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Considering a fixed-flavor number scheme and based on Laplace transformation, we perform leading-
order and next-to-leading-order QCD analyses that include world data on polarized structure functions g1
and g2. During our analysis, taking the DGLAP evolution equations, we employ the Jacobi polynomials
expansion technique. In our recent analysis we utilize the recent available data and consequently include
more data than what we did in our previous analysis. We obtain good agreements between our results for
the polarized parton densities and nucleon structure functions with all available experimental data and some
common parametrization models.
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I. INTRODUCTION

High-energy scattering of polarized leptons by polarized
protons, neutrons, and deuterons provides a measurement
of the nucleon spin structure functions. These structure
functions give information on the polarized quark contri-
butions to the spin of the proton and the neutron and allow
tests of the quark-parton model and quantum chromody-
namics (QCD). After precise consideration of the unpo-
larized deep inelastic scattering (DIS) experiments, the
polarized DIS program has been planed to study the spin
structure of the nucleon using polarized lepton beams
(electrons and muons) scattered by polarized targets.
These fixed-target experiments have been used to charac-
terize the spin structure of the proton and neutron and also
to test fundamental sum rules of QCD and quark-parton
model (QPM) [1,2]. The first experiments in polarized
electron-polarized proton scattering, performed around
50 years ago, helped to establish the parton structure of
the proton. About two decades later, by performing an
experiment with a polarized muon and a polarized proton, it
has been revealed that the QPM sum rule was violated,

which seems to indicate that the quarks do not contribute
alone to the spin of the proton. This “proton-spin crisis”
gave birth to a new generation of experiments at several
high-energy physics laboratories around the world. The
new and extensive data sample, collected from these fixed
target experiments, has enabled a careful characterization
of the spin-dependent parton substructure of the nucleon.
The results have been used to test QCD to find an
independent value for αsðQ2Þ, to probe the polarized parton
distributions with reasonable precision, and to provide a
first look at the polarized gluon distribution [3].
For this purpose we try to solve the Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) evolution equations
using the Laplace transformation. This is done at leading
order (LO) and next-to-leading order (NLO) approxima-
tions in Secs. II A and II B. We then construct the xg1
polarized structure function using the expansion in terms of
Jacobi polynomials in Sec. III. The evolution of partons
requires some inputs that are in fact the polarized parton
distribution functions (PPDFs) at an initial energy scale,
Q2

0. On this base we have some parametrizations for the
input PPDFs that are introduced in Sec. IV. To determine
the unknown parameters of the input PPDFs, we should
take all the recent and available data from different DIS
experiments. We then use them in a fitting process as is
illustrated in Sec. V. Getting the g1 structure function, it is
possible to calculate the g2 structure function, which is also
done in this section. To validate the results from data
analysis for the g1 structure function, several sum rules are
computed. We find them in good agreement with exper-
imental data and the results from theoretical investigations
in Sec. VI. We employ the last reported data for polarized
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targets in DIS experiments. In Sec. VII, we present the
compatible results with data at different energy scales, and
some models confirm the authenticity of the utilized
theoretical framework, including QPM and some outputs
of QCD.

II. POLARIZED DGLAP EVOLUTION EQUATIONS
IN LAPLACE SPACE

A. Leading-order approximation

In this work we generalize the method of Laplace
transformation to employ QCD evolution equations in
the polarized case to investigate the polarized parton
distributions of the nucleon. Here we focus on the polari-
zation of singlet and nonsinglet quarks to indicate the
efficiency of this method for solving the DGLAP evolution
equations [4–7]. In order to extract the polarized parton
distribution functions, we review the method in this section
briefly.
By introducing the variable ν≡ lnð1xÞ into leading order

coupled DGLAP equations, it is possible to turn them into
coupled convolution equations in ν space. One can use two
Laplace transformations, one from ν space to s space and
the second one from τ space to U space, using new the

variable τ≡ 1
4π

RQ2

Q2
0

αsðQ02Þd ln Q02. The DGLAP evolu-

tion equations can be solved using these two Laplace
transformations and set of convolution integrals of polar-
ized parton distributions at the initial scale Q2

0. Finally by
applying two inverse Laplace transforms, we can return to
ordinary space (x, Q2) [8].
The DGLAP evolution equations for the polarized parton

distributions are written as [4–7,9]

4π

αsðQ2Þ
∂ΔFNS

∂ ln Q2
ðx;Q2Þ ¼ ΔFNS ⊗ ΔP0

qqðx;Q2Þ; ð1Þ

4π

αsðQ2Þ
∂ΔFS

∂ ln Q2
ðx;Q2Þ ¼ ΔFS ⊗ ΔP0

qq

þ ΔG ⊗ ΔP0
qgðx;Q2Þ; ð2Þ

4π

αsðQ2Þ
∂ΔG

∂ ln Q2
ðx;Q2Þ ¼ ΔFS ⊗ ΔP0

gq

þ ΔG ⊗ ΔP0
ggðx;Q2Þ; ð3Þ

where ΔP0
ij s are the LO polarized splitting functions.

By introducing the variable change w≡ lnð1=zÞ and
applying two other ones, v≡ lnð1=xÞ and τðQ2

0; Q
2Þ≡

1
4π

RQ2

Q2
0

αsðQ02Þd ln Q02, introduced before, and using

the notation ΔF̂NSðν; τÞ≡ ΔFNSðe−v; Q2Þ, ΔF̂NSðw; τÞ≡
ΔFNSðe−w; τÞ, ΔF̂sðν; τÞ≡ ΔFsðe−v; Q2Þ, ΔF̂sðw; τÞ≡
ΔFsðe−w; τÞ, ΔĜðv; τÞ≡ ΔGðe−v; τÞ, ΔĜsðw; τÞ≡
ΔGsðe−w; τÞ, the above DGLAP equations in terms of
the convolution integrals are given as

∂ΔF̂NS

∂τ
ðv; τÞ ¼

Z
v

0

ΔF̂NSðw; τÞΔĤ0
qqðv − wÞdw; ð4Þ

∂ΔF̂S

∂τ
ðv; τÞ ¼

Z
v

0

ΔF̂sðw; τÞΔĤ0
qqðv − wÞdw

þ
Z

v

0

ΔĜsðw; τÞΔĤ0
qgðv − wÞdw; ð5Þ

∂ΔĜ
∂τ

ðv; τÞ ¼
Z

v

0

ΔF̂sðw; τÞΔĤ0
gqðv − wÞ

þ
Z

v

0

ΔĜsðw; τÞΔĤ0
ggðv − wÞdw; ð6Þ

where

ΔĤ0
qqðvÞ≡ e−vΔP0

qqðe−vÞ;
ΔĤ0

gqðvÞ≡ e−vΔP0
gqðe−vÞ;

ΔĤ0
qgðvÞ≡ e−vΔP0

qgðe−vÞ;
ΔĤ0

ggðvÞ≡ e−vΔP0
ggðe−vÞ: ð7Þ

By considering the following property of Laplace transforms:

L
�Z

v

0

ΔF̂½w�ΔĤ½v − w�dw; s
�

¼ L
�
ΔF̂s½v�; s

�
× L

�
ΔĤ½v�; s

�
; ð8Þ

the DGLAP equations in Eqs. (4)–(6) can be converted to
three coupled ordinary first-order differential equations in
terms of thevariable τ in theLaplace s spacewith τ-dependent
coefficients as follows:

