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We study the causality and stability of relativistic hydrodynamics with the inclusion of the spin degree of
freedom as a hydrodynamic field. We consider two specific models of spin hydrodynamics for this purpose.
A linear mode analysis for static background shows that a first-order dissipative spin hydrodynamics
remains acausal and admits instabilities. In addition, it is found that the inclusion of the spin field in
hydrodynamics leads to new kinds of linear modes in the system. These new modes also exhibit instability
and acausal behavior. The second model of the spin hydrodynamics that we have considered here is
equivalent to a particular second-order conventional hydrodynamics with no dissipative effects. For a static
background, it is found that the linear modes of this model support the sound waves only. However, when
the background has constant vorticity, then the model admits instability and acausality in certain situations.
It is found that the spin dynamics have an effect on the hydrodynamic response of the fluid. These findings
point toward the need for a causal and stable theory with spin as a hydrodynamic field to describe the spin-
polarized fluid.
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I. INTRODUCTION

Several new theoretical developments have taken place
in relativistic dissipative hydrodynamics (see [1] for
review), which is immensely successful in describing the
data from nuclear collisions at relativistic energies [2–4].
Recently, invigorating efforts have been witnessed in the
development of spin hydrodynamics [5–41] after the
experimental measurement of the polarization of Λ hyper-
ons [42,43]. In particular, it is required to know how the
spin of the constituent particles is related to the fluid
variables, like vorticity, symmetric gradients, or magnetic
fields. The polarization of hadrons observed in noncentral
collisions of heavy ions at the Relativistic Heavy Ion
Collider (RHIC) at the high center of mass energies
(

ffiffiffiffiffiffiffiffi
sNN

p
) [42,43] has been attributed to the transfer of orbital

angular momentum of the fireball to the spin polarization
through spin orbit coupling. However, the dependence of
the local Λ spin polarization on the azimuthal angle in the
transverse plane of collision observed by the STAR Col-
laboration [43,44] cannot be explained by hydrodynamical

models based on local thermal vorticity [45–47]. The spin
polarization as an independent relativistic hydrodynamic
field was proposed as a possible solution to this problem,
which has led to several new developments in the area of
relativistic spin hydrodynamics. It was realized that also the
shear stress of the fluid can give rise to spin polarization in
addition to vorticity and temperature gradients [48,49].
Subsequently, it was shown that one can solve the sign
problem of local Λ spin polarization by considering a
possible effect of shear-induced polarization [48,50] at the
constant temperature freeze-out hypersurface without
incorporating any additional variables in hydrodynamics
for the spin for modeling the evolution of the quark gluon
plasma (QGP) phase. However, even with considering the
shear-induced polarization, the (steepness of) variation of
the component of the polarization along the direction of
global angular momentum with azimuthal angel is not well
reproduced [50]. Also the effect of polarization on the fluid
dynamic evolution of QGP is not fully understood. There
the incorporation of the spin density as a new field variable
in the hydrodynamic setup remains relevant for under-
standing the spin polarization in the RHIC.
It must be emphasized that the inclusion of spin

observables in hydrodynamics opens up an interesting
possibility of developing a “classical” tool for studying
the quantum effect in a many-body system like quark
gluon plasma. Other new interesting developments are
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the chiral hydrodynamics [51,52] and the chiral vortical
effects [53,54]. In condensed matter systems also hydro-
dynamics with spin observables have found many interest-
ing applications (see [55] for a review).
The incorporation of the spin as a hydrodynamic field

and its effect on the evolution of relativistic fluid is one of
the most active areas of contemporary research [5,24,56].
The inclusion of spin in the general relativity is also a long-
standing problem [57]. The evolution of the spin and other
hydrodynamic fields (e.g., energy density, pressure, veloc-
ity, etc.) is governed by the conservation of the total angular
momentum along with the other equations governing the
conservations of energy-momentum and conserved charges
(net electric charge, net baryonic charge, etc.). However,
the definitions of the energy-momentum and spin tensors
are not unique because of the presence of pseudo gauge
transformation degrees of freedom [57]. Therefore, in spite
of tremendous efforts, the formulation of relativistic dis-
sipative spin hydrodynamics remains incomplete. One can
obtain many different pairs of these tensors [57] through
pseudogauge transformation. This ambiguity can be illus-
trated through the following situation: At the microscopic
level, the energy-momentum tensor, defined for a system of
particles with spin, can have symmetric and antisymmetric
parts, where the antisymmetric part can be attributed to
spin. Now with the help of pseudogauge transformation,
one can define a new energy-momentum tensor [58], the
Belinfante tensor, which is symmetric. Recently it has been
shown in [7] that the entropy currents under this trans-
formation are not equivalent in nonequilibrium situations.
This is intriguing since this difference in expressions of
entropy current imply that the physics of the two situations
are not the same. Another interesting point of view was
advanced in Ref. [8], where the authors demonstrate that
the second-order conventional hydrodynamics is equivalent
to spin hydrodynamics in the dissipationless limit. The
demonstration, however, uses the pseudogauge transfor-
mations along with the suitable generalization of the
currents associated with the entropy and number densities.
However, due to this equivalence, one may think that
perhaps one does not need to have spin hydrodynamics,
since conventional hydrodynamics suffices, which needs to
be investigated. Apart from that, we note that the energy-
momentum tensor for the second-order conventional
hydrodynamics contains contributions from the fluid vor-
ticity [59–61]. But the inclusion of vorticity brings spin
dynamics in the hydrodynamic theory since the presence of
the finite vorticity in the system can be regarded as a source
of spin polarization. In addition to that, the shear stress
is also a source of spin polarization in a fluid. This points
toward the requirement of a treatment, more than the
conventional formulation, to account for the spin dynamics,
with a spin density as an independent hydrodynamic field.
It is well known that the straightforward generalization

of the Navier-Stokes (NS) equation to the relativistic
domain is problematic because it admits acausal and

unstable solutions [62]. It is also known that these issues
can be remedied by incorporating second-order corrections
to the NS equation [61] if certain conditions are satisfied.
It is to be noted that this approach is not unique and
there exists a variety of other approaches to address the
issues related to the relativistic generalization of the NS
equation [63]. In the present work, we systematically
analyze the issues related to causality and instability in
the spin hydrodynamics presented in Refs. [6,8]. The
equations of spin hydrodynamics presented in Refs. [6,8]
have very different structures and support different modes.
In Ref. [32], it is shown that the causality for a particular
kind of spin hydrodynamics can be restored only with a
second-order term like the Israel-Stewart theory [61].
The paper is organized as follows: In the next section,

we first briefly introduce the dissipative spin hydrodynam-
ics equations, and for a simple initial state, we provide a
linear mode analysis. In Sec. III, we briefly introduce the
convention of second-order hydrodynamics and its equiv-
alence with spin hydrodynamics in the dissipationless limit.
This section also includes the linear mode analysis for the
two initial states. The first case corresponds to the sta-
tionary fluid, while the second initial state has nonzero but
constant vorticity in x and y directions. Section IV is
devoted to the summary and discussions.

