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The decay rates of the XYZ exotics discovered in the heavy quarkonium sector are crucial observables
for identifying the nature of these states. Based on the framework of nonrelativistic effective field theories,
we calculate the rates of semi-inclusive decays of heavy quarkonium hybrids into conventional heavy
quarkonia. We compute them at leading and subleading power in the inverse of the heavy-quark mass,
extending and updating previous results. We compare our predictions with experimental data of inclusive
decay rates for candidates of heavy quarkonium hybrids.
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I. INTRODUCTION

Hadrons, as bound states of quarks and gluons, have long
been amajor arena for testing our understanding of the strong
interactions. Traditionally, in the quark model [1,2], the
hadrons were classified into mesons, which are bound states
of a quark-antiquark pair, or baryons, which are bound states
of three quarks. The meson-baryon paradigm classifies
successfully all hadrons discovered before 2003. Besides
the conventional hadrons, the quarkmodel also predicted the
possibilities of tetraquarks (four-quark states) and penta-
quarks (five-quark states). With the advent of quantum
chromodynamics (QCD), the color degrees of freedom
opened up even more possibilities such as hybrids, which
are hadrons with gluonic excitations, and glueballs, which
are bound states of gluons. Hadrons that fall outside the

meson-baryon paradigm are known as exotic hadrons. The
so-calledXYZ states1 are candidates for exotic hadrons in the
heavy quarkonium sector, containing a heavy quark and
antiquark pair. They are exotic because either their masses do
not fit the usual heavy quarkonium spectra, or have unex-
pected decaymodes if interpreted as conventional quarkonia,
or have exotic quantum numbers such as the charged Zc and
Zb states. In 2003, the Belle experiment observed the first
exotic state Xð3872Þ [5]. Since then, dozens of new XYZ
states have been observed by different experimental groups:
B-factories (BABAR, Belle, and CLEO), τ-charm facilities
(CLEO-c and BESIII), and also proton-(anti)proton colliders
(CDF, D0, LHCb, ATLAS, and CMS) [see Refs. [3,6] for
details on experimental observations].
Many interpretations have been proposed for the nature

of the XYZ states: quarkonium hybrids, compact tetra-
quarks, diquark-diquarks, heavy meson molecules, and
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1These states have been termed XYZ in the discovery
publications, without any special criterion, apart from Y being
used for exotics with vector quantum numbers JPC ¼ 1−−.
Meanwhile the Particle Data Group (PDG) proposed a new
naming scheme that extends the one used for ordinary quarkonia,
in which the new names carry information on the JPC quantum
numbers, see [3] and the PDG [4] for more information. Since the
situation is still in evolution, in this paper we use both naming
schemes.
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hadroquarkonia (see e.g., Refs. [3,6,7] for some compre-
hensive reviews). However, no single interpretation can
explain the entire spectrum of the XYZ states. Since some
of the new exotic states were discovered from their decays
into traditional quarkonia, theoretical studies of these decay
modes could potentially provide a mean to unveil the nature
of the XYZ states.
For heavy hybrids, an effective field theory description

called the Born-Oppenheimer effective field theory
(BOEFT) has been proposed [8–11]. A heavy hybrid state
consists of a heavy-quark-antiquark pair in a color-octet
configuration bound with gluons. The nonrelativistic
motion of the heavy quark and antiquark evolves with a
timescale that is much larger than the typical timescale of
the nonperturbative gluon dynamics, 1=ΛQCD. This leads to
a scenario that resembles the Born-Oppenheimer approxi-
mation in diatomic molecules [12–17]. The BOEFT takes
advantage of this scale separation to construct a systematic
description of the heavy hybrid multiplet spectra [8] to be
compared eventually with the masses and the quantum
numbers of the observed neutral exotic states. Effects of
the spin have been introduced in the BOEFT through spin-
dependent potentials finding a contribution already at order
1=mQ [9,18–20], wheremQ is the heavy-quark mass, which
is at variance with the spin structure of the potential in
heavy quarkonium, where spin-dependent effects start at
order 1=m2

Q. This hints to a possible stronger breaking of
the heavy-quark spin symmetry in observables like spin
multiplets and decays.
In this work, we use the BOEFT to compute hybrid

decay rates. In particular, our objective is to study the
inclusive transition rate of a heavy quarkonium hybrid Hm
to a quarkonium Qn, i.e., Hm → Qn þ X, where X denotes
any final state made of light particles, under the assumption
that the energy gap between the hybrid and the quarkonium
state is much larger than ΛQCD. Some of these decays
have been addressed in Refs. [9,21]. We adopt a similar
approach, emphasizing the various assumptions entering
the computation, and extending and updating the analysis
to states that respect the hierarchy of energy scales that lies
at the basis of the whole effective field theory (EFT)
construction. We obtain decay rates in the charmonium and
bottomonium hybrid sector and compare with existing
experimental data. As we only calculate decays to quarko-
nium, our results provide lower bounds for the total widths
of heavy hybrids.
The paper is organized as follows. In Sec. II, we fix the

quarkonium potential on the quarkonium energy levels and
the hybrid potentials on lattice QCD data. We also write for
hybrid states the coupled Schrödinger equations that follow
from the BOEFT. In Sec. III, we compute the imaginary
parts of the hybrid potentials and the hybrid-to-quarkonium
decay rates. In Sec. IV, we present an updated comparison
of the obtained hybrid multiplets with experimental can-
didates, report our results for the hybrid-to-quarkonium

decay rates, and compare with experimental data. In Sec. V,
we summarize and conclude.

II. SPECTRA

The QCD static energies associated to a QQ̄ pair
(quarkonium) and to a QQ̄ pair bound to gluons (hybrid)
can be classified according to the quantum numbers of the
cylindrical symmetry groupD∞h similarly to what happens
for a diatomic molecule in QED. A remarkable feature is
that in the short-distance region the static energies can be
organized in quasidegenerate multiplets corresponding to
the gluelump spectrum that bears the spherical symmetry
Oð3Þ ⊗ C [22,23].
The static energies are nonperturbative matrix elements

defined by some generalized Wilson loops, which have
been calculated on the lattice for the case of the pure SU(3)
gauge theory [13,24–27]. A tower of states can be asso-
ciated to each of these energies by solving the correspond-
ing Schrödinger equation(s). In what follows, concerning
the hybrids, we focus only on the two lowest static energies
Πu and Σ−

u that are degenerate at short distance. We ignore
mixing with states built out of higher static energies; these
are separated by a gap of at least 400 MeV, which is of the
order of ΛQCD, from the static energies Πu and Σ−

u .
The relevant energy scales to describe quarkonium and

hybrid states made of heavy (nonrelativistic) quarks are the
scale mQ, the scale mQv, which is the typical momentum
transfer between the heavy quarks, where v ≪ 1 is the
velocity of the heavy quark in the bound state, the
scale mQv2, which is the typical heavy-quark-antiquark
binding energy, and ΛQCD, which is the scale of non-
perturbative physics. Such scales are hierarchically
ordered, mQ ≫ mQv ≫ mQv2, and allow us to introduce
a hierarchy of nonrelativistic effective field theories [28]
that turn out to be instrumental to computing observables.
Nonrelativistic QCD (NRQCD) follows from QCD by

integrating out modes associated with the bottom or the
charm quark mass [29–31]. For quarkonium, integrating
out the scale of the momentum transfer mQv leads either to
weakly coupled potential NRQCD (pNRQCD) [23,32] if
mQv ≫ ΛQCD, or strongly coupled pNRQCD [23,33,34] if
mQv ∼ ΛQCD. Contributions from gluons of energy and
momentum of order mQv are encoded in the pNRQCD
potentials. Hybrids are rather extended objects. For this
reason we assume that gluons responsible for their binding
satisfy the strongly coupled hierarchy mQv≳ ΛQCD. The
assumption also guarantees that mQv2 ≪ ΛQCD, which
prevents, at least parametrically, mixing between hybrid
states separated by a gap of order ΛQCD and enables the
Born-Oppenheimer approximation to work. We look at
hybrid states that are excitations of the lowest-lying static
energies Πu and Σ−

u . We need to consider both because they
are degenerate in the short-distance limit, which breaks the
condition mQv2 ≪ ΛQCD for the associated hybrid states.
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The hybrid states associated to the static energies Πu and
Σ−
u mix and the corresponding equations of motion are a set

of coupled Schrödinger equations [8]. Higher static ener-
gies are separated by a gap of order ΛQCD from the static
energies Πu and Σ−

u , and their modes are integrated out
when integrating out gluons of energy or momentum of
order ΛQCD. Integrating out gluons of energy or momentum
of order ΛQCD or larger from NRQCD and keeping
quarkonium and hybrid states associated to the static

energies Πu and Σ−
u as degrees of freedom leads to an

EFT that may be understood as an extension of strongly
coupled pNRQCD to quarkonium hybrids. This EFT is
BOEFT, whose Lagrangian reads [8–11]

LBOEFT ¼ LΨ þ LΨκλ
þ Lmixing; ð2:1Þ

with

LΨ ¼
Z

d3R
Z

d3rTr

�
Ψ†ðr;R; tÞ

�
i∂t þ

∇2
r

mQ
− VΨðrÞ

�
Ψðr;R; tÞ

�
; ð2:2Þ

LΨκλ
¼

Z
d3R

Z
d3r

X
κλλ0

Tr

�
Ψ†

κλðr;R; tÞ
�
i∂t − Vκλλ0 ðrÞ þ Pi†

κλ

∇2
r

mQ
Pi
κλ0

�
Ψκλ0 ðr;R; tÞ

�
; ð2:3Þ

Lmixing ¼ −
Z

d3R
Z

d3r
X
κλ

Tr½Ψ†Vmix
κλ Ψκλ þ H:c:�; ð2:4Þ

where the trace is over the spin indices. The fields Ψ and
Ψκλ denote the quarkonium and the hybrid fields, respec-
tively. They are functions of the relative coordinate
r≡ x1 − x2, and the center of mass coordinate R≡
ðx1 þ x2Þ=2 of the QQ̄ pair, where x1 and x2 are the space
locations of the quark and antiquark. The label κ ¼ KPC (K
is the angular momentum) denotes the quantum numbers
of the light degrees of freedom (LDF). The projection
vectors Pi

κλ (i is the vector or spin index) project to an
eigenstate of K · r̂ with eigenvalue λ ¼ −K;…; 0;…; K,
fixing theD∞h quantum numbers. The quarkonium and the
hybrid potentials denoted in Eqs. (2.2) and (2.3) by VΨ and
Vκλλ0 , respectively, can be organized as expansions in
1=mQ,

VΨ ¼ Vð0Þ
Ψ ðrÞ þ Vð1Þ

Ψ ðrÞ
mQ

þ…; ð2:5Þ

Vκλλ0 ðrÞ≡ Pi†
κλV

ij
κ ðrÞPj

κλ0

¼ Vð0Þ
κλ ðrÞδλλ0 þ

Vð1Þ
κλλ0 ðrÞ
mQ

þ…; ð2:6Þ

where Vð0Þ
Ψ ðrÞ and Vð0Þ

κλ ðrÞ are the quarkonium and
the hybrid static potentials. They are independent of the
heavy quark spins and may be identified with the static

energies computed in lattice QCD: Vð0Þ
Ψ ðrÞ ¼ EΣþ

g
ðrÞ,

Vð0Þ
10 ðrÞ ¼ EΣ−

u
ðrÞ, and Vð0Þ

1�1ðrÞ ¼ EΠu
ðrÞ. The effective

potentials may also contain imaginary parts accounting
for the quarkonium and hybrid decays and transitions. The

imaginary parts affecting Vκλλ0 and coming from hybrid to
quarkonium transitions will be determined in Sec. III. The
hybrid-quarkonium mixing potential Vmix

κλ in Eq. (2.4) is of
order 1=mQ and depends on the spin of the heavy quark and
the heavy antiquark. In the current work, we ignore the
effect from mixing, and therefore set Vmix

κλ ¼ 0 (see Ref. [9]
for details on the mixing).
For quarkonium, the quantum numbers of the LDF are

κ ¼ 0þþ, which implies a trivial form of the projection
vector, P00 ¼ 1. For low-lying hybrid states that are
excitations of the static energies Πu and Σ−

u , the quantum
numbers of the LDF are κ ¼ 1þ−. The projection vectors
Pi
κλ ≡ Pi

1λ read

Pi
10 ¼ r̂i; Pi

1�1 ¼ r̂i� ≡ ðθ̂i � iϕ̂iÞ=
ffiffiffi
2

p
; ð2:7Þ

where r̂, θ̂, and ϕ̂ are the spherical unit vectors.
In the following, Secs. II A and II B, we compute the

quarkonium and hybrid spectra from the static quarkonium
and hybrid potentials. This allows us to determine the
quarkonium and hybrid wave functions and masses. They
will be necessary in Sec. III where we compute the
imaginary part of the hybrid potential coming from hybrid
to quarkonium transitions and the corresponding transi-
tion rates.

