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We study relativistic corrections to the exclusive decay of J=ψ into proton-antiproton final state. We
calculate the relativistic QCD corrections to the dominant decay amplitude, which depend on the nucleon
twist-3 light-cone distribution amplitudes only. It is shown that in this case the collinear factorization is also
valid beyond the leading-order approximation. Our numerical estimates show that relativistic correction of
relative order v2 provides a large numerical impact.
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I. INTRODUCTION

In recent years, the BESII and BESIII Collaborations
have obtained many accurate data on baryon-antibaryon
decays of S-wave charmonia; see, e.g., Refs. [1–8]. These
data allow one to get information about various important
hadronic parameters and provide an interesting possibility
to study QCD dynamics.
There are different approaches for a description of the

baryon-antibaryon decays. In Refs. [9,10], it was proposed
to use a phenomenological model based on an empirical
effective Lagrangian with unknown parameters, which are
subject to restrictions from SUð3Þ flavor symmetry and
experimental data.
Another way is to use effective field theory framework,

combining nonrelativistic expansion and collinear factori-
zation [11–14]. The appropriate effective Lagrangian is
described by nonrelativistic QCD (NRQCD) [15,16] and
collinear copies of QCD [11,12,14].
Such an approach allows one to build a systematic

expansion in powers of 1=mc describing decay amplitudes
as a superposition of perturbative and universal nonpertur-
bative functions. The perturbative part can be computed in
perturbative QCD at the scale of order mc. The non-
perturbative matrix elements are defined at soft hadronic
scale Λ ≪ mc. They can be limited to other processes or
evaluated using nonperturbative methods such as QCD sum
rules or lattice QCD.
Since the real mass of the charm quark is not large

enough, a systematic description requires careful analysis
of the various corrections. Existing calculations of exclu-
sive and inclusive reactions show that in many cases

radiative corrections in αsðmcÞ and relativistic corrections
can have a significant numerical effect; see, for instance,
reviews [17,18].
The first estimates for exclusive proton-antiproton

decay based on the leading-order (LO) approximation
were obtained already a long time ago in Refs. [11,14].
Recently, this analysis has been extended in Refs. [19–21],
where the power-law corrections ∼Λ=mc associated with
the collinear expansion were taken into account for
different amplitudes. The collinear power corrections
are associated with the higher twist baryon light-cone
distribution amplitudes (LCDAs). It has been established
that the effect of such corrections is not very strong, and
one can describe various channels of baryon-antibaryon
decay with good accuracy. However, relativistic and QCD
radiative corrections for baryon-antibaryon decays have
not yet been studied.
The available data for various baryons indicate the

possible presence of effects from relativistic corrections.
For example, the so-called “12% rule”

QB ¼ Br½ψð2SÞ → BB̄�
Br½J=ψ → BB̄� ≃

Br½ψð2SÞ → eþe−�
Br½J=ψ → eþe−� ≃ 0.13 ð1Þ

must hold if the width is dominated by the LO NRQCD
approximation. The available experimental data [22] show
the following results: Qp ¼ 0.1386ð3Þ, Qn ¼ 0.146ð1Þ,
QΛ ¼ 0.204ð1Þ, QΣ0 ¼ 0.21ð3Þ, QΣþ ¼ 0.072ð5Þ, and
Qþ

Ξ ¼ 0.276ð5Þ. Consequently, the data for baryons other
than the nucleon indicate a violation of this expectation.
For nucleon-antinucleon decays, the rule (1) works quite

well, but, on the other hand, the values of the polar angular
distribution coefficient αp for ground and excited S-wave
charmonium [ψð2SÞ≡ ψ 0] are very different [3,7]:

αpjJ=ψ ¼ 0.595� 0.012; αpjψ 0 ¼ 1.03� 0.06: ð2Þ
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This observation may also indicate a significant contribu-
tion of relativistic corrections.
The purpose of this work is to study the effects

of relativistic corrections in proton-antiproton decays.
The technique for calculating relativistic corrections is
well known. Such corrections were already studied
for different exclusive decays as J=ψ → eþe− [23,24],
H → γ þ J=ψ [25,26], and χcJ → γγ [27,28] and for
exclusive production eþe−→J=ψþηc [29,30]. However,
relativistic corrections to exclusive hadronic decays
have not yet been considered.
The feature of hadronic decays is that the hard kernels are

not simple numbers but depend on light quark momentum
fractions. The corresponding decay amplitude is described
by the convolution integral over the momentum fractions of
the hard kernel with LCDAs. In this case, it is more
convenient to perform the hard matching at the amplitude
level. In some cases, the convolution integrals have infrared
divergencies that indicate violation of collinear factoriza-
tion. This is often the case for next-to-leading power
contributions in exclusive processes. However, for the
dominant amplitude describing n3S1 → BB̄ decay, collinear
factorization is still applicable, and this makes it possible to
systematically study the relativistic effects.
Our paper is organized as follows. In Sec. II, we give

important definitions and kinematical notation. In Sec. III,
we calculate the hard kernels and perform the resummation
of some class of relativistic effects. After that, we provide a
qualitative numerical analysis for different choices of the
nucleon LCDAs. In Sec. IV, we discuss the obtained results
and make conclusions. In the appendixes, we give impor-
tant details about the nucleon twist-3 LCDAs and provide
analytical expressions for the hard kernels.

II. KINEMATICS AND DECAY AMPLITUDES

In this work, we use notation from Ref. [21]. We define
the kinematics of J=ψðPÞ → pðkÞp̄ðk0Þ decay in the
charmonium rest frame

P ¼ Mψω; ω ¼ ð1; 0⃗Þ: ð3Þ

The outgoing momenta k and k0 are directed along the z
axis and read, respectively,

k¼ ðMψ=2;0;0;Mψβ=2Þ; k0 ¼ ðMψ=2;0;0;−Mψβ=2Þ;
ð4Þ

where mN is the nucleon mass and β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

N=M
2
ψ

q
.