II. DISSIPATIVE SPIN HYDRODYNAMICS

A. Structure

There are several ways to obtain the equations of spin
hydrodynamics. The methods based on effective field
theory [30,31], the entropy current analysis approach [5],
and the method of moments [20] were used to derive the
equation of relativistic spin hydrodynamics. In the present
work, we closely follow the approach adopted in Ref. [6].
The conventional way is to define the energy-momentum
tensor Θμν and the conserved “currents” of the fluid under
consideration. To incorporate spin within the hydrody-
namic framework, one must consider the total angular
momentum Jμαβ as one of the conserved currents. The
Noether current Jμαβ associated with Lorentz transforma-
tion can be decomposed into spin and orbital angular
momentum as follows:

Jμαβ ¼ ðxαΘμβ − xβΘμαÞ þ Σμαβ; ð1Þ

where Θμβ is the canonical energy-momentum tensor
(EMT), xα is the space-time four-vector, and Σμαβ is the
spin tensor. The first term within the bracket on the right-
hand side of Eq. (1) represents the contribution from the
orbital angular momentum, which is conserved for sym-
metric Θμβ. All the dissipative fluxes that one may
encounter in the formulation of dissipative hydrodynamics
will be denoted with a prefix, Δ. Henceforth, the contri-
bution from the gradients of hydrodynamic fields to Θμν
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will be denoted by ΔΘμν and decomposed into symmetric
(ΔΘμν

s ) and antisymmetric (ΔΘμν
a ) parts as follows:

ΔΘμν ¼ ΔΘμν
s þ ΔΘμν

a : ð2Þ

Both the symmetric and the antisymmetric parts of the
canonical EMT contain information about the dissipation
and transport coefficients. The mathematical form of ΔΘμν

can be determined with the help of the second law of
thermodynamics. The second term on the right-hand side of
Eq. (1) is the spin term, which arises due to the invariance
of the underlying field under Lorentz transformation [6]
and can be identified with the internal degrees of freedom.
It is required that the spin term satisfy the condi-
tion Σμαβ ¼ −Σμβα.
The spin tensor can further be decomposed into two parts,

Σμαβ ¼ Sαβuμ þ ΔΣμαβ; ð3Þ
where Sαβ is spin polarization density in the fluid rest frame
and ΔΣμαβ is the spin dissipation. Moreover, the current
density jμ for conserved charges (baryonic charge for the
system formed in the relativistic nuclear collision) can be
written as

jμ ¼ nuμ þ nμ; ð4Þ

where n is the charge density at the fluid rest frame and nμ is
the charge diffusion, which vanishes in Eckart’s choice
of frame.
Next, one can write EMT for the fluid as

Θμν ¼ Θμν
o þ ΔΘμν

s þ ΔΘμν
a ; ð5Þ

where Θμν
o is the ideal part of the EMT, which is given by

Θμν
o ¼ ϵuμuν þ PΔμν; ð6Þ

where ϵ, P, and uμ denote energy density, pressure, and
fluid four velocity of the fluid, respectively. The signature
metric of the flat space-time is taken here as gμν ¼
diagð−;þ;þ;þÞ with all the nondiagonal components
being zero such that the projection operator Δμν ¼ gμν þ
uμuν satisfies the condition Δμνuμ ¼ 0. The velocity field
uμ satisfies the normalization condition uμuμ ¼ −1. The
quantities P, ϵ, and n are related through the equation of
state as P ¼ Pðϵ; nÞ.
Expressions for ΔΘμν

s and ΔΘμν
a can be decomposed

as [6,64]

ΔΘμν
s ¼ ΠΔμν þ hμuν þ uμhν þ πμν; ð7Þ

ΔΘμν
a ¼ qμuν − uμqν þ ϕμν; ð8Þ

where the scalar Π, the vectors (hμ and qμ), and the rank-2
tensors (πμν and ϕμν) are the dissipation fluxes. All

the dissipative fluxes in the canonical EMT individually
satisfy the transversality condition with respect to the
hydrodynamical velocity uμ given by hμuμ ¼ qμuμ ¼
ΠΔμνuμ ¼ πμνuμ ¼ uμϕμν ¼ 0. The dissipation vector hμ

represents the contribution to the energy flow that does not
depend on the spin polarization, while the vector qμ

describes the dissipation due to spin polarization. The
tensor πμν is a symmetric traceless tensor representing the
shear-stress tensor without any effect of the spin polariza-
tion, whereas ϕμν is an antisymmetric shear tensor describ-
ing the dissipation due to vorticity and spin polarization.
The mathematical forms of the scalar, vector, and tensor
dissipative fluxes can be constructed in terms of gμν, the
hydrodynamical fields, and the transport coefficients with
the help of the second law of thermodynamics. The
transport coefficients can be determined from the under-
lying microscopic theories.
The equations of motion of a relativistic fluid with spin

degrees are given by

∂μΘμν ¼ 0; ð9Þ

∂μJμαβ ¼ 0; ð10Þ

∂μjμ ¼ 0: ð11Þ

The second law of thermodynamics requires that the
entropy current sμ satisfies the following condition:

∂μsμ ≥ 0: ð12Þ

From Eq. (10) and using the definition of total angular
momentum [Eq. (1)], one gets the equation for spin
dynamics as

∂ρΣρμν ¼ −2ΔΘμν
a : ð13Þ

This equation indicates that the evolution of the spin is
governed by the antisymmetric part of the EMT.
Next by using Eqs. (9), (10) and (11) we obtain

Dϵ ¼ −ðϵþ PÞθ þ uν∂μ½ΔΘμν�; ð14Þ

ðϵþ PÞDuμ ¼ −Δμν
∂νP − Δμ

ν∂αΔΘαν; ð15Þ

DSαβ ¼ −Sαβθ − 2ΔΘαβ
a − ∂μΔΣμαβ; ð16Þ

Dn ¼ −nθ; ð17Þ

where D≡ uμ∂μ and θ≡ ∂μuμ. The first law of thermo-
dynamics is generalized to incorporate the spin density
Sμν as [6]

Tds ¼ dϵ − μdn − ωμνdSμν; ð18Þ
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Ts ¼ ϵþ P − μn − ωμνSμν; ð19Þ

where s, μ, and ωμν, respectively, denote entropy density,
(baryonic) chemical potential, and the chemical potential
corresponding to the spin tensor. This requires spin to be a
conserved quantity. As described by Eq. (13), spin dynam-
ics is governed by the antisymmetric part of the canonical
EMT. Thus, the incorporation of spin degrees of freedom
within a hydrodynamic framework requires that the relax-
ation time for spin density is longer than the mean free
time related to the microscopic scattering of the fluid
particles [6]. From the differential statement of the first law,
one can write the space-time evolution of entropy density as

TDs ¼ Dϵ − μDn − ωμνDSμν: ð20Þ

In the presence of dissipative fluxes, one decomposes the
entropy current as sμ ¼ suμ þ Δsμ and the velocity projec-
tion requires thatΔsμuμ ¼ 0 [6]. In order to apply the second
law of thermodynamics, one takes divergence sμ to get

∂μsμ ¼ sθ þDsþ ∂μΔsμ: ð21Þ

Now, first, we eliminateDs from Eq. (21) by using (20) and
then use Eqs. (15)–(17) to obtain

∂μsμ ¼ βθfTs − ðϵþ PÞ þ μnþ ωαβSαβg − ΔΘμν
∂μðβuνÞ

− ΔΣμαβ
∂μðβωαβÞ þ 2βωαβΔΘ

αβ
a

þ ∂μðΔsμ þ βuνΔΘμν þ βωαβΔΣμαβÞ; ð22Þ

where β ¼ 1=T is the inverse temperature. In Eq. (22), the
term within fg vanishes due to the first law of thermody-
namics given byEq. (19). The last termon the right-hand side
can be made zero by demanding

Δsμ ¼ −βuνΔΘμν − βωαβΔΣμαβ: ð23Þ

It is straightforward to check that Δsμuμ ¼ 0. The math-
ematical forms of the scalar, vector, and tensor dissipative
fluxes (Π, hμ, qμ, πμν, and ϕμν) appearing in Eqs. (7) and (8)
are required to be constrained by the second law of
thermodynamics. The appropriate form of these fluxes are
found to be [6]