A. Quarkonium

Quarkonium states ðQQ̄Þ are color-singlet bound states
of aQQ̄ pair with static potential EΣþ

g
ðrÞ. The leading order

equation of motion for the field Ψðr;R ¼ 0Þ that follows
from Eq. (2.2) is the Schrödinger equation:
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�
−
∇2

mQ
þ EΣþ

g
ðrÞ

�
ΦQQ̄

ðnÞ ðrÞ ¼ EQQ̄
n ΦQQ̄

ðnÞ ðrÞ; ð2:8Þ

where EQQ̄
n is the quarkonium energy and ΦQQ̄

ðnÞ ðrÞ denotes
the quarkonium wave function, which is related to the field
operator Ψðr;R ¼ 0Þ by

ΦQQ̄
ðnÞ ðrÞ ¼ h0jΨðr;R ¼ 0ÞjQni; ð2:9Þ

where jQni is the quarkonium state with quantum numbers
n≡ fn; j; mj; l; sg. Including the spin and angular depend-
ence, the complete quarkonium wave function is given by

ΦQQ̄
ðnÞ ðrÞ≡ΦQQ̄

ðn;j;mj;l;sÞðrÞ

¼
X
ml;ms

C
jmj

lmlsms

RnlðrÞ
r

Yml
l ðθ;ϕÞχsms

: ð2:10Þ

If we call LQQ̄ the QQ̄ pair orbital angular momentum,
S ¼ S1 þ S2 the QQ̄ pair total spin, and J ¼ LQQ̄ þ S the
total angular momentum, the quantum numbers are as
follows: n is the principal quantum number, lðlþ 1Þ is the
eigenvalue of L2

QQ̄, jðjþ 1Þ and mj are the eigenvalues of

J2 and J3, respectively, and sðsþ 1Þ is the eigenvalue of
S2. The functions χsms

are the spin wave functions and

C
jmj

lmlsms
are suitable Clebsch-Gordan coefficients. The

functions RnlðrÞ=r are the radial wave functions.
The shape of the static potential EΣþ

g
ðrÞ computed in

lattice QCD is well described by a Cornell potential:

EΣþ
g
ðrÞ ¼ −

κg
r
þ σgrþ EQ

g : ð2:11Þ

The parameters κg and the string tension σg fitted to the
lattice data give [25]:

κg ¼ 0.489; σg ¼ 0.187 GeV2: ð2:12Þ

For computing the quarkonium spectrum, we use the
renormalon subtracted (RS) charm and bottom masses
[24,35] defined at the renormalon subtraction scale
νf ¼ 1 GeV: mRS

c ¼ 1.477 GeV and mRS
b ¼ 4.863 GeV,

which are the values used in Ref. [8]. Following Ref. [9],
once the quark masses have been assigned, the values of the
offset EQ

g in Eq. (2.11) are tuned separately for charmonium
and bottomonium states to best agree with the experimental
spin-average masses [4]:

Ec
g ¼ −0.254 GeV; Eb

g ¼ −0.195 GeV: ð2:13Þ

The numerical solutions of the Schrödinger equation (2.8)
for some S-wave and P-wave charmonia and bottomonia

below threshold are shown in Table I. The corresponding
radial wave functions RnlðrÞ are shown in Appendix A.

B. Hybrids

Hybrids ðQQ̄gÞ are exotic hadrons that are color-singlet
bound states of a color-octet QQ̄ pair coupled to gluons.
We focus here on the lowest-lying hybrid states that can be
built from the Σ−

u and Πu static energies corresponding to
LDF with quantum numbers κ ¼ 1þ−; from now on we
drop the subscript κ ¼ 1þ− if not necessary. For κ ¼ 1þ−

three values of λ (0 and�1) are possible; for each value of λ
we can define a wave function in terms of the field operator
Ψλðr;R ¼ 0Þ acting on a hybrid state jHmi with quantum
numbers m≡ fm; j;mj; l; sg:

ΨðmÞ
λ ðrÞ ¼ h0jΨλðr;R ¼ 0ÞjHmi: ð2:14Þ

Hence, we can write in the hybrid rest frame

jHmi ¼
Z

d3r
X
λ

ΨðmÞ
λ ðrÞΨ†

λðr;R ¼ 0Þj0i: ð2:15Þ

The quantum numbers are defined in the following way: m
is the principle quantum number, lðlþ 1Þ is the eigenvalue
of L2, where L ¼ LQQ̄ þ K is the sum of the orbital angular
momentum of the QQ̄ pair and the angular momentum of
the LDF, sðsþ 1Þ is the eigenvalue of S2, where S ¼
S1 þ S2 is the spin of the QQ̄ pair, and jðjþ 1Þ and mj are
the eigenvalues of J2 and J3 respectively, where J ¼ Lþ S
is the total angular momentum.
The wave functions ΨðmÞ

λ are eigenfunctions of K · r̂ but

not of parity. The eigenfunctions of parity are called ΨðmÞ
Σ

and ΨðmÞ
�Π and are linear combinations of ΨðmÞ

λ . The wave

function ΨðmÞ
Σ transforms as the spherical harmonics under

parity, whereas ΨðmÞ
∓Π transform with the same or with the

TABLE I. Spin-averaged masses (in MeV) of S- and P-wave
charmonium and bottomonium states below threshold computed
using the static potential in Eq. (2.11). The quarkonium mass is

given by MQQ̄ ¼ 2mQ þ EQQ̄
n with Q ¼ c, b. We use the charm

and bottom masses: mRS
c ¼ 1.477 GeV and mRS

b ¼ 4.863 GeV.
Eexp denotes the spin-averaged experimental masses [4]. We
show only states relevant for this work.

nL Mcc̄ Eexp Mbb̄ Eexp

1S 3068 3068 9442 9445
2S 3678 3674 10009 10017
3S 10356 10355

1P 3494 3525 9908 9900
2P 10265 10260
3P 10554
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opposite parity of ΨðmÞ
Σ . The parity eigenfunctions can be

written as2

ΨðmÞ
Σ ðrÞ ¼

X
ml;ms

Cmlms
jmjls

v0l;ml
r̂ψ ðmÞ

Σ ðrÞχsms
; ð2:16Þ

ΨðmÞ
�ΠðrÞ ¼

X
ml;ms

Cmlms
jmjlsffiffiffi
2

p ðv1l;ml
r̂þ � v−1l;ml

r̂−Þψ ðmÞ
�ΠðrÞχsms

;

ð2:17Þ

where the functions χsms
are the spin wave functions and

Cmlms
jmjls

are suitable Clebsch-Gordan coefficients. The angu-

lar eigenfunctions vλl;ml
are generalizations of the spherical

harmonics for systems with cylindrical symmetry [36].
Note that the hybrid wave functions in Eqs. (2.16) and

(2.17) are vector wave functions. The functions ψ ðmÞ
Σ and

ψ ðmÞ
�Π are radial wave functions. Their equations may be

derived from the equations of motion of the BOEFT
Lagrangian (2.3). Since the static energies EΣ−

u
and EΠu

mix in the short distance, the equations are a set of coupled
Schrödinger equations. Ignoring all corrections to the
potentials but the static energies EΣ−

u
and EΠu

, they read [8]

�
−

1

mQr2
∂rr2∂rþ

1

mQr2

�
lðlþ1Þþ2 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þp

lðlþ1Þ

�

þ
�
EΣ−

u
0

0 EΠu

���
ψ ðmÞ
Σ

ψ ðmÞ
−Π

�
¼EQQ̄g

m

�
ψ ðmÞ
Σ

ψ ðmÞ
−Π

�
;

�
−

1

mQr2
∂rr2∂rþ

lðlþ1Þ
mQr2

þEΠu

�
ψ ðmÞ
þΠ ¼EQQ̄g

m ψ ðmÞ
þΠ ; ð2:18Þ

where EQQ̄g
m is the hybrid energy.

The set of Schrödinger equations (2.18) has no spin
dependence, so all the different spin configurations appear
as degenerate multiplets. The JPC quantum numbers are
fl��; ðl − 1Þ�∓; l�∓; ðlþ 1Þ�∓g, where the first entry
corresponds to the spin-0 combination and the next three
entries to the spin-1 combinations. For l ¼ 0, there is only
one spin-1 combination as well as only one parity or charge
conjugation state. In Table II, we show the first five

degenerate multiplets. The wave functions ΨðmÞ
Σ;−ΠðrÞ

describe the hybrid multiplets H1, H3, and H4, while

the wave function ΨðmÞ
þΠðrÞ describes the hybrid multiplets

H2 and H5.
We split the static energies EΣ−

u ;Πu
appearing in (2.18)

into a short-distance part and a long-distance part [8]:

EΣ−
u ;Πu

ðrÞ ¼
�
VRS
o ðνfÞ þΛRSðνfÞ þ bΣ;Πr2; r < 0.25 fm

VΣ;ΠðrÞ; r > 0.25 fm
:

ð2:19Þ

For the short-distance part ðr < 0.25 fmÞ, we use the RS
octet potential VRS

o ðrÞ up to order α3s in perturbation theory3
and the RS gluelump mass ΛRS ¼ 0.87 GeV at the renor-
malon subtraction scale νf ¼ 1 GeV [24,35,37]. For the
long-distance part VΣ;ΠðrÞ ðr > 0.25 fmÞ, we use [8]

VΣ;ΠðrÞ ¼
aΣ;Π1

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aΣ;Π2 r2 þ aΣ;Π3

q
þ aΣ;Π4 ; ð2:20Þ

which smoothly interpolates between the 1=r short-distance
behavior and the linear long-distance behavior. The para-
meters bΣ;Π in Eq. (2.19), and aΣ;Π1 , aΣ;Π2 , aΣ;Π3 and aΣ;Π4 in
Eq. (2.20) depend on the quantum numbersΣ−

u andΠu. They
are determined by performing a fit to the lattice data of
Refs. [24,25] and demanding that the short-range and the
long-range pieces in Eq. (2.19) are continuous up to the first
derivatives (see Ref. [8] for details). One obtains

aΣ1 ¼ 0.000 GeVfm; aΣ2 ¼ 1.543 GeV2=fm2;

aΣ3 ¼ 0.599 GeV2; aΣ4 ¼ 0.154 GeV;

aΠ1 ¼ 0.023 GeVfm; aΠ2 ¼ 2.716 GeV2=fm2;

aΠ3 ¼ 11.091 GeV2; aΠ4 ¼ −2.536 GeV;

bΣ ¼ 1.246 GeV=fm2; bΠ ¼ 0.000 GeV=fm2: ð2:21Þ

Weuse for the charm and bottommasses the sameRSmasses
used in Sec. II A. The results for the hybrid spectrum are
shown in Table III and the wave functions are shown in
Appendix B. The masses for the lowest multiplets have been
computed first in [8]; our results agreewith and extend those.

TABLE II. The low-lying hybrid multiplets coming from the
Σ−
u and Πu hybrid static energies with JPC quantum numbers

(l ≤ 2). The multiplets are ordered by increasing value of the
orbital angular momentum. In Ref. [9], the multipletsH1,H2,H3,
H4, and H5 are named ðs=dÞ1, p1, p0, ðp=fÞ2, and d2,
respectively.

Hybrid multiplet l JPCðs ¼ 0Þ JPCðs ¼ 1Þ K · r̂

H1 1 1−− ð0; 1; 2Þ−þ Σ−
u , Πu

H2 1 1þþ ð0; 1; 2Þþ− Πu
H3 0 0þþ 1þ− Σ−

u
H4 2 2þþ ð1; 2; 3Þþ− Σ−

u , Πu
H5 2 2−− ð1; 2; 3Þ−þ Πu

2Recall that r̂� and r̂ project on states with definite K · r̂; see
Eq. (2.7). Hence, ΨðmÞ

Σ is also an eigenfunction of K · r̂ with
eigenvalue λ ¼ 0.

