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We make a systematical diffusion Monte Carlo (DMC) calculation for all ground state baryons in two
confinement scenarios, the pairwise confinement and the three-body flux-tube confinement. With the
baryons as an example, we illustrate a feasible procedure to investigate the few-quark states with possible
few-body confinement mechanisms, which can be extended to the multiquark states easily. For each
baryon, we extract the mass, mean square radius, charge radius, and the quark distributions. We use the
jackknife resampling method to estimate the statistical uncertainties of masses to be less than 1 MeV.
To determine the baryon charge radii, we include the constituent quark size effect, which is fixed by the
experimental and lattice QCD results. Our results show that both two-body and three-body confinement
mechanisms can give a good description of the experimental data if the parameters are chosen properly.
In the flux-tube confinement, introducing different tension parameters for the baryons and mesons are
necessary, specifically, σY ¼ 0.9204σQQ̄. The lesson from the calculation of the nucleon mass with the
DMC method is that the improper preassignment of the channels may prevent us from obtaining the real
ground state. With this experience, we obtain the real ground state (the ηcηc threshold with the dimeson
configuration) of the ccc̄c̄ system with JPC ¼ 0þþ starting from the diquark-antidiquark spin-color
channels alone, which is difficult to achieve in the variational method and was not obtained in the previous
DMC calculations.

DOI: 10.1103/PhysRevD.107.054035

I. INTRODUCTION

The quark model is widely used to study the hadron mass
spectrum. The quarks inside a hadron are modeled as the
constituent quarks interacting via the effective potentials.
Various quark potential models have been used for the
conventional and exotic hadron spectrum over the years
(see Refs. [1,2] for the quark model reviews and see
Refs. [3–7] for the reviews about the exotic hadrons.)
The quark level interactions usually include the color-
dependent Coulomb interaction, spin-dependent chromo-
magnetic interaction, tensor interaction, and spin-orbit
interaction. Basically, the above interactions can be derived

from the one-gluon-exchange mechanism [8]. In addition,
there is a confinement term to describe the long-range
interaction. Quark potential models behave nicely to
describe the conventional hadron spectrum by solving
the two-body or three-body problems. For instance, the
Coulomb-plus-linear Cornell potential proposed by Eichten
et al. can well reproduce the charmonium and bottomonium
spectra [9–11]. A relativized quark model constructed by
Isgur and his collaborators works successfully for all
mesons and baryons [8,12]. After that, Semay and
Silvestre-Brac found that if the parameters are chosen
correctly, the nonrelativistic approach could accurately
simulate the spectra from the relativistic one [13], and
they built a new nonrelativistic potential that works equally
well in the meson and baryon sectors [14,15].
However, the confinement mechanism in quantum

chromodynamics (QCD) is still elusive and ambiguous,
which is usually introduced phenomenologically [16] or
inspired by lattice QCD (LQCD) simulations [17]. For the
qq̄ mesons, the confinement potential is apparently pair-
wise. But for the qqq baryons, there is no compelling
reason to assume the confinement interaction to be a two-
body one as shown in the left panel of Fig. 1, which is
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called the Δ-type potential. Actually, another Y-type
interaction was suggested by Artru in the string model
for the baryons [18]. In this scheme, three strings are
connected at one point and carry quarks at their ends, as
shown in the right panel of Fig. 1. This Y-type confinement
mechanism has been investigated in different models, such
as the QCD bag model [19], nonrelativistic quark
model [20,21], semirelativistic quark model [22–25], and
relativized quark model with chromodynamics [12]. A
comparison between the Δ-type and Y-type interactions
was made by LQCD, and its fitting results seemed to favor
the Y-type one [26,27].
Nevertheless, this Y-type potential is in fact difficult to

calculate with the conventional variational principle. If one
expresses the minimum total length Lmin of the flux tubes in
terms of the three-body Jacobi coordinates, it will turn into a
form containing the square root as well as some complicated
angle dependence,making the evaluationof the integral in the
matrix elements a difficult task [28]. And certainly, extending
the multibody confinement to the multiquark states is more
complicatedwork [29]. Besides, there are other shortcomings
in the framework of the variational method. For instance,
when the number of particles (equivalently the dimensions of
the wave function) is large, the number of the basis increases
exponentially, so does the matrix dimension. Thus meeting
the demand for the storage space and computing resources
could become a challenge [30].
A promising alternative of the variational method is the

diffusion Monte Carlo (DMC) method. In this formalism,
the distribution of the so-called walkers is used to represent
the spatial wave function, which will gradually evolve to
the ground state over time in principle. In this scheme, the
spatial integrals are replaced by summations over walkers.
Consequently, there is no extra complexity in handling the
Y-type interaction compared with the Δ-type interaction.
Meanwhile, the uncertainties of the Monte Carlo methods
decrease as 1=

ffiffiffiffi
N

p
, where N is the number of walkers.

This behavior is independent on the dimension of the wave
function, which is a promising advantage against most
deterministic methods that depend exponentially on
the dimensions. As for the multiparticle problem, the
DMC method is easily parallelized to carry out the high-
performance simulations [31,32]. The DMC has been well
used in the simulations of molecular physics [33], solid
physics [34], and nuclear physics [35].

In hadronic physics, the DMC method has been used in
quarkmodels in several works.Bai et al. calculated thebbb̄b̄
tetraquark ground state energy in a nonrelativistic model
with the flux-tube confinement potential [36]. A 0þþ bound
state with a mass of 18.69 GeV was predicted, which is
100 MeV below the ηbηb threshold. The 0þþ bbb̄b̄ system
was also calculated by Gordillo et al. using a similar DMC
method [37], with the pairwise confinement interaction.
They gave a different mass of 19.199 GeV, which is
300–400 MeVabove the ηbηb and ϒð1SÞϒð1SÞ thresholds.
In addition to the bbb̄b̄ system, they also calculated other
fully heavy tetraquarks in Ref. [37]. The predicted masses
are all above the corresponding meson-meson thresholds,
and agree with the results of the variational method in
Ref. [38]. The difference between the fully heavy tetraquark
states of these two DMC calculations could arise from the
different interactions, especially the confinement part, the
different color configurations assumed (the diquark-
antidiquark or dimeson configurations), or the details of
the DMC algorithm. Recently, the DMC method was also
used to investigate other multiquark systems [39–41].
Experimentally, an analysis using data from the CMS
detector reported an 3.6σ enhancement at 18.4 GeV in
the invariant mass distribution of the ϒð1SÞlþl− final
state [42,43], which might be a candidate for the bbb̄b̄
tetraquark state. But this enhancement was not seen by
LHCb [44]. Recently, the LHCb [45], CMS [46], and
ATLAS [47] collaborations reported the observation of
several resonance structures in the di-J=ψ or J=ψψð2SÞ
channels. All of these structures are above the J=ψJ=ψ and
ηcηc thresholds.
Theoretically, in the variational method, it was shown

that the tetraquark states above the dimeson thresholds in
Ref. [38] will become either the scattering states or
resonances if more quark-clustering configurations are
considered [48]. However, the primitive DMC is a method
to calculate the ground bound states without quark cluster-
ing beforehand. (In order to calculate the excited states [33]
and resonances [49,50] with DMC, other nontrivial ingre-
dients should be included.) For the tetraquark system, if
there exists no bound state solution, one should expect that
the wave function in DMC evolves exactly to the corre-
sponding meson-meson threshold, rather than a state above
the threshold as in Ref. [37]. Therefore, the doubt arises
whether the DMC really avoids the usual quark clustering
and provides an exact estimate of the ground state energy as
well as the wave function.
Considering the above issues, a simpler system is needed

as a benchmark to test the DMC method and explore the
reason why the lowest state cannot be obtained in some
cases. Though the DMC method has been used for the
nucleons, electrons, etc., the multiquark systems are differ-
ent because of the color confinement. The baryon system is
a suitable platform to examine the DMC method, because
of the following reasons: (i) the baryon is a bound state,

FIG. 1. Two confinement scenarios for the baryons. The left
and right panels represent the pairwise confinement mechanism
(Δ-type) and the three-body confinement mechanism (Y-type)
respectively.
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having no ambiguity with the resonance; (ii) the color
component is simple. There is only one possible color
configuration; (iii) the experiment results are precise;
(iv) the flux-tube confinement can be included; and
(v) although quarks are Fermions, the baryon is equivalent
to a boson system, which avoids the notorious sign
problem. This can be easily seen from its wave function.
The baryon total wave function is the product of the spatial,
spin, flavor, and color parts:

jΨtoti ¼ jϕspatialijχspinijχflavorijχcolori: ð1Þ

For the baryons, the only possible color configuration is
that any two quarks form a color 3̄c representation and then
combine with the third quark in the 3c representation to
become a color singlet. In this way, the color wave
function is fully antisymmetric and the color factor

hχcolorj λi2 ·
λj
2
jχcolori for any ðijÞ quark pair is always − 2

3
.

Thus if there are identical particles in the system,
the exchanging symmetry renders the remaining
jϕspatialijχspinijχflavori part to behave like a boson system.
Therefore, there is no fermionic sign problem in the DMC
calculation [51].
The fully heavy baryon system has been calculated by

Gordillo et al. [37]. However, the baryon systems contain-
ing the light quarks are more interesting, especially the
nucleon system. Hopefully the discussions about the
baryons can also give enlightenment on the understanding
of the threshold problem of the tetraquark system and
provide some hints for the future explorations.
This paper is arranged as follows. In Sec. II, the diffusion

Monte Carlo method is introduced, including the single-
channel and coupled-channel formalisms, respectively. In
Sec. III, the quark model Hamiltonian with different types
of the confinement interaction is presented. In Sec. IV, the
numerical results for all ground state baryons are given. The
results among different calculation methods and different
confinement potentials are compared. In Sec. V, we discuss
the tetraquark threshold problem and the clustering prob-
lem, and give some prospects on further applications of
the DMC method in the field of hadron physics. Finally, a
brief summary is given in Sec. VI. In Appendix A, we give
the formalism of the convection-diffusion equation. In
Appendix B, we give the detailed statistical uncertainty
analysis. In Appendix C, we illustrate the constituent quark
size contribution to the charge radius.

II. DIFFUSION MONTE CARLO METHOD

A. Imaginary time Schrödinger equation

TheDMCalgorithmcan be introduced from the imaginary
time Schrödinger equation (in natural units ℏ ¼ c ¼ 1),

−
∂ΨðR; tÞ

∂t
¼ ½H − ER�ΨðR; tÞ; ð2Þ

where R≡ ðr1; r2;…; rmÞ represents the positions of par-
ticles andER is the shift of energy. Thewave functionΨðR; tÞ
can be expanded in terms of a complete set of eigenfunctions
ΦiðRÞ of the Hamiltonian,

ΨðR; tÞ ¼
X
i

ciΦiðRÞe−½Ei−ER�t: ð3Þ

When the value ofER is taken properly close to the energy of
the ground stateE0, thewave functionΨðR; tÞwill approach
the ground state after a long enough evolution time, as long as
c0 is not too small [52]. The other components will be
suppressed exponentially by the long time evolution.