Π ¼ −ζθ;

hμ ¼ −κðDuμ þ βΔμρ
∂ρTÞ;

qμ ¼ −λð−Duμ þ βΔμρ
∂ρT − 4ωμνuνÞ;

πμν ¼ −2ηΔμναρ
∂αuρ;

ϕμν ¼ −2γ
�
1

2
ðΔμα

∂αuν − Δνα
∂αuμÞ − Δμ

ρΔν
λω

ρλ

�
;

ΔΣμαδ ¼ −χ1Δμρ
∂ρðβωαδÞ; ð24Þ

where κ, η, and ζ, respectively, denote the coefficients of
thermal conductivity, shear viscosity, and bulk viscosity, and
the symmetric traceless projection normal to uμ is defined as
Δμν

αβ ¼ 1
2
ðΔν

αΔ
μ
β þ Δμ

αΔν
β −

2
3
ΔμνΔαβÞ. The spin fields intro-

duce two new transport coefficients, such as λ and γ. The
coefficient λ is related with heat conduction associated with
the new vector current qμ, while coefficient γ is related with
new stress tensorϕμν generated due to the inclusion of spin in
the hydrodynamics. The other unfamiliar transport coeffi-
cient χ1 appears due to transport of the spin field. Moreover,
qμ gets a contribution from the spin potential ωμν. It is
interesting to note that if one identifiesωμν as a vorticity, then
the spin stress ϕμν vanishes, but qν survives. Thus, the effect
of spin polarization only remains in the vector current
associated with qν.
Until now, no power counting scheme is assumed in the

derivation of the fluxes with entropy that includes the effect
of spin current. We will consider two schemes: (i) One as in
Ref. [6], where gradients are taken as ∼Oð∂1Þ ¼ δg and the
spin chemical potential is taken as ∼δ. In that case, for
δ2g ≪ δg ≪ 1, onlyΔΣμαδ ≡ 0 at first order and other fluxes
remains intact in the first order in Eq. (22). The other
scheme of the ordering of scale is for uniform high rotation,
where the vorticity is on the order of δω ≪ 1 and other
gradients are of different scales, but δω is the highest
relevant scale [8]. We discuss below how the dispersion of
linear perturbations is shaped for these two types of the
ordering of scales, both for the first-order spin hydro-
dynamics and the equivalent conventional second-order
hydrodynamic theory.

B. Linear analysis

To understand the stability and causality issues, first we
consider an equilibrium background with flow velocity
uμ0 ≡ ð−1; 0; 0; 0Þ. Here the subscript 0 denotes the value of
a physical quantity of the background on which perturba-
tion is placed. In addition, the background is assumed to
be static and homogeneous and values of spin polarization
and spin-potential tensors are considered to be zero. The
background equilibrium state is the same as the one
considered in Ref. [6]. We use Q as the generic notation
for the hydrodynamic field, with Q0 and δQ representing
the mean values and fluctuation, respectively, where δQ is a
function of space and time. In this scheme, one can write
the perturbed velocity vector as δuμ ≡ ð0; δuÞ. In the
following, we consider the spin chemical potential of order
∼Oð∂1Þ, i.e., on the order of other gradients (of uμ, T, μ).
This allows us to keep the order of vorticity the same as the
order of the derivatives of other perturbed quantities like
δuμ or δT. This power counting scheme is different than the
one used in Sec. III following Ref. [8].
Here, first we note that, in the absence of any spin

dynamics and conventional dissipation fluxes, only sound
waves are supported in the linear perturbations scheme.
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On retaining terms in linear order in perturbed quantities,
we get the following set of equations:

0 ¼ ∂δϵ

∂t
þ h0∇ · δu − ðκ − λÞ ∂

∂t
ð∇Þ · δu −

�
κ þ λ

T0

�
∇2δT

þ 4λ∂iδω
i0; ð25aÞ

0 ¼ ðκ þ λÞ ∂
2δui

∂t2
− h0

∂δui

∂t
þ ðηþ γÞ∇2δui

þ ðζ þ η=2 − γÞ∂i∇ · δuþ ðκ − λÞ
T0

∂∇iδT
∂t

− ∂
iδPþ 4λ

∂δωi0

∂t
− 4γ∂lδω

li; ð25bÞ

0 ¼ ∂δS0i

∂t
þ 8λδωi0 −

χ1
T0

∇2ωi0 þ 2λ
∂

∂t
δui −

2λ

T0

∂
iδT;

ð25cÞ

0 ¼ ∂δSij

∂t
− 2γð∂iδuj − ∂

iδuj − 4δωijÞ − χ1
T0

∇2ωij; ð25dÞ

0 ¼ ∂δn
∂t

þ n0∇ · δu; ð25eÞ

where h0 ¼ ϵ0 þ P0 is the enthalpy density of the initial
state. By setting δQ ¼ ˜δQ expð−ωtþ ik · xÞ, one can
convert the above differential equations into a set of a
linear homogeneous algebraic equations. It is useful to
consider the projections along the unit wave vector k̂ to
get the longitudinal modes and projection perpendicular
to k̂ for obtaining the transverse modes. The following
set of algebraic equations are obtained for longitudinal
and transverse modes denoted by subscript p and t,
respectively:

0 ¼
�
−ωþ k2ðκ þ λÞ

T0ϵT

�
δϵþ

�
k2ðκ þ λÞϵn

T0ϵT

�
δn

þ ik½ωT0ðκ − λÞ þ h0�δup þ 4ikλδωp0; ð26aÞ

þik

�
ωðκ − λÞϵn

T0ϵT

�
δn − 4λωδωp0; ð26bÞ

0 ¼ ½ωh0 þ ω2T0ðκ þ λÞ − k2ðγ þ ηÞ�δut
− 4ikγT0δωpt − 4λT0ωδωt0; ð26cÞ

0 ¼
�
8γ − ωχs þ

χ1
T0

k2
�
δωpt − 4iγkδut; ð26dÞ

0 ¼
�
8γ − ωχb þ

χ1
T0

k2
�
δωp0 þ

2δeλðikÞ
CVT0

−
2δnðikÞλϵn

ϵTT0

þ 2λωδup; ð26eÞ

0 ¼
�
8γ − ωχb þ

χ1
T0

k2
�
δωt0 þ 2λT0ωδut; ð26fÞ

0 ¼ −ωδnþ ikn0δup; ð26gÞ

where χb ¼ ∂Si0

∂ωi0 and χs ¼ ∂Sij
∂ωij, where i and j denote spatial

indices [6]. Here the subscripts p and t, respectively,
describe longitudinal and transverse parts. Further, we
have used δT ¼ 1

ϵT
δϵ − ϵn

ϵT
δn, where ϵT ¼ ∂ϵ

∂T jn and ϵn ¼
∂ϵ
∂n jT in the above equations.
Since the equations for longitudinal and transverse

parts are decoupled, one can treat them separately to obtain
the dispersion relations for the linear mode. For the
longitudinal part,

MQl ¼ 0; ð27Þ

where

Ql ¼

0
BBB@

δϵ

δup
δωp0

δn

1
CCCA ð28Þ

and

M ¼

0
BBBBBB@

k2ðκþλÞ
ϵTT0

− ω ikh0 þ ikωðκ − λÞ 4ikλ − k2ϵnðκþλÞ
ϵTT0

−ik
�
c2s þ ωðκ−λÞ

ϵTT0

�
ωh0 þ ω2ðκ þ λÞ − k2ðζ þ 4η

3
Þ −4λω − ikωϵnðκ−λÞ

ϵTT0

− 2ikλ
CVT0

−2λω ωχb −
k2χ1
T0

þ 8λ 2ikλϵn
ϵTT0

0 ikn0 0 −ω

1
CCCCCCA
: ð29Þ

The nontrivial solutions are obtained by setting M ¼ 0 leading to the following four roots and hence four dispersion
relations for the longitudinal modes:
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ω1l ¼ ðκ þ λÞ n0ϵn
ϵTT0h0

k2;