∂ΔfNS

∂τ
ðs;τÞ¼ΔΦLO

ns ðsÞΔfðs;τÞ;
∂Δfs
∂τ

ðs;τÞ¼ΔΦLO
f ðsÞΔfsðs;τÞþΔΘLO

f ðsÞΔgðs;τÞ;
∂Δg
∂τ

ðs;τÞ¼ΔΦLO
g ðsÞΔgðs;τÞþΔΘLO

g ðsÞΔfsðs;τÞ: ð9Þ
In the above equations,weutilize the following abbreviations:

ΔfNSðs; τÞ≡ L½ΔF̂NSðv; τÞ; s�;
Δfsðs; τÞ≡ L½ΔF̂sðv; τÞ; s�;
Δgðs; τÞ≡ L½ΔĜðv; τÞ; s�: ð10Þ

Following that we can write:

L
�
∂ΔF̂NS

∂w
ðw; τÞ; s

�
¼ sΔfNSðs; τÞ;

L
�
∂ΔF̂s

∂w
ðw; τÞ; s

�
¼ sΔfsðs; τÞ;

L
�
∂ΔĜ
∂w

ðw; τÞ; s
�
¼ sΔgðs; τÞ: ð11Þ
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On the other hand the LO coefficients ΔΦLO and ΔΘLO in
Laplace s space are given by

ΔΦLO
f ¼ 4 −

8

3

�
1

sþ 1
þ 1

sþ 2
þ 2ðψ ð0Þðsþ 1Þ þ γEÞ

�
;

ð12Þ

ΔΘLO
f ¼ Tr

�
2

sþ 2
−

1

sþ 1

�
; ð13Þ

ΔΘLO
g ¼ Cf

�
2

sþ 1
−

1

2þ s

�
; ð14Þ

ΔΦLO
g ¼ Ca

�
11

6
−
f
9
þ 3

sþ 1
−

3

sþ 2
þ 1

sþ 3

þ 1

sþ 4
þ ψ ð0Þðsþ 1Þ − ψ ð0Þ:ðsþ 5Þ

�
: ð15Þ

In Eqs. (12) and (15), ψ ð0ÞðxÞ denotes the digamma function
and γE ¼ 0.5772156 is Euler’s constant. The evolution of
DGLAP equations in Laplace space at the LO approximation
for singlet sector and gluon part can be written as

Δf1ðs; τÞ ¼ Δkff1ðs; τÞf0ðsÞ þ Δkfg1ðs; τÞg0ðsÞ;
Δg1ðs; τÞ ¼ Δkgg1ðs; τÞg0ðsÞ þ Δkgf1ðs; τÞf0ðsÞ; ð16Þ

where the Δks in the above equations are given by

Δkff1ðs; τÞ≡ e
τ
2
ðΔΦLO

f ðsÞþΔΦLO
g ðsÞÞ

�
cos h

�
τ

2
RðsÞ

�
þ 2 sin hðτ

2
RðsÞÞ

RðsÞ ðΦLO
f ðsÞ −ΦLO

g ðsÞÞ
�
;

Δkfg1ðs; τÞ≡ e
τ
2
ðΔΦLO

f ðsÞþΔΦLO
g ðsÞÞ sin hðτ2RðsÞÞ

RðsÞ ΔΘLO
f ðsÞ;

Δkgg1ðs; τÞ≡ e
τ
2
ðΔΦLO

f ðsÞþΔΦLO
g ðsÞÞ

�
cos h

�
τ

2
RðsÞ

�
−
2 sin hðτ

2
RðsÞÞ

RðsÞ ðΦLO
f ðsÞ −ΦLO

g ðsÞÞ
�
;

Δkfg1ðs; τÞ≡ e
τ
2
ðΔΦLO

f ðsÞþΔΦLO
g ðsÞÞ sin hðτ2RðsÞÞ

RðsÞ ΔΘLO
g ðsÞ: ð17Þ

In Eq. (17), RðsÞ is defined as

RðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔΦLO

f ðsÞ − ΔΦLO
g ðsÞÞ2 þ 4ΔΘLO

f ðsÞΔΘLO
g ðsÞ

q
:

ð18Þ

For doing the numerical Laplace inversion in v space, one
needs the Laplace inverse of the kernels as KFFðv; τÞ≡
L−1½Δkffðs; τÞ; v�, KFGðv; τÞ ≡ L−1½Δkfgðs; τÞ; v�,
KGFðv; τÞ≡ L−1½Δkgfðs; τÞ; v�, and KGGðv; τÞ≡ L−1

½Δkggðs; τÞ; v� [8,10,11]. So that we can write the decoupled
solutions in ðv;Q2Þ space, based on the following con-
volutions:

ΔF̂sðv;Q2Þ≡
Z

v

0

KFFðv − w; τðQ2; Q2
0ÞÞΔF̂soðwÞdw

þ
Z

v

0

KFGðv − w; τðQ2; Q2
0ÞÞΔĜsoðwÞdw;

ΔĜsðv;Q2Þ≡
Z

v

0

KGGðv − w; τðQ2; Q2
0ÞÞΔĜsoðwÞdw

þ
Z

v

0

KGFðv − w; τðQ2; Q2
0ÞÞΔF̂soðwÞdw:

ð19Þ

It is obvious that ΔF̂soðwÞ and ΔĜsoðwÞ are the Laplace
inverse of f0ðsÞ and g0ðsÞ in Eq. (16). Reminding
w≡ lnð1=zÞ and recalling that v≡ lnð1=xÞ, we can finally
convert the above solutions into the usual Bjorken-x space.
Now for the nonsinglet sector, ΔFnsðx;Q2Þ: as before, if

we use the variable change v≡ lnð1=xÞ and the variable τ,
then the valance part in Eq. (1) can be written as

∂ΔF̂NS

∂τ
¼

Z
v

0

ΔF̂NSðw; τÞe−ðv−wÞΔPLO;ns
qq ðv − wÞdw: ð20Þ

Employing the Laplace transformation on above equation,
we obtain a linear differential equation in terms of τ
variable for the Δfnsðs; τÞ as the transformed version of
ΔF̂NSðx;Q2Þ. This differential equation leads to the fol-
lowing solution:

Δfnsðs; τÞ≡ eτΔΦ
LO
ns Δfns0ðsÞ: ð21Þ

Now using the inverse Laplace transform on Eq. (21) we
arrive at the following convolution:

ΔF̂nsðv; τÞ ¼
Z

v

0

Knsðv − w; τÞΔF̂ns0ðwÞdw: ð22Þ
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In this equation we take ΔKnsðv; τÞ≡ L−1½eτΔΦLO
ns ðsÞ; v�,

where ΔF̂ns0ðwÞ is the inverse Laplace transform of
Δfns0ðsÞ. Finally by variable change ν ¼ lnð1xÞ the results
in ðx;Q2Þ space is accessible.
More details to extract parton distribution functions at

the LO approximation, based on the Laplace transforma-
tion, can be found in [8].

