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We study the pattern of chiral symmetry breaking in the ψχη model [with the chiral fermion sector
containing ψfijg, χ½ij�, and ηAi ; see Armoni and Shifman Phys. Rev. D 85, 105003 (2012)] on R3 × S1L and

derive implications forcing R4 physics. Center-symmetric vacua are stabilized by a double-trace
deformation. With the center symmetry maintained at small LðS1Þ ≪ Λ−1, i.e., at weak coupling, no
phase transitions are expected in passing to large LðS1Þ ≫ Λ−1 (here, Λ is the dynamical Yang-Mills scale).
Starting with the small-L limit, we find the leading-order nonperturbative corrections in the given theory.
The instanton-monopole operators induce the adjoint chiral condensate hψfijgχ½jk�i ≠ 0 at weak coupling,

i.e., at LðS1Þ ≪ Λ−1. Then adiabatic continuity tells us that hψfijgχ½jk�i ≠ 0 exists onR4, in full accord with
the prediction from Bolognesi et al. [Phys. Rev. D 97, 094007 (2018)]. Simultaneously with
hψfijgχ½jk�i ∼ Λ3δik, the SUðNcÞ gauge symmetry is spontaneously broken at strong coupling down to
its maximal Abelian subgroup.

DOI: 10.1103/PhysRevD.107.054030

I. INTRODUCTION

Chiral Yang-Mills theory is an important element in
understanding non-Abelain gauge dynamics. If at weak
coupling (i.e., in the Standard Model) everything is trans-
parent this cannot be said about the strong-coupling regime.
In a special “hybrid” chiral model [1] (also known as the
ψχη model) a pattern of the chiral symmetry breaking
(χSB) was established [2] on the basis of the ’t Hooft
anomaly considerations and some additional arguments.
Two possible scenarios were revealed. In this paper, we
invoke Ünsal’s adiabatic continuity for additional verifica-
tion of the results reported in [2]. The pattern of the chiral
symmetry breaking in the ψχη model following from the
adiabatic continuity perfectly coincides with one of the
scenarios in [2]. We also discuss some other implications of
the adiabatic continuity in the ψχη model.
The chiral Yang-Mills theories were studied at weak

coupling and in various models (e.g., Maximal Attractive
Channel) in the 1980s [3–5] and more recently at strong
coupling; see, e.g., [1,2,6–14]. Owing to the recent dis-
coveries of generalized global symmetries in quantum field

theory [15,16], and the corresponding ’t Hooft matching,
this topic has attracted renewed attention [10,11,17,18].
We will focus on one particular subclass of strongly

coupled Yang-Mills theory with a special chiral fermions
matter sector.
Two simplest cases (the so-called ψη and χηmodel) were

previously studied in [2,6,7,10–12,17,18] from various
perspectives. In particular, in [2,6], under the assumption
of a nonvanishing condensate hψηi based on the traditional
’t Hooft anomaly, matching the color-flavor locking
between the gauge SUðNÞ and the global SUðN þ 4Þ
was observed. The χSB pattern then takes the form

SUðNÞc×SUðNþ4Þf ×Uð1Þ→SUðNÞcf ×U0ð1Þ×SUð4Þf :

The infrared-bound baryon states (ψfijgηAi η
B
j ) were

constructed.
Then, the authors of [12] argued, on the basis of a mixed

’t Hooft anomaly, that a chirally symmetric vacuum is
impossible. However, the authors of [10] (based on
recasting the center of the symmetry group) raised objec-
tions concerning the result of Bolognesi et al. [12]. In view
of the ongoing debate on the vacua of the ψη and χηmodels
we will leave the simplest cases aside for the time being and
limit ourselves to the hybrid ψχη version in the framework
of the adiabatic continuity approach.
Ünsal suggested [19,20] the adiabatic continuity method