ω2l ¼ �icskþ
�ðζ þ 4

3
ηÞ

2h0
þ λ

�
1

ϵTT0

þ c2s
h0

�
−

κn0ϵn
ϵTT0h0

�
k2;

ω3l ¼ −
8λ

χb
þ χ1
χbT0

k2;

ω4l ¼ −
h0

ðκ þ λÞ : ð30Þ

The spin-transport coefficient λ associated with the heat
conduction is seen to be contributing together with the
conventional heat conduction characterized by coefficient
κ. The acausal behavior seen in the NS equation can also be
seen in the first equation. The parameter λ also contributes
to giving instability together with the conventional heat
conductivity κ. Further, it should be noted that λ and κ
appear in the denominator of the unstable mode [fourth root
in Eq. (30)]. In conventional first-order hydrodynamics,
this kind of unstable mode was discussed in Ref. [65] and
was regarded to be unphysical. Next, for finite baryon
density, the sound mode mode ω2l can be stable if the

condition ½ðζþ4
3
ηÞ

2h0
þ λð 1

ϵTT0
þ c2s

h0
Þ ≥ κn0ϵn

ϵTT0h0
� is satisfied. If this

condition is violated, then instability sets in as the conven-
tional heat conduction can contribute toward increasing

pressure and that may result in having an unstable mode.
Interestingly, λ also contributes toward damping the sound
modes described by ω2l. In the absence of conven-
tional heat conduction, i.e., κ ¼ 0, the parameter λ can
give damping of the sound wave. Finally, the third in
Eq. (30) is a new mode that has no presence in conven-
tional fluid dynamics. This mode can be unstable when
8λ > χ1

T0
k2. Here it may be noted that this mode can be

made stable if one introduces a term (S
αβ

τs
) for the relaxation

of Sαβ in the left-hand side of Eq. (17), where τs is the spin-
relaxation time. In addition, ω3l can also exhibit an acausal
behavior for sufficiently large values of wave vector k.
Similarly, the transverse parts in Eqs. (26a)–(26g) can be

written as

MtQt ¼ 0; ð31Þ

where

Qt ¼

0
B@

δut
δωpt

δωt0

1
CA ð32Þ

and

Mt ¼

0
BB@

ωh0 þ ω2ðκ þ λÞ − k2ðγ þ ηÞ −4iγk −4λω

−2iγk 8γ þ k2χ1
T0

− ωχs 0

−2λω 0 ωχb −
k2χ1
T0

þ 8λ

m

1
CCA: ð33Þ

By setting the determinant Mt ¼ 0, the following expres-
sions for the dispersion relations of the transverse modes
are obtained:

ω1t ¼
ðγ þ ηÞ
h0

k2;

ω2t ¼ −
8λ

χb
þ χ1
χbT0

k2;

ω3t ¼
8γ

χs
þ χ1
T0χs

k2;

ω4t ¼ −
h0

ðκ þ λÞ : ð34Þ

Just like the four longitudinal modes in Eq. (30), there
are four transverse modes also. The modes represented by
ω1t and ω4t have a combination of the conventional and
spin-transport coefficients. It is to be noted that coefficient γ
is associated with the traceless part of the anisotropic stress
tensor ϕμν in Eq. (24), and therefore it appears together with
the shear viscous coefficient η in ω1t. The group velocity

associated with ω1t can exhibit acausal behavior. Such
behavior is well known in the dispersion relation resulting
from the relativistic NS equation (for example, see
Ref. [64]). Those modes described by ω2t and ω3t
are new and they have no analog in conventional hydro-
dynamics. The mode ω2t is unstable if the condition
8λ > χ1

T0
k2 is satisfied. The expression for mode ω2t is

exactly similar to the longitudinal mode ω3l and the
instability associated with this mode can be regulated by
introducing a spin-relaxation time. However, the group
velocity associated with ω2t can still become acausal for
sufficiently highvalues ofk. Themodeω3t is stable, but it can
have similar acausal behavior as ω2t. However, the transport
coefficient γ contributes toward giving a damping term that is
independent of k. Finally,ω4t gives an instability that has the
same form as ω4l and this mode has a counterpart in the
conventional relativistic hydrodynamic theory.
Before we proceed to discuss the normal mode analysis

in the nondissipative limit for the model discussed in
Ref. [8], a few comments are in order. The new modes
introduced by the inclusion of spin dynamics depend on the
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spin-transport coefficients γλ and χ1. The instability arising
due to λ can rather be controlled by introducing spin-
relaxation time τs, provided the term with the relaxation
time dominates over the term giving the instability. This
point of view was also discussed in Ref. [6]. It might be
possible to control the acausal behavior for modes ω3l, ω2t,
and ω3t. However, this may require an explicit calculation
of the spin-transport coefficients. For example, the group
velocity of mode ω2t is 2 χ1

χbT0
k. Therefore, even if the

coefficient of k is small, the group velocity may still exceed
the speed of light for large values of k. However, for the
validity of the hydrodynamics, the upper limit of k is
determined by its corresponding wavelength, λ ¼ 2π=k
which should be larger than the mean free path of the
particles. This requires the explicit calculation of spin-
transport coefficients using a microscopic theory.
There are new modes in spin hydrodynamics that have

no counterpart in the conventional limit; therefore, they are

in no way equivalent, in general. This is a clear indication
that, for a general case where vorticity can take any value
and there could be other sources of spin polarization such
as symmetric gradients and magnetic field, the modified
conventional hydrodynamics may not be equivalent to spin
hydrodynamics. This issue will be further discussed in
Sec. III.

C. Instability and the heat flux

The term Duν appearing in the expression for heat flux
can be replaced by using Eq. (25b) in favor of the spatial
gradient of pressure and other terms first order in the
derivative. Thus, if we keep only the first-order term in the
heat flux with no time derivative of the fluid velocity, then
it gets a correction from the first-order dissipation. We use
Eqs. (15) and (21) to find the following form of heat
fluxes:

hμ ¼ κ

�
1

Pþ ϵ
−

1

Pþ ϵ − μn

�
Δμν

∂νPþ κ
1

Pþ ϵ − μn
PnΔμν

∂νnþOð∂2Þ; ð35Þ

and

qμ ¼ −λ
�

1

Pþ ϵ − μn
þ 1

Pþ ϵ

�
Δμν

∂νPþ λ
1

Pþ ϵ − μn
PnΔμν

∂νnþ 4λωμνuν þOð∂2Þ; ð36Þ

where Pn ¼ ∂P
∂n jT . We have used ∂μT ¼ 1

PT
∂
μP − Pn

PT
∂
μn, where PT ¼ ∂P

∂T jn and Pn ¼ ∂P
∂n jT . For the baryon free case, i.e., for

n ¼ 0 and Pn ¼ 0, we have hμ ¼ 0þOð∂2Þ and qμ ¼ −2λ 1
Pþϵ ∂

μPþOð∂2Þ. This is the situation considered in Ref. [6].
We consider the general case with nonzero baryon density. In such a situation, the linearized equations become