We also define auxiliary light-cone vectors

n ¼ ð1; 0; 0;−1Þ; n̄ ¼ ð1; 0; 0; 1Þ; ð5Þ

so that any four-vector V can be represented as

V ¼ Vþ
n̄
2
þ V−

n
2
þ V⊥; ð6Þ

where Vþ ≡ ðV · nÞ ¼ V0 þ V3 and V− ≡ ðV · n̄Þ ¼
V0 − V3.
The decay amplitude J=ψ → pp̄ is defined as

hk; k0jiT̂jPi ¼ ð2πÞ4δðP − k − k0ÞiM; ð7Þ

with

M ¼ N̄ðkÞ
�
A1=ϵψ þ A2ðϵψ Þμðk0 þ kÞν

iσμν

2mN

�
Vðk0Þ; ð8Þ

where =p ¼ pμγ
μ. The nucleon N̄ðkÞ and antinucleon Vðk0Þ

spinors have standard normalization N̄N ¼ 2mN and
V̄V ¼ −2mN . The charmonium polarization vector ϵμψ ≡
ϵμψðP; λÞ satisfies

X
λ

ϵμψðP; λÞϵνψ ðP; λÞ ¼ −gμν þ PμPν

M2
ψ

: ð9Þ

The scalar amplitudes A1 and A2 describe the decay
process. These amplitudes are computed in the effective
field framework by expansion with respect to small relative
heavy quark velocity v and small ratio λ2 ∼ Λ=mQ. The
amplitude A2 is suppressed as

A2=A1 ∼ λ2: ð10Þ

The decay width is conveniently described in terms of two
combinations

GM ¼ A1 þ A2; GE ¼ A1 þ
M2

ψ

4m2
N
A2 ð11Þ

and reads

Γ½J=ψ → pp̄� ¼ Mψβ

12π

�
jGMj2 þ

2m2
N

M2
ψ
jGEj2

�
: ð12Þ

The ratio jGEj=jGMj can be measured through the angular
behavior of the cross section eþe− → J=ψ → pp̄; see, e.g.,
Ref. [31]. Available data indicate that the contribution with
the amplitude GE is quite small (about 10%) and the value
of width is dominated by the amplitude jGMj2.
To the leading-order approximation

GM ≃ Alo
1 þOðαsÞ þOðv2Þ þOðλ2Þ; ð13Þ

where in the rhs we indicate various possible corrections.
These are next-to-leading-order (NLO) contributions with
respect to αs, relativistic corrections of relative order v2,
and power corrections associated with the higher twist
light-cone distribution amplitudes, respectively. The NLO
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radiative QCD corrections and relativistic corrections are
not known yet. The power-suppressed contribution have
been estimated in Ref. [21], and the corresponding numeri-
cal effect is moderate, about 25%. In this paper, we want to
study the relativistic corrections to the amplitude Alo

1 .
The amplitude Alo

1 is described by the sum of two
different contributions: the hard and the electromagnetic
one, which correspond to the annihilation into three gluons
or one hard photon as shown in Fig. 1. The electromagnetic
amplitude is relatively small; however, it can provide
numerical impact through interference with the QCD
amplitude [21]. In this paper, for simplicity, the electro-
magnetic contribution is not considered.
The leading-order factorization formula for the ampli-

tude Alo
1 reads [11,12]

Að0Þ
1 ¼

ffiffiffiffiffiffiffiffiffiffi
2Mψ

p h0jOjJ=ψi
m2

c

f2N
m4

c
ðπαsÞ3

10

81
J0; ð14Þ

where the NRQCD matrix element is defined in the
standard way:

h0jOjJ=ψi ¼ h0jχ†σ · ϵðλÞψ jJ=ψðλÞi ¼
ffiffiffiffiffiffi
Nc

2π

r
R10ð0Þ; ð15Þ

where R10ð0Þ is the radial charmonium wave function at the
origin. The constant fN has the dimension of the square of
the mass and describes the normalization of the matrix
element of the nucleon. The decay amplitude is sensitive to
nucleon structure that is described by the dimensionless
collinear convolution integral J0, which reads

J0 ¼
1

4

Z
Dxi

Z
Dyi

1

x1x2x3

1

y1y2y3

y1x3
D1D3

×

�
φ3ðy123Þφ3ðx123Þ þ

1

2
ðφ3ðy123Þ

þ φ3ðy321ÞÞðφ3ðx123Þ þ φ3ðx321ÞÞ
�
; ð16Þ

where Di ¼ xi þ yi − 2xiyi and we used short notation for
the twist-3 nucleon LCDA φ3ðx123Þ≡ φ3ðx1; x2; x3Þ. This
nonperturbative function depends on the quark momentum
fractions 0 < xi < 1 and the factorization scale, which is
not shown explicitly. The light-cone fractions xi satisfy the

momentum conservation condition x1 þ x2 þ x3 ¼ 1.
Therefore, the measure of the convolution integrals in
Eq. (16) includes the δ function

Dxi ¼ dx1dx2dx3δð1 − x1 − x2 − x3Þ: ð17Þ

The nucleon LCDA φ3 is defined as the matrix
element of a three-quark operator and is well known
in the literature; see, e.g., Refs. [12,42]. For a con-
venience, the definition and some important details are
given in Appendix A.
Our task is to calculate the relativistic corrections

associated with the higher-order matrix elements in
NRQCD:

h0jOnjJ=ψi ¼ h0jχ†σ · ϵðλÞ
�
−
i
2
D
↔
�

2n
ψ jJ=ψðλÞi; ð18Þ

where h0jO0jJ=ψi≡ h0jOjJ=ψi. Usually, it is convenient
to describe the contribution of these matrix elements by
introducing the ratio

hq2ni ¼ m2
chv2ni ¼

h0jOnjJ=ψi
h0jO0jJ=ψi

: ð19Þ

The set of the operators in Eq. (18) does not represent
the complete set of all possible NRQCD operators. The
operator O2 provides the correct description of the relativ-
istic correction of relative order v2. But, to describe
relativistic corrections of a higher order, many more differ-
ent operators are used, for example, color-octet ones.
However, resumming the contributions of all orders asso-
ciated with the subset (19) is useful, because it allows one to
study the convergence of the nonrelativistic expansion.
The value of the NLOmatrix element (19) can be exactly

found with the help of Kapustin-Gremm relation [33]

h0jO1jJ=ψi ¼ mcEJ=ψh0jO0jJ=ψi; ð20Þ

where EJ=ψ denotes the binding energy. This gives

hq2i ¼ mcEJ=ψ : ð21Þ

In Ref. [34], it was found that the higher-order operators
satisfy the approximate relation

hq2ni ¼ hq2in þOðv2Þ: ð22Þ

Neglecting the higher-order corrections in the rhs in
Eq. (22) allows one to resum the power series of the
higher-order terms with the matrix elements (18) to all
orders. Such resummation includes those relativistic cor-
rections that are contained in the quark-antiquark quarko-
nium wave function in the leading potential model for the
wave function [30].

(a) (b)

FIG. 1. Hadronic (a) and electromagnetic (b) contributions to
the decay amplitudes.
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The resummation of the relativistic corrections associ-
ated with the matrix elements (19) is already considered
for various processes in Refs. [23,24,30], and this tech-
nique can be easily adapted for calculations of exclusive
hadronic decays.