B. Next-leading-order approximation

At the NLO approximation for the nonsinglet sector of
DGLAP evolution equation, after changing the required
variables that have been introduced before, we arrive at

∂Δ̂Fns

∂τ
ðν; τÞ ¼

Z
ν

0

ΔF̂nsðw; τÞe−ðν−wÞ
�
ΔPLO;ns

qq ðν − wÞ

þ αsðτÞ
4π

ΔPNLO;ns
qq ðν − wÞ

�
dw; ð23Þ

which is in fact the extended version of Eq. (4) for Δ̂Fns.
Taking the above equation to Laplace s space, we obtain

a linear differential equation in terms of the τ variable for
the transformed Δfnsðs; τÞ. This equation has the simple
solution as

ΔfNSðs; τÞ ¼ eτΔΦNSðsÞΔf0NSðsÞ;
ΔΦNSðsÞ≡ ΔΦLO

NSðsÞ þ
τ2
τ
ΔΦNLO

NS ðsÞ; ð24Þ

where

τ2 ≡ 1

4π

Z
τ

0

αsðτ0Þdτ0 ¼
1

ð4πÞ2
Z

Q2

Q2
0

α2sðQ02Þd ln Q02; ð25Þ

and

ΔΦLO
NSðsÞ≡ L½e−vΔPLO;ns

qq ðe−νÞ; s�;
ΔΦNLO

NS ðsÞ≡ L½e−νΔPNLO;NS
qq ðe−νÞ; s�: ð26Þ

It should be noted that at the LO approximation
ΔΦNSðsÞ ¼ ΔΦLO

f ðsÞ, where ΔΦLO
f ðsÞ has been given

explicitly in Eq. (12). The evaluation of ΔΦNLO
NS ðsÞ has

been presented in Ref. [12].
We can find any nonsinglet solution, ΔFNSðx;Q2Þ, by

applying the nonsinglet kernel KnsðvÞ≡ L−1½eτΔΦNSðsÞ; v�,
and using the Laplace convolution relation as

ΔF̂NSðv; τÞ ¼
Z

v

0

Knsðv − w; τÞΔF̂0
NSðwÞdw: ð27Þ

Taking the variable change ν≡ lnð1=xÞ, the results are
obtained in ðx;Q2Þ space as before with the difference that
the splitting functions in s space include the NLO con-
tributions corresponding to the following expressions:

ΔΦSðsÞ≡ ΔΦLO
S ðsÞ þ a0ΔΦNLO

S ðsÞ;
ΔΦgðsÞ≡ ΔΦLO

g ðsÞ þ a0ΔΦNLO
g ðsÞ;

ΔΘSðsÞ≡ ΔΘLO
S ðsÞ þ a0ΔΘNLO

S ðsÞ;
ΔΘgðsÞ≡ ΔΘLO

g ðsÞ þ a0ΔΘNLO
g ðsÞ: ð28Þ

The analytical expressions for ΔΦNLO
NS ðsÞ, ΔΦNLO

S ðsÞ,
ΔΦNLO

g ðsÞ, ΔΘNLO
S ðsÞ, andΔΘNLO

g ðsÞ in Laplace transform
s space have been presented in Ref. [12].
We indicate the NLO expression for αsðτÞ

4π by aðτÞ. We can
numerically show that an excellent approximation to

aðτÞ≡ αsðτÞ
4π , with a precision of a few parts in 104, is given

by the expression

aðτÞ ≈ a0 þ a1e−b1τ; ð29Þ

where the unknown parameters a1, b1, and a0 are found by
a least squared fit to aðτÞ. It should be pointed that this
approximation is inspired by the fact that, at the LO
approximation, the expression for αs;LOðτÞ is exactly given
by αs;LOðQ2

0Þe−bτ.
Now for the singlet sector and gluon part of Eq. (9) at the

NLO approximation, the results of DGLAP evolution
equations in Laplace s space could be obtained and are
given by

Δfðs;τÞ¼kffða1;b1;s;τÞΔf0SðsÞþkfgða1;b1;s;τÞΔg0ðsÞ;
Δgðs;τÞ¼kggða1;b1;s;τÞΔg0ðsÞþkgfða1;b1;s;τÞΔfoSðsÞ:

ð30Þ

Here the functions kijða1; b1; s; τÞ are expressed as a power
series in terms of the NLO expansion parameter a1 whose
coefficients are analytic functions with respect to s and τ
parameters. These expressions, which are used to extract
polarized parton distribution functions at NLO approxima-
tion, can be found in Ref. [12]. Finally, recalling that
ν≡ lnð1=xÞ, we can convert the above solutions to the
ðx;Q2Þ space. Therefore we should write the NLO
decoupled solutions, ΔFsðx;Q2Þ and ΔGðx;Q2Þ, with
the knowledge requirement of ΔFðxÞ and ΔGðxÞ at the
initial scale Q2

0. We also use these analytical solutions for
polarized parton distributions in the next sections to extract
polarized structure functions of protons, neutrons, and
deuterons.

III. THE JACOBI POLYNOMIAL METHOD

We perform a fit in the LO approximation for the
polarized parton distributions using Jacobi polynomials
[13–16] to reconstruct the x dependent quantities from their
Laplace moments. The application of Jacobi polynomials
has a number of advantages; especially, it will provide us an
opportunity to factorize out the x and Q2 dependence,
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which help us to have an efficient parametrization and to
evolve the structure functions.
For example, we can expand the spin structure function

xg1ðx;Q2Þ, as [14]

xg1ðx;Q2Þ ¼ xβð1 − xÞα
XNmax

n¼0

anðQ2ÞΘα;β
n ðxÞ ð31Þ

in which Θα;β
n ðxÞ are Jacobi polynomials of order n, and

Nmax is the maximum order of the expansion. In this case,
the Q2 dependence of the polarized structure function is
contained in the Jacobi moments, anðQ2Þ. On the other
hand, we can factor out the essential part of its x
dependence into a weight function using the Jacobi poly-
nomials [17].
For computational purpose, the x dependence of the Jacobi

polynomials is given by the following expansion [15]:

Θα;β
n ðxÞ ¼

Xn
j¼0

cðnÞj ðα; βÞxj; ð32Þ

where the cðnÞj ðα; βÞ s are combinations of Γ functions. The
Jacobi polynomials satisfy an orthogonality condition with
the weight function xβð1 − xÞα such that

Z
1

0

dxxβð1 − xÞαΘα;β
k ðxÞΘα;β

l ðxÞ ¼ Δk;l: ð33Þ

Hence, the polarized structure function xg1ðx;Q2Þ could
be reconstructed from Eq. (31) by giving the Jacobi
moments anðQ2Þ [12,18–26].
We can obtain the Jacobi moments anðQ2Þ, taking the

orthogonality condition on Eq. (31), which finally lead us to

anðQ2Þ ¼
Xn
j¼0

cðnÞj ðα; βÞL½xg1; s ¼ jþ 1�: ð34Þ

In deriving Eq. (34), we utilize the Laplace transform of
xg1ðx;Q2Þ as follows:

L½xg1; s�≡
Z

∞

0

dve−svxg1ðx;Q2Þ: ð35Þ

We can now relate the polarized structure function,
xg1ðx;Q2Þ, with its moments in Laplace s space as follows
[12,18–26]:

xg1ðx;Q2Þ ¼ xβð1 − xÞα
XNmax

n¼0

Θα;β
n ðxÞ

×
Xn
j¼0

cðnÞj ðα; βÞL½xg1; s ¼ jþ 1�: ð36Þ

By regarding Eq. (36) for xg1ðx;Q2Þ, we choose the set
fNmax;α; βg to reach optimal convergence of this series

throughout the kinematic region constrained by the data. In
practice, we find the following numerical values for above
parameters: Nmax ¼ 9, α ¼ 3.0, and β ¼ 0.5 to be suffi-
cient. We should note that in Mellin space when we intend
to calculate the first moment for quark distribution or
structure function, g1, we choose n ¼ 1, but in Laplace s
space to get the first moment, we should consider s ¼ 0
instead.