3The expression of the RS potential can be found in
Appendix B of Ref. [8].
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III. HYBRID-TO-QUARKONIUM WIDTHS

Our aim is to compute the semi-inclusive decay rates
of a quarkonium hybrid Hm decaying into a quarkonium
state Qn: Hm → Qn þ X, where X denotes light hadrons.
The energy transfer in the transition Hm → Qn þ X is

ΔE ¼ EQQ̄g
m − EQQ̄

n , i.e., the mass difference between the
hybrid and the quarkonium. In the BOEFT, we are
integrating out scales up to and including ΛQCD, which
means that also gluons of energy and momentum ΔE
should be integrated out. This leads to an imaginary
contribution to the hybrid potential, which is related to
the semi-inclusive decay width of a hybrid Hm decaying
into any quarkonium Qn by [9]:

X
n

ΓðHm → QnÞ ¼ −2ImhHmjVjHmi; ð3:1Þ

ImV is the imaginary part of the hybrid potential defined in
(2.3). The exclusive decay widths ΓðHm → QnÞ may be
computed by selecting a suitable decay channel in the right-
hand side of Eq. (3.1).
We neglect in this study mixing with quarkonium;

mixing could however play an important role in the
phenomenology of quarkonium hybrids whose transition
channels are sensibly enhanced or suppressed through the
quarkonium component of the physical state [9]. We restrict
to quarkonium states far below the open-flavor threshold.
Furthermore, we restrict to quarkonium and hybrid states
for which

ΔE ≫ ΛQCD: ð3:2Þ

Finally, we require that the emitted gluon cannot resolve the
quark-antiquark pair distance, i.e., that the matrix element
of the heavy quark-antiquark distance r between the hybrid
state and the quarkonium state is smaller than 1=ΔE,4

jhQnjrjHmijΔE ≪ 1: ð3:3Þ

These conditions, if fulfilled, allow for a treatment of the
transition Hm → Qn in weakly coupled pNRQCD, since
the gluon at the scale ΔE is perturbative [condition (3.2)]
and can be multipole expanded [condition (3.3)]. The
explicit computation of the transition Hm → Qn in the
framework of weakly -coupled pNRQCD is the subject of
the remaining of the section.

A. Weakly coupled pNRQCD

We consider a hybrid decaying into a low-lying quarko-
nium through the emission of a gluon whose energy
satisfies the condition (3.2). The gluon has enough energy
to resolve the heavy quark-antiquark pair in the hybrid and
in the quarkonium, and its color configuration. Therefore
the heavy-quark degrees of freedom at the scale ΔE are
quark-antiquark fields, which can be conveniently cast
into a color-singlet field S and a color-octet field O. They
are normalized in color space as S ¼ S1c=

ffiffiffiffiffiffi
Nc

p
and

O ¼ OaTa=
ffiffiffiffiffiffi
TF

p
, where Nc ¼ 3 is the number of colors

and TF ¼ 1=2 is the normalization of the color matrices.
The quark-antiquark color-singlet and octet fields depend,
in general, on the time t, the relative distance r, and the
center of mass coordinate R of the heavy quark-antiquark
pair. In the short-distance limit, r → 0, and at leading order
in the nonrelativistic expansion, the singlet and octet fields
are related to the quarkonium field Ψ and the hybrid field
Ψκλ in Eqs. (2.2) and (2.3) by

Sðr;R; tÞ → Z1=2
Ψ ðrÞΨðr;R; tÞ; ð3:4Þ

Pi†
κλO

aðr;R; tÞGia
κ ðR; tÞ → Z1=2

κ ðrÞΨκλðr;R; tÞ; ð3:5Þ

where ZΨ and Zκ are normalization factors, and Gia
κ are

gluonic fields that match the quantum numbers of the
hybrid field on the right-hand side of (3.5). For low-lying
hybrids, the LDF quantum numbers are κ ¼ 1þ−; a gluon
field with the same quantum numbers would be the
chromomagnetic field Bia ¼ −ϵijkGjka=2 where Gμνa is
the gluon field strength tensor. The propagators of
weakly interacting quark-antiquark pairs in a color-singlet
and color-octet configuration read in coordinate space
at leading order in the nonrelativistic and coupling
expansions [23]

TABLE III. Masses of charmonium and bottomonium hybrid
states (in MeV) computed using the static potential in Eq. (2.19).
The hybrid mass is given by MQQ̄g ¼ 2mQ þ EQQ̄g

m with Q ¼ c,
b. We use the charm, bottom and 1þ− gluelump masses
mRS

c ¼ 1.477 GeV, mRS
b ¼ 4.863 GeV, and ΛRS ¼ 0.87 GeV,

respectively. For the multiplets H1, H2, and H3, the states with
a prime and a double prime correspond to first and second excited
states.

Multiplet JPC Mcc̄g Mbb̄g

H1

f1−−; ð0; 1; 2Þ−þg
4155 10786

H0
1 4507 10976

H00
1 4812 11172

H2

f1þþ; ð0; 1; 2Þþ−g
4286 10846

H0
2 4667 11060

H00
2 5035 11270

H3

f0þþ; 1þ−g
4590 11065

H0
3 5054 11352

H00
3 5473 11616

H4 f2þþ; ð1; 2; 3Þþ−g 4367 10897

H5 f2−−; ð1; 2; 3Þ−þg 4476 10948

4The matrix element jhQnjrjHmij is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TijðTijÞ†

p
with Tij given in Eq. (3.27).
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h0jSðr;R; tÞS†ðr0;R0; t0Þj0i
¼ θðt − t0Þe−ihsðt−t0Þδ3ðr − r0Þδ3ðR − R0Þ; ð3:6Þ

h0jOaðr;R; tÞOb†ðr0;R0; t0Þj0i
¼ θðt− t0Þe−ihoðt−t0Þϕabðt; t0Þδ3ðr− r0Þδ3ðR−R0Þ; ð3:7Þ

where ϕðt; t0Þ is the adjoint static Wilson line,

ϕðt; t0Þ≡ P exp

�
−ig

Z
t

t0
dt Aadj

0 ðR; tÞ
�
; ð3:8Þ

P stands for path ordering of the color matrices, and hs and
ho are the singlet and octet Hamiltonians, respectively,

hs ¼ −
∇2
r

mQ
þ VsðrÞ; ho ¼ −

∇2
r

mQ
þ VoðrÞ; ð3:9Þ

VsðrÞ ¼ −CFαs=r and VoðrÞ ¼ αs=ð6NcÞ are the leading-
order Coulomb potentials for a color-singlet and a color-
octet state, and CF ¼ ðN2

c − 1Þ=ð2NcÞ ¼ 4=3 the Casimir
of the SU(3) fundamental representation. The potentials
VsðrÞ and VoðrÞ are related to the quarkonium and the
hybrid static energies, EΣþ

g
, EΣ−

u
, and EΠu

, in the short-
distance limit, r → 0, by

EΣþ
g
ðrÞ ¼ VsðrÞ þ bΣþ

g
r2 þ…;

EΣ−
u ;Πu

ðrÞ ¼ VoðrÞ þ Λþ bΣ;Πr2 þ…; ð3:10Þ

where the mass dimension one constant Λ is called the
gluelump mass and it is related to the correlator of the
suitably normalized gluonic field Gia

1þ− in the large time T
limit by

h0jGia
1þ−ðR; T=2ÞϕabðT=2;−T=2ÞGjb

1þ−ðR;−T=2Þj0i
¼ δije−iΛT: ð3:11Þ

The mass dimension three coefficients bΣþ
g
and bΣ;Π are

nonperturbative constants to be determined by fitting the
lattice data of the static energies (for the hybrid case see
Sec. II B). Equation (3.10) makes manifest that the static
potentials Σ−

u and Πu are degenerate at short distances.
We further assume that the gluon emitted in the

Hm → Qn transition is not energetic enough to resolve
the heavy quark-antiquark distance; see condition (3.3).
Under this assumption the gluon field may be multipole
expanded in r and it is just a function of t and R. The
leading-order chromoelectric-dipole and chromomagnetic-
dipole couplings of the gluon with the quark-antiquark pair
are encoded in the Lagrangian LE1 and LM1, respectively,

LE1 ¼
Z

d3R
Z

d3rTrðS†r · gEOþ O†r · gESÞ; ð3:12Þ

LM1¼
Z

d3R

×
Z

d3r
cF
mQ

Tr½S†ðS1−S2Þ ·gBOþO†ðS1−S2Þ ·gBS�:

ð3:13Þ

The trace is over the spin and the color indices, and cF is a
matching coefficient inherited from NRQCD that is 1 at
leading order in αs. The field Eia ¼ Gi0a is the chromo-
electric field. S1 and S2 are the spins of the heavy quark and
heavy antiquark respectively.
The suitable EFT to describe a multipole expanded gluon

field interacting with weakly coupled quark-antiquark
pairs, either through chromoelectric or chromomagnetic
dipole vertices, is weakly coupled pNRQCD [23,28,32,38].
The cut diagram contributing to the Hm → Qn transition
width at one loop in weakly coupled pNRQCD is shown in
Fig. 1; the gluon carries energy ΔE.

B. Matching and transition rates

In order to compute the imaginary part of the hybrid
potential defined in the BOEFT Lagrangian (2.3), we match
the imaginary part of the one-loop two-body Green’s
function of pNRQCDshown inFig. 1with the corresponding
amplitude in the BOEFT. When considering two chromo-
electric-dipole vertices from the Lagrangian (3.12) we obtain
an Oðr2Þ contribution to the potential responsible for spin-
conserving hybrid-to-quarkonium transitions, whereas when
considering two chromomagnetic-dipole vertices from the
Lagrangian (3.13) we obtain an Oð1=m2

QÞ contribution
responsible for spin-flipping hybrid-to-quarkonium transi-
tions. The relative importance of the two processes for
hybrid-to-quarkonium transitions, Hm → Qn, depends on
the relative magnitude of the matrix element jhQnjrjHmij2
with respect to jhQnjHmij2=m2

Q, and on the size of the energy
gap ΔE between the hybrid state and the quarkonium state
that enters the widths with the third power.

FIG. 1. One-loop self-energy diagram in pNRQCD. The gray
blobs represent the hybrid state Hm, and the single and double
lines represent the QQ̄ pair in the singlet and octet states,
respectively. The curly line stands for the gluon field and the
black dots for pNRQCD vertices. The gluonic degrees of freedom
that are part of the hybrid are treated as spectator and are not
displayed here. The vertical line is the cut.
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On the weakly coupled pNRQCD side of the matching,
we consider in the large time, T, limit the gauge-invariant
two-point Green’s function in coordinate space

Iλλ0 ðr;R; r0;R0Þ≡ h0jPi†
λ G

iaðR; T=2ÞOaðr;R; T=2Þ
×Ob†ðr0;R0;−T=2ÞPj

λ0G
jbðR0;−T=2Þj0i;

ð3:14Þ

where Pi
λ are the projection operators given in Eq. (2.7),

and the gluonic operatorsGiaðR; tÞ have been introduced in
Sec. III A; we have dropped again the subscript κ as we
restrict uniquely to κ ¼ 1þ− states. Repeated color indices
a, b and spin indices i, j are summed. The two-point
Green’s function may be expanded in powers of r (multi-
pole expansion) or 1=mQ (nonrelativistic expansion):

Iλλ0 ðr;R; r0;R0Þ ¼ Ið0Þλλ0 ðr;R; r0;R0Þ þ Ið2Þλλ0 ðr;R; r0;R0Þ þ � � � ;
ð3:15Þ

where Ið0Þλλ0 is the leading-order (LO) two-point Green’s

function and Ið2Þλλ0 is the next-to-leading-order (NLO) two-
point Green’s function shown in Fig. 1. The Green’s

function Ið2Þλλ0 develops an imaginary part that is responsible
for spin-conserving transitions if the vertices are chromo-
electric-dipole vertices, and for spin-flipping transitions if
they are chromomagnetic-dipole vertices.
On the BOEFT side of the matching, the two-point

Green’s function is given by the large time limit of

Iλλ0 ðr;R;r0;R0Þ

¼Z1=2ðrÞe−iðVλλ0 ðrÞ−Pi†
λ

∇2r
m Pi

λ0 ÞTZ†1=2ðrÞ1δ3ðr− r0Þδ3ðR−R0Þ;
ð3:16Þ

where 1 is the identity matrix in the spin space of the
QQ̄ pair.