B. Importance sampling

In principle, one can construct the DMC algorithm
directly from Eq. (2), see Ref. [31]. In this naive algorithm,
the wave function ΨðR; tÞ is sampled. However, the
algorithm is usually unstable due to the drastic statistic
fluctuation. To make it more practical, the importance
sampling technique [53] is used. Instead of directly
sampling the wave function ΨðR; tÞ, a newly defined
function fðR; tÞ is sampled

fðR; tÞ≡ ψTðRÞΨðR; tÞ; ð4Þ

where ψTðRÞ is a time-independent trial function (impor-
tance function). The ψTðRÞ should be chosen as close to the
ground stateΦ0 as possible. We will see that the importance
sampling will reduce the statistical fluctuation caused by
the sharply changing potential in some regions [54].
The imaginary time Schrödinger equation in Eq. (2) can

be rewritten in terms of fðR; tÞ as

−
∂fðR; tÞ

∂t
¼ −

Xm
i¼1

1

2mi
∇2
rifðR; tÞ

þ
Xm
i¼1

1

2mi
∇riðFiðRÞfðR; tÞÞ

þ ½ELðRÞ − ER�fðR; tÞ
≡ ðA1 þ A2 þ A3ÞfðR; tÞ
≡ AfðR; tÞ; ð5Þ

where ELðRÞ ¼ ψTðRÞ−1ĤψTðRÞ is called the local energy
and FiðRÞ ¼ 2ψTðRÞ−1∇riψTðRÞ is the drift force acting on
particle i. One can identify Eq. (5) is the convection-
diffusion equation in Appendix A. A1, A2, and A3 terms are
the diffusion term, drift term, and source (sink) term
respectively.
Considering a small time separation Δt, the solution of

Eq. (5) can be approximated to the order of ðΔtÞ2 [52],
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fðR0; tþ ΔtÞ ¼
Z

hR0je−AΔtjRifðR; tÞdR

≈
Z

dR1dR2dR3dR4dR

×G3

�
R0;R1;

Δt
2

�
G2

�
R1;R2;

Δt
2

�

×G1ðR2;R3;ΔtÞG2

�
R3;R4;

Δt
2

�

×G3

�
R4;R;

Δt
2

�
fðR; tÞ; ð6Þ

with

G1ðR0;R; tÞ ¼
Ym
i¼1

�
2πt
mi

�
−3=2

exp
�
−
mi

2t
ðr0i − riÞ2

�
;

G2ðR0;R; tÞ ¼
Ym
i¼1

δ

�
r0i − ri −

FiðRÞ
2mi

t

�
;

G3ðR0;R; tÞ ¼ exp½−ðELðRÞ − ERÞt�δðR0 − RÞ: ð7Þ

In the DMC algorithm, the function fðR; tÞ is repre-
sented by the spatial distribution of a large number of
walkers. Each walker i is characterized through its position

in the hyperspace RðiÞ ¼ ðrðiÞ1 ; rðiÞ2 ;…; rðiÞm Þ. Any distribu-
tion containing the ground state component can be chosen
as the initial fðR; 0Þ to start the evolution. To implement the
evolution process of fðR; tÞ in Eq. (6), each walker
performs the following steps:
(a) Drift. Make a displacement of

�
F1ðRðiÞÞ
2m1

Δt
2
;
F2ðRðiÞÞ
2m2

Δt
2
;…;

FmðRðiÞÞ
2mm

Δt
2

�

under the drift force.
(b) Diffusion. Make a random displacement of

ðχ 1; χ 2;…; χmÞ, where χ j is drawn from the three-
dimensional Gaussian distribution exp½−mjχ

2
j=ð2ΔtÞ�.

(c) Repeat step (a).
(d) Birth-death process. Replicate the walker nr times

with

nr ¼ floor
h
e−ð

ELðR0ÞþELðRÞ
2

−ERÞΔt þ u
i
·
N0

N
; ð8Þ

where the floor function only retains the integer part.
The random number u uniformly distributed in the
interval [0, 1] is introduced to make the rounding
smoother. N0 is the target total number of walkers, and
N is the current total number of walkers. The factor
N0=N is introduced to keep the number of walkers
roughly stable. Its effect will be decreased with the
damping of the fluctuation and will not change the

final distribution of walkers. The stable walker number
is N0. The value of ER is taken as the mixed
energy [55]

hEimixed ¼
R
ψTðRÞĤΨðR; tÞdRR
ψTðRÞΨðR; tÞdR

¼
R
ELðRÞfðR; tÞdRR

fðR; tÞdR : ð9Þ

As ΨðR; tÞ approaches the ground state Φ0ðRÞ during
the evolution, hEimixed gets closer to the ground state
energy E0.

The whole procedure above should be repeated enough
times until ΨðR; tÞ evolves to the ground state wave
function and ER stabilizes at E0.
One can identify the effect of the importance sampling

from Eq. (8). If we neglect the rounding effect and the
N0=N factor, the replicating factor should be

nr ¼ exp

�
−
�
ELðR0Þ þ ELðRÞ

2
− ER

�
Δt

�

¼ exp

�
−
�
ĤψTðR0Þ
2ψTðR0Þ þ ĤψTðRÞ

2ψTðRÞ
− ER

�
Δt

�
: ð10Þ

Apparently, without importance sampling (taking ψT ¼ 1),
the factor reads nr ¼ exp½−ðVðRÞ=2þ VðR0Þ=2 − ERÞΔt�.
The walkers appearing near the divergence of the poten-
tial will lead to drastic fluctuations of the population. If one
can take ψT ¼ Φ0 ideally, the factor becomes nr ¼
exp½−ðE0 − ERÞΔt�, which approaches 1 if we could
choose ER properly. Therefore, the importance sampling
reduces the fluctuation of the population.
In the practical simulation, the ψT is unknown before-

hand. One choice is the Jastow correlation factor

ψTðRÞ ¼
Y
i<j

exp

�
aijrij

1þ βijrij

�
; ð11Þ

where a and β are adjustable parameters. In this way, the
ELðRÞ and FiðRÞ can be calculated analytically. In our
simulation, we choose a more specific form following
Ref. [37],

ψTðRÞ ¼
Y
i<j

e−aijrij : ð12Þ

Here aij are adjustable constants and their values are set to
minimize the fluctuation.

C. Forward walking technique

One can obtain the energy of the ground state and
function fðR; tÞ using the DMC with importance sampling
directly. However, one has to remove the trial wave
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function ψTðRÞ from fðR; tÞ to obtain the square of the
ground state wave function jΦ0ðRÞj2, as well as the pure
expectation value Ap ≡ hΦ0jAjΦ0i

hΦ0jΦ0i of the observable A. To this

end, the forward walking technique [56] is used. Following
Ref. [57], Φ0ðRÞ=ΨTðRÞ can be obtained from the asymp-
totic population PðR; t → ∞Þ of one walker starting at R,

Φ0ðRÞ=ΨTðRÞ ¼
PðR; t → ∞Þ
hΨT jΦ0i

: ð13Þ

With this replacement, the ground state wave function
jΦ0ðRÞj2 becomes

jΦ0ðRÞj2 ¼ ΨTðRÞΦ0ðRÞ ·Φ0ðRÞ=ΨTðRÞ
¼ fðRÞPðRÞ; ð14Þ

and the pure expectation value of the observable A becomes

Ap ≡ hΦ0jAjΦ0i
hΦ0jΦ0i

¼ hΨT jAΦ0=ΨT jΦ0i
hΨT jΦ0i

� hΨT jΦ0=ΨT jΦ0i
hΨT jΦ0i

¼
P

iAðRðiÞÞPðRðiÞÞP
iPðRðiÞÞ ; ð15Þ

where i represents walker i.
The value of PðRðiÞÞ can be obtained in the following

way. When the evolution has already stabilized after a
time period ts, the distribution of walkers represents
fðRÞ ¼ ψTðRÞΦ0ðRÞ. However, if one focuses on a single
walker i at RðiÞ, it is equivalent to a function f0ðR0Þ ∝
δðR0 − RðiÞÞ that has not reached stabilization. So one
continues to evolve for a long enough period of time tb
until this f0ðR0Þ function has reached stabilization too. At
this moment, the number of walkers replicated from the

original walker i is the value of PðRðiÞÞ. The detailed
algorithm implementation is described in Ref. [58].

D. Coupled-channel formalism

When dealing with multiple the spin-color channels, the
above algorithm needs some changes. One can decompose
the wave function ΨðR; tÞ to

ΨðR; tÞ ¼
X
α

ΨαðR; tÞχα; ð16Þ

where χα is the wave function of discrete quantum
numbers. The space wave function ΨαðR; tÞ of channel
χα satisfies

−
∂Ψα0

∂t
¼

X
α

Ĥα0αΨα − ERΨα0 : ð17Þ

In the importance sampling technique, Eqs. (4)–(6) are
replaced by

fαðR; tÞ≡ ψTðRÞΨαðR; tÞ; ð18Þ

−
∂fα0 ðR; tÞ

∂t
¼−

Xm
i¼1

1

2mi
∇2
rifα0 ðR; tÞ

þ
Xm
i¼1

1

2mi
∇riðFiðRÞfα0 ðR; tÞÞ

þ ½ELðRÞ−ER�fα0 ðR; tÞþ
X
α

Vα0αðRÞfαðR; tÞ

¼Afα0 ðR; tÞþ
X
α

Vα0αðRÞfαðR; tÞ; ð19Þ

and

fα0 ðR0; tþ ΔtÞ ¼
Z

dRhR0je−AΔtjRi
X
α

½e−VðRÞΔt�α0αfαðR; tÞ

≈
Z

dR1dR2dR3dR4dRG3

�
R0;R1;

Δt
2

�
G2

�
R1;R2;

Δt
2

�
G1ðR2;R3;ΔtÞ

×G2

�
R3;R4;

Δt
2

�
G3

�
R4;R;