III. MATCHING AND ALL-ORDER
RESUMMATION

In order to calculate the decay amplitude, we use
the covariant spin-projector technique [35]. The generali-
zation of this technique to higher orders in v2 is considered
in Refs. [23,24]. Here, we briefly describe the NRQCD
matching and clarify some features of the present
calculation.
Our task is to compute the hard coefficient functions in

front of higher-order operators (18). The matching can be
conveniently done using the QQ̄ state as the initial state
instead of the charmonium state. The corresponding
heavy quark and antiquark have the momenta p and p0,
respectively:

p ¼ ðE;qÞ; p0 ¼ ðE;−qÞ; E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q þ q2
q

: ð23Þ

Then the total and relative momenta read, respectively,

P ¼ pþ p0; q ¼ 1

2
ðp − p0Þ: ð24Þ

In the rest frame,

P ¼ ð2E; 0Þ; q ¼ ð0; qÞ: ð25Þ

Let the perturbative amplitude be described as

AQQ ¼ v̄Qðp0; s0Þ; ÂQQuQðp; sÞ; ð26Þ

where v̄Q and uQ denote heavy quark spinors. The
amplitude projected onto the S-wave state of heavy
quark-antiquark QQ̄ð3S1Þ reads

AQQð3S1Þ ¼ Tr½Π1ÂQQðxi; yiÞ�; ð27Þ

where the spin-triplet projector Π1 is given by [23]

Π1 ¼
−1

2
ffiffiffi
2

p
EðEþmQÞ

�
1

2
=Pþ =qþmQ

�

×
=Pþ 2E
4E

=ϵ

�
1

2
=P − =q −mQ

�
⊗

1ffiffiffiffiffiffi
Nc

p : ð28Þ

This projector is relativistically normalized:

Tr½Π1Π
†
1� ¼ 4E2: ð29Þ

In order to project the amplitude onto a state with L ¼ 0,
the expression in Eq. (27) must be averaged over the angles
of the momentum q:

AQQðq2Þj3S1;L¼0 ¼ ĀQQðq2Þ ¼
1

4π

Z
dΩTr½Π1ÂQQðxi; yiÞ�:

ð30Þ
In NRQCD, the amplitude reads

ANRQCD ¼ ffiffiffiffiffiffiffiffiffiffi
2Mψ

p X
n≥0

cnh0jOnjJ=ψi; ð31Þ

where
ffiffiffiffiffiffiffiffiffiffi
2Mψ

p
arises from relativistic normalization. The

coefficients cn can be obtained from the amplitude (30)
using that

h0jOnjQQ̄i ¼
ffiffiffiffiffiffiffiffi
2Nc

p
2Eq2n ð32Þ

and

ĀQQðq2Þ ¼
X
n

cnh0jOnjQQ̄i ¼
X
n

cn
ffiffiffiffiffiffiffiffi
2Nc

p
2Eq2n: ð33Þ

Using this, one finds

cn ¼
1ffiffiffiffiffiffiffiffi
2Nc

p 1

n!
∂

∂q2n
ĀQQðq2Þ

2E
: ð34Þ

Substituting this into Eq. (31) and using Eq. (22), one finds

ANRQCD ≃
ffiffiffiffiffiffiffiffiffiffi
2Mψ

p h0jOjJ=ψi
X
n

1

n!
hq2in ∂

n

∂q2n
ĀQQð3S1Þffiffiffiffiffiffiffiffi
2Nc

p
2E

ð35Þ

¼ ffiffiffiffiffiffiffiffiffiffi
2Mψ

p h0jOjJ=ψi ĀQQðhq2iÞffiffiffiffiffiffiffiffi
2Nc

p
2E

: ð36Þ

The specific of our calculation is that the amplitude
ĀQQð3S1Þ also includes the nonperturbative matrix elements
describing the couplings with the nucleons. The amplitude
QQ̄ → pp̄ is described by the diagrams in Fig. 2. Each
diagram can be described as consisting of a heavy quark
subdiagram ΓQ describing the QQ̄ annihilation into three
gluons and a residual part describing the transition of three
virtual gluons to the pp̄ state. The expression for each
diagram can be written in the following form:

Aicj
QQ ¼

Z
Dxi

Z
DyiΔ

μ1μ
0
1

1 Δμ2μ
0
2

2 Δμ3μ
0
3

3 Bμ1μ2μ3ðxi; yiÞ

× v̄Qðp0; s0ÞΓμ0iμ
0
cμ

0
j

Q uQðp; sÞ; ð37Þ
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where v̄Q and uQ denote heavy quark spinors and Δμiμ
0
i

i
denotes the gluon propagator (we use Feynman gauge and
do not write the color indices for simplicity)

Δμiμ
0
i

i ¼ ð−iÞgμiμ0i
ðki þ k0iÞ2

; ki ¼ xik; k0i ¼ yik0; ð38Þ

where the proton and antiproton momenta read

k ≃ En; k0 ≃ En̄; k2 ¼ k02 ¼ 0: ð39Þ

The heavy quark subdiagram reads

Γ
μ0iμ

0
cμ

0
j

Q ðxi; yiÞ ¼ i2ðigÞ3 γ
μið−=P=2þ =qþ =ki þ =k0i þmQÞγμcð=P=2þ =q − =kj − =k0j þmQÞγμj
½ðki þ k0i − P=2þ qÞ2 −m2

Q�½ðP=2þ q − kj − k0jÞ2 −m2
Q�

: ð40Þ

The set of indices fμi; μc; μjg describes six possible trans-
positions of the indices fμ1; μ2; μ3g, which correspond to the
different diagrams: fμ1; μ2; μ3g, fμ3; μ2; μ1g, fμ2; μ1; μ3g,
fμ3; μ1; μ2g, fμ1; μ3; μ2g, and fμ2; μ3; μ1g. Therefore, each
diagram can be coded by the set icj, and the sum of these
diagrams gives the total result.
The term Bμ1μ2μ3ðxi; yiÞ in Eq. (37) describes the trace,

which occurs after contractions of the Dirac indices αi and
α0i of the proton and antiproton light-cone matrix elements
with the γ matrices of the quark-gluon vertices

h0j½Otw3�α0
1
α0
2
α0
3
jp̄ðk0Þi½ðigÞγμ1 �α0

1
α1
½ðigÞγμ2 �α0

2
α2
½ðigÞγμ3 �α0

3
α3

× h0j½Otw3�α1α2α3 jpðkÞi ð41Þ

¼ FT½Bμ1μ2μ3ρðxi; yiÞ�: ð42Þ

The symbol “FT” denotes Fourier transformations, which
occur from the light-cone matrix elements (the definition
of the light-cone operator Otw3 is given in Appendix A).
The nucleon matrix elements are described by the con-
venient combinations of LCDAs V1,A1, and T1, which are
defined as

V1ðx123Þ ¼
1

2
ðφ3ðx123Þ þ φ3ðx213ÞÞ; ð43Þ

A1ðx123Þ ¼
1

2
ðφ3ðx123Þ − φ3ðx213ÞÞ; ð44Þ

T1ðx123Þ ¼
1

2
ðφ3ðx132Þ þ φ3ðx231ÞÞ: ð45Þ

The B term (42) is universal for all diagrams. The
calculation of the Dirac contractions yields

Bμ1μ2μ3ðxi; yiÞ ¼ N̄n̄γ
ρ
⊥VnðigÞ3

1

4
ðk · k0ÞTμ1μ2μ3ρðxi; yiÞ;