IV. QCD ANALYSIS AND PARAMETRIZATION
OF PPDFs

The required analysis of PPDFs within the QCD content
include the following subsections.

A. Parametrization

We consider a proton consisted of massless partons
which carry momentum fraction x with helicity distribu-
tions q�ðx;Q2Þ at characteristic scale Q2. The difference
Δqðx;Q2Þ ¼ qþðx;Q2Þ − q−ðx;Q2Þ measures how much
the parton of flavor q remembers its parent’s proton
polarization. In the other words we can say that it represents
the probability of finding a polarized parton with fraction x
of parent hadron momentum and spin align/antialign to
hadron’s spin. It measures the net helicity of partons in a
longitudinally polarized hadron.
In parametrization process, we consider the following

form for the polarized PDFs at the initial scale
Q2

0 ¼ 1.3 GeV2:

xΔqðx;Q2
0Þ ¼ N qηqxaqð1 − xÞbqð1þ cqxÞ; ð37Þ

in which the polarized PDFs are determined by parameters
fηq; aq; bq; cqg, and the generic label q ¼ fuv; dv; q̄; gg
indicates the partonic flavors up-valence, down-valence,
sea, and gluon, respectively. N q is the normalization
constant given by

1

N q
¼

�
1þ cq

aq
aq þ bq þ 1

�
Bðaq; bq þ 1Þ; ð38Þ

and chosen such that ηq in Eq. (37) is the first moments of
Δqðx;Q2

0Þ, where Bða; bÞ is the Euler beta function.
The total up and down quark distributions are a sum of

the valence plus sea distributions: Δu ¼ Δuv þ Δq̄ and
Δd ¼ Δdv þ Δq̄. We consider an SUð3Þ flavor symmetry
as Δq̄≡ Δū ¼ Δd̄ ¼ Δs ¼ Δs̄. Nevertheless we could
allow for an SUð3Þ symmetry violation term by introducing
κ such that Δs ¼ Δs̄ ¼ κΔq̄. Since the strange quark
distribution is poorly constrained, the results would be
insensitive to the particular choice of κ.
From Eq. (37), it is obvious that each of four polarized

parton densities q ¼ fuv; dv; q̄; gg contain four parameters
fηq; aq; bq; cqg, which gives a total of 16 parameters that
should be determined. We illustrate that some of these
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parameters can be eliminated while maintaining sufficient
flexibility to obtain a good fit.

B. First moments of Δuv and Δdv
The parameters ηuv and ηdv are the first moments of the

polarized valence up and down quark densities, denoted by
Δuv and Δdv. These densities can be related to F and D
quantities as the weak matrix elements that are measured in
neutron and hyperon β decays. Hence one can write [27]

a3 ¼
Z

1

0

dxΔq3 ¼ ηuv − ηdv ¼ F þD; ð39Þ

a8 ¼
Z

1

0

dxΔq8 ¼ ηuv þ ηdv ¼ 3F −D; ð40Þ

where a3 and a8 denote the nonsinglet combinations of the
first moments of the polarized quark densities correspond-
ing to

q3 ¼ ðΔuþ ΔūÞ − ðΔdþ Δd̄Þ; ð41Þ

q8 ¼ ðΔuþ ΔūÞ þ ðΔdþ Δd̄Þ − 2ðΔsþ Δs̄Þ: ð42Þ

A reanalysis of F and D with updated β-decay constants
leads to the following results: F ¼ 0.464� 0.008 and D ¼
0.806� 0.008 [27]. With these values we obtain

ηuv ¼ þ0.928� 0.014; ð43Þ

ηdv ¼ −0.342� 0.018: ð44Þ

Utilizing the above numerical values of ηuv and ηdv will
end to reduce two parameters during the fitting processes.

C. Polarized DGLAP evolution

The polarized DGLAP evolution equations can be solved
in the Laplace space using the Jacobi polynomial approach.
The Laplace transformation of the parton densities Δq are
defined analogous to that of Eq. (35) as

L½Δqðx ¼ e−v; Q2
0Þ; s�≡ Δqðs;Q2

0Þ

¼
Z

∞

0

e−svΔqðx ¼ e−v; Q2
0Þdv

¼ N qηq

�
1þ cq

sþ aq
sþ aq þ bq þ 1

�

× Bðsþ aq; bq þ 1Þ; ð45Þ

where q ¼ fuv; dv; q̄; gg and B denotes the Euler beta
function.
The twist-2 contributions to the spin-dependent structure

function g1ðs;Q2Þ can be expressed in terms of the
polarized parton densities in the Laplace space as

L½gp1 ; s� ¼
1

2

X
q

e2q ×

��
1þ τ

4π
ΔCqðsÞ

�
½Δqðs;Q2Þ

þ Δq̄ðs;Q2Þ� þ 2

3

τ

4π
ΔCgðsÞΔgðs;Q2Þ

�
; ð46Þ

L½gn1; s� ¼ L½gp1 ; s� −
1

6
ðL½uv; s� − L½dv; s�Þ

×

�
1þ τ

4π
ΔCqðsÞ

�
: ð47Þ

Here, the summation is over u, d, s quark flavors. δq; δq̄,
and δg are the polarized quark, antiquark, and gluon
distributions, respectively. ΔCg and ΔCq denote the
spin-dependent Wilson coefficients in Laplace transform
s space, respectively, which are written as

ΔCg ¼
1

2

�
2

sþ 1
−

2

sþ 2
þ ψ ð0Þðsþ 1Þ þ γE

sþ 1

−
2ðψ ð0Þðsþ 2Þ þ γEÞ

sþ 2

�
; ð48Þ

ΔCq ¼
8

3ðsþ 1Þ þ
4

3ðsþ 2Þ þ
4ðψ ð0Þðsþ 2Þ þ γEÞ

3ðsþ 1Þ

þ 4ðψ ð0Þðsþ 3Þ þ γEÞ
3ðsþ 2Þ þ 4ψ ð1Þðsþ 1Þ

3

þ 4ψ ð1Þðsþ 3Þ
3

−
4

3

�
9

2
þ π2

3

�
: ð49Þ

Employing the inverse Laplace transform on Eqs. (46),
(47), the gp1 and gn1 can be obtained in Bjorken x space.
Considering the parametrization for PPDFs there are finally
nine unknown parameters that should be determined during
the fitting processes, taking the available experimental data
for polarized structure functions.
In addition to proton and neutron structure functions we

can also do the required computations for the deuteron,
which is in fact a nucleus consists of one proton and one
neutron. The deuteron structure function is given by

xgdi ¼ xgpi þxgni
2

× ð1 − 1.5ωDÞ; i ¼ 1; 2. Here ωD ¼ 0.05�
0.01 denotes the probability to find the deuteron in aD state
[28–30]. The available data for deuteron structure function
are also used during the fitting process.

D. The g2 structure function

Now by accessing to the g1 structure function, one can
calculate g2 via the Wandzura-Wilczek [31,32] relation as
in the following

g2ðx;Q2Þ ¼ −gp1 ðx;Q2Þ þ
Z

1

x

dy
y
gp1 ðy;Q2Þ: ð50Þ
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We are now at the position to investigate the fits to spin-
dependent structure functions, as we do it in next section, to
extract the PPDFs from the available data.