0 ¼ ∂δϵ

∂t
þ h0∇ · δuþ c2s

�
κ − λ

h0
−

κ þ λ

h0 − μ0n0

�
∇2δϵþ ðκ þ λÞPn

h0 − μ0n0
∇2δnþ 4λ∂iδω

i0; ð37aÞ

0 ¼ −h0∇ · δu − h0
∂δui

∂t
þ ðηþ γÞ∇2δui þ ðζ þ η=2 − γÞ∂i∇ · δu

− c2s

�
κ þ λ

h0
−

κ − λ

h0 − μ0n0

�
∂

∂t
∂
iδϵ −

ðκ − λÞPn

h0 − μ0n0

∂

∂t
∂
iδn − ∂

iδPþ 4λ
∂δωi0

∂t
− 4γ∂lδω

li; ð37bÞ

0 ¼ ∂δS0i

∂t
þ 8λδωi0 −

χ1
T0

∇2ωi0 − 2λc2s

�
1

h0
þ 1

h0 − μ0n0

�
∂
iδϵþ 2λ

1Pn

h0 − μ0n0
∂
iδn; ð37cÞ

0 ¼ ∂δSij

∂t
− 2γð∂iδuj − ∂

iδuj − 4δωijÞ − χ1
T0

∇2ωij; ð37dÞ

0 ¼ ∂δn
∂t

þ n0∇ · δu: ð37eÞ

In the above equations, putting perturbations as δQ ¼ ˜δQ expð−ωtþ ik · xÞ, we get

0 ¼ δe

�
−
�
k2c2s

�
κ − λ

h0
−

κ þ λ

h0 − μ0n0

��
− ω

�
−
δnk2ðκ þ λÞPn

h0 − μ0n0
þ δupðikh0Þ þ 4iλkδωp0; ð38aÞ

0 ¼ −iδekc2s
�
1 − ω

�
κ þ λ

h0
−

κ − λ

h0 − μ0n0

��
þ δup

�
ωh0 − k2

�
ζ þ 4η

3

��
þ δnðikÞωðκ − λÞPn

h0 − μ0n0
− 4λωδωp0; ð38bÞ
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0 ¼ δutðωh0 − k2ðγ þ ηÞÞ − 4iγkδωpt − 4λωδωt0; ð38cÞ

0 ¼ −δωp0

�
−ωχb þ

k2χ1
T0

− 8λ

�
− 2δeðikÞλc2s

�
1

h0 − μ0n0
þ 1

h0

�
þ 2δnðikÞλPn

h0 − μ0n0
; ð38dÞ

0 ¼ −δωt0

�
−ωχb þ

k2χ1
T0

− 8λ

�
; ð38eÞ

0 ¼ δωpt

�
8γ þ k2χ1

T0

− ωχs

�
− 2iγkδut; ð38fÞ

0 ¼ −ωδnþ ikn0δup: ð38gÞ

Following the same procedure as earlier, we get the dispersion relations that are linear in transport coefficients for
longitudinal and transverse modes. The longitudinal modes read

ω1l ¼ ðκ þ λÞ n0ϵn
ϵTT0h0

k2;

ω2l ¼ �icskþ
�ðζ þ 4

3
ηÞ

2h0
þ λ

ϵ0 − μ0n0 þ P0

�
2c2s −

n0ðμ0c2s þ PnÞ
h0

��
k2;

ω3l ¼ −
8λ

χb
þ χ1
χbT0

k2; ð39Þ

and we have for the transverse modes

ω1t ¼ −
8λ

χb
þ χ1
χbT0

k2;

ω2t ¼
ðγ þ ηÞ
h0

k2;

ω3t ¼
8γ

χs
þ χ1
T0χs

k2: ð40Þ

We find that there are no unstable modes of the form
ω ¼ − h0

ðκþλÞ [see the last equation in Eqs. (30)]. The

appearance of this mode can be understood from the part
ðκ þ λÞ ∂2δui

∂t2 − h0
∂δui
∂t of Eq. (25b), which gives ðωh0 þ

ω2T0ðκ þ λÞÞ in the coefficient of δup in Eq. (26b). ðωh0 þ
ω2T0ðκ þ λÞÞ ¼ 0 gives ω ¼ − h0

κþλ. The term ðκ þ λÞ ∂2δui
∂t2

originates in the equation through the expression of heat
flux in Eq. (24), where already a time derivative of velocity
appears on the right-hand side. The unstable mode is found
to disappear if the time derivative in the expression of heat
fluxes [Eq. (24)] is replaced by terms up to first order in
gradients in hydrodynamic fields by using Eq. (15). This
unstable mode is there without spin field [62]; here the
presence of spin adds to that through its contribution to heat
flux through qμ (or λ). So the source of instability found by
Lindblom and Hiscock [62] is due to the presence of a
second-order correction entering in first-order hydrody-
namics through the expression of heat flux, which contains
time variation of fluid velocity (Duμ). The second-order

effect in heat fluxes comes through Duμ because of its
dependence on gradients of the dissipative fluxes through
the velocity equations, gradients of the first-order dissipa-
tive fluxes being second order. Since the instability is
related to the expression of heat flux, it can be removed
by redefining heat fluxes, as already shown for the
spinless case in Ref. [63]. However, there may be unstable
modes due to the presence of the spin polarization,
ω1t ¼ − 8λ

χb
þ χ1

χbT0
k2. At first order, the term due to the

spin dissipation is dropped by considering it second order.
Now if the spin potential is first order itself, then ω1t ¼ − 8λ

χb
is always unstable when the contribution to the heat flux
from the spin potential is nonzero at first order in the
gradients of other hydrodynamic fields. Of course, this
mode is unstable only if χb > 0, i.e., if the direction of
spin potential is along the spin polarization. The sign
dependence of χb on charges, helicity, and chirality of
particles will then enable the separation of the contribution
from opposite charges. However, if the spin potential gets
a contribution from the zeroth order, then even for species
that give an unstable contribution, the modes with

jkj < 2
ffiffiffiffiffiffiffi
2λT0

χ1

q
are stable. It is to be noted from the expres-

sion of heat fluxes qμ [Eq. (24)] in Eqs. (38c)–(38e) that
this unstable linear mode vanishes when (i) the spin
potential satisfies ωμνuμ ¼ 0 and/or (ii) λ ¼ 0. i.e., when
the contribution to the heat flux from the spin potential
vanishes at first order in the gradients of other hydro-
dynamic fields [66].
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Now, the question of which form of the heat fluxes are to
be used in the first-order theory to avoid instability
developed at ω ¼ − h0

ðκþλÞ arises. One may argue that
replacement of the time derivative of the velocity by
first-order spatial derivative of the hydrodynamic field
by using Eq. (15) in heat flux is a good remedy for it.
We note that the form of heat flux that contains the
time derivative of the fluid velocity comes from the
positivity of four divergences of the entropy current,
and it contains corrections from the first order of the
dissipative fluxes through Eq. (15). Though the contribu-
tion to the entropy is first order in dissipative fluxes
[Eq. (23)], the dissipative fluxes are not restricted by this
condition that it is to be first order in the gradients of
hydrodynamic fields due to the presence of the time
derivative of the fluid velocity in the form of fluxes. The
timescale of growth of this instability is t ∼ ω−1 ∼ ðκþλÞ

h0
. So

for smaller κ and λ, this may be very short, which means
that, in a very short time, the contribution from the second
order would grow to lead to instability. So the truncation of
higher-order effects in heat fluxes may not be applicable in
that situation. For the general situation, this demands a
consistent second-order theory. The instability of first-order
theory is tamed only when the contribution of dissipation
on the time variation of fluid velocity (or acceleration) is
negligible compared to what it gets from the pressure
gradients.
Another important issue to note is that in two situa-

tions the contribution of conductivities in the dissipation
of sound modes is different. However, in both cases,
the dissipation of sound gets a contribution from the

new transport coefficient (λ) due to the spin polarization.
For certain values of n0, this contribution may lead to
growth also and the condition for the growth is different for
a different form of heat fluxes. There is always a con-
tribution from spin polarization in the transverse modes
through γ. So the spin polarization affects the dissipation in
the system.