1. Spin-conserving decay rates

From Eqs. (3.7) and (3.11) it follows that the LO two-
point function Ið0Þλλ0 is given in the large time T limit by

Ið0Þλλ0 ðr;R; r0;R0Þ ¼ Pi†
λ e

−iðhoþΛÞTPi
λ01δ

3ðr − r0Þδ3ðR − R0Þ:
ð3:17Þ

The NLO two-point function Ið2Þλλ0 that involves two inser-
tions of the chromoelectric-dipole vertices from the
Lagrangian (3.12) is given in the large time T limit by

Ið2Þλλ0 ðr;R;r0;R0Þ¼−g2
TF

Nc

Z
T=2

−T=2
dt
Z

t

−T=2
dt0Pi†

λ

×
�
e−ihoðT=2−tÞrke−ihsðt−t0Þrle−ihoðt0þT=2Þ

�
Pj
λ0

×h0jGiaðT=2ÞϕabðT=2;tÞEkbðtÞ
×Elcðt0Þϕcdðt0;−T=2ÞGjdð−T=2Þ
× j0i1δ3ðr−r0Þδ3ðR−R0Þ; ð3:18Þ

where we have dropped the space coordinates of the fields.
In order to evaluate the two-point function in Eq. (3.18),

we consider the case of energy and momentum flowing into
the chromoelectric fields to be much larger than ΛQCD,
the typical energy and momentum carried by gluon
fields Gia. In this situation, we approximate the corre-
lator h0jGiaðT=2ÞϕabðT=2; tÞEkbðtÞElcðt0Þϕcdðt0; −T=2Þ×
Gjdð−T=2Þj0i according to Eq. (C1) of Appendix C. The
evaluation simplifies considerably by taking into account
the large time limit. In the large time limit, we can write

Z
T=2

−T=2
dt

Z
t

−T=2
dt0e−ihoðT=2−tÞð� � �Þe−ihoðt0þT=2Þ

¼
�Z

0

−T=2
dt1

Z
Tþ2t1

0

dt2 þ
Z

T=2

0

dt1

Z
T−2t1

0

dt2

�

× e−ihoðT=2−t1−t2=2Þð� � �Þe−ihoðt1−t2=2þT=2Þ

≈ Te−ihoT
Z

∞

0

dt2eihot2=2ð� � �Þeihot2=2; ð3:19Þ

where t1 ≡ ðtþ t0Þ=2, t2 ≡ t − t0 and in last line, after
using the Baker-Hausdorff lemma, we have retained only
the linear term in the large T limit, up to the exponent factor

e−ihoT . The sum of Ið0Þλλ0 and Ið2Þλλ0 gives

Iλλ0 ðr;R; r0;R0Þ ¼ Ið0Þλλ0 ðr;R; r0;R0Þ þ Ið2Þλλ0 ðr;R; r0;R0Þ
¼ Pi†

λ e
−iðhoþΛÞTð1 − iTΔV þ…Þ

× Pi
λ01δ

3ðr − r0Þδ3ðR − R0Þ; ð3:20Þ

where the dots stand for terms that are not linear in T and

ΔVðrÞ ¼ −
ig2

3

TF

Nc

Z
∞

0

dteihot=2rke−ihstrkeihot=2

×
Z

d3k
ð2πÞ3 jkje

−ijkjt: ð3:21Þ

Considering the definition of ho given in (3.9), by equating
Eqs. (3.16) and (3.20) we obtain the matching condition

Vλλ0 ðrÞ ¼ Pi†
λ VoPi

λ0 þ Λþ Pi†
λ ΔVPi

λ0 ; ð3:22Þ

where the sum over the repeated spin index i is implicit.
The form of Vλλ0 agrees with the expression given in
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Eqs. (2.6) and (3.10), if we identify ΔV as a contribution of
Oðr2Þ in the multipole expansion.
Using Eq. (2.15), we can write the spin-conserving

decay rate of the hybrid state jHmi as

Γ ¼ −2ImhHmjΔVjHmi

¼ 2g2

3

TF

Nc
Re

Z
d3r

Z
∞

0

dtΨi†
ðmÞðrÞ

×

�
eihot=2rke−ihstrkeihot=2

Z
d3k
ð2πÞ3 jkje

−ijkjt
�
Ψi

ðmÞðrÞ;

ð3:23Þ

where we have defined

Ψi
ðmÞ ≡

X
λ

Pi
λΨ

ðmÞ
λ ; ΨðmÞ

λ ¼ Pi†
λ Ψi

ðmÞ; ð3:24Þ

i is the vector or spin index. At this point, if we match the
short-distance potentials into the long distance ones,
according to the short-distance expansion of Eq. (3.10),
we may promote the singlet and octet Hamiltonians,
hs and ho, to the LO BOEFT quarkonium Hamiltonian
HΨ ≡ −∇2=mQ þ EΣþ

g
ðrÞ and hybrid HamiltonianHΨ1þ−≡

−∇2=mQ þ EΣ−
u ;Πu

ðrÞ, respectively [9,39], and the decay
rate becomes

Γ ¼ 2g2

3

TF

Nc
Re

Z
d3r

Z
∞

0

dtΨi†
ðmÞðrÞ

�
eiHΨ

1þ− t=2rke−iHΨtrkeiHΨ
1þ− t=2

Z
d3k
ð2πÞ3 jkje

−ijkjt
�
Ψi

ðmÞðrÞ: ð3:25Þ

The equation’s right-hand side makes manifest that the
typical momentum jkj in the integral is of the order of the
energy gap between the hybrid and the quarkonium, which
is the large energy scale ΔE. In the case of energy and
momentum flowing into the chromoelectric fields of order
ΛQCD, we would obtain a contribution to the hybrid
potential still of Oðr2Þ in the multipole expansion but
suppressed by ðΛQCD=ΔEÞ3 relative to ΔV. After using the
completeness relation for the quarkonium eigenfunctions

ΦQQ̄
ðnÞ , we obtain the semi-inclusive decay rate of the process

Hm → Qn þ X for each intermediate quarkonium state Qn,

ΓðHm → QnÞ ¼
4αsðΔEÞTF

3Nc
TijðTijÞ†ΔE3; ð3:26Þ

where ΔE ¼ EQQ̄g
m − EQQ̄

n is the energy difference and

Tij ≡
Z

d3rΨi†
ðmÞðrÞrjΦQQ̄

ðnÞ ðrÞ: ð3:27Þ

We have also made explicit that the natural scale of αs is
ΔE.
The decay rate in Eq. (3.26) has been also derived in

Refs. [9,39]. However, in Ref. [9] only the diagonal matrix
elements Tii were included in the decay rate in Eq. (3.26). If
we decompose Tij as

Tij ¼ T0δ
ij þ Tij

1 þ Tij
2 ; ð3:28Þ

with

T0 ≡ 1

3
Tll; Tij

1 ≡ 1

2
ðTij − TjiÞ;

Tij
2 ≡ 1

2
ðTij þ TjiÞ − δij

3
Tll; ð3:29Þ

then, we see that

TijðTijÞ† ¼ 1

3
TiiðTiiÞ† þ Tij

1 ðTij
1 Þ† þ Tij

2 ðTij
2 Þ†: ð3:30Þ

The result in Ref. [9] is equivalent to setting Tij
1 ¼ Tij

2 ¼ 0

and multiplying the term TiiðTiiÞ†=3 by 3; this leads to a
selection rule that hybrids with L ¼ LQQ̄ do not decay. We
will see that by accounting for the full tensor structure of
the matrix element Tij in Eq. (3.26), also decays of hybrids
with L ¼ LQQ̄ turn out to be possible.
In spin-conserving decays, the spin of theQQ̄ pair in the

hybrid and in the final state are the same: the nonvanishing
of the matrix element (3.27) constrains spin-0 hybrids to
decay into spin-0 final states and spin-1 hybrids to decay
into spin-1 final states. For the spin-1 hybrid states, the
spin-conserving rate in Eq. (3.26) is multiplied by a factor 3
corresponding to the three polarizations of the spin-triplet
final quarkonium state.

2. Spin-flipping decay rates

The chromomagnetic-dipole interaction in the
Lagrangian (3.13) is responsible for spin-flipping decays
of hybrids to quarkonia (spin-0 hybrids decaying to spin-1
quarkonia and vice versa). Spin-flipping transition widths
are, in principle, suppressed by powers of the heavy-quark
mass due to the heavy-quark spin symmetry; however, as
we already remarked, if they turn out to be actually smaller
than spin-conserving transition widths depends on the
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relative size of jhQnjHmij=mQ with respect to jhQnjrjHmij,
which are not related by power counting in an obvious
manner, and on the size of the energy gap between hybrid
state and quarkonium state. The matching of the imaginary
part of the hybrid BOEFT potential goes exactly in the
same way as in the previous section, with the chromo-
electric-dipole term r · E replaced by the chromomagnetic
one ðS1 − S2Þ · B=mQ.

5 The spin-flipping transition rate is
given by Eq. (3.26) with Tij now

Tij ≡ 1

mQ

�Z
d3rΨi†

ðmÞðrÞΦQQ̄
ðnÞ ðrÞ

�
hχHjðSj1 − Sj2ÞjχQi;

ð3:31Þ

where S1 and S2 are the spin vectors of the heavy quark and
heavy antiquark and jχHi and jχQi denote the hybrid and
quarkonium spin states, respectively. The spin-matrix
elements are computed in Appendix D. The expression
for the spin-flipping transition rate agrees with the one
found in Ref. [39].
In the spin-flipping decays, the spin of theQQ̄ pair in the

hybrid and in the final state are different: the nonvanishing
of the matrix element (3.31) constrains spin-0 hybrids to
decay into spin-1 final states and spin-1 hybrids to decay
into spin-0 final states. For the spin-0 hybrid states, the
spin-flipping rate in Eq. (3.26) is multiplied by a factor 3
corresponding to the three polarizations of the spin-triplet
final quarkonium state.

IV. RESULTS AND COMPARISON
WITH EXPERIMENTS

A. Exotic XYZ states and hybrids

The heavy-quark hybrid states are isoscalar neutral mes-
ons.The list ofXYZexotic states that are potential candidates
for heavy-quark hybrids are the neutral heavy-quark mesons
above the open-flavor threshold. An updated list of such
states can be found inTable IV [4]. Several of the exotic states
in Table IV have quantum numbers 1−− and 0þþ or 2þþ as
they are generally observed in the production channels of
eþe− or γγ annihilation. After matching the quantum
numbers JPC of the hybrids in Table III with the XYZ states
in Table IV, potential XYZ candidates for charmonium and
bottomonium hybrids are shown in Figs. 2 and 3, respec-
tively. The bands in Figs. 2 and 3 represent only the
uncertainty in the mass of the hybrids due to the uncertainty
in the gluelump mass, ΛRS ¼ 0.87� 0.15 GeV.
In the charmonium sector, the first exotic ψ state, the

ψð4260Þ [also know as Yð4260Þ], was observed by the
BABAR experiment in the process eþe− → πþπ−J=ψ [46].
Later, precise measurements of the eþe− → πþπ−J=ψ

cross sections by the BESIII experiment reported that
the ψð4260Þ state actually has a lower mass that is more
consistent with the state ψð4230Þ [47]. Additionally, the
BESIII experiment also reported a new resonance with a
mass of around 4.32 GeV that is observed as a distinct
shoulder on the high-mass side of the ψð4260Þ peak. This
new resonance was named ψð4320Þ [also known as
Yð4320Þ]. Since, both mass and width of the ψð4320Þ
are consistent with those of the ψð4360Þ resonance
observed in eþe− → πþπ−ψð2SÞ by BABAR and Belle
[48,49], they could be the same state. So, there are only four
confirmed states6 with quantum numbers JPC ¼ 1−−:
ψð4230Þ, ψð4360Þ, ψð4390Þ, and ψð4660Þ [3,4,40,41].
The quantum numbers JPC ¼ 1−− correspond to the
spin-singlet members 1−− of the hybrid H1 multiplet.
The ψð4230Þ state falls in the range of masses for the
charmonium hybrids belonging to the H1 multiplet, while
the states ψð4360Þ, ψð4390Þ, and ψð4660Þ have a mass that
is compatible with the excited spin-singlet states belonging
to the H0

1 multiplet after including the uncertainties in the
gluelump mass. From Table IV, we see that the states
ψð4230Þ and ψð4390Þ decay both to the spin-singlet
charmonium, hcð1PÞ, and to the spin-triplet charmonium,
J=ψ . This could be consistent with hybrid spin-conserving
and spin-flipping decays, respectively. Instead, the states
ψð4360Þ and ψð4660Þ have only been observed to decay to
spin-triplet charmonium states, J=ψ and ψð2SÞ. Recently,
the BESIII Collaboration has suggested the existence of
two possible new states with quantum numbers JPC ¼ 1−−,
Yð4500Þ and Yð4710Þ, from resonance structures in the
eþe− → KþK−J=ψ and eþe− → K0

SK
0
SJ=ψ cross sections,

respectively [43,45]. The masses and the quantum numbers
of these states are compatible with the excited spin singlet
H0

1 and H00
1 hybrid multiplets after including the uncertain-

ties from the gluelump mass.
The quantum numbers JPC ¼ 1þþ and the mass of the

χc1ð4140Þ and χc1ð4274Þ suggest that they could be
candidates for the spin-singlet 1þþ member of the H2

hybrid multiplet within uncertainties. For the spin-singlet
member of the H2 multiplet, a spin-conserving decay leads
to a spin-singlet ηcð1SÞ quarkonium in the final state and a
spin-flipping decay leads to a spin-triplet χcð1PÞ quarko-
nium in the final state. The states χc1ð4140Þ and χc1ð4274Þ,
however, have been observed to decay only to ϕJ=ψ . It has
been suggested that these states could be isospin-0 char-
monium tetraquark states [16,51]. The JPC quantum
numbers of the Xð4160Þ have not yet been determined.
A positive charge conjugation and the mass could make it a
candidate for the spin-triplet ð0; 1; 2Þ−þ member of the H1

multiplet or the spin-singlet 1þþ member of the H2

multiplet. Recently, the LHCb Collaboration reported
two new exotic states, Xð4630Þ and χc1ð4685Þ, with

5At tree level it holds that h0jEiaðtÞEibðt0Þj0i ¼
h0jBiaðtÞBibðt0Þj0i.