V. FITTING CONTENTS IN QCD ANALYSIS

A. Overview of datasets

In our recent analysis which we call it NMA23
we focus on the polarized DIS data samples. The needed
DIS data for all PPDFs are coming from the experiments at
electron-proton collider and also in fixed-target situation
including proton, neutron, and heavier targets such as
deuteron.
Although separating quarks from antiquarks is not

possible, nonetheless it is the inclusive DIS data that is
included in the fit. Additionally we take into our NMA23
fitting procedure the g2 structure function. Due to the
technical difficulty in operating the needed transversely
polarized target, these data have been traditionally
neglected before.
The datawhichwe use in our recent analysis are up to date

and include more data than we employed in our pervious
analysis [12]. In fact we use all available data of gp1 from
E143, HERMES98, SMC, EMC, E155, HERMES06,
COMPASS10, COMPASS16, JLAB06, and JLAB17
experiments [33–42], and gn1 data from HERMES98,
E142, E154, HERMES06, Jlab03, Jlab04, and Jlab05
[34,43–48], and finally the data of gd1 from E143, SMC,
HERMES06, E155, COMPASS05, COMPASS06, and
COMPASS17 [33,35,38,49–52]. The DIS data for gp;n;d2

from E143, E142, Jlab03, Jlab04, Jlab05, E155, Hermes12,
and SMC [33,43,46–48,53–55] are also included. These
datasets are listed in Table I. We also present the kinematic
coverage, the number of data points for each given target,
and the fitted normalization shifts N i in this table. Our
NMA23 analysis algorithm calculates theQ2 evolution and
extracts the polarized structure function in x space using
Jacobi polynomials approach. By corresponding to the
fitting programs on the market, we solve the polarized
DGLAP evolution equations in the Laplace space.
One of the important quantities used as criteria to

indicate the validation of fit processes is the chi-square
(χ2) test, which assesses the goodness of fit between
observed values and those expected theoretically. In next
subsection we deal with it in more detail.

B. χ 2 minimization

The goodness of fit to the data for a set of p independent
parameters is quantified by the χ2globalðpÞ. To determine the
best fit, we need to minimize the χ2global function with
the free unknown parameters. We perform it for PPDFs
at the LO and NLO approximations that additionally
include the QCD cutoff parameter, ΛQCD, which finally
yield us the polarized PDFs at Q2

0 ¼ 1.3 GeV2.

This function is presented as follows:

χ2globalðpÞ ¼
XNexp

n¼1

wnχ
2
n: ð51Þ

In above equation, wn denotes a weight factor for
the nth experiment. However this factor in principle can
have different values for various datasets, but since all of
the experimental datasets have identical worthiness,
we take all the related weight factors equal to 1 in our
analyses [56–58]. Following that, the χ2n in Eq. (51) is
defined as

χ2nðpÞ ¼
�
1 −N n

ΔN n

�
2

þ
XNdata

n

i¼1

�N ng
Exp
ð1;2Þ;i − gTheoryð1;2Þ;i ðpÞ
N nΔg

Exp
ð1;2Þ;i

�2

ð52Þ

The minimization of the χ2globalðpÞ function is done
applying the CERN program library MINUIT [59]. In
the above equation, the essential contribution originates
from the difference between the model and the DIS data
within the statistical precision. In the χ2n function, gTheory

indicates the theoretical value for the ith data point and
gExp, ΔgExp denote the experimental measurement and the
experimental uncertainty, respectively, that is coming from
statistical and systematic uncertainties, combined in
quadrature.
To do a proper fit, we need an overnormalization factor for

thedata of experimentn that is denotedbyN n.Anuncertainty
ΔN n is attributed to this factor that should be regarded in the
fit. These factors, considering the uncertainties, quoted by the
experiments are used to relate different experimental datasets.
They are taken as free parameters determined simultaneously
with the other parameters in the fit process. In fact they are
obtained in the prefitting procedure and then fixed at their best
values in further steps. Numerical results of the unknown
parameters, obtained from χ2 minimization, are listed in
Table II. Different datasets, used in the fit process, are
presented in Table I.
We should remind the reader that the results of

fitting process for PPDFs at initial Q2
0 energy scale is based

on Hessian approach [56], such that Δχ2=χ2 ¼ 0.2%,
which is corresponding to bigger confidence level (CL)
than the inconvenience choice Δχ2 ¼ 1 with 68% CL [60].
The plots for polarized parton densities are depicted in
Figs. 1 and 2.

1. Gluon and sea quarks

We find the factor ð1þ cqxÞ in Eq. (37) provides the
flexibility to obtain a good description of the data,
especially for the polarized valence quark distributions
Δuv;Δdv. Thus we will make use of the cq coefficients for
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TABLE I. Summary of published polarized DIS experimental data points with measured x and Q2 ranges and the number of data
points.

Experiment Reference [xmin,xmax] Q2ðGeV2Þ Data points χ2LO χ2NLO N i

SLAC/E143(p) [33] [0.031–0.749] 1.27–9.52 28 25.9418 25.5862 0.997894385554395
HERMES(p) [34] [0.028–0.66] 1.01–7.36 39 57.6213 54.4579 1.00121847577922
SMC(p) [38] [0.005–0.480] 1.30–58.0 12 5.7338 7.807 0.999682542198503
EMC(p) [36] [0.015–0.466] 3.50–29.5 10 5.5308 5.2507 0.998746870048074
SLAC/E155 [37] [0.015–0.750] 1.22–34.72 24 30.8939 25.8174 1.00866491330750
HERMES06(p) [35] [0.026–0.731] 1.12–14.29 51 25.1976 30.7736 0.978727363512146
COMPASS10(p) [39] [0.005–0.568] 1.10–62.10 15 21.1180 21.7614 0.986930436542322
COMPASS16(p) [40] [0.0035–0.575] 1.03–96.1 54 38.1731 36.7525 0.998144618082626
SLAC/E143(p) [33] [0.031–0.749] 2–3–5 84 108.5918 102.0200 0.998508244589941
HERMES(p) [34] [0.023–0.66] 2.5 20 34.3329 32.2223 1.00223612389713
SMC(p) [38] [0.003–0.4] 10 12 10.2414 10.2829 1.00050424220605
Jlab06(p) [41] [0.3771–0.9086] 3.48–4.96 70 101.8636 103.0134 0.999973926530214
Jlab17(p) [42] [0.37696–0.94585] 3.01503–5.75676 82 178.2875 186.4491 1.00223612389713

gp1 501
SLAC/E143(d) [33] [0.031–0.749] 1.27–9.52 28 37.8573 38.4526 1.00123946481403
SLAC/E155(d) [49] [0.015–0.750] 1.22–34.79 24 19.6385 18.3428 1.00093216947938
SMC(d) [38] [0.005–0.479] 1.30–54.80 12 19.1969 18.8501 1.00004243740921
HERMES06(d) [35] [0.026–0.731] 1.12–14.29 51 48.9197 48.3606 1.00287123838967
COMPASS05(d) [50] [0.0051–0.4740] 1.18–47.5 11 8.0128 8.6001 1.00103525695298
COMPASS06(d) [51] [0.0046–0.566] 1.10–55.3 15 5.4623 7.6560 1.00014044224998
COMPASS17(d) [52] [0.0045–0.569] 1.03–74.1 43 33.1002 31.4721 1.00401646687751
SLAC/E143(d) [33] [0.031–0.749] 2–3–5 84 125.8333 125.7379 0.999955538651217