Δt
2

�X
α

½e−VðRÞΔt�α0αfαðR; tÞ; ð20Þ

with Vα0αðRÞ ¼ χ†α0VðRÞχα. The matrix VðRÞ is composed
of elements Vα0αðRÞ. The local energy is changed to
ELðRÞ ¼ ψTðRÞ−1Ĥ0ψTðRÞ.
Following the method in Refs. [37,59], we define the

quantity

F ðR; tÞ≡X
α

fαðR; tÞ: ð21Þ

It propagates as

F ðR0; tþ ΔtÞ ¼
Z

dRhR0je−AΔtjRi

×
X
α0α

½e−VðRÞΔt�α0αfαðR; tÞ: ð22Þ

To implement Eq. (22) by algorithm, a set of coefficients

cðiÞα is attached to each walker. The birth-death process in
Eq. (8) becomes
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nr ¼ Floor½B1 · B2 þ u� · N0

N
; ð23Þ

with

B1 ¼ e−ð
ELðR0ÞþELðRÞ

2
−ERÞΔt; ð24Þ

B2 ¼
P

αc
ðiÞ0
αP

αc
ðiÞ
α

; cðiÞ0α ≡X
β

½e−VðRÞδt�αβcðiÞβ ; ð25Þ

where cðiÞα represents the proportion of the channel α among
all of the channels for the walker i. The mixed energy for
the coupling channel is

hEimixed ¼
R
F ðRÞELðRÞdRþ R P

αβVαβðRÞfβðRÞdRR
F ðRÞdR :

ð26Þ

III. HAMILTONIAN

The nonrelativistic Hamiltonian of a three-quark system
reads

H ¼
X3
i

�
mi þ

p2i
2mi

�
− TCM þ V; ð27Þ

where mi and pi are the mass and momentum of quark i.
TCM is the center-of-mass kinematic energy, which auto-
matically vanishes in the evolution, because the system will
tend to the lowest energy state.
In order to investigate the effects of different confine-

ment scenarios, we modify a nonrelativistic potential
proposed in Ref. [15]. The potential is divided into two
parts, V ¼ V0 þ Vconf . For different scenarios, we choose
the same V0 terms,

V0 ¼ −
3

16

X
i<j

λi · λj

�
−

κ

rij
þ 8πκ0

3mimj

expð−r2ij=r20Þ
π3=2r30

si · sj

�

þ 3

16

X
i<j

λi · λjΛ −
C

m1m2m3

; ð28Þ

with

r0 ¼ A

�
2mimj

mi þmj

�
−B
; ð29Þ

where λi is the SU(3)-color Gell-Mann matrix, si is the spin
operator of quark i, and rij is the relative distance between
quark i and j. In the above interaction, the Coulomb term
and hyperfine term come from the one-gluon exchange
interaction. The Λ term is a pairwise constant interaction to
shift the overall mass spectrum. The C term is a three-body

phenomenological contribution to obtain a better agree-
ment with the experimental baryon masses. In Ref. [15], the
parameters of the potential have been determined through
fitting to a large number of mesons, and here we use the
AL1 model parameters, which are listed in Table I.
In this work, we investigate two different confinement

scenarios, as shown in Fig. 1, the pairwise (Δ-type)
confinement and the three-body flux-tube (Y-type) confine-
ment. In the first one, the two-body linear confinement term
is introduced as

VΔ
conf ¼ −

3

16
λ
X
i<j

λi · λjrij ≡ σΔ
X
i<j

rij; ð30Þ

where λ is the confinement coupling constant in the AL1
model of Ref. [15]. The value of λ is presented in Table I.
For the baryons, we introduce an alternative coupling
constant σΔ to replace λ. Apparently, the confinement
potential is proportional to the length of the perimeter of
the triangle connecting three quarks.
In the second scenario, the confinement interaction is

proportional to the minimal total length of the color flux
tubes linking three quarks,

VY
conf ¼ σYLmin; ð31Þ

where σY is the string tension. Lmin denotes the minimal
length by tuning the joint point. In this scenario, three quarks
are confined by the three-body force. In Refs. [26,27], the
Y-type confinement interaction was favored by the lattice
simulations. Another point of view is that the confinement in
baryon is roughly one-half Δ and one-half Y-string [60,61],
while it is not explored in this work.
We will take two σY values and give their results

respectively later in this work. According to the lattice
QCD result in Ref. [26], a universal feature of the string
tension σY ≃ σQQ̄ is found. Herein for the first σY value, we
naively take σY ¼ σQQ̄ ¼ 2σΔ ¼ λ. However, the above
value is only a rough approximation. To get a more accurate
σY value, we adjust it to make the Ω−ðsssÞ mass coincide
exactly with the experimental mass 1.672 GeV. Since we
expect the confinement coupling constants for the light
quark systems and heavy quark systems could be different,
the system composed of strange quarks (too heavy to
be light and too light to be heavy) could be a good

TABLE I. AL1 quark model parameters taken from Ref. [15].

mu ¼ md 0.315 GeV λ 0.1653 GeV2

ms 0.577 GeV Λ 0.8321 GeV
mc 1.836 GeV A 1.6553 GeVB−1

mb 5.227 GeV B 0.2204
κ 0.5069 C 0.00202 GeV4

κ0 1.8609
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compromise. The benchmark gives us σY ¼ 0.9204σQQ̄ ¼
0.9204λ. This coefficient is consistent with the best fitting
parameters in lattice QCD simulation [26] with σY=σQQ̄ ¼
0.1524=0.1629 ¼ 0.9355.
For the three quark system, the minimal value of the total

length Lmin linking three quarks can be obtained analyti-
cally [27]. In this work, we choose a more general numerical
algorithm to determine Lmin in order to extend the frame-
work to the multiquark systems [36] in the future. This
operation is essentially a Euclidean Steiner tree problem
(ESTP) [62]. The ESTP seeks a network of the minimal
length spanning a set of points by allowing the insertion of
new points (Steiner points). The Smiths algorithm was
designed for ESTP, which is an iterative method to optimize
the search of coordinates of Steiner points in d-dimensional
space, given a topology and terminal positions. The code of
this program can be found in Ref. [63].

IV. NUMERICAL RESULTS

In the simulation, we use 1 × 104 walkers to sample the
fðR; tÞ orF ðR; tÞ. We let the ensemble evolve 1 × 104 steps
for the single-channel system and 2 × 104 steps for the
coupling-channel systems with the Δt ¼ 0.01 GeV−1 for
each step to ensure stability. The resulting energy is averaged
over the last 5000 steps to reduce fluctuation. To estimate the
statistical uncertainty, the correlations among adjacent steps
should be considered. To do this, we divide the steps into
blocks and calculate the block averages.When the block size
is taken large enough, the averages become uncorrelated and
the uncertainty becomes independent of the block size. We
find the blocks have become uncorrelated when taking the
size as 500 steps. So we divide the last 5000 steps into 10
blocks of size 500 steps. Then by using the jackknife
resampling method [64], the uncertainty turns out to be less
than 1MeV.As an example, the uncertainty ofΩ−ðsssÞmass
is 0.3 MeV. More details are given in Appendix B.
Once the system is stabilized, the wave function will not

change with time. We calculate the radial distribution
r2ijρðrijÞ, mean square radius and charge mean square
radius using the forward walking algorithm introduced
in Sec. II C. The ρðr12Þ is defined as

ρðr12Þ ¼
Z

dr̂12dr3jΨðr1; r2; r3Þj2: ð32Þ

The square of the wave function jΨðr1; r2; r3Þj2 can be
obtained from Eq. (14). The definitions of ρðr13Þ and ρðr23Þ
are similar. The root-mean square radius is defined as

ffiffiffiffiffiffiffiffiffi
hr2iji

q
≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨjðri − rjÞ2jΨi

q
; ð33Þ

where ri indicates the position of the ith quark. For the
pointlike quark, the charge mean square radius R2

c is
defined as

hR2
ci≡ hΨj

X3
i¼1

eiðri − RCMÞ2jΨi þ
X3
i

hR2
ciqi ; ð34Þ

where RCM refers to the center of mass, and ei is the charge
of the ith quark. In the practical calculation, the first term
can be obtained from Eq. (15). The second term represents
the effect of the charge radii of the constituent quarks. It is
unreasonable to naively regard the constituent quarks as
pointlike particles. Details are given in Appendix C.
In this work, the charge radii of the constituent quarks are

extracted from experiments and LQCD calculations. The
contributions from the u and d quark size are extracted from
the p and n experimental hR2

ci values [65]. In principle, one
can extract the charge radius of the constituent s quark from
the experimental hR2

ci of Σ− [66]. However, the present
experimental uncertainty is large.Hencewe choose to extract
the s and c charge radii from the hR2

ci ofΩðsssÞ andΩðcccÞ
through lattice QCD simulations in Refs. [67,68]. These
contributions are listed in Table II. We can see that the quark
charge radii vary with flavors, which is different from the
scenario in Refs. [69,70]. Meanwhile, their signs are con-
sistent with their charges. The electric size of the constituent
quark decreases with the quark mass. In view of the small
contribution of the c quark size, we neglect the contribution
from the b quark.
The distribution plots related to the wave function are

averaged over 500 steps to reduce the noise and make it
smooth. And the expectation value for the observables are
averaged over 2000 steps.
In order to show the internal structure of the quarks more

visually, we provide two additional plots, the angle dis-
tribution and rotation-irrelevant distribution following
Ref. [71]. For each walker, we introduce θ1, θ2, and θ3 ¼
180° − θ1 − θ2 to label the three inner angles of the triangle
by linking three quarks. With the spatial probability distri-
bution of walkers, we can easily get the angle distributions
and the expectation values of the inner angles. To visualize
the rotation-irrelevant structure, we define away to eliminate
the rotation degree of freedom. For each walker, we first
put the triangle R1R2R3 connecting three quarks into a 2D
x − y plane as shown inFig. 2.Weput its center ofmass at the
originO. Now the only remaining degree of freedom for each
walker is the rotation around the origin O. We then use the
triangleABC formed by three inner angle expectation values
to define a reference frame, where A, B, C corresponds to
1,2,3 quark respectively, and vertex C is fixed on the y axis.
Finally we rotate the triangle R1R2R3 to minimize the

TABLE II. The contributions of different quarks to the baryon
R2
c due to the electromagnetic size of the constituent quark (in

unit of e · fm2).

hR2
ciu hR2

cid hR2
cis hR2

cic hR2
cib

0.348 −0.232 −0.042 0.009 0
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quantity∠R1OA2 þ∠R2OB2 þ∠R3OC2.We can draw the
new positions of quarks for all walkers in the plot and get a
distribution reflecting the inner structure of the quarks. In
principle, we can choose other angle-fixing strategies, for
exampleminimizing∠R1OA4 þ∠R2OB4 þ∠R3OC4. The
different strategies will not change the qualitative properties.
We will choose some typical baryons to show their angle
distributions and rotation-irrelevant distributions. The
complete distributions will be given in the Supplement
Material [72].
In the following sections, we will classify all of the

ground state baryons according to the number of identical
quarks inside them. We treat the u and d quarks as identical
particles under SU(2)-flavor symmetry. We will use n to
label them. The related spin matrix elements are presented
in Table III. For the AL1 model, apart from the DMC, we
use a variational method with 202 Gaussian basis func-
tions [73] as a benchmark, which is denoted as GEM in the
following. Our results are also compared with the Faddeev
formalism results in Ref. [15]. Furthermore, for the flux-
tube confinement model, we use two sets of parameters as
mentioned above. Flux-tube I refers to the universal tension
parameter with σY ¼ λ, and flux-tube II refers to σY ¼
0.9204λ determined by the experimental Ω−ðsssÞ mass.
Both of them are solved using the DMC algorithm.