[9,17,18,21,22] to study strongly coupled gauge theories.
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See Ref. [23] for the recent review. The starting point of this
method is as follows. Consider theories on the spacetime
with one spatial dimension compactified, say, R3 × S1L.
Unlike compactified time dimension in thermalized theories
[24,25], adiabatic continuity construction was argued to
contain no phase transition in passing from the small L limit
LðS1Þ ≪ Λ−1 to large L—approaching R4—provided the
vacuum of the model at small LðS1Þ is center symmetric. In
this case the vanishing of the Polyakov line is preserved
intact at both limits. Then the model Abelianizes, i.e. all
gauge bosons outside the Cartan subalgebra acquire
masses and the theory becomes weakly coupled and the
others are still confining according to the Polyakov criterion.
Perturbative calculations turn out to be reliable. Moreover,
some nonperturbative features such as instanton monopoles
and bions can be explicitly computed in the quasiclassical
approximation and provide nontrivial results for four-
dimensional physics upon continuation to large LðS1Þ ≫
Λ−1. In Sec. III, wewill show how the instanoton-monopole
operators allow us to verify the χSB pattern found in [2].
In particular, in the ψχη model, three types of monopole

operators show up—only one of which is a global gauge
rotation singlet participating in the low-energy effective
Lagrangian. It is such an Mj-type monopole that induces
chiral condensates hψχi. The dynamical Abelianization
takes place at large LðS1Þ and hence on R4 by the standard
lore of adiabatic continuity. This verification perfectly
matches the recent study of χSB in the ψχη model via
the mixed ’t Hooft anomaly [8].
In the first part of the paper, the center-symmetry stabi-

lization is achieved by virtue of a double-trace deformation
[19,21]. In the second part, we replace the double-trace
deformation by additional fermions (additional with regards
to the primary chiral matter), which do the same job.We find
a few exceptional cases when the additional fermions can
stabilize center symmetry. We note a potential disadvantage
of implementing stabilization by virtue of additional adjoint
fermions and appropriate flavor-twisted boundary conditions
for (chiral) fermions in the fundamental representation.
The paper is organized as follows. In Sec. II, we briefly

review the ψχη model and some previously conjectured
χSB patterns. In Sec. III, the technique of adiabatic
continuation is applied to examine possible scenarios of
χSB with the purpose of corroborating them. In Sec. IV, the
interplay between the stabilization strategy (double-trace
deformation vs additional fermions) is discussed and the
corresponding fermion condensates are found in two
examples. Our conclusions are summarized in Sec. V.

II. THE ψχη MODEL

In this section, we review some basic elements of the
ψχη model playing the main role in the following dis-
cussion. The ψχη model refers to a chiral SUðNcÞ gauge
theory with the fermion sector consisting of a pair of

two-index fermions, one symmetric while the other anti-
symmetric in color indices, plus eight antifundamentals.
Namely,

ψfijg; χ½ij�; and ηAi for A¼ 1;2;…;8; ð1Þ

where ψfijg is the symmetric fermion and χ½ij� is antisym-
metric. The model is self-consistent and enjoys the sym-
metry structure [1,2,6,8]

G ¼ SUðNcÞ × SUð8Þf × Uð1Þ × Ũð1Þ
ZNc

× Z8=N�
ð2Þ

in which N� stands for the greatest common divisor of
Nc þ 2 and Nc − 2. The overlapped phase rotations of
fermions between the centers and U(1) groups are quo-
tiented out.
The ψχη model has three U(1) symmetries, with the

generating currents

j _ααðψÞ ¼ ψ̄ _αψα; j _ααðχÞ ¼ χ̄ _αχα; j _ααðηÞ ¼ η̄ _αηα; ð3Þ

(no summation over the flavor index A in the definition of
j _ααðηÞ). Each of the above currents is anomalous,

∂α _αj _αα ¼ ∂μjμ ¼

0
B@
Nþ2; for ψ

N−2; for χ

1; for η

1
CA×

1

32π2
Fa
μνF̃μνa: ð4Þ

The last expression allows us to establish two nonanom-
alous combinations of the currents denoted by U(1) and
Ũð1Þ in Eq. (2), For instance,

Uð1Þ∶ ðN − 2ÞjðψÞ − ðN þ 2ÞjðχÞ;
Ũð1Þ∶ 2jðψÞ − 2jðχÞ −

X
A

jðηÞ: ð5Þ

Equation (5) corresponds to the following charge assign-
ment of fermions:

Uð1Þ∶ Qψ ¼ Nc − 2

N� ; Qχ ¼ −
Nc þ 2

N� ; Qη ¼ 0;

Ũð1Þ∶ Q̃ψ ¼ 2; Q̃χ ¼ −2; Q̃η ¼ −1: ð6Þ

The phase rotation of fermions under the centers
of SUðNcÞ and SU(8) together with the U(1)’s takes the
form

ψ → e2ðNc−2Þπiα=N�
e4πiβe4πki=Ncψ ;

