

2
πþπ− ) forW ¼ 0.8, 1.0,

1.3, 1.7, and 2.0 GeV, respectively. The black curves denote the total results of our model. The individual contributions from the
σ=f0ð500Þπ0, ρ�π∓, a2ð1320Þ, and f2ð1270Þπ0 channels are indicated by the dashed (red), dotted (blue), dash-dotted (green), and dash-
double-dotted (purple) curves.
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according to the bins of the total cross section of ARGUS
and L3. The weighting factor of the invariant mass
distribution, dσi=dMπþπ0;− , at W ¼ Wi is chosen σi=σmax,
where σi ≡ σðWi ¼ Wmin þ ði − 1ÞΔWÞ; i ¼ 1;…; n is the
total cross section, and σmax is the maximum value of total
cross section among the selected points over the corre-
sponding energy interval. Next, for the experimental
distributions, we normalize the ARGUS and L3 data to
generate the same area as our averaged mass distributions
in the corresponding energy intervals.
The comparison of the theoretical invariant mass dis-

tributions dσ=dMπþπ0 and dσ=dMπþπ− with the experimen-
tal ones is shown in Fig. 6. We notice that the shapes of our
prediction are globally very consistent with the ARGUS
data in both energy intervals and with the L3 data in the
low-energy interval. Note that there are no reported data
points of L3 dσ=dMπþπ− distribution of Mπþπ− above
1 GeV with 1.2 ≤ W ≤ 1.4 GeV. A relatively large
deviation from our predicted distributions is observed at the
high-energy interval of L3 data. This is mainly due to the
difference which is observed between both datasets in
the total cross section from 1.6 to 1.8 GeV (Fig. 3). Besides,
there are some differences between our results and ARGUS
data, such as the dσ=dMπþπ− distribution at the low-energy
interval, the dσ=dMπþπ0 distribution at very small Mπþπ−

with 1.45 ≤ W ≤ 1.90 GeV. Although, the data compari-
son shows that our model captures the qualitative features
of the data, it also clearly calls for high statistics data to
refine the theoretical analysis.

IV. CONCLUSION AND PERSPECTIVES

We constructed a theoretical model for the γγ → πþπ−π0
process by including the contributions of the a2ð1320Þ
resonance excitation, as well as the contributions of the
σ=f0ð500Þπ0, f2ð1270Þπ0, and ρ�ð770Þπ∓ channels. To
cover the interested energy range from 0.8 to 2 GeV, the ρ
and π exchange mechanisms were Reggezied to achieve a
good high-energy behavior. As a proof of the applicability,
we analyzed the current experimental data of total cross
section and invariant mass distributions from ARGUS and
L3 Collaborations and found a rather good description. In
particular, our model favors the smaller total cross section
values of the L3 data at low energies. Furthermore, we also
present the theoretical predictions for the total energies
W ¼ 0.8, 1.0, 1.3, 1.7, and 2.0 GeV, which will be
investigated by the forthcoming BESIII measurements of
the γγ → πþπ−π0 reaction. Such renewed experimental
effort is needed to clarify the existing data situation on
the γγ → πþπ−π0 reaction, as well as its extensions to
single- and double-virtual photon fusion processes. On the
theoretical side, one needs to improve the current model by
corroborating the dispersion theory for this 2 → 3 process,
extending the success of the dispersive approach in the
γð�Þγð�Þ → ππ reaction [36–41]. Our work may serve as first
step towards a data-driven approach for the γð�Þγð�Þ →
πþπ−π0 reaction, which is necessary to achieve a control-
lable estimate of the hadronic light-by-light contribution to
ðg − 2Þμ with the three-pion intermediate state.

FIG. 6. The comparison results of Mπþπ0 and Mπþπ− mass distributions at different energy intervals. The black curves represent the
weighted average results of our model. The normalized data points of ARGUS [10] and L3 [12] collaborations are denoted by the gray
dots (brown squares).

REN, DANILKIN, and VANDERHAEGHEN PHYS. REV. D 107, 054037 (2023)

054037-10



ACKNOWLEDGMENTS

This work was supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation), in part through the Research Unit (Photon-
photon interactions in the Standard Model and beyond,
Projektnummer 458854507—FOR 5327), and in part
through the Cluster of Excellence (Precision Physics,
Fundamental Interactions, and Structure of Matter)
(PRISMAþ EXC 2118/1) within the German Excellence
Strategy (Project ID 39083149).