gd1 268
SLAC/E142(n) [43] [0.035–0.466] 1.10–5.50 8 7.9561 7.7586 0.998697021286838
HERMES(n) [34] [0.033–0.464] 1.22–5.25 9 2.3999 2.5486 0.999948762872958
E154(n) [45] [0.017–0.564] 1.20–15.00 17 24.3141 21.4152 0.999115473491324
HERMES06(n) [44] [0.026–0.731] 1.12–14.29 51 18.2773 17.3811 0.998906625804611
Jlab03(n) [46] [0.14–0.22] 1.09–1.46 4 5.6144e − 2 5.7129e − 2 0.999554786214114
Jlab04(n) [47] [0.33–0.60] 2.71–4.8 3 14.5393 8.8133 0.994389736514520
Jlab05(n) [48] [0.19–0.20] 1.13–1.34 2 7.7029 6.7595 0.999939246942750

gn1 94
E143(p) [33] [0.038–0.595] 1.49–8.85 12 11.1698 10.9170 1.00335621969896
E155(p) [53] [0.038–0.780] 1.1–8.4 8 12.8132 15.6826 1.04042312148245
Hermes12(p) [54] [0.039–0.678] 1.09–10.35 20 25.1271 21.5690 1.00274614220085
SMC(p) [55] [0.010–0.378] 1.36–17.07 6 1.8259 1.7117 1.00001538561406

gp2 46
E143(d) [33] [0.038–0.595] 1.49–8.86 12 9.6009 9.6132 1.00047527921467
E155(d) [53] [0.038–0.780] 1.1–8.2 8 12.2433 12.275 1.01388492611179

gd2 20
E143(n) [33] [0.038–0.595] 1.49–8.86 12 8.9660 9.0283 1.00004452228917
E155(n) [53] [0.038–0.780] 1.1–8.8 8 14.1622 13.6977 1.03135886789238
E142(n) [43] [0.036–0.466] 1.1–5.5 8 16.48220 3.8883 1.00000431789744
Jlab03(n) [46] [0.14–0.22] 1.09–1.46 4 17.6171 13.8173 1.03226263480608
Jlab04(n) [47] [0.33–0.60] 2.71–4.83 3 4.2782 4.4079 0.900030714490705
Jlab05(n) [48] [0.19–0.20] 1.13–1.34 2 10.1400 8.0260 0.981366577296903
gn2 37

Total 966 1171.6502 1128.9857
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the up-valence and down-valence quark distribution func-
tions; in contrast, we are able to set the values of cq̄ and cg
to zero ðcq̄ ¼ cg ¼ 0Þ while preserving a good fit and
eliminating two free parameters. We find that the fit
improves if we use nonzero values for the cuv ; cdv

parameters, but as these are relatively flat directions in χ
space we shall fix the values as detailed in Table II.
Having fixed ηuv ; ηdv and bq̄; bg parameters in prelimi-

nary minimization and taking cq̄ ¼ cg ¼ 0, which we
referred to before, we then set the bq̄; bg; cuv ; cdv param-
eters as indicated in Table II; this gives us a total of nine
unknown parameters, in addition to αsðQ2

0Þ.
Now in order to validate the results of the fitting, we

consider and calculate some sum rules as we do it in next
section.

VI. THE SUM RULES

Some fundamental properties of the nucleon structure
can be inspected by considering QCD sum rules like the
total momentum fraction carried by partons and also the
total contribution of parton spin to the spin of the nucleon.
In what follows, by utilizing available experimental data,
we analyze some important polarized sum rules.

A. Bjorken sum rule

Integral over the spin distributions of quarks
inside the nucleon yields to the polarized Bjorken sum.
It can be written in terms of multiplication of nucleon axial
charge, gA (as measured in neutron β decay) with a
coefficient function, CBj½αsðQ2Þ�. Taking into account
the corrections of higher twist (HT), this sum rule is given
by [68]

ΓNS
1 ðQ2Þ ¼ Γp

1 ðQ2Þ − Γn
1ðQ2Þ;

¼
Z

1

0

½gp1 ðx;Q2Þ − gn1ðx;Q2Þ�dx;

¼ 1

6
jgAjCBj½αsðQ2Þ� þ HT corrections: ð53Þ

A very precise determination on the αs as strong coupling
constant can be provided by Bjorken sum rule. Using
CBj½αsðQ2Þ� expression the value of coupling can be
extracted from experimental data while the present world
average value is αsðM2

ZÞ ¼ 0.1179� 8.5 × 10−6 [69]. At
four-loop corrections of perturbative QCD this function
has been calculated in both massless [70] and massive
cases [71]. Due to ambiguities from small-x extrapolation,
determining αs from the Bjorken sum rule is suffering [72].
Nevertheless in our computations the numerical value for
coupling constant atZ-bosonmass scale can be found during
the fitting process to find the unknown parameters of
polarized parton densities at initial energy scale Q0.
Outputted results for the coupling constant at LO and
NLO analysis are presented in Table II and are in good
agreement with the reported world average value of this
quantity.
In Table III we list our results for the Bjorken sum rule.

Experimental measurements such as E143 [33], SMC [55],
HERMES06 [35], and COMPASS16 [40] are added

FIG. 1. Our NMA23 results for the polarized PDFs at Q2
0 ¼

1.3 GeV2 with respect to x in LO approximation, which is plotted
by a solid curve along with their Δχ2=χ2 ¼ 2% uncertainty bands
computed with the Hessian approach. We also present the result
obtained in earlier global analyses of BB (dashed) [61], GRSV
(dashed dotted) [62], and AAC00 (dashed, dashed, dotted) [63] in
LO approximation.

FIG. 2. Our NMA23 results for the spin-dependent PDFs at
Q2

0 ¼ 1.3 GeV2 with respect to x in NLO approximation which is
plotted by a solid curve along with their Δχ2=χ2 ¼ 2% uncer-
tainty bands computed with the Hessian approach. We also
display the result obtained in earlier global analyses of NNPDF
(dashed, dotted, dotted) [64], KATAO (long dashed) [21], BB
(dashed) [65], DSSV (dashed dotted) [66], AAC09 (dashed,
dashed, dotted) [67] in NLO approximation.
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to this table. An adequate consistency can be seen
between them.

B. Proton helicity sum rule

In order to complete our knowledge in the field of nuclear
physics an extrapolation of proton spin among its constitu-
ents can be done and consequently new sum rule as proton
helicity sum rule is achieved [73]. Considering this sum rule,
by a precise extraction of PPDFs, one can obtain an accurate
picture of the quark and gluon helicity densities.
Since each constituent of a nucleon is carrying part of

nucleon spin, the total spin of nucleon can be written as

1

2
¼ 1

2
ΔΣðQ2Þ þ ΔGðQ2Þ þ LðQ2Þ: ð54Þ

In this equation ΔΣðQ2Þ ¼ P
i

R
1
0 dxðΔqðx;Q2Þ þ

Δq̄ðx;Q2ÞÞ represents the spin contribution of the singlet
flavor, ΔGðQ2Þ ¼ R

1
0 dxΔgðx;Q2Þ denotes the gluon spin

contribution, and finally LðQ2Þ is interpreted as the total
contribution from quark and gluon orbital angular momen-
tum. In Eq. (54) each term depends on Q2, but the sum of
them does not. The measuring processes of them cannot be
done easily and it is beyond the scope of this paper to
describe their measurement methods.