A. JP = 3
2
+ without identical quarks

We label three quarks in mass ascending order with 1, 2,
and 3. Since there are no identical particles, there is no need
to satisfy the Pauli principle. For the ground spin-3

2
system

(assuming no orbital excitation), the spin wave function is
symmetric and unique, whose spin matrix elements can be
found in Table III.
The masses and radii are listed in Tables IV and V, and

the r2ijρðrijÞ distributions are shown in Fig. 3. In Fig. 4, we
use Ξ�

cðnscÞ and Ξ�
cbðncbÞ as two examples to illustrate the

distribution of inner angles and the 2D wave function
probability distribution. Here only the AL1 model results
are shown because the three models have little difference.
One can see that the results for the AL1 model from the

DMC and GEM are consistent. Furthermore, for the flux-
tube model, our results show the flux-tube I with the naive
universal tension σY ¼ σQQ̄ is not as good as the flux-tube II.
Compared with the experimental data, the flux-tube II and
AL1 results, the flux-tube I overestimates the mass and
underestimates the sizes. From the r2ijρðrijÞdistributions, one
can see that the more massive quark pair tend to get closer.
Meanwhile, the rotation-irrelevant distributions shows that
the heavier quark will be closer to the center of mass.

FIG. 2. Operation to define the rotation-irrelevant distribution.
For each walker, the triangle R1R2R3 connecting three quarks is
fixed into the x − y plane with the center of mass at the origin O.
Triangle ABC is formed by three inner angle expectation values
as a reference frame, with vertex C on the y axis. The rotating
degree of freedom of triangle R1R2R3 is fixed by minimizing the
quantity ∠R1OA2 þ ∠R2OB2 þ∠R3OC2.

TABLE III. The spin matrix element hχspinjsi · sjjχspini for the
ði; jÞ pair of quarks.

(1, 2) (1, 3) (2, 3)

h½ð12Þ13�3
2
jsi · sjj½ð12Þ13�3

2
i 1

4
1
4

1
4

h½ð12Þ13�1
2
jsi · sjj½ð12Þ13�1

2
i 1

4 − 1
2

− 1
2

h½ð12Þ03�1
2
jsi · sjj½ð12Þ03�1

2
i − 3

4
0 0

h½ð12Þ03�1
2
jsi · sjj½ð12Þ13�1

2
i 0 −

ffiffi
3

p
4

ffiffi
3

p
4

TABLE IV. Masses of the JP ¼ 3
2
þ baryons in MeV. The

interaction models include the AL1, flux-tube I (FT I) and
flux-tube II (FT II). The DMC method and variational method
(Gaussian expansion method, GEM) are used to solve the three-
body problem. The Faddeev equation (FAD) results are presented
if they were provided in Ref. [15]. The experimental results
(EXP) (if they exist) are averaged over the isospin multiples.

AL1 FT I FT II

JP ¼ 3
2
þ DMC VAR FAD [15] DMC DMC EXP [65]

Ξ�
cðnscÞ 2646 2645 � � � 2725 2650 2646

Ξ�
bðnsbÞ 5972 5971 � � � 6046 5974 5954

Ξ�
cbðncbÞ 6990 6989 � � � 7047 6986 � � �

Ω�0
cbðscbÞ 7072 7070 � � � 7121 7071 � � �

Σ�ðnnsÞ 1404 1402 � � � 1504 1412 1385
Σ�
cðnncÞ 2535 2535 � � � 2624 2540 2518

Σ�
bðnnbÞ 5875 5874 � � � 5959 5878 5833

Ξ�ðssnÞ 1541 1540 � � � 1633 1549 1533
Ξ�
ccðccnÞ 3701 3700 � � � 3765 3700 � � �

Ξ�
bbðbbnÞ 10233 10232 � � � 10275 10222 � � �

Ω�0
c ðsscÞ 2749 2749 � � � 2821 2755 2766

Ω�þ
cc ðccsÞ 3791 3790 � � � 3849 3794 � � �

Ω�−
b ðssbÞ 6064 6063 � � � 6129 6067 � � �

Ω�þ
ccbðccbÞ 8046 8046 � � � 8087 8049 � � �

Ω�−
bb ðbbsÞ 10304 10303 � � � 10344 10299 � � �

Ω�0
cbbðbbcÞ 11247 11247 � � � 11280 11248 � � �

ΔðnnnÞ 1243 1242 � � � 1353 1253 1232
Ω−ðsssÞ 1664 1664 1663 1749 1672 1672
Ωþþ

cccðcccÞ 4799 4798 4799 4848 4803 � � �
Ω−

bbbðbbbÞ 14398 14398 14398 14424 14400 � � �
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B. JP = 3
2
+ with two identical quarks

We label the two identical quarks as 1 and 2, and the
remaining one as 3. The spin wave function is still
completely symmetric. The space wave function is sym-
metric since it is a ground state. As for the flavor part,

the baryons with two identical s, c, b quarks are
apparently symmetric for exchanging q1 and q2. For
the baryons with two identical u, d quarks, it should be
constructed symmetrically with I ¼ 1 to fulfill the Pauli
principle.

FIG. 3. The r2ρðrÞ distributions for the JP ¼ 3
2
þ baryons without identical quarks.

(a) (b)

FIG. 4. (a) Internal angle distribution of quarks in the Ξ�
cðnscÞ and Ξ�

cbðncbÞ respectively in the AL1model. The white dashed triangle
in (a) indicates three quarks form a right-angled triangle. Walkers appearing inside this triangle refer to acute triangles, and outside refer
to obtuse triangles. The other three white dashed lines correspond to obtuse isosceles triangles. The black triangle drawn in the upper
right corner indicates the calculated expectation values of the inner angles (averaged over identical quarks if it has). The yellow (blue)
color signals a high (low) probability. (b) 2D wave function probability distribution of the Ξ�

cðnscÞ and Ξ�
cbðncbÞ baryon respectively in

the AL1 model. The color bar represents the logarithmic coordinates in this subfigure.

TABLE V. Root mean square radii and charge mean square radii R2
c expectation values of the JP ¼ 3

2
þ baryons without identical

quarks. “FT I” is short for “flux-tube I,” and “FT II” is short for “flux-tube II.”

ffiffiffiffiffiffiffiffiffiffi
hr212i

p
[fm]

ffiffiffiffiffiffiffiffiffiffi
hr213i

p
[fm]

ffiffiffiffiffiffiffiffiffiffi
hr223i

p
[fm] hR2

ci½e · fm2�
JP ¼ 3

2
þ AL1 FT I FT II AL1 FT I FT II AL1 FT I FT II AL1 FT I FT II

Ξ�0
c ðdscÞ 0.854 0.841 0.863 0.776 0.758 0.779 0.666 0.642 0.659

−0.471 −0.462 −0.471
Ξ�þ
c ðuscÞ 0.541 0.533 0.549

Ξ�−
b ðdsbÞ

0.843 0.829 0.851 0.738 0.717 0.740 0.617 0.595 0.610
−0.535 −0.519 −0.534

Ξ�0
b ðusbÞ 0.521 0.511 0.524

Ξ�0
cbðdcbÞ 0.727 0.720 0.737 0.702 0.693 0.709 0.420 0.404 0.411

−0.306 −0.307 −0.315
Ξ�þ
cb ðucbÞ 0.705 0.695 0.706

Ω�0
cbðscbÞ 0.601 0.592 0.603 0.569 0.558 0.566 0.408 0.394 0.401 −0.062 −0.063 −0.063
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The masses, root mean square radii and the charge mean
square radii of the JP ¼ 3

2
þ baryons with two identical

quarks are shown in Tables IV and VI. The radial
distributions are displayed in Fig. 5. Again, the results
from DMC and variational method for the AL1 model are
consistent. The baryon masses from flux-tube II are in
better agreement with the experiments than those of flux-
tube I. For flux-tube I,

ffiffiffiffiffiffiffiffi
hr2i

p
and R2

c are both smaller. For
the radial distribution, there is still the general property that
more massive quarks will get closer.
As an example, the distribution of the inner angles and

the 2D wave function probability distribution of the
Σ�
cðnncÞ are given in the left column of Fig. 6.

Likewise, only the AL1 model results are shown since
the three models have little difference. For the baryons with
two identical quarks, the shape of the triangle is isosceles
triangle. Apparently, the heavier quark tends to get closer to
the center of mass, thus, the angle with the heavier quark as
the vertex is larger. Similarly, the distributions of the
Ω�þ

ccbðccbÞ are given in Fig. 7.

C. JP = 3
2
+ with three identical quarks

For the ground baryons composed of three identical
quarks with JP ¼ 3

2
þ, the spin and spatial wave functions

are both completely symmetric. The spin matrix elements

hχspinjsi · sjjχspini for the ðijÞ pair of quarks are shown in
Table III. As for the flavor part, Ω−ðsssÞ, Ωþþ

cccðcccÞ,
Ω−

bbbðbbbÞ, Δ−ðdddÞ, and ΔþþðuuuÞ are fully symmetric.
Considering the SU(2)-flavor symmetry, the u and d are
identical particles, thus the Δ0ðuddÞ and ΔþðuudÞ should
be constructed symmetrically to fulfill the Pauli principle.
The masses of the JP ¼ 3

2
þ baryons with three identical

quarks are shown in Table IV. The root mean square radii
and the charge mean square radii are given in Table VII.
The distributions for the 3

2
þ baryons with three identical

quarks are displayed in Fig. 8. We get consistent results for
different few-body methods, DMC, GEM, and Faddeev
formalism. For the different interactions, the flux-tube II
works as good as the AL1model and better than flux-tube I.
In Fig. 9, we use Ω−ðsssÞ as an example to illustrate the

distribution of angle and the rotation-irrelevant distribution.
Here only theAL1model results are shownbecause the three
models have little difference. In the left panel of Fig. 9, the
walkers are mainly distributed inside the white triangle and
concentrated around 60°. This makes sense as they are three
identical quarks. In the right panel of Fig. 9, we can identify
three identical regions stemming from three identical
quarks. It is worthwhile mentioning that the almond shape
depends on the specific angle-fixing strategy, which could
be distorted if we chose different angle-fixing strategies.