6The exotic state Yð4008Þ has not been confirmed by other
experiments such as BESIII and BABAR [47,50].
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quantum numbers JPC ¼ ??þ and JPC ¼ 1þþ in the Bþ →
J=ψϕKþ decay [44]. The favored quantum numbers for
Xð4630Þ are JPC ¼ ð1or 2Þ−þ [4,44]. Based on the quan-
tum numbers and mass, the Xð4630Þ state could be a
candidate for the excited spin-triplet ð0; 1; 2Þ−þ member of
the H1 multiplet or the spin-triplet ð1; 2; 3Þ−þ member of
the H5 multiplet after including the uncertainties from the
gluelump mass. The quantum numbers 1þþ and the mass of
χc1ð4685Þ are compatible with the spin-singlet state of the
excited H0

2 multiplet after accounting for the uncertainties
from the gluelump mass. For the Xð4630Þ and χc1ð4685Þ,
only the decay to ϕJ=ψ has been seen until now.
The quantum numbers of Xð4350Þ are JPC ¼ ð0 or 2Þþþ

[52]. The mass of the Xð4350Þ suggests that it could be a
candidate for the spin-singlet 2þþ member of the H4

multiplet. The quantum numbers JPC ¼ 0þþ and the
masses of the χc0ð4500Þ and χc0ð4700Þ suggest that they
could be candidates for the spin-singlet 0þþ member
of the H3 hybrid multiplet within uncertainties. For the

spin-singlet member of the H3 and H4 multiplets, the spin-
conserving transitions lead to the spin-singlet ηcð1SÞ
quarkonium in the final state and the spin-flipping tran-
sitions lead to the spin-triplet χcð1PÞ quarkonium in the
final state. However, the states Xð4350Þ, χc0ð4500Þ, and
χc0ð4700Þ have been observed to decay only to ϕJ=ψ .
In the bottomonium sector, there are only three exotic

candidates for the hybrid states with quantum numbers
JPC ¼ 1−−: ϒð10753Þ, ϒð10860Þ, and ϒð11020Þ. The
quantum number 1−− corresponds to the spin-singlet
member 1−− of the bottomonium hybrid H1 multiplet or
its excitation. The mass of the ϒð10753Þ and ϒð11020Þ
states suggests that they could be identified with states in
the H1 or H0

1 multiplets, respectively. The mass of the
ϒð10860Þ, besides being consistent with a conventional
ϒð5SÞ bottomonium state, is compatible with both H1 and
H0

1 bottomonium hybrid multiplets within uncertainties.
From Table IV, we notice that the states ϒð10860Þ and
ϒð11020Þ decay both to the spin-singlet bottomonium state

TABLE IV. The isoscalar neutral meson states ordered by mass above the open-flavor thresholds in the cc̄ and bb̄
regions. Following Refs. [3,4,40,41], we have only included states that are possible candidates for hybrid states. The
second column reports the old names still used in the literature. The data in the table are from Ref. [4].

State (PDG) State (Former) M (MeV) Γ (MeV) JPC Decay modes

χc1ð4140Þ Xð4140Þ 4146.5� 3.0 19þ7
−5 1þþ ϕJ=ψ

Xð4160Þ 4153þ23
−21 136þ60

−35 ??? ϕJ=ψ , D�D̄�

ψð4230Þ Yð4230Þ 4222.7� 2.6 49� 8 1−− πþπ−J=ψ , ωχc0ð1PÞ,
Yð4260Þ πþπ−hcð1PÞ

χc1ð4274Þ Yð4274Þ 4286þ8
−9 51� 7 1þþ ϕJ=ψ

Xð4350Þ 4350.6þ4.7
−5.1 13þ18

−10 ð0=2Þþþ ϕJ=ψ
ψð4360Þ Yð4360Þ 4372� 9 115� 13 1−− πþπ−J=ψ ,

Yð4320Þ πþπ−ψð2SÞ
ψð4390Þa Yð4390Þ 4390� 6 139þ16

−20 1−− ηJ=ψ , πþπ−hcð1PÞ
χc0ð4500Þ Xð4500Þ 4474� 4 77þ12

−10 0þþ ϕJ=ψ
Yð4500Þb 4484.7� 27.5 111� 34 1−−

Xð4630Þc 4626þ24
−111 174þ137

−78 ??þ ϕJ=ψ
ψð4660Þ Yð4660Þ 4630� 6 72þ14

−12 1−− πþπ−ψð2SÞ, Λþ
c Λ̄−

c ,
Xð4660Þ Dþ

s Ds1ð2536Þ
χc1ð4685Þd 4684þ15

−17 126þ40
−44 1þþ ϕJ=ψ

χc0ð4700Þ Xð4700Þ 4694þ17
−5 87þ18

−10 0þþ ϕJ=ψ
Yð4710Þe 4704� 87 183� 146 1−−

ϒð10753Þ 10752.7þ5.9
−6.0 36þ18

−12 1−− ππϒð1S; 2S; 3SÞ
ϒð10860Þ ϒð5SÞ 10885.2þ2.6

−1.6 37� 4 1−− ππϒð1S; 2S; 3SÞ,
πþπ−hbð1P; 2PÞ,

ηϒð1S; 2SÞ, πþπ−ϒð1DÞ
(see PDG listings)

ϒð11020Þ ϒð6SÞ 11000� 4 24þ8
−6 1−− ππϒð1S; 2S; 3SÞ,

πþπ−hbð1P; 2PÞ,
(see PDG listings)

aThis state is not listed in [4]. Its existence has been suggested in the BESIII analysis of Ref. [42]. For a critical
review see Ref. [3].

bState recently observed by the BESIII Collaboration [43].
cState recently observed by the LHCb Collaboration [44].
dState recently observed by the LHCb Collaboration [44].
eState recently observed by the BESIII Collaboration [45].
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hbð1PÞ and to the spin-triplet bottomonium states ϒðnSÞ.
The decay to hbð1PÞ could correspond to a spin-conserving
transition and the decay to ϒðnSÞ could correspond to a
spin-flipping transition. The state ϒð10753Þ has been
observed to decay only to spin-triplet ϒðnSÞ bottomo-
nium states. Recent studies have suggested that some of
these states could be conventional quarkonium or tetra-
quark states [51,53–59].

B. Results for the decay rates

The exotic XYZ states in the charmonium sector shown
in Fig. 2 have mostly quantum numbers JPC ¼ 1−−, 1þþ,
0þþ and 2þþ that correspond to the JPC quantum numbers
of the spin-singlet members of the hybrid multiplets
H1½1−−�, H2½1þþ�, H3½0þþ�, H4½2þþ� and their excitations.
The exotic state Xð4630Þ could have JPC quantum numbers
1−þ or 2−þ, and be a spin-triplet member of the hybrid
multiplets H1½ð0; 1; 2Þ−þ� or H5½ð1; 2; 3Þ−þ�. The exotic
XYZ states in the bottomonium sector shown in Fig. 3 have
quantum numbers JPC ¼ 1−− that correspond to the JPC

quantum numbers of the spin-singlet members of the
hybrid multiplet H1½1−−� and its excitations. In the follow-
ing, we focus solely on these hybrid states and compute the
semi-inclusive spin-conserving and spin-flipping transition
rates to quarkonia. The spin-conserving decays of hybrids
to quarkonia, Hm → Qn þ X, where X denotes light
hadrons, are induced by the chromoelectric-dipole vertex
(3.12); the expression for the decay rate is given in
Eqs. (3.26) and (3.27). The spin of the QQ̄ pair is the
same in the initial hybrid and the final quarkonium states:
spin-0 hybrids decay to spin-0 quarkonia and spin-1
hybrids decay to spin-1 quarkonia. For several charmonium
and bottomonium spin-0 hybrid states, members of the
hybrid multiplets H1½1−−�, H2½1þþ�, H3½0þþ� and their
excitations, the values of the spin-conserving decay rates
are shown in Table V. The spin-conserving decay rates of
the spin-1 hybrid states, members of the hybrid multiplets
H1½ð0; 1; 2Þ−þ�, H2½ð0; 1; 2Þþ−�, H3½1þ−� and their excita-
tions, are, at the precision we are working (LO in the
nonrelativistic expansion), three times the corresponding

FIG. 2. Comparison of the mass spectrum of the neutral exotic charmonium-like states shown in Table IV with results for hybrids
obtained by solving the coupled Schrödinger equations (2.18). The experimental states are represented by horizontal solid blue lines
with vertical error bars. Our results for the multipletsH1,H0

1,H
00
1 ,H2,H0

2,H3,H4, andH5 are plotted with error bands corresponding to
a gluelump mass uncertainty of �0.15 GeV. Figure updated from Ref. [3].

FIG. 3. Comparison of the mass spectrum of the neutral exotic
bottomoniumlike states shown in Table IV with results for
hybrids obtained by solving the coupled Schrödinger equa-
tions (2.18). The experimental states are represented by solid
blue lines with vertical error bars. Our results for the multiplets
H1 and H0

1 are plotted with error bands corresponding to the
gluelump mass uncertainty of �0.15 GeV. We only show the
multiplets H1 and H0

1 as there are only three exotic states with
matching quantum numbers (see Table IV).
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spin-conserving decay rates of the spin-0 hybrid states as
the final state may assume three different polarizations; see
Appendix D.
In Table V, we list the spin-conserving transitions to

below threshold quarkonia for which the decay rates can be
reliably estimated in weakly coupled pNRQCD. These are
the transitions that satisfy the conditions (3.2) and (3.3).

In practice, we require ΔE≡ EQQ̄g
m − EQQ̄

n ≳ 0.8 GeV,
αsðΔEÞ≲ 0.4 and jhQnjrjHmijΔE≲ 0.8 (for this last con-
dition see Table VI). The strong coupling αsðΔEÞ is
evaluated at the scale ΔE with one-loop running [60].
We note that for the hybrid states H2½1þþ� it holds that
L ¼ LQQ̄; in the charmonium case the width to ηcð1SÞmay
be as large as 65 MeV for H2½1þþ�ð4667Þ and in the
bottomonium case the width to ηbð1SÞ may be as large as
29 MeV for H2½1þþ�ð10846Þ.

The spin-flipping decays of hybrids to below threshold
quarkonia, Hm → Qn þ X, where X denotes light hadrons,
are induced by the chromomagnetic-dipole vertex (3.13);
the expression for the decay rate is given in Eqs. (3.26) and
(3.31). The spin of the heavy quark-antiquark pair ðQQ̄Þ is
different in the initial state hybrid and the final state
quarkonium: spin-0 hybrids decay to spin-1 quarkonia
and spin-1 hybrids decay to spin-0 quarkonia. For several
charmonium and bottomonium spin-0 hybrid states, mem-
bers of the hybrid multiplets H1½1−−�, H2½1þþ�, H3½0þþ�,
H4½2þþ� and their excitations, the values of the spin-
flipping decay rates are shown in Table VII. The spin-
flipping decay rates of the spin-1 hybrid states, members of
the hybrid multiplets H1½ð0; 1; 2Þ−þ�, H2½ð0; 1; 2Þþ−�,
H3½1þ−�, H4½ð1; 2; 3Þþ−� and their excitations, are, at LO
in the nonrelativistic expansion, 1=3 the corresponding
spin-flipping decay rates of the spin-0 hybrid states.
In Table VII, we list spin-flipping transitions to below

threshold quarkonia for which the decay rates can be
reliably estimated in weakly coupled pNRQCD. These
are the transitions that satisfy the condition (3.2). In
practice, we require ΔE≳ 0.8 GeV and αsðΔEÞ≲ 0.4.
We note that, although there is no obvious hierarchy
between spin-conserving and spin-flipping transition
widths, nevertheless, the spin-flipping transitions tend to
be smaller than the spin-conserving ones. This is particu-
larly true for bottomonium hybrids.