TABLE II. Final parameter values and their statistical errors in the MS scheme at the input scale Q2
0 ¼ 1.3 GeV2.

LO

Δuv ηuv 0.928(Fixed) Δq̄ ηq̄ −0.076068� 0.0017283
auv 0.2906� 0.01061 aq̄ 0.42486� 0.03115
buv 2.0498� 0.010617 bq̄ 2.7562(Fixed)
cuv 16.4977(Fixed) cq̄ 0

Δdv ηdv −0.342(Fixed) Δg ηg 1.1543� 0.1792
adv 0.1274� 0.003728 ag 2.4164� 0.3716
bdv 1.8621� 0.044186 bg 1.7430(Fixed)
cdv 35.7909(Fixed) cg 0

Λ ¼ 0.2007� 0.05004 GeV
αðM2

zÞ ¼ 0.12812� 0.0038
χ2=D:O:F: ¼ 1171.65=957 ¼ 1.224

NLO

Δuv ηuv 0.928(Fixed) Δq̄ ηq̄ −0.076272� 0.001742
auv 0.33889� 0.01121 aq̄ 0.4844� 0.029784
buv 2.1075� 0.052585 bq̄ 3.3948(Fixed)
cuv 15.3475(Fixed) cq̄ 0

Δdv ηdv −0.342(Fixed) Δg ηg 0.2526� 0.05528
adv 0.1294� 0.004110 ag 2.0898� 0.4409
bdv 1.8654� 0.043007 bg 1.0174(Fixed)
cdv 41.9067(Fixed) cg 0

a1 ¼ 0.0250 (Fixed)
b1 ¼ 10.70 (Fixed)
a0 ¼ 0.2399 (Fixed)

Λ ¼ 0.2156� 0.04989 GeV
αðM2

zÞ ¼ 0.115457� 0.00341
χ2=D:O:F ¼ 1128.98=957 ¼ 1.179

TABLE III. Our computed LO and NLO results for the Bjorken sum rule, ΓNS
1 , in comparison with world data from E143 [33], SMC

[55], HERMES06 [35], and COMPASS16 [40]. Only HERMES06 [35] results are not extrapolated in full x range (measured in region
0.021 ≤ x ≤ 0.9).

E143 [33] SMC [55] HERMES06 [35] COMPASS16 [40] LO NLO

Q2 ¼ 5 GeV2 Q2 ¼ 5 GeV2 Q2 ¼ 5 GeV2 Q2 ¼ 3 GeV2 Q2 ¼ 5 GeV2 Q2 ¼ 5 GeV2

ΓNS
1

0.164� 0.021 0.181� 0.035 0.148� 0.017 0.181� 0.008 0.15632� 0.0062 0.15350� 0.00081
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Numerical values of first moments of the singlet-quark
and gluon at Q2 ¼ 10 GeV2 are listed in Table IV. Our
results at both truncated and full x region are compared to
those from the NNPDFpol1.1 [74] and DSSV14 [66].
As can be seen from Table IV for ΔΣ, our NMA23

results are consistent, within uncertainty, with those of
other groups. This occurs because in semileptonic decays
the first moment of polarized densities are mainly fixed.
Very different values are reported by various groups when
the gluon contribution is considered. Due to their large
uncertainty we avoid getting a stiff result for the full first
moment of gluon.
The proton spin sum rule can be finally calculated

considering the extracted values that are listed in
Table IV. Accordingly, the numerical value of quark and
gluon orbital angular momentum, attributed to the spin of
the proton, is obtained as

LðQ2 ¼ 10 GeV2Þ ¼ −0.436873� 0.334587: ð55Þ

The contribution of the total orbital angular momentum to
the spin of the proton cannot be determined tightly, and it is
due to the large uncertainty that is mostly coming out from
the gluons. By improving the current level of experimental
accuracy, the precise determination of each individual
contribution to the nucleon spin can be obtained.

C. The twist-3 reduced matrix element d2
Twist-3 reduced matrix element, denoted by d2, is not

considered as a sum rule but to investigate the higher twist
effect, the numerical evaluation of this quantity is
important. One can find in [65] the detailed analyses of
higher twist, related to the g1 polarized structure function.
Through the moments of g1 and g2 structure functions,
considering the operator product expansion theorem [75],
the effect of quark-gluon correlations can be studied.
These considerations for the moments will conclude the
following definition for d2ðQ2Þ as a reduced matrix
element:

d2ðQ2Þ ¼ 3

Z
1

0

x2ḡ2ðx;Q2Þdx;

¼
Z

1

0

x2½3g2ðx;Q2Þ þ 2g1ðx;Q2Þ�dx: ð56Þ

In the above equation we have ḡ2 ¼ g2 − gWW
2 , where gWW

2 ,
corresponding to Eq. (50), is given by Wandzura
and Wilczek (WW). The deviation of g2 from gτ22 ,
which is the polarized structure function at leading twist
order can be measured using the d2ðQ2Þ as the twist-3
reduced matrix element of spin-dependent operators in
nucleon. This matrix element, because of the x2 weighting
factor in Eq. (56), is remarkably sensitive to the behavior of
ḡ2 at large-x values. By extracting the d2 term, valuable
intuition about the size of the multiparton correlation terms
can be achieved that denotes the importance of this
quantity.
Having a nonzero value for d2 reveals the importance of

higher twist terms in QCD analyses. To improve model
prediction, more information on the higher twist operators
are required, and this can be done with a precise meas-
urement of the d2 term. Our results for d2, compared with
experimental values and also some theoretical predictions,
are presented in Table V.

D. Burkhardt-Cottingham sum rule

The zeroth moment of g2 structure function, considering
dispersion relations for virtual Compton scattering at
all Q2 values, is predicted to get zero value, and con-
sequently the Burkhardt and Cottingham (BC) sum rule is
obtained [82]:

Γ2 ¼
Z

1

0

dx g2ðx;Q2Þ ¼ 0: ð57Þ

The BC sum rule is an insignificant result, arising out from
the WW relation that is given by Eq. (50). In light cone
expansion, one cannot obtain the zeroth moment of
structure function and hence local operator product

TABLE IV. Results for the full and truncated first moments of the polarized singlet-quark ΔΣðQ2Þ ¼ P
i

R
1
0 dx½ΔqiðxÞ þ Δq̄iðxÞ� and

gluon distributions at the scale Q2 ¼ 10 GeV2 in the MS scheme. The recent polarized global analysis of NNPDFpol1.1 [74] and
DSSV14 [66] are also presented.

DSSV14 [66] NNPDFpol1.1 [74] LO NLO

Full x region [0, 1]
ΔΣðQ2Þ 0.291799 þ0.18� 0.21 0.12959� 0.00922 0.148546� 0.0194
ΔGðQ2Þ 0.37109 0.03� 3.24 1.4693� 1.049 0.8626� 0.3054

Truncated x region [10−3; 1]
ΔΣðQ2Þ 0.36645 þ0.25� 0.10 0.03644� 0.0406 0.04848� 0.0187
ΔGðQ2Þ 0.3636 0.49� 0.75 1.3848� 0.9829 0.7827� 0.2854
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expansion [83] cannot describe this moment. This sum rule
can be used even if the structure function involves target
mass correction [84]. Finally it should be said that the
presence of the HT contribution is denoting the violation of
the BC sum rule [54].
In Table VI we list our results for Γ2 at LO and NLO

approximations where data from E143 [33], E155 [53],
HERMES2012 [54], RSS [85], E01012 [76] groups for
proton, deuteron, and neutron are also added there. The
behavior of the g2 structure function at low-x values has not
yet measured accurately but it has a significant effect on
any possible conclusions we get.