TABLE VI. Root mean square radii and charge mean square radii R2
c expectation values of the JP ¼ 3

2
þ baryons with two identical

quarks. The
ffiffiffiffiffiffiffiffiffiffi
hr213i

p
column is the average of

ffiffiffiffiffiffiffiffiffiffi
hr213i

p
and

ffiffiffiffiffiffiffiffiffiffi
hr223i

p
, since 1, 2 are the identical quarks.

ffiffiffiffiffiffiffiffiffiffi
hr212i

p
[fm]

ffiffiffiffiffiffiffiffiffiffi
hr213i

p
[fm] hR2

ci½e · fm2�
JP ¼ 3

2
þ AL1 FT I FT II AL1 FT I FT II AL1 FT I FT II

Σ�−ðddsÞ
0.986 0.962 0.986 0.903 0.875 0.899

−0.807 −0.789 −0.804
Σ�0ðudsÞ 0.146 0.144 0.146
Σ�þðuusÞ 1.099 1.079 1.102

Σ�0
c ðddcÞ

0.954 0.940 0.965 0.795 0.771 0.791
−0.739 −0.725 −0.738

Σ�þ
c ðudcÞ 0.292 0.285 0.293

Σ�þþ
c ðuucÞ 1.324 1.289 1.325

Σ�−
b ðddbÞ

0.942 0.931 0.953 0.756 0.735 0.752
−0.800 −0.782 −0.797

Σ�0
b ðudbÞ 0.278 0.270 0.279

Σ�þ
b ðuubÞ 1.363 1.328 1.358

Ξ�−ðssdÞ
0.792 0.767 0.787 0.884 0.866 0.889

−0.567 −0.555 −0.569
Ξ�0ðssuÞ 0.398 0.398 0.404

Ξ�þ
cc ðccdÞ 0.497 0.476 0.486 0.743 0.734 0.752

−0.266 −0.270 −0.275
Ξ�þþ
cc ðccuÞ 0.732 0.719 0.735

Ξ�−
bb ðbbdÞ 0.304 0.289 0.295 0.680 0.675 0.692

−0.386 −0.382 −0.390
Ξ�0
bbðbbuÞ 0.608 0.607 0.621

Ω�0
c ðsscÞ 0.747 0.734 0.755 0.648 0.631 0.651 −0.210 −0.204 −0.212

Ω�þ
cc ðccsÞ 0.483 0.465 0.481 0.618 0.609 0.624 −0.018 −0.022 −0.020

Ω�−
b ðssbÞ 0.729 0.718 0.739 0.599 0.582 0.598 −0.275 −0.265 −0.275

Ω�þ
ccbðccbÞ 0.435 0.427 0.438 0.379 0.371 0.379 0.121 0.117 0.122

Ω�−
bb ðbbsÞ 0.295 0.287 0.287 0.543 0.538 0.549 −0.139 −0.137 −0.140

Ω�0
cbbðbbcÞ 0.274 0.268 0.273 0.354 0.350 0.355 0.046 0.046 0.047
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D. JP = 1
2
+ without identical quarks

We use 1, 2, 3 to label three quarks in the mass ascending
order. For the ground spin-1

2
baryons (naively no orbital

excitation), there are two spin channels,

χAs ð12; 3Þ ¼ ½ð12Þ03�1
2
; χSs ð12; 3Þ ¼ ½ð12Þ13�1

2
: ð35Þ

The superscripts A and S indicate the symmetric
and antisymmetric wave functions, respectively. For the

FIG. 5. The r2ρðrÞ distributions for the JP ¼ 3
2
þ baryons with two identical quarks.
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FIG. 6. Top: internal angle distribution of the quarks in the Σ�
cðnncÞ, ΣcðnncÞ, and ΛcðnncÞ baryon respectively in the AL1 model.

Bottom: 2D wave function probability distribution of the Σ�
cðnncÞ, ΣcðnncÞ, and ΛcðnncÞ baryon respectively in the AL1 model. Other

notations are the same as those in Fig. 4.

(a) (b)

FIG. 7. (a) Internal angle distribution of quarks in the Ω�þ
ccbðccbÞ and Ωþ

ccbðccbÞ baryon respectively in the AL1 model. (b) 2D wave
function probability distribution of Ω�þ

ccbðccbÞ and Ωþ
ccbðccbÞ baryon respectively in AL1 model. Other notations are the same as

those in Fig. 4.

FIG. 8. The r2ρðrÞ distributions for the JP ¼ 3
2
þ baryons with three identical quarks.
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J ¼ 1
2
baryon system without identical quarks, the ground

states should be the mixture of these two spin channels in
principle.
The masses calculated with the coupling-channel DMC

are listed in Table VIII. In addition to the coupling-channels
results, we also give the single channel masses for

comparison. The single channel χAs ð12; 3Þ masses are
almost the same as the mixing ones, which indicates that
the mixing state is almost entirely of the χAs ð12; 3Þ
component. In the coupling-channel DMC, we can only
obtain the ground state. But we checked with the variational
method and found that the first excited state in the coupled-
channel scheme is roughly the χSs ð12; 3Þ state in either the
energy sense or the wave function sense. Thus the follow-
ing radii and distributions will all be presented using the
single channel results. It is worthwhile to stress that one can
choose χS;As ð23; 1Þ or χS;As ð13; 2Þ as spin channels alter-
natively. In these two schemes, the coupled-channel results
will not change. However, the single-channel results will
not be good approximations any more. In other words, for
the ground spin-1

2
baryons with three different quarks, the

first two low-lying states can be distinguished by the
combined spin of the two lightest quarks approximately.
Especially, the χAs ð12; 3Þ state is the lighter one, which is
the implication of the “good” diquark introduced by
Jaffe [74].
The radii expectation values and radial distributions are

shown in Table IX and Fig. 10 respectively. As for the inner
angle and 2D probability distributions, since the 1

2
þ dis-

tributions are almost the same as the 3
2
þ ones, they are not

shown in the main text, and can be found in Supplemental
Material [72].

E. JP = 1
2
+ with two identical quarks

We label the two identical quarks as 1 and 2, and the
remaining one as 3. In general, we can construct the
following symmetric spatial-spin-flavor wave functions
by exchanging 1 and 2 quarks:

jB1i ¼ χSs ð12; 3ÞχSfð12; 3ÞψS
1ð12; 3Þ;

jB2i ¼ χSs ð12; 3ÞχAf ð12; 3ÞψA
2 ð12; 3Þ;

jB3i ¼ χAs ð12; 3ÞχAf ð12; 3ÞψS
3ð12; 3Þ;

jB4i ¼ χAs ð12; 3ÞχSfð12; 3ÞψA
4 ð12; 3Þ; ð36Þ

TABLE VII. Root mean square radii and charge mean square radii R2
c expectation values of the JP ¼ 3

2
þ baryons with three identical

quarks. The root mean square radii
ffiffiffiffiffiffiffiffi
hr2i

p
are averaged for the identical quarks.

ffiffiffiffiffiffiffiffi
hr2i

p
[fm] hR2

ci½e · fm2�
JP ¼ 3

2
þ AL1 FT I FT II AL1 FT I FT II

Δ−ðdddÞ 1.003 0.976 1.001 −1.034 −1.013 −1.031
Δ0ðuddÞ −0.116 −0.118 −0.117
ΔþðuudÞ 0.796 0.779 0.799
ΔþþðuuuÞ 1.715 1.679 1.716
Ω−ðsssÞ 0.775 0.756 0.777 −0.325 −0.316 −0.326
Ωþþ

cccðcccÞ 0.458 0.447 0.458 0.168 0.161 0.168
Ω−

bbbðbbbÞ 0.249 0.247 0.250 −0.021 −0.020 −0.021

TABLE VIII. Masses of the JP ¼ 1
2
þ baryons without identical

quarks in MeV. The notations are the same as those in Table IV.

AL1 FT I FT II

JP ¼ 1
2
þ Channel DMC VAR

FAD
[15] DMC DMC

EXP
[65]

ΞcðnscÞ χAs ð12; 3Þ 2466 2465 � � � 2537 2470 2469
χSs ð12; 3Þ 2470 2569 � � � 2643 2573 2579
Mixing 2465 2464 2467 2535 2469 2469

ΞbðnsbÞ χAs ð12; 3Þ 5803 5802 � � � 5870 5806 5794
χSs ð12; 3Þ 5942 5941 � � � 6014 5944 5935
Mixing 5802 5802 5806 5870 5806 5794

ΞcbðncbÞ χAs ð12; 3Þ 6915 6914 � � � 6968 6911 � � �
χSs ð12; 3Þ 6960 6959 � � � 7014 6955 � � �
Mixing 6914 6914 6915 6967 6911 � � �

Ω0
cbðscbÞ χAs ð12; 3Þ 7003 7002 � � � 7052 7004 � � �

χSs ð12; 3Þ 7041 7040 � � � 7091 7040 � � �
Mixing 7002 7002 7003 7052 7003 � � �

FIG. 9. Left: internal angle distribution of quarks in the
Ω−ðsssÞ baryon in the AL1 model. Other notations are the same
as those in Fig. 4.

GROUND STATE BARYONS IN THE FLUX-TUBE THREE-BODY … PHYS. REV. D 107, 054035 (2023)

054035-13



where we use semicolon to separate the exchanging (anti)
symmetric part with the remaining part. The superscripts A
and S indicate the symmetric and antisymmetric wave
functions, respectively.
At first, we only include the jB1i and jB3i channels with

symmetric spatial wave functions. In Table X, the masses
calculated with different models and methods are shown.
The results from the AL1 and flux-tube II models are
basically consistent with the experimental values. Our
energies for the Σ, Λ and some other particles are a bit
higher than the results from the Faddeev equation. But we
have checked that our results will become equal to or
even smaller than the results from the Faddeev equation
once we include the jB2i and jB4i into the coupled-
channel calculations. The root mean square radii and the
charge mean square radii are shown in Table XI. The
calculated Σ− charge radius −0.746 fm2 in the flux-
tube II model is consistent with the experimental value
−0.61� 0.12� 0.09 fm2 [66] within errors.
The radial distributions of the 1

2
þ baryons with two

identical u, d quarks are displayed in Fig. 11. It can be seen
that the distance between the nn pair is closer when they are
in the spin S ¼ 0 state than in the S ¼ 1 one, which means

the “good” diquark is a more compact object than the “bad”
diquark. In the ΛðnnsÞ baryon, the rnn is even smaller than
rns. Similarly, the radial distributions of the 1

2
þ baryons with

two identical s, c, b quarks are shown in Fig. 12.
The distribution of the inner angles and the 2D wave

function probability distribution of the ΣcðnncÞ and
Λþ
c ðnncÞ are given in the middle and right columns of

Fig. 6 respectively. There is hardly any obvious difference
among the three nnc states in this figure. Another 1

2
þ

baryon Ωþ
ccbðccbÞ distribution is given in Fig. 7. Again,

there is no obvious difference between the 1
2
þ and 3

2
þ states.