χ → e−2ðNcþ2Þπiα=N�
e−4πiβe−4πki=Ncχ;

η → e−2πiβe−2πki=Nceπmi=4η; ð7Þ
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in which α;β∈ð0;1Þ, k ∈ Z ðmodNcÞ, andm ∈ Z ðmod 8Þ.
Here, α and β stand for the transformations under U(1) and
Ũð1Þ, respectively, while the integers k, m parametrize the
center transformation of SUðNcÞ and SU(8) groups.
Solutions for α, β ≠ 0 exist, which leave (8) intact; they
are parametrized by ZNc

× Z8=N�. See a more detailed
discussion in [6,8].
As first noted in [2] and further analyzed in [6,8], the

ψχηmodel a priori can have two different χSB scenarios in
the infrared regime. First, let us suppose both hψηi and
hψχi develop nonzero vacuum expectation values (VEVs).
The former condensate then implies that the color and
flavor indices are entangled in such a way that the
condensate is invariant under the diagonal SU(8) trans-
formation. This is the so-called color-flavor locking. As a
consequence, if Nc ≥ 12, the chiral symmetry breaks as
follows:

SUðNcÞ × SUð8Þf × Uð1Þ × Ũð1Þ
→ SUð8Þcf × Uð1ÞNc−pþ1 × SUðp − 8Þc; ð8Þ

where we ignore the center part. At p ¼ 12, the theory
saturates the SUð8Þ3 ’t Hooft anomaly. On the other hand, if
only ψχ has a nonvanishing VEV (i.e., hψηi ¼ 0), we arrive
at a Higgs/confinement phase.
Once the adjoint condensate hψ ijχjki develops, the

pattern of χSB takes the form

SUðNcÞ × SUð8Þf × Uð1Þ × Ũð1Þ

→
YNc−1

l¼1

Uð1Þl × SUð8Þf × Ũð1Þ: ð9Þ

The fundamental fermions stay massless and weakly
coupled with the massless dual photons in the infrared
regime [2].

III. ADIABATIC CONTINUITY ANALYSIS

In the following discussion, we will show that the above
scenario is compatible with the prediction from the adia-
batic continuity of the deformed ψχηmodel onR3 × S1L. To
proceed, let us consider the ψχη model with a double-trace
deformation [9,21,22], say,

S ¼ 1

g2

Z
R3×S1L

d4x

�
1

2
TrF2 þ

X
R

iΨ̄RDΨR

�
; ð10Þ

in which R runs over the relevant irreducible representa-
tions of chiral fermions in the theory. Along S1L, all
fermions (as well as bosons) obey the periodic boundary
condition. Sdouble trace here is fine-tuned in such a way that

the effective potential is stabilized1 at the center-symmetric
point [26]

fLajgNc
j¼1 ¼

�
Nc − 1

Nc
π;
Nc − 3

Nc
π;…;−

Nc − 1

Nc
π

�
: ð11Þ

In the small-L regime, the gauge symmetry SUðNcÞ is
broken down to ½Uð1Þ�Nc−1 at the center-symmetric point
and the off-diagonal gauge bosons as well as fermions
acquire three-dimensional masses. In particular, the mass
terms of two-index fermions ψ ij and χij are

mij ¼
2π

LNc
ðNc þ 1 − i − jÞ; ð12Þ

implying ψ and χ remain massless in perturbation theory if
iþ j ¼ Nc þ 1. For later convenience, let us denote

ψ j ≔ ψfj;Ncþ1−jg and χj ≔ χ½j;Ncþ1−j�: ð13Þ

Before directly getting into the chiral symmetry breaking
in transition from the small radius to the four-dimensional
limit, we first consider the model at small LðS1Þ, at weak
coupling. It is straightforward to obtain the perturbation
theory by integrating the modes along the S1L direction. On
the other hand, we emphasize that the building blocks to
describe no-perturbative dynamics of the ψχη model on
R3 × S1L are the monopole-instanton operators. In SUðNcÞ
gauge theory, we deal with ðNc − 1Þ Bogomol’nyi–Prasad–
Sommerfield monopoles and one Kaluza-Klein monopole
[27–29]. The fermion zero mode distribution can be found
from the index theorem [30,31]. Namely,