ð46Þ

with

Tμ1μ2μ3ρðxi; yiÞ
¼ g⊥μ1μ2g⊥ρμ3fV1ðx123ÞV1ðy123Þ þ A1ðx123ÞA1ðy123Þg
− iε⊥μ1μ2iε⊥μ3ρfV1ðy123ÞA1ðx123Þ þ A1ðy123ÞV1ðx123Þg
þ G⊥

μ1μ2ασG
⊥ασ
ρμ3 T1ðy123ÞT1ðx123Þ; ð47Þ

where we used the following short notations:

g⊥αβ ¼ gαβ −
1

2
ðnαn̄β þ nβn̄αÞ; iε⊥αβ ¼

1

2
iεαβσλnσn̄λ;

ð48Þ
G⊥

αβσρ ¼ g⊥ασg⊥βρ þ g⊥αρg⊥βσ − g⊥σρg⊥αβ: ð49Þ

For the projected nucleon spinors N̄ðkÞ and Vðk0Þ, we used

N̄ðkÞ=n=̄n
4

¼ N̄n̄;
=n=̄n
4
Vðk0Þ ¼ Vn: ð50Þ

Therefore, the expression for the amplitude (30) reads

iĀQQðq2Þ ¼
1

2

1

4π

Z
dΩ

X
ficjg

Z
Dxi

×
Z

DyiTμ1μ2μ3Δ
μ1μ

0
1

1 Δμ2μ
0
2

2 Δμ3μ
0
3

3 Tr

�
Π1Â

μ0iμ
0
cμ

0
j

QQ

�
;

ð51Þ

FIG. 2. The diagrams, which describe the QQ̄ → pp̄
subprocess.
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where we also show explicitly the symmetry factor 1=2.
Calculating the trace and contracting the indices, we obtain
the following result1:

ĀQQðq2Þ ¼
ffiffiffiffiffiffiffiffi
2Nc

p 2

mQ

f2N
ðm2

Q þ q2Þ2 ðπαsÞ
3

×
10

81

mQ þ E
2mQ

Jðq2=m2
QÞ; ð52Þ

where the dimensionless collinear integral reads

Jðv2Þ ¼ 1

32

1

f2N

Z
Dxi

x1x2x3

Z
Dyi

1

y1y2y3

×
�
Aðxi; yiÞ
D1D3

þ Bðxi; yiÞ
D1D2

þ Cðxi; yiÞ
D2D3

�
: ð53Þ

The integrand in Eq. (53) has the following structure:

Di ¼ xi þ yi − 2xiyi ¼ xið1 − yiÞ þ yið1 − xiÞ ≥ 0: ð54Þ

The functions A, B, and C also depend on v2 ¼ q2=m2
Q,

which is not explicitly shown for simplicity. They can be
presented in the following way:

Aðx123; y123Þ ¼
X4
i¼0

Akðx123; y123ÞIkð1; 3Þ; ð55Þ

Bðx123; y123Þ ¼
X4
i¼0

Bkðx123; y123ÞIkð1; 2Þ; ð56Þ

Cðx123; y123Þ ¼
X4
i¼0

Ckðx123; y123ÞIkð2; 3Þ: ð57Þ

These expressions include the angular integrals Ik which
appear due to the integration over dΩ ¼ dφd cos θ. The
polar integration can be easily computed, and the remaining
azimuth integrals read

Ik½ij� ¼
1

2

Z
1

−1
dη

jvjkηk
½1þ jvjaiη�½1 − jvjajη�

; ð58Þ

where we used η≡ cos θ, jvj ¼ jqj=mQ, and convenient
short notation

ai ¼
mQ

E
xi − yi
Di

< 1: ð59Þ

The numerator in Eq. (58) arises from the trace and
contractions in Eq. (51). The denominators ½1þ jvjaiη�
½1 − jvjajη� occur from the heavy quark propagators. The

angular dependence occurs from the scalar products

ðqkÞ ¼ −Eqz ¼ −Ejqj cosθ; ðqk0Þ ¼ Eqz ¼ Ejqj cosθ:
ð60Þ

From the definition (58), it follows that

I0 ∼Oð1Þ; I1;2 ∼Oðv2Þ; I3;4 ∼Oðv4Þ: ð61Þ

If one neglects by the contribution form the denominators
setting ai ¼ aj ¼ 0, then

I0½ij� ¼ 1; I1½ij� ¼ 0; I2½ij� ¼
v2

3
;

I3½ij� ¼ 0; I4 ¼
v2

5
: ð62Þ

One can also easily find that

Ik½ji� ¼ ð−1ÞkIk½ij�: ð63Þ

These integrals can be computed analytically that gives

I0½ij� ¼
1

2

1

ai þ aj

�
ln
1þ jvjai
1 − jvjai

þ ln
1þ jvjaj
1 − jvjaj

�

¼ 1

ai þ aj

X∞
n¼0

jvjn
nþ 1

ðanþ1
j þ ð−1Þnanþ1

i Þ

×
1

2
½1þ ð−1Þn�; ð64Þ

and for k > 0

Ik½ij� ¼
1

2

1

ai þ aj

ð−1Þk
ak−1i

�
1

jvjai
ln
1þ jvjai
1 − jvjai

−
Xk−1
l¼0

jvjlalið−1Þl
1þ ð−1Þl
lþ 1

�
ð65Þ

þ 1

2

1

ai þ aj

1

ak−1j

�
1

jvjai
ln
1þ jvjai
1 − jvjai

−
Xk−1
l¼0

jvjlalj
1þ ð−1Þl
lþ 1

�

ð66Þ

¼ jvjk
aiþaj

X∞
n¼0

jvjn
nþ1þk

ðanþ1
j þð−1Þnanþ1

i Þ1
2

h
1þð−1Þnþk

i
:

ð67Þ

The coefficients Ak, Bk, and Ck in Eqs. (55)–(57) depend
on the nucleon LCDAs, and their general structure reads
(X ¼ fA; B;Cg)1We used the package FeynCalc [36].
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Xkðx123; y123Þ ¼ ½Xk�VVfV1ðx123ÞV1ðy123Þ
þ A1ðx123ÞA1ðy123Þg
þ ½Xk�AVfA1ðx123ÞV1ðy123Þ
þ V1ðx123ÞA1ðy123Þg
þ ½Xk�TTT1ðx123ÞT1ðy123Þ; ð68Þ

where coefficients ½Xk�VV;AV;TT are polynomial functions of
the momentum fractions xi and yi. Their analytical expres-
sions are presented in Appendix B.
The convolution integral J in Eq. (53) is well defined that

can be easily understood taking into account the general
behavior of the LCDAs:

Zðx123Þ ¼ x1x2x3 × ðpolynomial function in xiÞ;
Z ¼ fV1; A1; T1g: ð69Þ

Using the expression in Eq. (52), one finds the NRQCD
amplitude A1 defined in Eq. (8):