But actually, the 3
2
þ state is a little bit more extended than

the 1
2
þ one, which can be seen by comparing their root mean

square radii values in Tables VI and XI. We also give the
comparison between ΞccðccnÞ and ΞbbðbbnÞ in Fig. 13,
which shows that the angle with the heavier quark as the
vertex tends to be larger.

F. JP = 1
2
+ with three identical quarks

The spin-1
2
baryons composed of three identical quarks

are the nucleons, which are the lightest baryons. In the
following discussion, we omit the trivial color wave

FIG. 10. The r2ρðrÞ distributions for the JP ¼ 1
2
þ baryons without identical quarks.

TABLE IX. Root mean square radii and charge mean square radii R2
c expectation values of the JP ¼ 1

2
þ baryons

without identical quarks. “FT I” is short for “flux-tube I” and “FT II” is short for “flux-tube II.”

ffiffiffiffiffiffiffiffiffiffi
hr212i

p
[fm]

ffiffiffiffiffiffiffiffiffiffi
hr213i

p
[fm]

ffiffiffiffiffiffiffiffiffiffi
hr223i

p
[fm] hR2

ci½e · fm2�
JP ¼ 1

2
þ AL1 FT I FT II AL1 FT I FT II AL1 FT I FT II AL1 FT I FT II

Ξ0
cðdscÞ 0.728 0.717 0.730 0.705 0.691 0.706 0.614 0.601 0.608

−0.428 −0.421 −0.427
Ξþ
c ðuscÞ 0.495 0.489 0.496

Ξ−
b ðdsbÞ 0.719 0.709 0.725 0.672 0.656 0.672 0.572 0.554 0.567

−0.488 −0.478 −0.489
Ξ0
bðusbÞ 0.478 0.471 0.480

Ξ0
cbðdcbÞ 0.678 0.670 0.684 0.666 0.656 0.669 0.403 0.390 0.397

−0.295 −0.296 −0.300
Ξþ
cbðucbÞ 0.667 0.656 0.668

Ω0
cbðscbÞ 0.563 0.552 0.565 0.541 0.531 0.543 0.393 0.380 0.386 −0.057 −0.058 −0.060
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function. Naively, one can construct the spatial-spin-
flavor wave function of the nucleon with a factorization
formalism,

jNifrac ¼ χSsfð123ÞψSð123Þ; ð37Þ

where the spatial wave function ψSð123Þ and spin-flavor
function are symmetrized separately. The masses, root
mean square radii, and charge mean square radii calculated
using the factorization formalism with the DMC method
are given in Table XII. And the distribution is displayed in
Fig. 14. However, the nucleon masses (e.g., 968 MeV in the
AL1 model) obtained with the factorized wave function are
larger than the results (e.g., 933 MeV in AL1 model) from
the Faddeev equation using the same interaction by over
30 MeV. To obtain the lower mass results, we need to go
beyond the above factorization wave function.
There is no reason to prevent the existence of the

nonfactorization spatial-flavor-spin wave functions. For
the nucleon, one can obtain the totally symmetric spa-
tial-spin-flavor wave function by permuting the quarks in
jBii in Eq. (36),

jCii ¼ jBii þ even perm ð1; 2; 3Þ; ð38Þ

where “even perm. (1, 2, 3)” means summation over all the
even permutation of (1, 2, 3) quarks. In general, the ground
state of the nucleon could be obtained using all four jCii
channels. In practice, some of them are less relevant. In
Table XIII, we present the results from the variational

FIG. 11. The r2ρðrÞ distributions for the JP ¼ 1
2
þ baryons with two identical n quarks.

TABLE X. Masses of the 1
2
þ baryons with two identical quarks

in MeV. The I column is the isospin. The notations are the same
as those in Table IV.

AL1 FT I FT II

JP ¼ 1
2
þ I DMC VAR FAD [15] DMC DMC EXP [65]

ΛðnnsÞ 0 1125 1123 1119 1209 1131 1116
Λþ
c ðnncÞ 2281 2280 2285 2359 2288 2286

Λ0
bðnnbÞ 5633 5632 5638 5707 5639 5620

ΣðnnsÞ 1 1206 1204 1196 1292 1211 1193
ΣcðnncÞ 2457 2456 2455 2540 2460 2454
ΣbðnnbÞ 5845 5844 5845 5927 5848 5813

ΞðssnÞ 1
2

1331 1329 1324 1410 1337 1318
ΞccðccnÞ 3607 3607 3607 3668 3608 3621
ΞbbðbbnÞ 10194 10193 10194 10236 10185 � � �
Ω0

cðsscÞ 0 2676 2675 2675 2744 2680 2695
Ωþ

ccðccsÞ 3709 3708 3710 3764 3712 � � �
Ω−

b ðssbÞ 6033 6033 6034 6097 6036 6046
Ωþ

ccbðccbÞ 8018 8017 8019 8058 8019 � � �
Ω−

bbðbbsÞ 10267 10266 10267 10306 10262 � � �
Ω0

cbbðbbcÞ 11215 11215 11217 11247 11216 � � �
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method, specifically GEM, with the fjC1ig, fjC3ig,
fjC1i; jC3ig, and fjC1i; jC2i; jC3i; jC4ig assignments
respectively. We can see that the fjC3ig is the most relevant
assignment. Adding other channels only reduces the energy
by 1 MeV. One can identify the jC3i is the symmetrized
“good” diquark configuration [74]. The nucleon is more like
a symmetrizedΛ baryon. Apparently, the naive factorization
assignment of the wave function is the special case of jC3i
with ψS

3ð12; 3Þ ¼ ψSð123Þ. This extra constraint prevents
the naive factorizationwave function from the lowest energy
solution.
In our present DMC algorithm, we have to introduce

either the single channel or a series of orthogonal spin-
flavor-color channels to perform simulations. For the naive
factorization assignment of the wave function (single
channel), we get consistent results with the variational
method, which is much larger than the lowest solution.
Although we have not presumed the clustering behavior
in the coordinate space in the DMC method, the pre-
assignment of the channels could still prevent us from the
lowest mass solutions. This is the lesson about the DMC

method from the baryon calculation. In Sec. V, we will see
the pre-assignment of the channels could prevent us from
the lowest solution in the tetraquark systems. In the
assignments of jCii, the jBii and its permutations are
nonorthogonal channels. In our present coupled-channel
formalism of DMC in Sec. II D, we are unable to deal with
them directly.
Alternatively, we could take an indirect strategy. For

example, we could start from the ΛðnnsÞ and ΣðnnsÞ
baryons. If we decrease the strange quark mass to mu;d in
the SU(3)-flavor limit, the masses of the ΛðnnsÞ and
ΣðnnsÞ will approach the nucleon mass. In this process,
the baryon mass will change continuously. Since we treat
ms −mu;d as a perturbation, the first order correction to the
eigenenergy is proportional to the perturbation. In practice,
we could use the wave functions jBii in Eq. (36) to perform
the calculation. More generally, we could expect the mass
of the spin-1

2
ΞcðuscÞ to reduce to the nucleon mass in the

SU(4)-flavor limit by taking mc ¼ ms ¼ mu;d. Thus we
could use the wave function without any exchanging
symmetry,

TABLE XI. Root mean square radii and charge mean square radii R2
c expectation values of the

1
2
þ baryons with two identical quarks.

The
ffiffiffiffiffiffiffiffiffiffi
hr213i

p
column is the average of the

ffiffiffiffiffiffiffiffiffiffi
hr213i

p
and

ffiffiffiffiffiffiffiffiffiffi
hr223i

p
, since 1, 2 are identical quarks.

I

ffiffiffiffiffiffiffiffiffiffi
hr212i

p
[fm]

ffiffiffiffiffiffiffiffiffiffi
hr213i

p
[fm] hR2

ci½e · fm2�
JP ¼ 1

2
þ AL1 FT I FT II AL1 FT I FT II AL1 FT I FT II

ΛðnnsÞ 0 0.785 0.764 0.783 0.802 0.784 0.802 0.118 0.115 0.120
Λþ
c ðnncÞ 0.764 0.752 0.769 0.709 0.693 0.711 0.255 0.250 0.257

Λ0
bðnnbÞ 0.761 0.750 0.767 0.679 0.663 0.678 0.247 0.242 0.245

Σ−ðddsÞ 1 0.907 0.890 0.913 0.788 0.769 0.787 −0.744 −0.733 −0.745
Σ0ðudsÞ 0.136 0.134 0.137
ΣþðuusÞ 1.018 1.004 1.022

Σ0
cðddcÞ 0.922 0.907 0.933 0.751 0.729 0.750 −0.712 −0.697 −0.712

Σþ
c ðudcÞ 0.277 0.270 0.274

Σþþ
c ðuucÞ 1.263 1.236 1.267

Σ−
b ðddbÞ 0.929 0.916 0.940 0.739 0.719 0.735 −0.784 −0.768 −0.783

Σ0
bðudbÞ 0.273 0.265 0.278

Σþ
b ðuubÞ 1.335 1.299 1.329

Ξ−ðssdÞ 1
2

0.734 0.710 0.729 0.763 0.741 0.762 −0.511 −0.500 −0.510
Ξ0ðssuÞ 0.347 0.341 0.346

Ξþ
ccðccdÞ 0.482 0.465 0.476 0.689 0.679 0.694 −0.250 −0.253 −0.255

Ξþþ
cc ðccuÞ 0.685 0.672 0.687

Ξ−
bbðbbdÞ 0.305 0.290 0.294 0.659 0.653 0.670 −0.377 −0.373 −0.381

Ξ0
bbðbbuÞ 0.589 0.589 0.601

Ω0
cðsscÞ 0 0.721 0.708 0.730 0.611 0.596 0.610 −0.198 −0.192 −0.199

Ω−
b ðssbÞ 0.721 0.711 0.731 0.583 0.568 0.584 −0.266 −0.257 −0.267

Ωþ
ccðccsÞ 0.469 0.455 0.463 0.576 0.564 0.579 −0.012 −0.014 −0.015

Ωþ
ccbðccbÞ 0.427 0.421 0.429 0.370 0.362 0.370 0.117 0.113 0.117

Ω−
bbðbbsÞ 0.291 0.283 0.286 0.525 0.519 0.530 −0.133 −0.131 −0.134

Ω0
cbbðbbcÞ 0.271 0.266 0.271 0.344 0.338 0.345 0.043 0.042 0.044
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jA1i ¼ χSsð12; 3ÞχSfð12; 3Þψ1ð1; 2; 3Þ;
jA2i ¼ χSsð12; 3ÞχAf ð12; 3Þψ2ð1; 2; 3Þ;
jA3i ¼ χAs ð12; 3ÞχAf ð12; 3Þψ3ð1; 2; 3Þ;
jA4i ¼ χAs ð12; 3ÞχSfð12; 3Þψ4ð1; 2; 3Þ: ð39Þ

In Table XIII, we use both the DMC algorithm and
variational method to calculate energies using wave func-
tions in Eqs. (36) and (39). One can see the results for the
DMC and variational method agree well with each other
and obtain the same lowest solution as the jCii coupled-
channel result.