Mj ¼ e−S0þiαjσðψ j þ ψ jþ1Þðχj þ χjþ1Þ;
MNc−1 ¼ e−S0þiαNc−1σðψ1 þ ψ2Þ2ηA1 � � � ηA8ϵA1A2���A8

;

MNc
¼ e−S0þiαNcσðψÞ2 ð14Þ

for j ¼ 1; 2;…; Nc − 2. Note that σ is the dual photon field
in three dimensions, and fα1;α2;…;αNc

g are affine roots
of the suðNcÞ algebra. In Eq. (14), we will keep only
massless fermions for the zero modes as the leading-order
contribution. To see which of these monopole operators
generate the relevant condensates, first recall that under the
global ½Uð1Þ�Nc−1 gauge rotations,

ψfabg → eiðHaaþHbbÞξψfabg;

χ½ab� → e−iðHaaþHbbÞξχ½ab�;

ηa → e−iHaaξηa; ð15Þ

1The effective potential Vψþχ ∼
P

pðtrFΩpÞ2 develops a local
minimum at the center-symmetric point, and the double-trace
term is only used to stabilize Vη generated by fundamental
fermions as in [9].
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where H is the elements of the Cartan subalgebra of
suðNcÞ. Then, to construct a global-rotation invariant
monopole operator, we have to integrate out all U(1)
phases,

e−S0þiαjσ ·
Z

ψ jχj þ ei½Hjþ1;jþ1þHNc−j;Nc−j−ðj→j−1Þ�ξψ jþ1χj

þ ðj ↔ jþ 1Þdξ; ð16Þ

which results in

Mj ¼ e−S0þiαjσðψ jχj þ ψ jþ1χjþ1Þ: ð17Þ

All other operators vanish. This is different from the
observations in [9,17,18]. In our model, a certain kind
of monopole operator (17) dressed with chiral fermions
forms a global gauge rotation singlet, while in the afore-
mentioned publications, monopole operators with chiral
zero modes do not survive and only act as a building block
for higher-order operators. In fact, this is not so surprising
because ψ ikχkj transforms as an adjoint boson, and we saw
in many examples [22,26,32] that the instanton-monopole
operators with the adjoint zero modes do play a role in the
nonperturbative dynamics of the theory.
The existence of the Mj-type monopole operators

then implies the low-energy (large-distance) effective
Lagrangian of the form

Ldual ¼
g23

32π2
ð∂μσÞ2 þ Ψ̄i∂Ψ

þ
�X

j

e−S0þiαjσðψ jχj þ ψ jþ1χjþ1Þ þ H:c:

�

þ � � � ; ð18Þ

where the former two terms come from the perturbation
theory, while the dots stand for the higher-order non-
perturbative contributions such as bions and instantons.
Now, let us probe the pattern of χSB by taking into

account the nonperturbative contributions mentioned
above. In light of (18), there exists a nonvanishing chiral
condensate

hψ ikχkji ∼ hψ lχliδij ¼ cjΛ3e4iα=N
�
δij ð19Þ

with

XNc

j¼1

cj ¼ 0;

whereΛ is the strong scale. This is exactly the same as what
was argued in [2,8] and therefore dynamical Abelianization
(9) ensues. Note that due to the shift symmetry,

αjσ → αjσ þ 4α

N� ;

αNc−1σ → αNc−1σ −
2ðNc − 2Þα

N� − 4β;

αNc
σ → αNc

σ −
2ðNc − 2Þα

N� þ 4β; ð20Þ

the bion excitations can show up in the spectrum and
generate the dual photon masses. To be more precise, the
magnetic bions are neutral under the shift symmetry and,
according to Eqs. (14) and (20), the bion operators can be
explicitly written in the form

Bij ∼ e−2S0eiðαi−αjÞσ ; ð21Þ

where j can be iþ 1, Nc − i, Nc − 1 − i, or Nc þ 1 − i.
Note that i, j are both smaller than Nc − 1 since it is the
pairing among M1;…;MNc−2 as implied by the shift
symmetry. Thus, σ1;…; σNc−2 become massive while σNc−1
remains massless. Those massive gauge bosons then result
in the theory being confining by virtue of the Polyakov
mechanism [33].
We can also imagine a situation that the gauge symmetry

½Uð1Þ�Nc−1 is spontaneously broken. That is, we lift the
constraints on the invariance of the instanton monopoles
under the global gauge rotations. In this case, all instanton-
monopole vertices in Eq. (14) participate in nonperturbative
dynamics. The additional condensate is then

hðψ1 þ ψ2Þ2ηA1 � � � ηA8εA1A2���A8
i ≠ 0 ð22Þ

coming from MNc−1. Note that because the massless
fermions (ψ1 and ψNc) do not couple to MNc

, it cannot
be included in the leading contribution in the sense that
massive fermions decouple in the weak-coupling region.
Lastly, in the presence of the Mj instanton monopoles
within this framework, the suggested symmetry breaking
pattern is identical to (9) by the same argument. This is one
of the scenarios first advocated in [2].