ðA1ÞNRQCD ¼
ffiffiffiffiffiffiffiffiffiffi
2Mψ

p h0jOjJ=ψi
m2

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hv2i

p f2N
m4

cð1þ hv2iÞ2 ðπαsÞ
3

×
10

81
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hv2i

q
Þ 1
2
Jðhv2iÞ: ð70Þ

In the limit hv2i → 0, this result reproduces the well-known
leading-order approximation in Eq. (14). The obtained
expression depends on the power of heavy quark mass m−6

c
as required by the scale properties of the amplitude. The
charm mass in the factor

ffiffiffiffiffiffiffiffiffiffi
2Mψ

p
is usually calculated as

Mψ ≃ 2mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hv2i

p
. The factor ð1þ hv2iÞ−2 is naturally

provided by the hard propagators in the diagrams. The
essential part of the relativistic corrections is included in the
convolution integral, which depends on the twist-3 LCDAs,
which describe the nonperturbative overlaps with outgoing
nucleons. Therefore, the total effect of the relativistic
corrections also depends on the nonperturbative structure
of nucleon.
To see the numerical impact of the obtained relativistic

corrections, we need to compute the convolution integral J.
This integral is not simple and, in the general case, can be
calculated only numerically. In order to understand better
the dependence of the integral on the model of the LCDA,
we consider two different models. As an example of a
relatively simple case, consider the asymptotic LCDA,
which is defined as

Vas
1 ¼ Tas

1 ¼ 120fNx1x2x3; Aas
1 ¼ 0: ð71Þ

Appropriate analysis allows better understanding numeri-
cal values of various convolution integrals. For a more
realistic description, we use the Anikin-Braun-Offen

(ABO) model [37], which provides a reliable description
of various data.
For our consideration, we usemc ¼ 1.4 GeV for the pole

heavy quark mass and use the estimate for the binding
energy J=ψ from Ref. [24]:

EJ=ψ ¼ 0.306 GeV; ð72Þ

that gives

hv2iJ=ψ ≃ 0.225: ð73Þ

The value hv2iψð2SÞ ≡ hv2iψ 0 can be estimated as

hv2iψ 0 ¼ Eψ 0

mc
≃
Mψ 0 −MJ=ψ þ EJ=ψ

ðMJ=ψ − EJ=ψÞ=2
¼ 0.64; ð74Þ

which is quite large due to the large difference
Mψ 0 −MJ=ψ ≃ 589 MeV.

A. Relativistic corrections with asymptotic LCDAs

The asymptotic DA (71) is not a realistic model, but the
use of this approximation makes it possible to simplify
analytical expressions and study the properties of convo-
lution integrals. As the first step, we also calculate the
correction of relative order v2 only.
The results in Eqs. (64) and (67) yield

I0½ij� ¼ 1þ hv2i 1
3
ða2i − aiaj þ a2jÞ þOðv4Þ

≃ 1þ hv2iIð1Þ0 ½ij�; ð75Þ

I1½ij� ¼
hv2i
3

ðaj − aiÞ þOðv4Þ ≃ Ið1Þ1 ½ij�; ð76Þ

I2½ij� ¼
hv2i
3

þOðv4Þ; I3;4 ∼Oðv4Þ; ð77Þ

where ai is defined in Eq. (59). Therefore, the contributions
with I3;4 can be neglected. It is convenient to define

Jasðhv2iÞ ¼
1202

32

X4
k¼0

JðkÞas ðhv2iÞ; ð78Þ

where the coefficient in front of the sum is chosen in order
to get a convenient normalization. In what follows, we are
going to discuss the values of the integrals
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JðkÞas ðhv2iÞ ¼ 1

1202f2N

Z
Dxi

x1x2x3

Z
Dyi

y1y2y3

×

�
Aas
k Ik½13�
D1D3

þBas
k Ik½12�
D1D2

þCas
k Ik½23�
D2D3

�
ð79Þ

and their dependence on the parameter hv2i.
For the coefficients Aas

k , we get

Aas
k ¼ ½Ak�VVfVas

1 ðx123ÞVas
1 ðy123Þg

þ ½Ak�TTTas
1 ðx123ÞTas

1 ðy123Þ ð80Þ

¼ f2N120
2ðx1x2x3Þðy1y2y3Þð½Ak�VV þ ½Ak�TTÞ

¼ f2N120
2ðx1x2x3Þðy1y2y3ÞĀas

k ; ð81Þ

with

Āas
k ¼ ½Ak�VV þ ½Ak�TT; ð82Þ

and similarly for Bk and Ck. Substituting this in Eq. (79),
we obtain

JðkÞas ≃
Z

Dxi

Z
Dyi

�
Āas
k Ik½13�
D1D3

þ B̄as
k Ik½12�
D1D2

þ C̄as
k Ik½23�
D2D3

�

ð83Þ

¼
Z

Dxi

Z
Dyi

Ik½12�
D1D2

fB̄as
k þ P̂23Āas

k þ ð−1ÞkP̂13C̄as
k g;

ð84Þ

where the transposition operator P̂ij interchanges the
arguments fxi; yig ↔ fxj; yjg; for instance,

P̂23fðx123; y123Þ ¼ fðx132; y132Þ: ð85Þ

Substituting the explicit expressions for the coefficients
Āas
k , B̄as

k , and C̄as
k and neglecting the higher-order terms,

we get

X2
k¼0

JðkÞas ðhv2iÞ ¼
Z

Dxi

Z
Dyi

1

D1D2

f24x1y2 − 8hv2i

þ 24hv2ix1y2ðIð1Þ0 ½12� þ Ið1Þ1 ½12�Þ

þ hv2i
�
2x1y2 −

1

6
ðx1þ x2þ y1þ y2Þ

��
:

ð86Þ

The integrals which enter in these formulas can be easily
calculated numerically:

LO∶
Z

Dxi

Z
Dyi

x1y2
D1D2

¼ 0.140: ð87Þ

NLO∶ 1st ¼
Z

Dxi

Z
Dyi

1

D1D2

¼ 2.029; ð88Þ

NLO∶ 2nd ¼
Z

Dxi

Z
Dyi

x1y2
D1D2

ðIð1Þ0 ½12� þ Ið1Þ1 ½12�Þ

¼ 0.012; ð89Þ

NLO∶ 3d ¼
Z

Dxi

Z
Dyi

1

D1D2

�
2x1y2

−
1

6
ðx1 þ x2 þ y1 þ y2Þ

�
¼ −0.121: ð90Þ

This gives

X
JðkÞas ðhv2iÞ¼ 24�0.140−8hv2i�ð2.029Þ1st

þ24hv2ið0.012Þ2ndþhv2ið−0.121Þ3d ð91Þ

¼ 3.36lo − 16.232hv2i1st þ 0.167hv2i2ndþ3d

¼ 3.36ð1 − 4.90hv2iÞ: ð92Þ

Substituting the numerical values for hv2iJ=ψ (73) and
hv2iψ 0 (74), we obtain

X
JðkÞas ðhv2iJ=ψÞ ¼ −0.33; ð93Þ

X
JðkÞas ðhv2iψ 0 Þ ¼ −7.14: ð94Þ

These results show that the relativistic correction is
negative and provides about 100% and 300% numerical
effect for 1S and 2S states, respectively. To better under-
stand the origin of such a large numerical impact, consider
the structure of the expression in Eq. (91).
From this result, it follows that relativistic correction is