The indirect strategy could not obtain the correct
wave function directly. For example, solving the
fjA1i; jA2i; jA3i; jA4ig coupled-channel problem cannot
ensure the wave function jAmath

groundi has the correct exchang-
ing symmetry. We call jAmath

groundi together with its corre-

sponding eigenvalue Emath
0 as the mathematical ground

state. Since the Hamiltonian has the exchange symmetry,
i.e., ½Ĥ; P̂ij� ¼ 0, the permutation of the obtained wave
function is still the solution of this Hamiltonian at the same
energy level, i.e.,

ĤP̂ijjAmath
groundi ¼ P̂ijĤjAmath

groundi ¼ Emath
0 P̂ijjAmath

groundi: ð40Þ

FIG. 12. The r2ρðrÞ distributions for the JP ¼ 1
2
þ baryons with two identical s, c, b quarks.
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In principle, the mathematical ground states could be
degenerate. We could try to combine jAmath

groundi and its

degenerate states P̂ijjAgroundi to construct the physical
ground state with correct symmetry. There are two fates
of the mathematical ground states. If the Emath

0 is exactly the
physical ground energy, one could obtain a nonvanishing
wave function after symmetrizing the mathematical ground
states. If Emath

0 is not the physical ground energy, one
should obtain a null wave function after symmetrization.
Fortunately, for the nucleon system, we obtain the physical
wave function by symmetrizing jAmath

groundi.
The final wave functions do have small difference from

the results of the naive factorization scheme in Eq. (37). We
do not show the distributions and expectation values
because there is no qualitative distinction. However, the
mass differences from different wave function assignments
should be attached enough importance. For the tetraquark
system, the wave function differences could be more
significant because of more clustering possibilities.
It is worth mentioning that if the replication number nr in

Eq. (23) becomes negative for a walker, it will be discarded
to ensure the stability of the energy. This will result in a
reduction of the wave function space, but not much,
because such walkers are rare.

G. Comparison of the charge radius hR2
ci with

experiment data and lattice QCD simulations

In Fig. 15, the 1
2
þ baryon octet charge radii calculated

in this work are compared with the experimental data
and lattice QCD results in Refs. [65,66,75–77]. The
black square symbols are experimental values. The red
stars are the flux-tube II model values calculated with the
DMC technique in this work, where the neutron and
proton charge radii are inputs taken from the experi-
mental values [65] and shown with the hollow red stars.
The blue solid circle, purple hollow circle, and yellow
box symbols are from Ref. [75], representing the
quenched QCD, valence sector, and full-QCD extrapo-
lation results respectively. The green solid triangle and
light blue hollow triangle symbols are from Ref. [76],
representing the charge radii from the original extrapo-
lation and the charge radii reconstructed from the sum of
separate quark sector extrapolations. The brown solid
rhombus and pink hollow rhombus are from Ref. [77],
representing charge radii based on a dipole or dipole-like
fit to the extrapolated lattice simulation results respec-
tively. It can be seen from the figure that our results are
consistent with experimental data and lattice QCD
results.

(a) (b)

FIG. 13. (a) Internal angle distribution of quarks in the ΞccðccnÞ and ΞbbðbbnÞ baryon respectively in the AL1 model. (b) 2D wave
function probability distribution of the ΞccðccnÞ and ΞbbðbbnÞ baryon respectively in the AL1 model. Other notations are the same as
those in Fig. 4.

TABLE XII. Masses, root mean square radii, and charge mean square radii R2
c expectation values of the 1

2
þ baryons

with three identical quarks calculated using the factorization formalism with the DMC method. The root mean
square radii

ffiffiffiffiffiffiffiffi
hr2i

p
are averaged for the identical quarks.

Mass [MeV]
ffiffiffiffiffiffiffiffi
hr2i

p
[fm] hR2

ci½e · fm2�
JP ¼ 1

2
þ AL1 FT I FT II AL1 FT I FT II AL1 FT I FT II

nðuddÞ 968 1059 975 0.855 0.837 0.856 −0.116 −0.116 −0.116
pðuudÞ 0.707 0.698 0.707
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In Fig. 16, we compare the charmed-strange baryon
charge radii calculated in this work with the lattice QCD
results in Ref. [68]. Two inputs taken from Ref. [68] are
shown as the hollow red stars. The red solid stars are the
flux-tube II model values calculated with the DMC
technique in this work. The blue circle, green triangle,
and yellow rhombus symbols are from Ref. [68], represent-
ing extrapolations linear and quadratic in the pion mass
squared, and the near-physical-point ensemble a09k81
results. When the mass difference among the constituent
quarks is not large, our result is consistent with theirs. But
for the large mass difference baryons, the difference in
results becomes obvious.

V. DISCUSSION

In the variational method, one has to introduce the trial
wave functions (basis functions). If they are improper, one
could obtain misleading solutions. Unlike the variational
method, no specific basis of wave functions or presumed
clustering behavior of the spatial wave function is intro-
duced in the DMCmethod. However, the wave functions of

the DMC are still not the most general one due to the
coupled-channel scheme and sign problem.
In the present DMC method in Sec. II D, one has to

assign several orthogonal channels of the discrete quantum
numbers before simulation. One lesson from the baryon
calculation (especially the nucleon mass) with DMC is that,
the pre-assignment of the channels could prevent us from
getting the real ground state. In fact, this flaw could appear
in the calculation of the multiquark states, such as the
tetraquark system in Ref. [37] and the hexaquark system
in Ref. [40].
To make this clearer, we take the ccc̄c̄ system with

JPC ¼ 0þþ as an example. The mass of this state in
Ref. [37] using the DMC method is 6351 MeV, which is

FIG. 14. The r2ρðrÞ distributions for the JP ¼ 1
2
þ baryons with

three identical quarks.

TABLE XIII. Masses of the 1
2
þ baryons with three identical

quarks in MeV using different wave functions.

AL1

DMC VAR Faddeev FT I FT II Exp

jNð123Þifac 968 966 933 1059 975 939
jC1i � � � 944 � � � � � �
jC3i � � � 931 � � � � � �
jC1i, jC3i � � � 930 � � � � � �
jC1i, jC2i, jC3i, jC4i � � � 930 � � � � � �
jB1i, jB2i, jB3i, jB4i � � � 930 � � � � � �
jA1i, jA2i, jA3i, jA4i 930 930 1019 936

FIG. 15. hR2
ci for the 1

2
þ baryon octet in this work compared

with experimental data and lattice QCD results [65,66,75–77].

FIG. 16. hR2
ci for the charmed-strange baryons in this work

compared with the lattice QCD results in Ref. [68].
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much higher than the ηcηc threshold 6010 MeV. In this
calculation, the authors assumed the symmetric spatial
wave function and introduced two discrete channels

jT1i ¼ ½ð12Þ0s
3̄c
ð34Þ0s3c �

0s

1c
ψSS
1 ð12; 34Þ; ð41Þ

jT2i ¼ ½ð12Þ1s6cð34Þ
1s
6̄c
�0s
1c
ψSS
2 ð12; 34Þ; ð42Þ

where labels 1, 2 are for c and 3, 4 for c̄. We repeated this
calculation in the same channels and got the same result. In
Fig. 17, the green line shows the change of the energy ER
with the increasing steps, which stabilizes at 6351 MeV.
This result is close to that obtained using the variational
method in Ref. [38]. However, the variational method
calculation has been improved in Ref. [48], where the
extra dimeson channels are included,

jTai ¼ ½ð13Þ0s1cð24Þ
0s
1c
�0s
1c
ψSSð13; 24Þ; ð43Þ

jTbi ¼ ½ð14Þ0s1cð23Þ
0s
1c
�0s
1c
ψSSð14; 23Þ; ð44Þ

The updated results in the variational method show that the
energy levels above the dimeson threshold in Ref. [38] will
become either the continuum spectrum (scattering states) or
resonances (obtained from complex-scaling method).
Therefore, we can conjecture that the jT1i and jT2i wave
functions are not general enough to get the ηcηc state
threshold (which is actually the ground state) even if we
adopt DMC.
Apparently, it is very easy to reproduce the ηcηc thresh-

old either in the DMC method or variational method if we
only include the jTai or jTbi channel. After the single
channel calculation, we can mix the degenerate jTai and
jTbi states to satisfy the Pauli principle and only one

mixing state survives. In other words, we can get the real
ground state (ηcηc threshold) in the DMC method by
choosing the channels properly.
If we insist on choosing the diquark basis in the DMC

method, we should include the jT3i and jT4i channels in
addition to the jT1i and jT2i channels,

jT3i ¼ ½ð12Þ1s
3̄c
ð34Þ1s3c �

0s

1c
ψAA
3 ð12; 34Þ; ð45Þ

jT4i ¼ ½ð12Þ0s6cð34Þ
0s
6̄c
�0s
1c
ψAA
4 ð12; 34Þ: ð46Þ

In our practical DMC simulation, we do not constrain the
exchange symmetry of the spatial wave function. Instead,
we will symmetrize the math ground state after simulation
to satisfy the Pauli principle. The pink line in Fig. 17 is the
result after adjusting aij in Eq. (12) to minimize fluctua-
tions. The energy ER reaches threshold around 1000 steps.
With these optimal aij values, i.e., aij¼13;24 ¼ 0.62 GeV
and aij≠13;24 ¼ 0.001 GeV, the importance function
Eq. (12) becomes a dimeson form. To avoid the possible
bias of the importance function on the result, another set of
no-clustering aij values, i.e., all aij ¼ 0.2 GeV, are set. Its
result is shown with the blue line in Fig. 17. Since it is not
the optimal set of parameters, the energy stabilizes more
slowly and fluctuates more obviously, but is still very close
to the threshold and well below the green line. That is to
say, starting from four diquark spin-color basis, one will
automatically obtain the dimeson configuration with the
lowest threshold energy, which is hard to achieve in the
variational method in the same basis [78].
Apart from the pre-assignment channels, the sign prob-

lem [51] could also prevent the DMC method from getting
the general wave functions. It occurs when the wave
function of the Fermionic ground state has nodes.
Naively, the walkers can only sample the positive-definite
functions. In this case, the DMC methods will lead to a
lower energy Bosonic state rather than the expected
Fermionic state. When there are multiple channels, this
problem becomes more complex. The scheme used in
Refs. [37,59] that sums over all the spatial wave functions
of each channel alleviates this problem but does not solve it
perfectly. Because the sum F ðR; tÞ may still be negative in
some regions, yet these negative walkers are discarded. Due
to the existence of the sign problem, the wave function
space of the DMC method is limited. Fortunately, in the
simulation of the ccc̄c̄ system with JPC ¼ 0þþ, after we
put all of the four spin-color channels into the calculation
and set the importance function parameters properly, the
quantity F ðR; tÞ behaves positive-definite, thus the thresh-
old value 6010 MeV is reliable.
One should be cautious about the above two flaws of