VII. CONCLUSION

For about three decades, studies of the internal spin
structure of the proton have advanced steadily using the
technology of polarized beams and polarized targets.
The demand for higher-energy experiments to access the
deepest regions inside the proton and to extract the
theoretically cleanest results continues.
Polarized deep inelastic scattering remains one of the

cleanest tests for studying the internal spin structure of the
proton and neutron. Pioneering experiments at SLAC,
scattering polarized electrons off polarized protons, helped
to establish the quark structure of the proton with the

observation of large spin-dependent asymmetries. An
exciting follow-up experiment (CERN EMC) at higher
energies uncovered a violation of the quark parton model
sum rule, implying that the quarks accounted for only a

TABLE V. d2 moments of the proton, neutron and deuteron polarized structure functions from the SLAC E155x [53], E01-012 [76],
E06-014 [77], lattice QCD [78], CM bag model [79], JAM15 [80], JAM13 [81] compared with LO and NLO results.

Reference Q2 [GeV2] 102dp2 105dn2 103dd2
LO 5 0.2994� 0.00035 127.68� 11.0073 1.2534� 0.02719
NLO 5 0.2855� 0.00196 23.4919� 0.6654 1.3464� 0.0743
E06-014 [77] 3.21 −421.0� 79.0� 82.0� 8.0 � � �
E06-014 [77] 4.32 −35.0� 83.0� 69.0� 7.0 � � �
E01-012 [76] 3 � � � −117� 88� 138 � � �
E155x [53] 5 0.32� 0.17 790� 480 � � �
E143 [33] 5 0.58� 0.50 500� 2100 5.1� 9.2
Lattice QCD [78] 5 0.4(5) −100ð−300Þ � � �
CM bag model [79] 5 1.74 −253 6.79
JAM15 [80] 1 0.5� 0.2 −100� 100 � � �
JAM13 [81] 5 1.1� 0.2 200� 300 � � �

TABLE VI. The result of BC sum rule for Γp
2 , Γd

2 and Γn
2 in comparison with world data from E143 [33], E155 [53], HERMES2012

[54], RSS [85], E01012 [76].

E143 [33] E155 [53] HERMES2012 [54] RSS [85] E01012 [76] LO NLO
0.03 ≤ x ≤ 1 0.02 ≤ x ≤ 0.8 0.023 ≤ x ≤ 0.9 0.316 < x < 0.823 0 ≤ x ≤ 1 0.03 ≤ x ≤ 1 0.03 ≤ x ≤ 1
Q2 ¼ 5 GeV2 Q2 ¼ 5 GeV2 Q2 ¼ 5 GeV2 Q2 ¼ 1.28 GeV2 Q2 ¼ 3 GeV2 Q2 ¼ 5 GeV2 Q2 ¼ 5 GeV2

Γp
2 −0.014� 0.028 −0.044� 0.008 0.006� 0.029 −0.0006� 0.0022 � � � −0.01911� 0.0199 −0.01929� 0.00038

Γd
2

−0.034� 0.082 −0.008� 0.012 � � � −0.0090� 0.0026 � � � −0.001687� 0.000016 −0.0028986� 0.00053
Γn
2 � � � � � � � � � −0.0092� 0.0035 0.00015� 0.00113 0.007824� 0.00056 0.0034500� 0.000016

FIG. 3. The evolved polarized quark densities as a function of x
in the LO approximation.
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small fraction of the proton spin and giving birth to the
proton-spin crisis. Since about three decades ago a
large sample of data from polarized fixed-target experi-
ments at SLAC, CERN, and DESY have resulted in a
substantial perturbative-QCD analysis of the nucleon spin
structure.

Determining the nucleon spin structure functions
g1ðx;Q2Þ and g2ðx;Q2Þ and their moments is the main
goal of our present NMA23 analysis. They are essential to
test some QCD sum rules. We provided a unified and
consistent PPDF through an achievement containing an
appropriate description of the fitted data. Within the
known very large uncertainties arising from the lack of
constraining data, our helicity distributions are in good
consistency with other extractions. We studied the Bjorken
sum rule, proton helicity, and Burkhardt-Cottinghan sum

FIG. 4. The evolved polarized quark densities as a function of x
in the NLO approximation.

FIG. 5. The polarized proton structure functions with respect to
x at Q2 ¼ 2 GeV2. The results of Jacobi expansion technique in
NLO (solid curve) and LO (dotted) approximations are compared
with parametrization models such as NAAMY (long dashed)
[25], BB (dashed dotted) [65], GRSV (dashed, dotted, dotted)
[62], LSS05 (dashed, dashed, dotted) [86], and KATAO
(dashed) [21].

FIG. 6. As in Fig. 5 but at Q2 ¼ 3.5 GeV2 and in a shorter
range of x, corresponding to the available data.

FIG. 7. As in Fig. 5 but at Q2 ¼ 4.4 GeV2 and in a shorter
range of x, corresponding to the available data.
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rules. Our results for the reduced matrix element d2 at the
NLO approximation have also been presented. To inves-
tigate them precisely, more accurate data are needed, and in
this work we considered all the recent and available data
relating to polarized targets that are listed in Table I.
Using the Jacobi polynomial technique, a fit to the

polarized lepton DIS data on nucleon have been presented
at the NLO approximation. We found good agreement with
the experimental data and our results have correspond with
determinations from some parametrization models. In
general we could demonstrate that an acceptable progres-
sion has been achieved describing the spin structure of the
nucleon.
The available data that we use in our recent analysis are

up to date and include more data than we employed in our
previous analysis [12]. These datasets are summarized in
Table I. The kinematic coverage, the number of data

points for each given target, and the fitted normalization
shifts Ni are also presented in this table. Our NMA23
analysis algorithm computed the Q2 evolution and
extracted the spin structure functions in x space using
Jacobi polynomials approach. It corresponded to the
fitting programs of other groups that solve the DGLAP
evolution equations in the Mellin space. Results for
PPDFs at different energy scales and gp;n1 structure
functions, together with the deuteron nucleus, have been
presented in Figs. 1–11, which confirm the validity of
computations during the fitting process to all updated and
recent related data.
In the future, the current analysis can be extended to

include transverse polarized targets, using the Jacobi
polynomial expansions in Laplace s space or other poly-
nomial expansion.

FIG. 8. The spin-dependent neutron structure functions with
respect to x at Q2 ¼ 1.5 and 5 GeV2. The results of Jacobi
expansion technique in NLO (solid curve) and LO (dotted)
approximations are compared with parametrization models like
NAAMY (long dashed) [25], BB (dashed dotted) [65], GRSV
(dashed, dotted, dotted) [62], LSS05 (dashed, dashed, dotted)
[86], and KATAO (dashed) [21].

FIG. 9. The spin-dependent structure functions of deuteron as a
function of x at Q2 ¼ 2 and 13 GeV2. The results of Jacobi
expansion technique in NLO (solid curve) and LO (dotted)
approximations are compared with parametrization models such
as NAAMY (long dashed) [25], BB (dashed dotted) [65], GRSV
(dashed, dotted, dotted) [62], LSS05 (dashed, dashed, dotted)
[86], and KATAO (dashed) [21].
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