dominated by the terms which appear from the integral (88).
This integral is about an order of magnitude larger than the
leading-order integral (87). This has a natural mathematical
explanation: Both integrands in Eqs. (87) and (88) are
positive, but the leading-order integrand in Eq. (87) has in
the numerator a small factor x1y2 that reduces the value of
the integral (87) comparing to the one in Eq. (88). The actual
values of the NRQCD parameter hv2i for charmonium
states cannot compensate for the numerical enhancement of
the subleading integral. This indicates the relative smallness
of the charm quark mass.
The mechanism of enhancement of the subleading

integral does not depend on the model of LCDA of the
nucleon. The structure of leading and subleading integrals
is closely related to the structure of the numerators of the
Feynman diagrams and can be interpreted as a specific
feature of the hard perturbative subprocess. In order to see
this, consider the leading-order approximation with q ¼ 0;
then the trace in Eq. (51) reads
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Tr
h
ΠðloÞ

1 Γ
μ0iμ

0
cμ

0
j

Q ðxi;yiÞ
i
∼Tr½ð=ωþ 1Þ=ϵψγμi⊥
× ð−=P=2þmQþ=kiþ=k0iÞγμc⊥
× ð=P=2þ=kjþ=k0jþmQÞγμj⊥ � ð95Þ

where we used the expression from Eq. (40) and

ΠðloÞ
1 ¼ −1

2
ffiffiffi
2

p ð=ωþ 1Þ=ϵψ : ð96Þ

Notice that all Dirac matrices with open Lorentz indices in
Eq. (95) are transverse because of contraction with trans-
verse tensor Tμ1μ2μ3ρ in Eq. (47). Recall that the heavy quark
velocity

ωμ ¼ δμ0 ¼
1

2
ðnμ þ n̄μÞ: ð97Þ

If one neglects collinear momenta ki, k0i or kj, k
0
j in the trace

Eq. (95), then the trace vanishes; for instance,

Tr½ð=ωþ 1Þ=ϵψγμi⊥ð−=P=2þmQÞγμc⊥ ð=P=2þ =kj þ=k0j þmQÞγμj⊥ �
ð98Þ

¼ mQTr½ð=ωþ 1Þ=ϵψγμi⊥ð−=ωþ 1Þγμc⊥ ð…Þγμj⊥ � ð99Þ

¼ mQTr½ð=ωþ 1Þð−=ωþ 1Þ=ϵψγμi⊥γμc⊥ ð…Þγμj⊥ � ¼ 0; ð100Þ

where we used ½=ω; γ⊥� ¼ ½=ω; =ϵψ � ¼ 0. Therefore, the non-
trivial result is obtained only from the term with collinear
momenta in both quark propagators:

Tr
h
ΠðloÞ

1 Â
μ0iμ

0
cμ

0
j

QQ ðxi; yiÞ
i
∼ Tr½ð=ωþ 1Þ=ϵψγμi⊥ð=ki þ =k0iÞ
× γμc⊥ ð=kj þ =k0jÞγμj⊥ � ∼ xiyj þ xjyi:

ð101Þ

This explains the structure of the leading-order integral
in Eq. (87).
The calculation of the subleading correction involves the

relative momentum q that introduces the traces with two
insertions of q instead of collinear momenta; for instance,

Tr
h
Π1Γ

μ0iμ
0
cμ

0
j

Q ðxi; yiÞ
i
∼ Tr½ð=ωþ 1Þ=ϵψγμi⊥=qγμc⊥=qγμj⊥ � þ � � � :

ð102Þ

Such subleading contributions give terms of relative order
v2, but the corresponding integral has no momentum
fractions in the numerator; see Eq. (88). As a result, the
large numerical contributions are generated by the integrals

Jð0Þas and Jð2Þas only, which can get appropriate contribu-
tions only from the trace and contractions in Eq. (51).
Parametrically, such integrals are suppressed by small
velocity; however, in reality, such suppression is not
sufficiently strong in order to provide a small numerical
correction with respect to the leading-order contribution.
The enhanced integral also takes place in the relative

order v4, but the corresponding numerical effect is already
suppressed by additional factor hv2i, and for J=ψ such a
contribution can be estimated at about 20%–30%. But for
the excited state such a contribution still remains quite large
because of the large value of hv2iψ 0 .
In order to study the more general situation and the

possible numerical effects of higher-order terms in v2, we

present in Table I the results for the integrals JðkÞas , which are
calculated with the resummed relativistic corrections.
Recall that the leading-order approximation is given by

the integral Jð0Þas ðhv2i ¼ 0Þ ¼ 3.36.
The largest numerical effects are provided by the NLO

corrections in integrals Jð0;2Þas for the same reason as
discussed above. The numerical effect from the resumma-

tion is most visible for Jð0Þas , but the corresponding effects
are not sufficiently large and do not change the qualitative
picture discussed for the NLO approximation. Therefore,
we can conclude that relativistic expansion for J=ψ is well
convergent. The large numerical impact is generated only
by the correction of relative order v2 and associated with
the numerical enhancement of the NLO convolution
integral.
In Table I (bottom), we also show the results for the 2S

state, which has much larger relativistic corrections. In
this case, the general structure remains quite similar: The
largest numerical effect is provided by the NLO contribu-

tion in Jð0;2Þas , but the higher-order power corrections also

TABLE I. Numerical results for integrals JðkÞas for J=ψ and ψ 0, top and bottom, respectively.

hv2iJ=ψ ¼ 0.225 Jð0Þas Jð1Þas Jð2Þas Jð3Þas Jð4Þas
P

JðkÞas

NLO −1.84 −0.18 1.89 � � � � � � −0.13
All orders −1.00 −0.19 1.66 −0.01 0.13 0.59

hv2iψ 0 ¼ 0.64 Jð0Þas Jð1Þas Jð2Þas Jð3Þas Jð4Þas
P

JðkÞas

NLO −11.68 −0.50 5.37 � � � � � � −6.81
All orders −6.78 −0.69 4.53 −0.14 0.98 −2.10
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make a significant numerical contribution, reducing the
total sum by a factor of 3. This clearly illustrates the
expected conclusion: The relativistic expansion for excited
charmonium has very large relativistic corrections and
converges rather slowly.