DMC in the simulation. In fact, some strategies have been
developed to better solve the above problems in the field of
nuclear physics, such as the fixed-node approximation [79]

FIG. 17. Energies of the ccc̄ c̄ system with JPC ¼ 0þþ with
different spin-color configurations and aij values. The green line
shows the change of energy ER with increasing steps using two
antisymmetric spin-color configuration channels. The pink line is
the result using four complete spin-color configuration channels
with optimal aij¼13;24 ¼ 0.62 GeV and aij≠13;24 ¼ 0.001 GeV in
ψT . The blue line shows the result using four complete spin-color
configuration channels with all aij ¼ 0.2 GeV.
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for the sign problem and the auxiliary field diffusion
Monte Carlo [80] to avoid pre-assignment of the channels
by sampling the spin and isospin. In hadronic physics, the
DMC scheme in use is still a relatively simple one at the
present stage. But considering its advantages, especially
when the number of particles increases, it is still a
promising method and worth further development.

VI. SUMMARY

We have made a systematical diffusion Monte Carlo
calculation for all the ground state baryons in a non-
relativistic quark model which contains the Coulomb term
and hyperfine term from the one-gluon exchange inter-
action. We have considered two different confinement
scenarios, i.e., the pairwise (Δ-type) confinement and the
three-body flux-tube (Y-type) confinement respectively.
The mass, mean square radius, and charge mean square
radius are calculated for each baryon. The statistical
uncertainty of the mass reaches less than 1 MeV given
by the jackknife resampling method. And the radial
distribution, angle distribution, and rotation-irrelevant dis-
tribution are also shown. We illustrate a feasible procedure
to calculate the few-quark spectrum including the few-body
confinement force which is favored by the lattice QCD
simulations. The procedure could be easily extended to
calculate the multiquark states. We get a important cau-
tionary experience when we investigate the nucleon mass.
The DMC method with the pre-assignment of the coupled-
channels gives the real ground states only when the
channels are chosen properly or completely. The DMC
method presumes the wave functions of discrete quantum
numbers, although the spatial wave function is uncon-
strained. With this lesson, we illustrate how to obtain the
real ground state (the ηcηc threshold rather than an above-
threshold energy in Ref. [37]) of the c̄c̄cc with JPC ¼ 0þþ.
We use the AL1 model in the Δ-type confinement

scenario and two flux-tube models in Y-type scenario.
Our results show that the differences between the pairwise
confinement and three-body confinement could only be
neglected when the tension strength of the flux tube is
finely determined. In the flux-tube I we choose a universal
tension strength for the mesons and baryons σY ¼ σQQ̄. In
the flux-tube II we fix the σY ¼ 0.9204σQQ̄ from the Ωsss

experimental mass. Compared with experimental results,
the flux-tube II and AL1 model are in good agreement,
while the naive parametrized flux-tube I model overesti-
mates the mass and underestimates the sizes. We prefer the
tension parameter in the flux-tube II, which also coincides
with the best fit of the lattice QCD result σY ¼ 0.9355σQQ̄,
in Ref. [26].
We compare the charge radii calculated in this work with

the experimental data and lattice QCD results. When the
mass difference among the constituent quarks is not large,
our results are consistent with theirs.

The baryon system is a relatively simple three body
system, in which both the variational method and DMC
method achieve a similar accuracy. But when the number of
particles increases, the advantages of DMC will appear.
The DMC method avoids the exponentially increasing
number of the basis and the complicated integral related to
the few-body force in the variational method. Meanwhile,
the DMC method is easily parallelized to carry out high-
performance simulations [31,32]. Considering the above
advantages, it is worth further developing the application of
the DMC method in the hadronic systems. We shall
investigate the tetraquark bound states and resonances in
the flux-tube confinement potentials via DMC in the near
future.
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APPENDIX A: CONVECTION-DIFFUSION
EQUATION

Equation (5) is the analog of the convection-diffusion
equation,

∂cðr; tÞ
∂t

¼ D∇2c −∇ · ðvcÞ þ Rðr; tÞ; ðA1Þ

where, for example, c is the concentration field of the salt in
a river. v is the velocity field of the river water. D is the
diffusion coefficient of salt in the water. Rðr; tÞ describes
sources or sinks, where the salt can be generated or
absorbed, respectively. Obviously, the three terms of the
right-hand side correspond to the random diffusion of salt,
driven effect by the moving water, and source or sink effect,
respectively.

APPENDIX B: STATISTICAL
UNCERTAINTY ANALYSIS

There exist correlations among results from adjacent
steps. We divide a set of data Xi with number MR into R
blocks with block sizeM. We denote the block mean values

as Xð1Þ
i . If M is large enough, these new variables Xð1Þ

i
become uncorrelated. One way to test whether M is large
enough is by making a further blocking operation with
block size K and get the block mean values
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Xð2Þ
i ¼ 1

K

XK
j¼1

Xð1Þ
ði−1ÞKþj: ðB1Þ

When Xð1Þ
i is uncorrelated, the variance of Xð2Þ

i reads

Var½Xð2Þ
i � ¼ Var

�
1

K

XK
j¼1

Xð1Þ
ði−1ÞKþj

�
¼ 1

K
Var½Xð1Þ

i �; ðB2Þ

where the variance of Xð2Þ
i can be estimated by

Var½Xð2Þ
i � ¼ 1

K − 1

XK
i¼1

�
Xð2Þ
i − Xð2Þ

�
2

; ðB3Þ

with Xð2Þ ¼ 1
K

P
K
j¼1 X

ð2Þ
j . The value δ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Xð2Þ

i �
R=K

r
should

be approximately a constant, because the Var½Xð1Þ
i � is fixed.

To determine the block size making Xð1Þ
i uncorrelated,

we take Ω−ðsssÞ as an example and get 150000 stable
steps. When we setM ¼ 500, the change of value δ with K
is shown in Fig. 18. This nearly flat behavior means that the

Xð1Þ
i have become uncorrelated when taking the size as

500 steps.
The simulations in the main text include 5000 stable

steps. We divide them into R ¼ 10 blocks and calculate the

block averages Xð1Þ
i . The uncertainty of the total mean value

X̄ ¼ Xð1Þ
i ¼ 1

n

P
n
i Xi will be

σ½X̄� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

RðR − 1Þ
XR
i

ðXð1Þ
i − X̄Þ2

vuut ðB4Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R − 1

R

XR
i

ðX̄ðiÞjack − X̄jackÞ2
vuut : ðB5Þ

Equation (B5) is from the jackknife resampling method,

where X̄ðiÞjack ¼ 1
R−1

P
R
j≠i X

ð1Þ
j , X̄jack ¼ X̄. The calculated

uncertainty of the Ω−ðsssÞ mass is 0.3 MeV. For other
systems, the uncertainties are all within 1 MeV.

APPENDIX C: SIZE CONTRIBUTION TO
THE CHARGE RADIUS

The charge form factor of the baryon is [70]

Fðq2Þ ¼
ffiffiffiffiffiffi
4π

p
hΨj 1

4π

Z
dΩq · Y00ðq̂ÞρðqÞjΨi; ðC1Þ

where q indicates the momentum transfer, jΨi represents
the total baryon wave function, and ρðqÞ is the charge
density. The baryon charge radius can be obtained from this
charge form factor with

R2
c ¼ −6

∂

∂q2
Fðq2Þjq2¼0: ðC2Þ

Here we only consider the contribution from the one-body
operator. Thus the total result can be obtained by summing
over the single quark contribution,

ρðqÞ ¼
X3
i¼1

ρiðqÞ: ðC3Þ

When regarding the quarks as the pointlike particles, the
charge density ρ0iðqÞ will be

ρ0iðqÞ ¼ eieiq·ri ; ðC4Þ
where ei and ri indicate the charge and coordinate of the ith
quark. In this way Eq. (C2) becomes

R2
c0 ¼ −6

X3
i

∂

∂q2
F0iðq2Þjq2¼0; ðC5Þ

with

F0iðq2Þ ¼
ffiffiffiffiffiffi
4π

p
hΨj 1

4π

Z
dΩq · Y00ðq̂Þρ0iðqÞjΨi: ðC6Þ

In the coordinate space, the contribution reads

R2
c0 ¼ hΨj

X3
i¼1

eiðri − RCMÞ2jΨi: ðC7Þ

However, if the electromagnetic size of the quark is
introduced, the qiqiγ� interaction vertex will change from
ieiγμ to ieifiðqÞγμ with fið0Þ ¼ 1, where eifiðqÞ is the
electric form factor of the constituent quark. Thus the
charge density becomes

ρiðqÞ ¼ eifiðqÞeiq·ri ; ðC8Þ
and the charge radius turns intoFIG. 18. δ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Xð2Þ

i �
R=K

r
value changes with K when M ¼ 500.
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R2
c ¼ −6

X3
i

∂F0iðq2Þ
∂q2

����
q2¼0

fið0Þ − 6
X3
i

F0ið0Þ
∂fiðqÞ
∂q2

����
q2¼0

¼ −6
X3
i

∂F0iðq2Þ
∂q2

����
q2¼0

− 6
X3
i

ei
∂fiðqÞ
∂q2

����
q2¼0

¼ R2
c0 þ

X3
i

Rqi
c : ðC9Þ

The first term corresponds to Eq. (34), and the second term contribution is extracted from experiments and lattice QCD
calculations as described in Sec. IV.
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