III. EQUIVALENCE OF SPIN HYDRODYNAMICS
WITH SECOND-ORDER THEORY

IN NONDISSIPATIVE LIMIT

Next, we consider the stability analysis of the spin
hydrodynamics in the dissipationless limit discussed in
Ref. [8]. As we have discussed before, in Ref. [8] it was
shown that the inclusion of spin variable in the relativistic
hydrodynamical framework in the nondissipative limit is
equivalent to the conventional hydrodynamics with the
second-order corrections. The dissipationless limit requires
that entropy current sμ satisfies ∂μsμ ¼ 0. In the previous
section, we have seen how the new dissipative fluxes arise
due to the inclusion of spin variable and how they
contribute to some of the known problems related to the
relativistic Navier-Stokes theory [62,64]. Thus, it would be
interesting to check if similar issues still persist in the
nondissipative limit or not.
In the following, first, we discuss how the structure of the

equivalent second-order theory in Ref. [8] can resemble the
spin hydrodynamics in its pseudogauge transformed form.
For the symmetric Belinfante-Rosenfeld EMT with pseu-
dogauge transformation with the choice of gauge to be
Sαμν ¼ Σαμν [35,57,69], we have

Tμν ¼ Θμν þ 1

2
∂αðSαμν − Sμαν − SναμÞ

¼ Θμν þ 1

2
∂αðΣαμν − Σμαν − ΣναμÞ

¼ 1

2
ðΘμν þ ΘνμÞ − 1

2
∂αðΣμαν þ ΣναμÞ

¼ euμuν þ PΔμν þ ΠΔμν þ hμuν þ uμhν þ πμν −
1

2
∂αðuμSαν þ uνSαμÞ − 1

2
∂αðΔΣμαν þ ΔΣναμÞ

¼ euμuν þ PΔμν þ ΠΔμν þ hμuν þ uμhν þ πμν −
1

2
ð∂αuμÞSαν −

1

2
ð∂αuνÞSαμ

−
1

2
ðuμ∂αSαν þ uν∂αSαμÞ −

1

2
∂αðΔΣμαν þ ΔΣναμÞ

¼ euμuν þ PΔμν þ
�
Π −

1

6
Δλρ∂αðΔΣλαρ þ ΔΣραλÞ

�
Δμν þ

�
hμ −

1

2
∂αSαμ

�
uν

þ uμ
�
hν −

1

2
∂αSαν

�
þ πμν −

1

2
Δμν

λρ∂αðΔΣλαρ þ ΔΣραλÞ − 1

2
ð∂αuμÞSαν −

1

2
ð∂αuνÞSαμ: ð41Þ
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In the nondissipative limit, the dissipative tensor related to
viscosity ΠΔμν, πμν, and spin ΔΣαμν are zero, while the heat
flux hμ still has a nondissipative contribution due to the
vorticity driven thermal Hall effect [8]. Here we have used
Σαμν ¼ uαSμν. The term 1

2
ð∂αuμÞSαν þ 1

2
ð∂αuνÞSαμ can be

decomposed as a combination that contains ΔμνSλρωλρ and
Sμλωλν. From the above equation, it is clear that if Sαν is
connected to the vorticity as Sαν ¼ χωαν [8], the EMT looks
like that of a second-order theory that contains a second-
order derivative in the expansion of the EMT in field
gradients.
The above pseudogauge transformation makes the spin

tensor disappear from the total angular momentum since
the transformed spin tensor is Σ̃αμν ¼ Σαμν − Sαμν. It is easy
to check that ∂μTμν ¼ 0, using the identities [7]

∂μ∂αðΣαμν − Σμαν − ΣναμÞ ¼ 0;

or ∂μ∂αðuαSμν þ uνSνα þ uνSμαÞ ¼ 0; ð42Þ

as Sμν’s are antisymmetric in its indices.

A. Structure of the equivalent second-order theory

If the vorticity is the predominant gradient in the system,
where other dissipative gradients that are responsible for
the transport are very small, for highly rotating fluid, with
the vorticity ωμν ¼ 1

2
ðΔα

μ∂αuν − Δα
ν∂αuμÞ, the symmetric

energy-momentum tensor and the conserved charge current
of a parity-even plasma is written as [8]

Tμν ¼ ðϵþ PÞuμuν þ Pgμν þ ΔTμν; ð43Þ

ΔTμν ¼ a0Δμνωλρωλρ þ a1ω
μ
λωλν; ð44Þ

Jν ¼ nuν þ ΔJν; ð45Þ

ΔJμ ¼ c1Δ
μ
ρ∂νω

νρ þ c2ωμν
∂νβ; ð46Þ

where a0, a1, c1, and c2 are second-order transport
coefficients. For ideal evolution (∂μsμ ¼ 0), these transport
coefficients are related [8]. The assumption behind the
structure of the theory is that the vorticity is the dominating
scale over other gradients in the theory. In certain cases, this
can be a physical situation, since for a uniform rotation, the
vorticity can have arbitrarily high values without entropy
generation in the system. However, in general, the local
vorticity can have a wide range of values and the gradient
appearing through the vorticity can be larger with signifi-
cant entropy production. So the assumption of the above
theory is rather valid for a specific situation of high rotation
with a lower gradient appearing in the vorticity. The scales
are as follows: for the vorticity ωμν ∼ δω, with symmetric
gradient θμν ¼ 1

2
ðΔα

μ∂αuν þ Δα
ν∂αuμÞ ∼ ∂

⊥
μ α ∼ δ, ∂

⊥
μ β ∼ δ0

and spatial derivative of ωμν, β brings extra δ0 such that

∂
⊥
μ ω

μν ∼ δ0δω, ∂⊥μ ∂⊥ν β ∼ δ02, whereas for spatial derivative
of θμν and α, extra δ appear: ∂⊥μ θμν ∼ ∂

⊥
μ ∂

⊥
ν α ∼ δ2, where

α ¼ μ=T and ∂
⊥
μ ¼ Δρ

μ∂ρ. The assumption for the above
theory in terms of these scales is given by

δ02 ≪ δ ≪ δωδ
0 ≪ δ2ω ≪ δ0 ≪ δω ≪ 1: ð47Þ

The energy-momentum conservation equation (∂μTμν¼0)
and ∂μJμ ¼ 0 can be written as

Dϵþ ðϵþ PÞθ þ a0θðωλρωλρÞ − a1ω
μ
λuν∂μωλν ¼ 0; ð48Þ

ðϵþ PÞDuα þ Δαμ
∂μPþ a0ðDuαÞωλρωλρ

þ a0Δαμ
∂μðωλρωλρÞ þ a1∂ανðωμ

λωλνÞ ¼ 0; ð49Þ

nθ þDnþ ∂μΔJμ ¼ 0: ð50Þ

Ifwe linearize the theory arounda static equilibrium,where the
background quantities are independent of space-time, as
considered in Sec. II, then the contribution from the sec-
ond-order terms vanishes in the linearized form and, con-
sequently, we have