TABLE V. Spin-conserving semi-inclusive decay rates of hy-
brids decaying to quarkonia below threshold, due to the chromo-
electric-dipole interaction (3.12). The decay rates are computed
from Eqs. (3.26) and (3.27). The hybrid states are denoted by
Hm½JPC�ðmassÞ, where J is the total angular momentum quantum
number including the spin, and the masses are in MeV. The
quarkonium states are denoted by the physical states. For the
quarkonium states, we use the spin-averaged masses given in
Table I. The first error comes from varying the scale of αs from
ΔE=2 to 2ΔE, and the second one from the gluelump mass
uncertainty of �0.15 GeV. We only show decay rates for which
ΔE ≳ 0.8 GeV, αsðΔEÞ≲ 0.4 and jhQnjrjHmijΔE≲ 0.8. For this
last condition see Table VI.

Hm½JPC�ðMassÞ → Qn½JPC� Γ (MeV)

Charmonium hybrid
H2½1þþ�ð4667Þ → ηcð1SÞ½0−þ� 65þ27

−14
þ20
−17

H2½1þþ�ð5035Þ → ηcð1SÞ½0−þ� 31þ11
−6

þ8
−7

H2½1þþ�ð5035Þ → ηcð2SÞ½0−þ� 45þ20
−10

þ16−13
H3½0þþ�ð5054Þ → ηcð1SÞ½0−þ� 45þ16−9 þ11−9
H3½0þþ�ð5473Þ → ηcð1SÞ½0−þ� 18þ6−3 þ4−3
H3½0þþ�ð5473Þ → ηcð2SÞ½0−þ� 26þ10−5 þ7−6

Bottomonium hybrid
H1½1−−�ð10976Þ → hbð1PÞ½1þ−� 15þ8−4 þ7−5
H1½1−−�ð11172Þ → hbð2PÞ½1þ−� 22þ14−6 þ13−9
H2½1þþ�ð10846Þ → ηbð1SÞ½0−þ� 29þ13

−7
þ10
−8

H2½1þþ�ð11060Þ → ηbð1SÞ½0−þ� 28þ11
−6

þ9
−7

H2½1þþ�ð11060Þ → ηbð2SÞ½0−þ� 0.22þ0.12−0.06 þ0.11−0.08
H2½1þþ�ð11270Þ → ηbð1SÞ½0−þ� 22þ8

−4
þ6
−5

H2½1þþ�ð11270Þ → ηbð2SÞ½0−þ� 6þ3
−1

þ2
−2

H2½1þþ�ð11270Þ → ηbð3SÞ½0−þ� 3þ2
−1

þ2
−1

H3½0þþ�ð11065Þ → ηbð1SÞ½0−þ� 69þ28
−15

þ21
−17

H3½0þþ�ð11352Þ → ηbð1SÞ½0−þ� 34þ12
−7

þ9
−7

H3½0þþ�ð11352Þ → ηbð2SÞ½0−þ� 42þ19
−10

þ16
−13

H3½0þþ�ð11616Þ → ηbð1SÞ½0−þ� 19þ6
−4

þ4
−4

H3½0þþ�ð11616Þ → ηbð2SÞ½0−þ� 20þ8
−4

þ6
−5

TABLE VI. The values of the matrix element jhQnjrjHmij and
the energy differenceΔE ¼ EQQ̄g

m − EQQ̄
n for the transition widths

computed in Table V.

Hm½JPC�ðMassÞ→Qn½JPC�
jhQnjrjHmij
(GeV−1) ΔE ðGeVÞ

Charmonium hybrid
H2½1þþ�ð4667Þ → ηcð1SÞ½0−þ� 0.500 1.599
H2½1þþ�ð5035Þ → ηcð1SÞ½0−þ� 0.262 1.967
H2½1þþ�ð5035Þ → ηcð2SÞ½0−þ� 0.506 1.358

H3½0þþ�ð5054Þ → ηcð1SÞ½0−þ� 0.310 1.986
H3½0þþ�ð5473Þ → ηcð1SÞ½0−þ� 0.150 2.405
H3½0þþ�ð5473Þ → ηcð2SÞ½0−þ� 0.270 1.795

Bottomonium hybrid
H1½1−−�ð10976Þ → hbð1PÞ½1þ−� 0.393 1.068
H1½1−−�ð11172Þ → hbð2PÞ½1þ−� 0.594 0.907

H2½1þþ�ð10846Þ → ηbð1SÞ½0−þ� 0.393 1.404
H2½1þþ�ð11060Þ → ηbð1SÞ½0−þ� 0.321 1.617
H2½1þþ�ð11060Þ → ηbð2SÞ½0−þ� 0.049 1.050
H2½1þþ�ð11270Þ → ηbð1SÞ½0−þ� 0.240 1.828
H2½1þþ�ð11270Þ → ηbð2SÞ½0−þ� 0.196 1.261
H2½1þþ�ð11270Þ → ηbð3SÞ½0−þ� 0.214 0.914

H3½0þþ�ð11065Þ → ηbð1SÞ½0−þ� 0.497 1.622
H3½0þþ�ð11352Þ → ηbð1SÞ½0−þ� 0.284 1.909
H3½0þþ�ð11352Þ → ηbð2SÞ½0−þ� 0.499 1.342
H3½0þþ�ð11616Þ → ηbð1SÞ½0−þ� 0.179 2.174
H3½0þþ�ð11616Þ → ηbð2SÞ½0−þ� 0.270 1.607
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In Figs. 4 and 5 we compare the measured total decay
widths of the neutral exotic charmonium states from
Table IV with the hybrid-to-quarkonium transition widths
computed in this work and listed in the Tables V and VII,
according to the assignments made in Figs. 2 and 3. The
total decay width is the sum of all exclusive decay widths;
therefore, the hybrid-to-quarkonium transition widths
computed in this work can only provide a lower bound
for the hybrid total decay width. Moreover, for the
charmonium hybrid states H1ð4155Þ, H1ð4507Þ,
H1ð4812Þ, H2ð4286Þ, H3ð4590Þ, H4ð4367Þ and the bot-
tomonium hybrid state H1ð10786Þ we cannot reliably
estimate the spin-conserving transition widths due to
violation of the condition (3.3). Hence, for these states
we show in Figs. 4 and 5 only the sum of the spin-flipping
transition widths listed in Table VII. For the charmonium
hybrid H2ð4667Þ and the bottomonium hybrid
H1ð10976Þ, both the spin-conserving and spin-flipping
transition widths could be computed (see Tables V and
VII) and their sum is shown in Figs. 4 and 5. Based on

TABLE VII. Spin-flipping semi-inclusive decay rates of hy-
brids decaying to quarkonia below threshold, due to the chro-
momagnetic-dipole interaction (3.13). The decay rates are
computed from Eqs. (3.26) and (3.31). The hybrid states are
denoted by Hm½JPC�ðmassÞ, where J is the total angular mo-
mentum quantum number including the spin, and the masses are
in MeV. The quarkonium states are denoted by the physical
states. For the quarkonium states, we use the spin-averaged
masses given in Table I. The first error comes from varying the
scale of αs from ΔE=2 to 2ΔE, and the second one from the
gluelump mass uncertainty of �0.15 GeV. We only show decay
rates for which ΔE ≳ 0.8 GeV and αsðΔEÞ≲ 0.4.

Hm½JPC�ðMassÞ → Qn½JPC� Γ ðMeVÞ
Charmonium hybrid decay

H1½1−−�ð4155Þ → J=ψð1SÞ½1−−� 104þ55
−26

þ49
−37

H1½1−−�ð4507Þ → J=ψð1SÞ½1−−� 46þ20
−10

þ16
−13

H1½1−−�ð4507Þ → J=ψð2SÞ½1−−� 29þ19
−8

þ19
−13

H1½1−−�ð4812Þ → J=ψð1SÞ½1−−� 0.6þ0.2
−0.1

þ0.2
−0.1

H1½1−−�ð4812Þ → J=ψð2SÞ½1−−� 20þ10
−5

þ9
−7

H2½1þþ�ð4286Þ → χcð1PÞ½ð0; 1; 2Þþþ� 55þ38
−16

þ38
−26

H2½1þþ�ð4667Þ → χcð1PÞ½ð0; 1; 2Þþþ� 15þ8
−4

þ7
−5

H2½1þþ�ð5035Þ → χcð1PÞ½ð0; 1; 2Þþþ� 6þ3
−1

þ2
−2

H3½0þþ�ð4590Þ → χcð1PÞ½ð0; 1; 2Þþþ� 137þ72
−34

þ64
−49

H3½0þþ�ð5054Þ → χcð1PÞ½ð0; 1; 2Þþþ� 5þ2
−1

þ2
−1

H3½0þþ�ð5473Þ → χcð1PÞ½ð0; 1; 2Þþþ� 2þ1
−0.4

þ1
−0.5

H4½2þþ�ð4367Þ → χcð1PÞ½ð0; 1; 2Þþþ� 65þ41
−18

þ40
−28

H1½ð0; 1; 2Þ−þ�ð4155Þ → ηcð1SÞ½0−þ� 35þ18
−9

þ16
−12

H1½ð0; 1; 2Þ−þ�ð4507Þ → ηcð1SÞ½0−þ� 15þ7
−3

þ5
−4

H1½ð0; 1; 2Þ−þ�ð4507Þ → ηcð2SÞ½0−þ� 10þ6
−3

þ6
−4

H1½ð0; 1; 2Þ−þ�ð4812Þ → ηcð1SÞ½0−þ� 0.2þ0.1
−0.04

þ0.1
−0.05

H1½ð0; 1; 2Þ−þ�ð4812Þ → ηcð2SÞ½0−þ� 7þ3
−2

þ3
−2

H2½ð0; 1; 2Þþ−�ð4286Þ → hcð1PÞ½1þ−� 18þ13
−5

þ13
−9

H2½ð0; 1; 2Þþ−�ð4667Þ → hcð1PÞ½1þ−� 5þ3
−1

þ2
−2

H2½ð0; 1; 2Þþ−�ð5035Þ → hcð1PÞ½1þ−� 2þ1
−0.4

þ1
−1

H3½1þ−�ð4590Þ → hcð1PÞ½1þ−� 46þ24
−11

þ21
−16

H3½1þ−�ð5054Þ → hcð1PÞ½1þ−� 2þ1
−0.4

þ1
−0.4

H3½1þ−�ð5473Þ → hcð1PÞ½1þ−� 0.7þ0.3
−0.1

þ0.2
−0.2

H4½ð1; 2; 3Þþ−�ð4367Þ → hcð1PÞ½1þ−� 22þ14
−6

þ13
−9

Bottomonium hybrid decay

H1½1−−�ð10786Þ → ϒð1SÞ½1−−� 9þ4
−2

þ3
−3

H1½1−−�ð10976Þ → ϒð1SÞ½1−−� 8þ3
−2

þ3
−2

H1½1−−�ð10976Þ → ϒð2SÞ½1−−� 0.3þ0.2
−0.1

þ0.2
−0.1

H1½1−−�ð11172Þ → ϒð1SÞ½1−−� 3þ1
−1

þ1
−1

H1½1−−�ð11172Þ → ϒð2SÞ½1−−� 0.3þ0.1
−0.1

þ0.1
−0.1

H1½1−−�ð11172Þ → ϒð3SÞ½1−−� 0.4þ0.3
−0.1

þ0.2
−0.2

H2½1þþ�ð10846Þ → χbð1PÞ½ð0; 1; 2Þþþ� 6þ3
−1

þ3
−2

H2½1þþ�ð11060Þ → χbð1PÞ½ð0; 1; 2Þþþ� 3þ2
−1

þ1
−1

H2½1þþ�ð11060Þ → χbð2PÞ½ð0; 1; 2Þþþ� 2þ1
−0.5

þ1
−1

(Table continued)

TABLE VII. (Continued)