IV. CENTER STABILIZATION
WITH ADJOINT FERMIONS

In this section,wewill abandon the idea of the double-trace
deformation and discuss the stabilization problem in some
models with chiral fermions in mixed representations—
including adjoint fermions—and how thesemixed ensembles
affect the prediction for χSB based on adiabatic continuity.
Adding adjoint fermions is intended to stabilize center-
symmetric vacua in the effective potential. As has been
mentioned in footnote 1, there is no need to stabilize the
ψ-χ pair.
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What could possibly help in this situation is to introduce
the (flavor) twisted-boundary condition (FTBC) [34–36].2
While in Sec. III, all fermions obey the periodic boundary
condition

ψðxμ; x3 þ LÞ ¼ ψðxμ; x3Þ; ð23Þ

now we switch on a flavor twist for fundamentals to
construct an additional flavor-dependent phase.3 Instead
of Eq. (23), now we require

ηAk ðxμ; x3 þ LÞ ¼ �ωAηAk ðxμ; x3Þ with ωn ¼ 1: ð24Þ

This then alters the fundamental fermion contribution to the
effective potential

Veff ∼
X∞
p¼1

1

p4
trFΩp →

X∞
p¼1

1

n3p4
trFΩnp; ð25Þ

so that more models fall into the (local) minimum at the
center-symmetric point as extra adjoint fermions are added.
In the following we provide two examples with FTBC
fundamental fermions and point out the shortcoming
of this boundary condition in determining the schemes
of χSB.
First, let us consider SU(3) Yang-Mills theory with the

following fermion sector: ψ ij, χij, and ηAi for A ¼ 1; 2;…; 6
where the fundamentals ηAk satisfy the boundary condition

ηAk ðxμ; x3 þ LÞ ¼ e
2πAi
3 ηAk ðxμ; x3Þ: ð26Þ

The effective potential with the varying number of the
adjoint fermions is demonstrated in Fig. 1. The center
symmetry is achieved at least at the local minimum and as
long as the number of adjoint fermions is greater than one, it
is in fact a global minimum. Next, the instanton-monopole
operators of the theory under consideration take the form

M1 ¼ e−S0eiα1·σχψη3η6; M2 ¼ e−S0eiα2·σðψÞ2η1η4;
M3 ¼ e−S0eiα3·σðψÞ2η2η5: ð27Þ

Four-fermion zero mode vertices appear for each monopole.
The corresponding lowest-order condensate then should be
a four-fermion composite so that it cannot provide further
information as to the next-to-leading-order contribution
because the minimal condensates argued in [6] consist of
only two fermions.
Another class of center-stabilized anomaly-free theories

is SUðNcÞ gauge theories with one ψfijg, a number of two-
index antisymmetric χ̃½ij� and χ½ij� fields, and pairs of
fundamental fermions satisfying periodic and antiperiodic
boundary conditions. There is only a finite number of
combinations for this kind of model with stabilization at the
center-symmetric point, namely Nc ¼ 4; 6; 8; 10; 14; 16;
20; 24, 36, 52. The idea is to cancel the χ contribution
driving the effective potential away from the center-
symmetric point by pairs of periodic and antiperiodic
fermions, namely,

−
k − 1

2
ðtrFΩ2pÞ þ nf=2

23
ðtrFΩ2pÞ ¼ 0; ð28Þ

where k is the total number of χ̃ij and χij. The distribution
of the fermion zero modes on the monopole operators can
be sketched as follows:

0 1 2 3 4

−2

−1

0

1

2

0 1 2 3 4

−2

−1

0

1

2

0 1 2 3 4

−2

−1

0

1

2

(a) (b) (c)

FIG. 1. The effective potentials of one, two, and three adjoint fermions added in the Weyl chamber. The horizontal and vertical axes
represent two components of the background holonomy, respectively. The red dot illustrates the center-symmetric point. (a) One extra
adjoint fermion, (b) two extra adjoint fermions, and (c) three extra adjoint fermions.