∂

∂t
δϵþ ðh0Þδθ ¼ 0; ð51Þ

ðh0Þ
∂

∂t
uα þ Δαμ

∂μδP ¼ 0; ð52Þ

n0δθ þ
∂

∂t
δn ¼ 0: ð53Þ

If we consider the perturbation of the form δQ ¼
˜δQ expð−ωtþ ik · xÞ, then these lead to ideal and stable
propagation of perturbations with only longitudinal propa-
gating modes, ω2l ¼ �icsk. This supports only sound waves
and the transport coefficients introduced for the ideal (non-
dissipative) hydrodynamics do not contribute to the linear
modes for the given choice of the background with no
vorticity. Here we note that if the background has finite
vorticity, then the new transport coefficients in this dissipa-
tionless limitmaycontribute to the dispersion relation.Now let
us investigate whether the first-order spin hydrodynamics as
discussed in Ref. [6] gives the same dispersion in this order of
scaling. If we put the same order of scaling as in Eq. (47), with
the spin chemical potential tensor being the vorticity and it is
the dominating order, then the spin hydrodynamics also has no
dissipation and we have only ω2l ¼ �icsk, since then all the
dissipative fluxes are absent at that order, and the structure of
the EMT of ideal spin hydrodynamics becomes Θμν ¼
ϵuμuν þ PΔμν without any contribution from vorticity at
all. Thus the first-order spin hydrodynamics becomes ideal
for the scheme of ordering mentioned in Eq. (47) which does
not carry problems of causality and stability.
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However, if the spin chemical potential, though being
of the same order as the vorticity, is not identical to it
(which is the case in a general situation, since the
symmetric shear and the magnetic field can also be
the cause of spin polarization), then the surviving dis-
sipative fluxes from Eq. (24) are qμ ≡ 4λTωμνuν and
ϕμν ¼ −2γ½1

2
ðΔμα

∂αuν − Δνα
∂αuμÞ − Δμ

ρΔν
λω

ρλ�. In that
case, the linear analysis around the static background
gives the longitudinal modes linear in transport coeffi-
cients, ω1li ¼ �ikcs and ω2li ¼ 8γ

χb
and transverse modes

linear in transport coefficients, ω1ti ¼ 8γ
χb

and ω2ti ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8γϵ0þγk2χsþ8γP0Þ2−32γ2k2ð−ϵ0χs−P0χsÞ

p
þ8γϵ0þγk2χsþ8γP0

2ðϵ0χsþP0χsÞ , which

give acausal diffusion. In such situations, these modes
have no counterpart in the conventional equivalent hydro-
dynamics. Here we would like to note that it is possible that
the hierarchy described by Eq. (47) may not be satisfied in a
more general situation. For example, when the Reynolds
number is not very large, it is likely that the dissipative
fluxes (related to the spin degree of freedom also) will play
a dominant role. The inclusion of such dissipative fluxes
may lead to the unphysical behavior that we have already
discussed above. Further, it is not clear in this situation how
the equivalence between the conventional second-order
fluid theory and the spin hydrodynamics can be estab-
lished. Another instance when the hierarchy is not
respected is δω ≪ δ0. In this case, too, the conventional
second-order fluid dynamics and the spin hydrodynamics
in the ideal limit may not be equivalent.
However, it is important to note that, when the above

hierarchy [Eq. (47)] is respected, in the dissipationless
limit, the spin hydrodynamics is equivalent to the conven-
tional fluid theory with the second-order corrections as
established in Ref. [8]. This equivalence allows one to have
the convenience of choosing from either of the models of
equivalent hydrodynamics. So far, we have considered the

background fluid state without any vorticity. Since the
second-order corrections in the equivalent conventional
theory are dependent on vorticity, it is of interest to consider
a linear stability analysis with the background having
nonzero vorticity. In the following, we consider such a
case. Such analysis also will help to understand whether, in
this prescription of scales, the hydrodynamics will always
be causal and stable or not. In the following, we investigate
the dispersion structure of the spin hydrodynamics with
ideal evolution as given in Ref. [8].

B. Nondissipative evolution in a uniformly
rotating background

The ideal counterpart of the spin hydrodynamic energy-
momentum tensor can be written as in Ref. [8],

Θμν ¼ ϵuμuν þ PΔμν þ hνuμ þ hμuν −
1

2
∂αΣαμν;

with hμ ¼ χ

2β
ωμν

∂νβ;

and Σαμν ¼ Sμνuα: ð54Þ

The hν given above vanishes at first order, for static
background. To have nonzero hν at first order, we consider
a rotating background with background equilibrium fluid
velocity profile,

uμ0 ¼ ð−1; 0; 0; vzÞ;
vz ¼

v0
L
ðy − xÞ; ð55Þ

and we consider v0
L to be very small (such that vz can be

treated in first-order perturbation).
Then, with Sμν ¼ χωμν, the linearized conservation

equations become

0 ¼ D0δϵþ h0∇ · δuþ χv0
2L

ð∂t∂zÞðδuy − δuxÞ þ vz
χ

4
∂tð∂2x þ ∂

2
y þ ∂

2
zÞδuz; ð56Þ

0 ¼ h0D0δui þ vzδzi
∂

∂t
δPþ ∂

iδPþ χ

2
ð∂2t Þδω0i þ χ

2
ð∂t∂lÞδωli þ χ

2
ωli
0 ∂l∇ · δu − δiz

�
v0
L

�
ðδhx − δhyÞ − ∂

∂t
δhi; ð57Þ

where δω0i ¼ − 1
2
vz∂zδui − 1

2
δizδul∂lvz and δωij ¼ 1

2
ð∂iδuj − ∂

jδuiÞ þ vz
2
ðδiz∂tδuj − δjz∂tδuiÞ.

We have in ω-k space, with δQ ¼ ˜δQe−iðωt−k·xÞ, whereQ stands for hydrodynamic fields (it is to be noted that before this
we considered the perturbations to be of the form δQ ¼ δQ̃e−ωtþk·x. So from here onward, the real part of ω would
correspond to (oscillatory or) wave mode,

0 ¼ δϵ

�
kzðv0χωÞ
4LT0ϵT

þ ic2skx

�
−
δnðkzðv0χωϵnÞÞ

4LT0ϵT
þ δux

	
1

4
χ

�
−
v0kxkz
L

þ iωðk2y þ k2zÞ
�

− ih0ðω − kzvzÞ


−
1

4
δuy

�
χ

�
v0kykz
L

þ iωkxky

��
−
1

4
χδuz

�
v0k2z
L

þ iωkxkz

�
;
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0 ¼ δϵ

�
−
kzðv0χωÞ
4LT0ϵT

þ ic2sky

�
þ δnðkzðv0χωϵnÞÞ

4LT0ϵT
þ δuy

	
1

4
χ

�
v0kykz
L

þ iωðk2x þ k2zÞ
�

− ih0ðω − kzvzÞ


−
1

4
δux

�
χ

�
−
v0kxkz
L

þ iωkxky

��
−
1

4
χδuz

�
−
v0k2z
L

þ iωkykz

�
;

0 ¼ −iδϵc2sðωvz − kzÞ þ δuz

�
−ih0ðω − kzvzÞ −

kzðv0χÞðkx − kzÞ
4L

þ 1

2
iχω2kzvz þ

1

4
iχωk2x

�

þ δux

�
−
kxðv0χÞðkx − kyÞ

4L
þ 1

4
iχω2kxvz þ

1

2
iχωkxkz −

ω2ðv0χÞ
2L

�

þ δuy

�
−
kyðv0χÞðkx − kyÞ

4L
þ 1

4
iχω2kyvz þ

1

2
iχωkykz þ

ω2ðv0χÞ
2L

�
;

0 ¼ δux

�
−
v0χωkz
2L

þ ðe0 þ p0ÞðikxÞ
�
þ δuy

�
v0χωkz
2L

þ ðe0 þ p0ÞðikyÞ
�

þ δuz

�
ðe0 þ p0ÞðikzÞ þ

1

4
ðikÞkχωvz

�
− iδeðω − kzvzÞ;