Hm½JPC�ðMassÞ → Qn½JPC� Γ ðMeVÞ
H2½1þþ�ð11270Þ → χbð1PÞ½ð0; 1; 2Þþþ� 2þ1

−0.4
þ1
−1

H2½1þþ�ð11270Þ → χbð2PÞ½ð0; 1; 2Þþþ� 2þ1
−1

þ1
−1

H3½0þþ�ð11065Þ → χbð1PÞ½ð0; 1; 2Þþþ� 13þ6
−3

þ6
−4

H3½0þþ�ð11352Þ → χbð1PÞ½ð0; 1; 2Þþþ� 2þ1
−1

þ1
−1

H3½0þþ�ð11352Þ → χbð2PÞ½ð0; 1; 2Þþþ� 9þ5
−2

þ4
−3

H3½0þþ�ð11616Þ → χbð1PÞ½ð0; 1; 2Þþþ� 1þ0.4
−0.2

þ0.3
−0.2

H3½0þþ�ð11616Þ → χbð2PÞ½ð0; 1; 2Þþþ� 2þ1
−0.4

þ1
−1

H3½0þþ�ð11616Þ → χbð3PÞ½ð0; 1; 2Þþþ� 9þ5
−2

þ4
−3

H1½ð0; 1; 2Þ−þ�ð10786Þ → ηbð1SÞ½0−þ� 3þ1
−1

þ1
−1

H1½ð0; 1; 2Þ−þ�ð10976Þ → ηbð1SÞ½0−þ� 3þ1
−1

þ1
−1

H1½ð0; 1; 2Þ−þ�ð10976Þ → ηbð2SÞ½0−þ� 0.1þ0.1
−0.02

þ0.1
−0.04

H1½ð0; 1; 2Þ−þ�ð11172Þ → ηbð1SÞ½0−þ� 1þ0.4
−0.2

þ0.3
−0.3

H1½ð0; 1; 2Þ−þ�ð11172Þ → ηbð2SÞ½0−þ� 0.1þ0.04
−0.02

þ0.04
−0.03

H1½ð0; 1; 2Þ−þ�ð11172Þ → ηbð3SÞ½0−þ� 0.1þ0.08
−0.04

þ0.08
−0.06

H2½ð0; 1; 2Þþ−�ð10846Þ → hbð1PÞ½1þ−� 2þ1
−0.5

þ1
−1

H2½ð0; 1; 2Þþ−�ð11060Þ → hbð1PÞ½1þ−� 1þ1
−0.3

þ0.5
−0.4

H2½ð0; 1; 2Þþ−�ð11060Þ → hbð2PÞ½1þ−� 0.5þ0.4
−0.2

þ0.4
−0.3

H2½ð0; 1; 2Þþ−�ð11270Þ → hbð1PÞ½1þ−� 1þ0.3
−0.1

þ0.2
−0.2

H2½ð0; 1; 2Þþ−�ð11270Þ → hbð2PÞ½1þ−� 1þ0.4
−0.2

þ0.3
−0.3

H3½1þ−�ð11065Þ → hbð1PÞ½1þ−� 4þ2
−1

þ2
−1

H3½1þ−�ð11352Þ → hbð1PÞ½1þ−� 1þ0.4
−0.2

þ0.3
−0.2

H3½1þ−�ð11352Þ → hbð2PÞ½1þ−� 3þ2
−1

þ1
−1

H3½1þ−�ð11616Þ → hbð1PÞ½1þ−� 0.3þ0.1
−0.1

þ0.1
−0.1

H3½1þ−�ð11616Þ → hbð2PÞ½1þ−� 1þ0.3
−0.1

þ0.2
−0.2

H3½1þ−�ð11616Þ → hbð3PÞ½1þ−� 3þ2
−1

þ1
−1
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Figs. 4 and 5, we can make the following observations for
each state.7

(i) ψð4230Þ [also known as Yð4260Þ]: The mass and
quantum numbers of this state are compatible with
the hybrid state H1½1−−�ð4155Þ within uncertainties.
The experimental determination of the inclusive
decay width of ψð4230Þ is 50� 9 MeV [4]. Our
estimate for the lower bound on the total decay
width of H1½1−−�ð4155Þ is 104þ74

−45 MeV, which is
almost twice the experimental value. This disfavors
the interpretation of ψð4230Þ as a pure hybrid state.
It should be mentioned, however, that our estimate
could be consistent within errors with the recent
measure of 73� 32 MeV for the inclusive decay
width of ψð4230Þ by the BESIII experiment [43].

(ii) ψð4360Þ: The mass and quantum numbers of this
state are compatible with the hybrid state
H1½1−−�ð4507Þwithin uncertainties. The experimen-
tal determination of the inclusive decay width of
ψð4360Þ is 115� 13 MeV [4]. Our estimate for
the lower bound on the total decay width of
H1½1−−�ð4507Þ is 75þ37

−22 MeV, which is lower,
although overlapping within errors, with the exper-
imental determination. Within present uncertainties,

the state could therefore have a H1½1−−�ð4507Þ
hybrid component.

(iii) ψð4390Þ: The mass and quantum numbers of
this state are compatible with the hybrid state
H1½1−−�ð4507Þwithin uncertainties. The experimen-
tal determination of the inclusive decay width of

FIG. 4. Comparison of the total decay widths of the neutral exotic charmonium states from Table IV with the hybrid-to-quarkonium
transition widths computed in this work according to the assignments in Fig. 2. For H2ð4667Þ (represented by triangles), the transition
width is the sum of the spin-conserving transition width in Table V and the spin-flipping transition width in Table VII. For all other
hybrid states (represented by squares), the transition widths are just given by the spin-flipping transition widths in Table VII as the spin-
conserving transitions violate the condition (3.3).

FIG. 5. Comparison of the total decay widths of the neutral
exotic bottomonium states from Table IV with the hybrid-to-
quarkonium transition widths computed in this work according to
the assignments in Fig. 3. For H1ð10976Þ (represented by
triangles), the transition width is the sum of the spin-conserving
transition width in Table Vand the spin-flipping transition widths
in Table VII. For all other hybrid states (represented by squares),
the transition widths are just given by the spin-flipping transition
widths in Table VII as the spin-conserving transitions violate the
condition (3.3).

7We have computed masses and transition widths assuming
that the states are either pure quarkonium or pure hybrid states.
We are aware, however, that mixing between quarkonium and
hybrid states may influence the phenomenology of the physical
states [9], eventually affecting some of their interpretations.
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ψð4390Þ is 139þ16
−20 MeV [4]. Our estimate for the

lower bound on the total decay width of
H1½1−−�ð4507Þ is 75þ37

−22 MeV, which is below the
experimental determination. If the state is experi-
mentally confirmed, it could have a significant
H1½1−−�ð4507Þ hybrid component.

(iv) Yð4500Þ: The mass and quantum numbers of this
state recently seen by the BESIII experiment [43] in
a resonance structure in the eþe− → KþK−J=ψ
cross section are compatible with the hybrid state
H1½1−−�ð4507Þwithin uncertainties. The experimen-
tal determination of the inclusive decay width of
Yð4500Þ is 111� 34 MeV [43]. Our estimate for the
lower bound on the total decay width of
H1½1−−�ð4507Þ is 75þ37

−22 MeV, which is consistent
within errors with the experimental determination.
Within present uncertainties, the state could have a
H1½1−−�ð4507Þ hybrid component.

(v) ψð4660Þ: The mass and quantum numbers of this
state are compatible with the hybrid state
H1½1−−�ð4507Þwithin uncertainties. The experimen-
tal determination of the inclusive decay width of
ψð4660Þ is 72þ14

−12 MeV [4]. Our estimate for the
lower bound on the total decay width of
H1½1−−�ð4507Þ is 75þ37

−22 MeV, which overlaps
within errors with the experimental determination.
Decays of ψð4660Þ through open-flavor channels
have been detected and may eventually contribute to
a large portion of the decay width.

(vi) Yð4710Þ: The mass and quantum numbers of this
state recently seen by the BESIII experiment [45] in
a resonance structure in the eþe− → K0

SK
0
SJ=ψ cross

section are compatible with the hybrid state
H1½1−−�ð4812Þwithin uncertainties. The experimen-
tal determination of the inclusive decay width of
Yð4710Þ is 183� 146 MeV [45]. Our estimate for
the lower bound on the total decay width of
H1½1−−�ð4812Þ is 21þ13

−9 MeV, which is much lower
than the central value of the experimental determi-
nation; the experimental uncertainty is however
large. This suggests that Yð4710Þ could have a
significant H1½1−−�ð4812Þ hybrid state component.

(vii) Xð4160Þ: The mass and a likely positive charge
conjugation (the assignment JPC ¼ 2−þ is cur-
rently favored) of this state could make it compatible
with the hybrid states H1½ð0; 1; 2Þ−þ�ð4155Þ or
H2½1þþ�ð4286Þ within uncertainties. The experi-
mental determination of the inclusive decay width
of Xð4160Þ is 136þ60

−35 MeV [4]. Our estimate
for the lower bound on the total decay width
of H1½ð0; 1; 2Þ−þ�ð4155Þ is 35þ24

−15 MeV and of
H2½1þþ�ð4286Þ is 55þ54

−31 MeV. The central values
of both estimates are much lower than the exper-
imental determination, which may indicate that

Xð4160Þ has a large hybrid state component, in
particular if it is the H1½ð0; 1; 2Þ−þ�ð4155Þ.

(viii) χc1ð4140Þ: The mass and quantum numbers of this
state are compatible with the hybrid state
H2½1þþ�ð4286Þwithin uncertainties. The experimen-
tal determination of the inclusive decay width of
χc1ð4140Þ is 19þ7

−5 MeV [4]. Our estimate for the
lower bound on the total decay width of
H2½1þþ�ð4286Þ is 55þ54

−31 MeV. The central value is
around three times the experimental value of the total
width, and only marginally compatible within errors;
this disfavors a large hybrid component for the state.

(ix) χc1ð4274Þ: The mass and quantum numbers of
this state are compatible with the hybrid state
H2½1þþ�ð4286Þ within uncertainties. The experi-
mental determination of the inclusive decay width
of χc1ð4274Þ is 51� 7 MeV [4]. Our estimate for
the lower bound on the total decay width of
H2½1þþ�ð4286Þ is 55þ54

−31 MeV, which overlaps
within errors with the experimental value.

(x) χc0ð4500Þ: The mass and quantum numbers of this
state are compatible with the hybrid state
H3½0þþ�ð4590Þ within uncertainties. The experi-
mental determination of the inclusive decay width
of χc0ð4500Þ is 77þ12

−10 MeV [4]. Our estimate for the
lower bound on the total decay width of
H3½0þþ�ð4590Þ is 137þ96

−60 MeV. The central value
is roughly twice the experimental value of the total
width, moreover it comes from the spin-flipping
decay to χcð1PÞ that has not been observed; this
disfavors a large hybrid component for the state.

(xi) χc0ð4700Þ: The mass and quantum numbers of this
state are compatible with the hybrid state
H3½0þþ�ð4590Þ within uncertainties. The experi-
mental determination of the inclusive decay width
of χc0ð4700Þ is 87þ18

−10 MeV [4]. Our estimate for the
lower bound on the total decay width of
H3½0þþ�ð4590Þ is 137þ96

−60 MeV. For this state, it
holds what we have written for the χc0ð4500Þ state:
our lower bound has a central value that is larger
than the central value of the measured width, more-
over it comes from the spin-flipping decay to χcð1PÞ
that has not been observed. A large hybrid compo-
nent for the state appears therefore disfavored.

(xii) Xð4350Þ: The mass and assuming quantum numbers
2þþ for this state (also 0þþ is possible, see Ref. [52])
are compatible with the hybrid state H4½2þþ�ð4367Þ
within uncertainties. The experimental determina-
tion of the inclusive decay width of Xð4350Þ is
13þ18

−10 MeV [4]. Our estimate for the lower bound
on the total decay width of H4½2þþ�ð4367Þ is
65þ57

−33 MeV, which is almost 4 times the experimen-
tal value of the total width. This disfavors the
interpretation of the Xð4350Þ as a pure hybrid state.
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(xiii) χc1ð4685Þ: The mass and quantum numbers of
this state are compatible with the hybrid state
H2½1þþ�ð4667Þ within uncertainties. The experi-
mental determination of the inclusive decay width
of χc1ð4685Þ is 126þ40

−44 MeV [4]. Our estimate
for the hybrid-to-quarkonium decay width of
H2½1þþ�ð4667Þ is 80þ35

−23 MeV, which is compatible
with the experimental value of the total width.
This suggests that χc1ð4685Þ could have a
H2½1þþ�ð4667Þ hybrid state component, although
only decays to ϕJ=ψ have been seen.