2For recent developments on the implication of χSB in QCD
with fundamental or adjoint fermions through introduction of
twisted boundary conditions, see Refs. [37,38].

3One may want to consider the most general FTBC,
ηAðx3 þ LÞ ¼ UABηBðx3Þ with UAB ∈ SUðNfÞ. Yet, the twist
matrix can always be diagonalized by making a flavor rotation.
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Mj ¼ e−S0eiαjσψχ̃k1χk2 ;

MNc
2
¼ e−S0eiαNc=2σψ2η1η2 � � � ηnf ;

MNc
¼ e−S0eiαNcσψ2: ð29Þ

In the same manner as in the beginning of this section, the
related condensates contain multifermion composites and
turn out to be irrelevant in verifying the pattern of χSB.
In the above examples, the theories we have identified all

have an exact center-symmetric vacuum. In fact, the
condition that the effective potential has to stabilize at
the center-symmetric point can be further relaxed as long as
the Abelianization of the vacua (of a theory) persists. This
then opens up more classes of theories whose chiral
symmetry breaking can be verified via the adiabatic
continuity. At the moment, however, a systematic search
is hardly possible in an analytic (or even a numerical) way
because of the vagueness of the condition.
Summarizing, imposing the flavor-twisted boundary

conditions allows a number of theories to be stabilized
at the center-symmetric point. This circumstance makes
possible the method of adiabatic continuity. However, the
downside is forcing the fundamental fermion zero modes to
be evenly distributed among the monopole operators. The
emerging condensates then consist of a larger number of
fermions than needed for the ψχ condensate (in the leading
approximation). Therefore, the FTBC-based line of rea-
soning in the present form is useless for corroborating the
pattern of the χSB which was argued for in Refs. [2,6].

V. COMMENTS AND CONCLUSIONS

In this work, we start from the UV symmetry group in
the ψχη model and consider possible ways of χSB on R4.
After a brief introduction, we discuss dynamics, especially
nonperturbative aspects, in the ψχη model on R3 × S1L at
small L. We limit ourselves to the leading approximation
(instanton monopoles). The center-symmetric vacuum is
guaranteed by a double-trace deformation. The dynamical
Abelianization is achieved. Then, the corresponding instan-
ton-monopole operators are found to induce the chiral
condensate hψχi. Adiabatic continuity propagates this

result to R4. This is a successful and desired part of our
work. With hψfijgχ½jk�i ∼ Λ3δik the SU(Nc) gauge sym-
metry is spontaneously broken down to its maximal torus
½Uð1Þ�Nc−1. This is our target—verification of the predic-
tion [2,6] in Sec. III.
The strategy of abandoning the double-trace deformation

in favor of adding extra adjoint fermions and flavor twisting
of boundary conditions for the fundamental fields η for
stabilization at small L in essence failed. Although stabi-
lization can be achieved in a limited number of cases, no
useful information can be obtained in this way about the
condensate of interest.
In conclusion it is worth adding a comment about the

planar equivalence between N ¼ 1 Yang-Mills theory
(without matter) and the ψχη model. The latter model
was designed [1] in the context of the concept of planar
equivalence in the common sectors which, in the case at
hand, covers all correlators of purely gluon operators.
At small LðS1Þ, the ψχη model is characterized by

Polyakov confinement due to bions [see Eq. (21)]. If the
adiabatic continuity is correct, we expect confinement at
large LðS1Þ [on R4 in the limit LðS1Þ → ∞]. However,
because of the fact that hψfijgχ½jk�i ∼ Λ3δik, dynamically
this confinement is somewhat different from that in N ¼ 1

Yang-Mills theory on R4. One can call it the Higgs/
confinement phase. The vacuum structure is also different:
While in N ¼ 1 Yang-Mills theory we have N vacua
marked by the gluino order parameter, hλλi ∼ Λ3 expði2πkN Þ,
in the ψχη model the order parameter (19) continuously
rotates under the action of the anomaly-free current
1
N� ½ðN − 2ÞjðψÞ − ðN þ 2ÞjðχÞ�; see Eqs. (5) and (6). This
implies a continuous U(1) vacuum manifold which in turn
implies the existence of a massless particle.
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