B. Relativistic corrections with realistic nucleon LCDA

The value of the collinear integral also depends on the
model of the LCDA φ3, which describes a distribution of
the quark longitudinal momenta at zero transverse sepa-
ration. To illustrate the possible effect of the nucleon
structure, we calculate in this section the convolution
integrals with a realistic LCDA model. For that purpose,
we use the ABO-I model from Ref. [37]. This model
gives a reliable description of the electromagnetic form
factor data within the light-cone sum rules [38] and also
provides a good description of J=ψ → pp̄ decay data in
the leading-order approximation [21]. The expression for
the model reads

φABO
3 ðxiÞ ¼ 120x1x2x3f1þ φ10P10ðxiÞ þ φ11P11ðxiÞ

þ φ20P20ðxiÞ þ φ21P21ðxiÞ þ φ22P22ðxiÞg;
ð103Þ

where the orthogonal polynomials PijðxiÞ read

P10ðxiÞ ¼ 21ðx1 − x3Þ; P11ðxiÞ ¼ 7ðx1 − 2x2 þ x3Þ;
ð104Þ

P20ðxiÞ ¼
63

10
½3ðx1 − x3Þ2 − 3x2ðx1 þ x3Þ þ 2x22�; ð105Þ

P21ðxiÞ ¼
63

2
ðx1 − 3x2 þ x3Þðx1 − x3Þ; ð106Þ

P22ðxiÞ¼
9

5
½x21þ9x2ðx1þx3Þ−12x1x3−6x22þx23�: ð107Þ

The moments φij ≡ φijðμÞ are multiplicatively renorma-
lizable; more details about properties of the polynomials
Pij and about the evolution of the moments can be found
in Ref. [39]. In Appendix A, we also provide some useful

details. In our calculation, we fix the relatively low
normalization scale μ2 ¼ 1.5 GeV following Ref. [21].
Then the values of the twist-3 moments read

φ10 ¼ 0.051; φ11 ¼ 0.052; φ20 ¼ 0.078;

φ21 ¼ −0.028; φ22 ¼ 0.179: ð108Þ

Again, we rewrite the corresponding collinear integral
J ≡ JABO defined in Eq. (53) as the sum

JABOðhv2iÞ ¼
1202

32

X4
k¼0

JðkÞABOðhv2iÞ; ð109Þ

where each integral JðkÞABO is defined as

JðkÞABOðhv2iÞ ¼
1

1202f2N

Z
Dxi

x1x2x3

Z
Dyi

y1y2y3

×

�
AABO
k Ik½13�
D1D3

þ BABO
k Ik½12�
D1D2

þ CABO
k Ik½23�
D2D3

�
: ð110Þ

The value of the leading-order integral reads

Jð0ÞABOðhv2i ¼ 0Þ ¼ 5.08: ð111Þ

The numerical results for different integrals JðkÞABO for J=ψ
and ψ 0 are presented in Table II.
The qualitative picture remains the same as described

above; the sum of integrals Jð0ÞABO þ Jð2ÞABO provides the
largest numerical impact, but the values of all integrals

JðkÞABO are larger. We can conclude that the described
mechanism of the large numerical effect also works for
the realistic model of LCDAs. In the case of J=ψ , the total
sum is negative, which indicates that the negative rela-
tivistic correction is somewhat larger than the LO
contribution.
To better show the effect of a large contribution of the

order of v2, we also present the results in Table II in the
following form:

TABLE II. Numerical results for the integrals JðkÞABO for J=ψ and ψ 0, top and bottom, respectively.

hv2iJ=ψ ¼ 0.225 Jð0ÞABO Jð1ÞABO Jð2ÞABO Jð3ÞABO Jð4ÞABO

P
JðkÞABO

NLO −5.18 −0.27 3.66 � � � � � � −1.79
All orders −3.65 −0.35 3.30 −0.03 0.22 −0.51

hv2iψ 0 ¼ 0.64 Jð0ÞABO Jð1ÞABO Jð2ÞABO Jð3ÞABO Jð4ÞABO

P
JðkÞABO

NLO −24.09 −0.75 10.42 � � � � � � −14.42
All orders −15.69 −1.39 9.31 −0.30 1.78 −6.29
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JABOðhv2iÞ ≈
1202

32
× 5.08ð1 − 6.0hv2iψ þ δψ Þ; ð112Þ

where δψ denotes the sum of the higher-order contributions
starting from the terms hv2i2 ∼Oðv4Þ. Their values are as
follows: δJ=ψ ¼ 0.25 and δψ 0 ¼ 1.60. Taking into account
the values of hv2iψ from Eqs. (73) and (74), it is easy to find
that the contribution of the order of v2 is about 5 and 2
times larger than δJ=ψ and δψ 0 , respectively.
Let us notice that the ABO model (103) gives a

reasonable description of the branching ratio J=ψ → pp̄
in the leading-order approximation [19,21], as well as
electromagnetic nucleon form factors at large momentum
transfer [37]. But now the sum of different contributions in
the parentheses in Eq. (112) yields ≈ − 0.1 instead of one.
As a result, the value of the branching ratio turns out to be 2
orders of magnitude smaller than the data. Qualitatively,
this is a consequence of the strong cancellation between the
leading-order and next-to-leading-order contributions in
Eq. (112). It seems extremely unlikely that such a large
effect can somehow be compensated for by a different
choice of parameters of the nucleon LCDA. This is also
confirmed by comparing the collinear integrals J for the
asymptotic LCDA in Eq. (92) and for the ABO model in
Eq. (112), which shows that the numerical effect from the
higher moments of LCDA is not large.
Additional numerical impact is also provided by hv2i

dependence of the coefficient in front of the convolution
integral in Eq. (70). The dominant numerical effect is
provided by the factor 1=ð1þ hv2iÞ2, which occurs from
the hard propagators. It seems that this factor can be
understood as an indication that the charmoniummassM2

ψ ≃
4m2

cð1þ hv2iÞ is a more natural scale for the hard gluon
propagators in the Feynman diagrams. The corresponding
numerical effect is smaller in comparison with one in the
convolution integral discussed above. For J=ψ, the modi-
fication of the coefficient in Eq. (70) gives a reduction about
37%. For ψ 0, a similar effect is already 67%.