(xiv) Xð4630Þ: The mass and the quantum numbers
JPC ¼ ð1 or 2Þ−þ of this state are compatible with
the hybrid states H1½ð0; 1; 2Þ−þ�ð4507Þ or
H5½ð1; 2; 3Þ−þ�ð4476Þ within uncertainties. The ex-
perimental determination of the inclusive decay
width of Xð4630Þ is 174þ137

−78 MeV [4]. Our estimate
for the lower bound on the total decay width of
H1½ð0; 1; 2Þ−þ�ð4507Þ is 25þ12

−7 MeV which is much
lower than the experimental determination. This
may indicate that the Xð4630Þ state has a large
hybrid state component, in particular, if it is
the H1½ð0; 1; 2Þ−þ�ð4507Þ.8

(xv) ϒð10753Þ: The mass and quantum numbers of
this state are compatible with the hybrid state
H1½1−−�ð10786Þ within uncertainties. The experi-
mental determination of the inclusive decay width
of ϒð10753Þ is 36þ18

−12 MeV [4]. Our estimate for the
width of H1½1−−�ð10786Þ to ϒð1SÞ is 9þ5

−4 MeV,
which is well in agreement with the determination
9.7� 3.8 MeV in Ref. [21]. The fact that the com-
puted width to ϒð1SÞ is much smaller than the
experimental value of the total width is consistent
with ϒð10753Þ having a large H1½1−−�ð10786Þ hy-
brid state component.

(xvi) ϒð10860Þ: The mass and quantum numbers of
this state are compatible with the hybrid states
H1½1−−�ð10786Þ or H1½1−−�ð10976Þ within uncer-
tainties. The experimental determination of the in-
clusive decay width ofϒð10860Þ is 37� 4 MeV [4].
If we subtract from it the fraction, 76.6%, of decays
into open bottom mesons, we obtain 8.8þ2.6

−1.8 MeV.
Our estimate for the lower bound on the total decay
width of H1½1−−�ð10786Þ is 9þ5

−4 MeV, which is in
good agreement with this latter value, whereas our
estimate for the hybrid-to-quarkonium decay width
of H1½1−−�ð10976Þ is 23þ11

−7 MeV, which is larger
than 8.8þ2.6

−1.8 MeV. This leaves open the possibility

that ϒð10860Þ is made of a conventional ϒð5SÞ
quarkonium state mixed with a significant
H1½1−−�ð10786Þ hybrid state component.

(xvii) ϒð11020Þ: The mass and quantum numbers of
this state are compatible with the hybrid state
H1½1−−�ð10976Þ within uncertainties. The experi-
mental determination of the inclusive decay width of
ϒð11020Þ is 24þ8

−6 MeV [4]. For theH1½1−−�ð10976Þ
state, we could compute the spin-conserving tran-
sition width to hbð1PÞ, 15þ11

−6 MeV, and the spin-
flipping transition widths to ϒð1SÞ, 8þ4

−3 MeV, and
ϒð2SÞ, 0.3þ0.3

−0.1 MeV. Our results compare well with
the spin-conserving and spin-flipping transitions
computed in Ref. [21], where the authors get 20�
9 MeV for the transition to hbð1PÞ, 7.3� 2.5 MeV
for the transition to ϒð1SÞ and 1.1� 0.5 MeV for
the transition to ϒð2SÞ. Summing up all the three
contributions, our estimate for the hybrid-to-
quarkonium decay width of H1½1−−�ð10976Þ is
23þ11

−7 MeV, which is of the same size as the
experimental value of the total width. The latter,
however, includes also decays to open bottom
hadrons.

V. CONCLUSIONS

In this work, we have computed semi-inclusive
decay rates of low-lying quarkonium hybrids, Hm, into
conventional quarkonia below threshold, Qn, using the
Born-Oppenheimer EFT framework [8–11]. We require
the decay channels to satisfy the hierarchy of scales
1=jhQnjrjHmij ≫ ΔE ≫ ΛQCD ≫ mQv2, where ΔE is
the mass difference between the decaying hybrid and the
final-state quarkonium. The first inequality allows multi-
pole expanding the gluon emitted in the transition: we work
at NLO in the multipole expansion. The second inequality
allows us to treat the emitted gluon in weakly coupled
perturbation theory. The last inequality permits us to
neglect quarkonium hybrids of higher-lying gluonic exci-
tations, where mQv2 are the typical energy splittings for a
nonrelativistic bound state in a given potential. At NLO in
the multipole expansion and at order 1=mQ in the non-
relativistic expansion, two hybrid-to-quarkonium decay
channels are possible: a spin-conserving one induced by
the chromoelectric-dipole interaction (3.12), whose width
is given by Eqs. (3.26) and (3.27), and a spin-flipping one
induced by the chromomagnetic-dipole interaction (3.13),
whose width is given by Eqs. (3.26) and (3.31). The relative
size of the corresponding two decay widths is dictated
by the energy difference between the hybrid and
quarkonium state, and by the dimensionless quantity
mQjhQnjrjHmij=jhQnjHmij, which is not necessarily large,
in particular, in the charmonium hybrid sector. Spin-
flipping transitions may, therefore, compete under some

8For H5½ð1; 2; 3Þ−þ�ð4476Þ, we cannot estimate the hybrid-to-
quarkonium decay width because the spin-conserving transition
widths violate the condition (3.3) and the spin-flipping transitions
are to D-wave charmonium states, which are either above the
lowest DD̄ threshold or have not been experimentally observed.
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circumstances with spin-conserving ones. The situation is
somewhat different from what happens in common quar-
konium-to-quarkonium transitions, where spin-conserving
transitions are enhanced with respect to spin-flipping
nonhindered (chromo)magnetic transitions by the matrix
element, ðmQjhQnjrjQmijÞ2 ∼ 1=v2 ≫ 1, and by the large
energy gap between the initial and final state quarkonium.
The results for the hybrid-to-quarkonium decay widths

are listed in Tables V and VII. They supersede, confirm, or
add to previously obtained results in a similar framework
[9,21]. We may relate hybrid states with some of the XYZ
states discovered in the last decades in the charmonium and
bottomonium sector by comparing masses and quantum
numbers. This is done in Figs. 2 and 3, which update
similar figures in Refs. [3,8]. After assigning a hybrid to the
physical states, the hybrid-to-quarkonium widths in the
Tables Vand VII provide lower bounds on the widths of the
physical states, if interpreted as pure hybrid states. The
comparison of these lower bounds with the measured
widths of the XYZ states is made in Figs. 4 and 5.
Figures 4 and 5 show that hybrid-to-quarkonium widths

constrain the hybrid interpretation of the XYZ states much
more strongly than just quantum numbers and masses. In
particular our calculations disfavor the interpretation of
ψð4230Þ, χc1ð4140Þ, χc0ð4500Þ, χc0ð4700Þ, and Xð4350Þ
as pure hybrid states, while they favor a significant hybrid
componentH1½2−þ� in Xð4160Þ,H1½1−−� in ψð4390Þ, if the
state is experimentally confirmed, H1½ð1; 2Þ−þ� or
H5½ð1; 2Þ−þ� in Xð4630Þ, H1½1−−� in Yð4710Þ, and, in
the bottomonium sector, a large hybrid componentH1½1−−�
in ϒð10753Þ and in ϒð10860Þ. For the other states no
definite conclusions can be drawn. A more detailed dis-
cussion can be found at the end of Sec. IV B.
The study presented in this work can be improved both

theoretically and phenomenologically in several ways. On
the theoretical side, the framework may require a more
systematic implementation of nonperturbative effects,
responsible for the binding, and weakly coupled effects
responsible for the decays to quarkonia, for instance, to

better justify promoting color-octet and color-singlet
weakly coupled Hamiltonians to hybrid and quarkonium
Hamiltonians, or using the spectator gluon approximation
to evaluate four-field correlators. Also desirable is the
enlargement of the EFT degrees of freedom to encompass
open heavy-flavor states, which may have a large impact on
the physics of states above the open-flavor threshold [61].
On the phenomenological side, accounting for the mixing
of hybrid and quarkonium pure states may have an
important effect on some states, and eventually alter the
interpretation of some of the XYZ exotics. The mixing
potential between hybrid and quarkonium has been con-
strained in the long and short ranges in Ref. [9]. Ideally it
should be determined in lattice QCD, but such a compu-
tation is not available yet.
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APPENDIX A: QUARKONIUM
WAVE FUNCTIONS

We show in Figs. 6 and 7 charmonium and bottomonium
S- and P-wave radial wave functions, obtained from the
Schrödinger equation discussed in Sec. II A.

FIG. 6. S-wave and P-wave charmonium radial wave functions obtained according to Sec. II A.
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APPENDIX B: HYBRID WAVE FUNCTIONS

We show in Figs. 8 and 9 the H1 multiplet radial
wave functions of charmonium and bottomonium hybrids,
respectively. Similarly, in Fig. 10 for the H2 multiplet and
in Fig. 11 for theH3 multiplet; in both figures, the left-hand
side picture shows charmonium hybrid wave functions and

the right-hand side picture shows bottomonium hybrid
wave functions. Finally, in Fig. 12 we show the H4

multiplet radial wave functions of charmonium hybrids.
The wave functions have been obtained according
to the coupled Schrödinger equations discussed in
Sec. II B.

FIG. 7. S-wave and P-wave bottomonium radial wave functions obtained according to Sec. II A.

FIG. 8. H1 charmonium hybrid radial wave functions for ΨΣ and Ψ−Π. For details see Sec. II B.

FIG. 9. H1 bottomonium hybrid radial wave functions for ΨΣ and Ψ−Π. For details see Sec. II B.
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APPENDIX C: GLUONIC CORRELATOR

We approximate the correlator h0jGiaðT=2ÞϕabðT=
2; tÞEkbðtÞElcðt0Þϕcdðt0;−T=2ÞGjdð−T=2Þj0i, appearing
in Sec. III B 1, with the spectator gluon approximation
that consists in neglecting the interaction between the low

energy gluon fields Gia that constitute the hybrid and the
high energy gluon fields Eia that carry energyΔE ≫ ΛQCD.
This leads to factorization of the correlator into a low
energy two field correlator and a high energy two field
correlator computed in perturbation theory. At leading
order and in the large time T limit, we get

FIG. 10. H2 charmonium and bottomonium hybrid radial wave functions. For details see Sec. II B.

FIG. 11. H3 charmonium and bottomonium hybrid radial wave functions. For details see Sec. II B.

FIG. 12. H4 charmonium hybrid radial wave functions for ΨΣ and Ψ−Π. For details see Sec. II B.
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h0jGiaðT=2ÞϕabðT=2; tÞEkbðtÞElcðt0Þϕcdðt0;−T=2ÞGjdð−T=2Þj0i

≈ h0jGiaðT=2ÞϕabðT=2;−T=2ÞGjbð−T=2Þj0i δ
kl

3

Z
d3k
ð2πÞ3 jkje

−ijkjðt−t0Þ

≈ δij
δkl

3
e−iΛT

Z
d3k
ð2πÞ3 jkje

−ijkjðt−t0Þ: ðC1Þ

APPENDIX D: SPIN-MATRIX ELEMENTS

The spin part of the wave function is χab ¼ ξaηb, where the two-component spinors ξ and η transform as ξ → Uξ,
η → U�η under SO(3), and χ transforms as UχU†. The spin operators for ξ and η are Si1 ¼ σi1=2 and Si2 ¼ −σiT2 =2,
respectively. For example, the expectation value of Si1S

j
2 is

ξ†Si1ξη
†Sj2η ¼ −

1

4
ξ�aðσi1Þabξbη�cðσjT2 Þcdηd ¼ −

1

4
ξ�aðσi1Þabξbηdðσj2Þdcη�c ¼ −

1

4
Tr½χ†σi1χσj2�: ðD1Þ

We can calculate the spin part of hQnjðSi1 − Si2ÞjHmi as

hQnjðSi1 − Si2ÞjHmi ¼ Tr

�
χ†Qn

σi1
2
χHm

�
− Tr

�
χ†Qn

χHm

�
−
σi2
2

��
: ðD2Þ

Therefore, we have

hSQn
¼ 0jðSi1 − Si2ÞjSHm

¼ 0i ¼ 0; ðD3Þ

hSQn
¼ 0jðSi1 − Si2ÞjSHm

¼ 1i ¼ ϵiH; ðD4Þ

hSQn
¼ 1jðSi1 − Si2ÞjSHm

¼ 0i ¼ ϵiQ; ðD5Þ

hSQn
¼ 1jðSi1 − Si2ÞjSHm

¼ 1i ¼ 0; ðD6Þ

where ϵH and ϵQ are the polarization vectors for the spin-1 hybrid and quarkonium states respectively. The nonzero
averaged squared spin matrix elements are

1

2 · 1þ 1

X
mSHm

hSQn
¼ 0jðSi1 − Si2ÞjSHm

¼ 1; mSHm
ihSHm

¼ 1; mSHm
jðSi1 − Si2ÞjSQn

¼ 0i ¼ 1; ðD7Þ

1

2 · 0þ 1

X
mSQn

hSQn
¼ 1; mSQn

jðSi1 − Si2ÞjSHm
¼ 0ihSHm

¼ 0jðSi1 − Si2ÞjSQn
¼ 1; mSQn

i ¼ 3: ðD8Þ
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