APPENDIX: LORENTZ DECOMPOSITION
OF THE γγ → VP REACTION

We present below the general Lorentz decomposition for
the scattering amplitude of two photons fusion to a
pseudoscalar and a vector meson. Taking into account
the crossing symmetry, the on-shell condition of final
vector meson and the Schouten identity, we found 6
independent tensor structures for the γðk1Þγðk2Þ →
Vðp1ÞPðp2Þ reaction,

T1
μν;αðk1; k2;ΔÞ ¼ ðk1 − k2Þαϵμνγβk1γk2β;

T2
μν;αðk1; k2;ΔÞ ¼ ðk1 þ k2Þαϵμνγβk1γk2β;

T3
μν;αðk1; k2;ΔÞ ¼ ½gμνðk1 · k2Þ − k1μk2ν − k1νk2μ�ϵασγβk1σk2γΔβ;

T4
μν;αðk1; k2;ΔÞ ¼ −½ðk2 · ΔÞk1μ þ ðk1 · ΔÞk2μ − ðk1 · k2ÞΔμ�ϵανγβkγk2β

− ½ðk2 · ΔÞk1ν þ ðk1 · ΔÞk2ν − ðk1 · k2ÞΔν�ϵαμγβkγk2β;
T5
μν;αðk1; k2;ΔÞ ¼ ½ðk2 · ΔÞk1μ þ ðk1 · ΔÞk2μ − ðk1 · k2ÞΔμ�k1αϵνσγβk1σk2γΔβ

− ½ðk2 · ΔÞk1ν þ ðk1 · ΔÞk2ν − ðk1 · k2ÞΔν�k2αϵμσγβk1σk2γΔβ;

T6
μν;αðk1; k2;ΔÞ ¼ −½ðk2 · ΔÞk1μ þ ðk1 · ΔÞk2μ − ðk1 · k2ÞΔμ�k1αϵνσγβk1σk2γΔβ

− ½ðk2 · ΔÞk1ν þ ðk1 · ΔÞk2ν − ðk1 · k2ÞΔν�k2αϵμσγβk1σk2γΔβ; ðA1Þ

with the momentum difference Δ ¼ p1 − p2.
We applied these tensor structures to decompose the γγ → ρ�π∓ amplitude as shown in Figs. 1(d)–1(f), and found the

corresponding scalar functions:

Fγγ→ρþπ−
1 ðs; t; uÞ ¼ −Fγγ→ρ−πþ

1 ðs; t; uÞ

¼ e2gρπγ
4mπs2

�
ð2ðm2

π −m2
ρÞ2 − sðm2

π þ 7m2
ρÞ þ s2Þ

�
1

t −m2
ρ
−

1

u −m2
ρ

�

− 2ððm2
π −m2

ρÞ2 − sð3m2
π þm2

ρÞÞ
�

1

t −m2
π
−

1

u −m2
π

��
; ðA2Þ

Fγγ→ρþπ−
2 ðs; t; uÞ ¼ −Fγγ→ρ−πþ

2 ðs; t; uÞ

¼ e2gρπγ
4mπs2

�
ð2ðm2

π −m2
ρÞ2 − sðm2

π − 9m2
ρÞ þ s2Þ

�
1

t −m2
ρ
þ 1

u −m2
ρ

�

þ 2ððm2
π −m2

ρÞ2 þ sð3m2
π þm2

ρÞÞ
�

1

t −m2
π
þ 1

u −m2
π

�
þ 4s

�
; ðA3Þ

Fγγ→ρþπ−
3 ðs; t; uÞ ¼ −Fγγ→ρ−πþ

3 ðs; t; uÞ ¼ e2gρπγ
smπ

�
1

t −m2
ρ
−

1

u −m2
ρ

�
; ðA4Þ

Fγγ→ρþπ−
4 ðs; t; uÞ ¼ −Fγγ→ρ−πþ

4 ðs; t; uÞ

¼ −
e2gρπγ
2mπs2

�
ðsþ 2m2

ρ − 2m2
πÞ
�

1

t −m2
ρ
−

1

u −m2
ρ

�
þ 2ðm2

π −m2
ρÞ
�

1

t −m2
π
−

1

u −m2
π

��
; ðA5Þ
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Fγγ→ρþπ−
5 ðs; t; uÞ ¼ −Fγγ→ρ−πþ

5 ðs; t; uÞ ¼ −
e2gρπγ
mπs2

�
1

t −m2
ρ
þ 1

u −m2
ρ
þ 1

t −m2
π
þ 1

u −m2
π

�
; ðA6Þ

Fγγ→ρþπ−
6 ðs; t; uÞ ¼ −Fγγ→ρ−πþ
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