0 ¼ n0ðikjÞδuj − iδnðω − kzvzÞ; ð58Þ

where ϵn ¼ ∂ϵ
∂n jT . We have used ∂

μT ¼ 1
ϵT
∂
μe − ϵn

ϵT
∂
μn, where ϵT ¼ ∂ϵ

∂T jn. In the following, we consider n0 ¼ 0 and ϵn ¼ 0.
If we consider only the perturbation that propagates in the z direction, then kx ¼ ky ¼ 0, and from the above equations,
for energy perturbation, we get

0 ¼ δϵ

�
2ic2sðkz − ωvzÞ þ

2ðω − kzvzÞð−4ih0ðω − kzvzÞ þ v0χk2z
L þ 2iχω2kzvzÞ

kð4ϵ0 þ kχωvz þ 4P0Þ
�
: ð59Þ

In the case of a nonrotating static background, vz ¼ v0 ¼ 0, then the above equation has solution ω ¼ �csk. This is the
same as that of equivalent conventional hydrodynamics of Ref. [8]. However, for small rotation and small v0, we get

ω1 ¼ �cskz −
kzvzfðc2s − 2Þ − 3=4χ0c2sk2zg

2
−
iv0χ0k2z
8L

;

ω2 ¼
2

χ0kzvz
; ð60Þ

where χ0 ¼ χ
h0
. So, from the first two terms of the above

dispersion relation for ω1, it is evident that in the presence
of rotation of the background the propagation speed
gets modified due to the presence of spin polarization
arising from the vorticity (through nonzero χ) with

j dReðω1Þ
dk j ¼ 9χc2sk2zvz

8h0
− 1

2
c2svz � cs þ vz. This means that

for kz >
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2svz−2ð�csÞ−2vzþ2

p
3
ffiffiffiffi
χ0

p
cs

ffiffiffiffi
vz

p , j dReðω1Þ
dk j > 1, i.e., the sound

propagation becomes acausal. The third term tells about the
decay of the mode, though we have taken ideal evolution as
in Ref. [12], and this term may lead to instability for a
background rotation with negative v0. However, this decay
through the diffusion is acausal due to k2z dependence of
this term. This means that in the nondissipative limit the
prescribed spin hydrodynamics of Ref. [12] may lead to
acausal and unstable propagation. However, that implies
that the equivalent second-order theory may lead to

acausality and instability for rotating background. The
second mode is a wave mode whose propagation speed
is inversely proportional to χ, that is, to vorticity to spin
conversion strength, and also reduces with increasing
rotation. The speed of this mode is higher for lower kz,
which means such modes with longer wavelengths propa-
gate faster. This mode is there even in the absence of the
sound mode.
Apart from these modes, there are other modes. Taking

the sum of the first two equations of the set of equations
given in Eq. (58), we get

0 ¼ 1

4
iðδux þ δuyÞð4ϵ0kzvz − 4ϵ0ωþ 4P0kzvz

þ χωk2z − 4P0ωÞ: ð61Þ

This gives the wave mode other than the sound as
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ω ¼ 4kzvz
4 − χ0k2z

: ð62Þ

However, if we keep kx ¼ ky [which follows from δhz ¼ 0

and δh0 ¼ 0, where δhμ is the perturbation to hμ appearing
in Eq. (54)] and make the perturbation of energy and z
component of velocity zero, then from the first two
equations we get

0 ¼ ðδux − δuyÞð−4ϵ0ðω − kzvzÞ þ 4P0kzvz

þ χωk2z − 4P0ωÞfð−4ϵ0ðω − kzvzÞ þ 4P0kzvz

þ 2χωk2x þ χωk2z − 4P0ωg: ð63Þ

This gives two modes,

ω1 ¼
4vzkz

4 − χ0k2z
;

ω2 ¼
4vzkz

4 − 2χ0k2x − χk2z
: ð64Þ

These modes are wavelike modes and vanish when there is
no rotation of background (vz ¼ 0). So for a nonrotating
homogeneous-static background, the conventional hydro-
dynamics of Ref. [8], its equivalent ideal spin hydro-
dynamics has only sound modes. However, in the case
of constant uniform rotation, the spin hydrodynamics may
become unstable and acausal. So this equivalence, in
general, makes the conventional second-order theory unus-
able, in the sense that it corresponds to an acausal form of
the spin hydrodynamics.

IV. SUMMARY AND DISCUSSIONS

In the present work, we have carried out a linear mode
analysis for the two different sets of equations of the
relativistic spin hydrodynamics to study the issues related
to stability and causality. For the case of dissipative spin
hydrodynamics, it is found that the inclusion of spin
dynamics introduces new modes and instability to the
hydrodynamics. In this case, the spin hydrodynamics seem
to have similar kinds of pathologies as reported in the
literature of the relativistic NS equation [62]. We have
investigated the origin of the kind of instability in the
theory discussed in Ref. [62] and the origin is found to be
in the form of the heat fluxes. The spin dissipative
dynamics is characterized by three transport coefficients:
(i) γ (associated with the shear stress), (ii) λ (associated
with heat conduction), and (iii) χ1 (associated with the

spin dynamics). In the absence of regular dissipation
(ζ ¼ η ¼ κ ¼ 0), the first two longitudinal modes
described by Eq. (30) exhibit acausal behavior, as j dω1;2l

dk j
can exceed the speed of light. Similar behavior can be seen
in the regular relativistic NS equation also [see Eq. (30)
with ζ, η and κ ¼ 0]. The third mode [in Eq. (30)] is a new
mode, which is conditionally unstable and it can also have
acausal behavior. The fourth mode [in Eq. (30)] is purely an
unstable mode and it has a counterpart in the relativistic NS
equation [see the last mode in Eq. (30) with ζ, η and κ ¼ 0].
The transverse modes described by Eq. (34) also exhibit
acausality and instability. In Eq. (34), the second and third
equations are the new modes arising due to the spin
dynamics. In this case also the transport coefficient λ
can drive the instability under certain conditions. It is
evident that the presence of spin polarization affects the
hydrodynamic responses through new coefficients in spin
hydrodynamics.
We also studied the stability of the dissipationless spin

dynamics described in Ref. [8]. In this case, the linear mode
analysis was performed for the following two backgrounds,
i.e., when the fluid is (i) static and (ii) having constant
vorticity. In the first case, it is shown that the fluid supports
only the sound waves. In the second case, the background
velocity is in the z direction with constant vorticity in x and
y directions. In this case, it is possible to study the normal
Fourier modes in the z direction. The normal modes for this
case are described by Eq. (60). Here, the first equation may
give an instability for v0 < 0, but the reason for the
instability can be attributed to the source of the free energy
provided by the finite flow velocity of the background.
The flow velocity can also alter the sound speed. There
is an equivalent second-order dissipationless conventional
hydrodynamical theory as reported [8]. The underlying
pseudogauge transformation may give a similar kind of
dispersion relation described by Eq. (60). These issues
make the conventional second-order theory in Ref. [8] and
its equivalent spin hydrodynamics inadequate to describe
the hydrodynamics with the spin for a general situation.
Thus, we have analyzed acausal behavior and unphysical

instability arising in the relativistic spin hydrodynamics. We
believe that our linear analysis shows that relativistic spin
hydrodynamics faces similar issues faced by the relativistic
NS equation, but the spin dynamics brings in new complex-
ities. This points toward the need for causal and stable
theories, with the spin density as an independent hydro-
dynamic field, which are free from acausality and instability
to describe the spin dynamics of spin-polarized fluid.
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