IV. DISCUSSION

We presented the first study of relativistic corrections
in exclusive S-wave charmonium decays into a proton-
antiproton final state. The relativistic corrections are
calculated within the NRQCD and collinear factorization
frameworks. We consider only the helicity-conserving
amplitude A1, which provides the dominant numerical
contribution to the decay width. In this case, the baryon
nonperturbative light-cone matrix elements depend on the
twist-3 LCDAs only, and the formula for the amplitude with
relativistic corrections includes the collinear convolution
integral, which is free from any infrared singularities.
The result obtained provides a full correction of the

relative order v2 and also includes the summation of
all orders of relativistic corrections associated with the

quark-antiquark quarkonia wave function in the potential
model [30].
The largest numerical impact is provided by the NLO

relativistic correction with the matrix element, which can
be computed using the equation of motion and is propor-
tional to the binding energy. Because of a specific
structure of the LO and NLO hard scattering kernels,
the value of the NLO collinear integral is about an order of
magnitude larger than the value of the LO one. The
charmonium parameter hv2i is not small enough to
compensate for this effect, and the magnitude of the
resulting relativistic correction is numerically of the same
order as the LO contribution.
The order v2 correction is dominant and has the opposite

sign with respect to the leading-order term; in the case of
J=ψ , the sum of these contributions almost cancels out. The
calculated higher-order corrections are relatively small, and
their partial resummation shows that relativistic expansion
converges sufficiently well. The numerical effect also
depends on the model of the nucleon LCDA; however,
this dependence does not change the main qualitative
conclusions about the large relativistic corrections. For
instance, in order to compensate for the effect of large
relativistic corrections, it is necessary to increase the
nucleon normalization coupling fN by a factor of 3, which
strongly contradicts available sum rule estimates [12,42]
and lattice calculations [43].
A description of excited state ψ 0 is more challenging

because of the relatively large value of hv2iψ 0 . In this case,
the numerical effect from relativistic corrections is much
larger than the LO contribution and is more sensitive to the
higher-order contributions. Therefore, a description of ψ 0
baryonic decays suffers from large uncertainties, which are
associated with the higher-order contributions of the
relativistic expansions.
Taking into account these large relativistic corrections,

one cannot expect the 13% rule in Eq. (1) to hold in the
general case. The rather good agreement for the nucleon
channel is probably an accidental consequence of different
numerical cancellations.
The large effect from relativistic corrections raises the

question about a phenomenological description of baryon
decays in the effective field theory framework. Various
existing phenomenological estimates for J=ψ decay width
and angular behavior are based on the LO approximation
and provide qualitative reliable estimates [21]. However,
such a qualitative picture is violated by the large value of
relativistic corrections. The large negative correction
almost cancels the LO contribution, which greatly reduces
the amplitude value and, therefore, makes the description
problematic. A possible solution of this problem might be
associated with the large and positive NLO radiative
correction, which is not yet known. Cancellation of
radiative and relativistic corrections could resolve the
situation. Large NLO radiative corrections are already
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observed in the exclusive production eþe− → J=ψ þ ηc;
see, e.g., Ref. [40]. Probably a similar situation also arises
in the baryonic decays. Therefore, the calculation of the
NLO radiative correction is necessary in order to better
understand the hadronic decay dynamics.
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APPENDIX A: DEFINITION AND PROPERTIES
OF NUCLEON LCDA

In this appendix, we provide a definition of the light-
cone matrix element for a proton state. The formulas
for the antiproton state can be obtained by charge con-
jugation. In order to simplify formulas, we also use the
light-cone gauge

n · AðxÞ ¼ 0: ðA1Þ

In this case, the light-cone three-quark operator which
we need for the proton state can be defined as (i, j, k are the
color indices)

Otw3 ¼ εijkξiαðz1−Þξjβðz2−Þξkσðz3−Þ; ðA2Þ

where the projected quark field ξðzÞ≡ =̄n=n
4
ψðzÞ and the

arguments of the fields read

zi− ¼ ðn̄ · ziÞ
n
2
: ðA3Þ

The proton flavor structure implies that Otw3 ¼ uud.
The twist-3 light-cone matrix element is defined as

h0jOtw3ðz1; z2; z3ÞjpðkÞi

¼ 1

4
½=kC�αβ½γ5Nn̄�σFT½V1ðyiÞ�

þ 1

4
½=kγ5C�αβ½Nn̄�σFT½A1ðyiÞ�

þ 1

4
kν½iσμνC�αβ½γμ⊥γ5Nn̄�σFT½T1ðyiÞ�; ðA4Þ

where the projected nucleon spinor reads

Nn̄ ¼
=̄n=n
4
NðkÞ ðA5Þ

and C is the charge conjugation matrix. The Fourier
transformation “FT” is defined as

FT½FðyiÞ� ¼
Z

Dyie−iy1k−z1þ=2−iy2k−z2þ=2−iy3k−z3þ=2

× Fðy1;y2; y3Þ; ðA6Þ

with the integration measure

Dyi ¼ dy1dy2dy3δð1 − y1 − y2 − y3Þ: ðA7Þ

Three LCDAs V1, A1, and T1 satisfy the following proper-
ties [42]:

V1ðy2; y1; y3Þ ¼ V1ðy1; y2; y3Þ; ðA8Þ

A1ðy2; y1; y3Þ ¼ −A1ðy1; y2; y3Þ; ðA9Þ

T1ðy2; y1; y3Þ ¼ T1ðy1; y2; y3Þ: ðA10Þ

The isospin symmetry allows one to get the following
relation (see details in Refs. [41,42]):

T1ðy1; y2; y3Þ ¼
1

2
ðV1 − A1Þðy1; y3; y2Þ

þ 1

2
ðV1 − A1Þðy2; y3; y1Þ: ðA11Þ

It is convenient to define the following combination:

fNφ3ðy1; y2; y3Þ ¼ V1ðy1; y2; y3Þ − A1ðy1; y2; y3Þ; ðA12Þ

which allows one to describe the set of three LCDAs V1,
A1, and T1 in terms of the one function. The coupling fN
describes the normalization so that φ3 is dimensionless and
normalized as Z

Dyiφ3ðy1; y2; y3Þ ¼ 1: ðA13Þ

The LCDA φ3 also depends on the factorization scale,
which is not shown for simplicity:

φ3ðy1; y2; y3Þ≡ φ3ðy1; y2; y3; μÞ: ðA14Þ

The evolution properties of this LCDA were studied in
Ref. [39]. The moments in Eq. (103) are multiplicatively
renormalizable and can be calculated as

ϕijðμÞ ¼ ϕijðμ0Þ
�
αsðμÞ
αsðμ0Þ

�
γij=β0

; ðA15Þ

where β0 ¼ 11 − 2nf=3 and γij are the corresponding
anomalous dimensions:

γ10 ¼
20

9
; γ11 ¼

8

3
; γ20 ¼

32

9
; γ21 ¼

40

9
;

γ22 ¼
14

3
: ðA16Þ
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APPENDIX B: ANALYTICAL EXPRESSIONS
FOR THE COEFFICIENTS Ak, Bk,
AND Ck DEFINED IN EQS. (55)–(57)

Here, we provide the explicit expressions for the coef-
ficients ½Xk�VV;AV;TT defined in Eq. (68). These coefficients
are functions of the momentum fractions

½Xk�VV;AV;TT ≡ ½Xk�VV;AV;TTðx123; y123Þ: ðB1Þ

Below, we also use the following short notation:

m̄ ¼ mc

E
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v2
p ; Cij ¼ xiyj þ xjyi: ðB2Þ

The coefficients Ck can be obtained using the simple
relations

½Ck�VV;TTðx123; y123Þ ¼ ½Ak�VV;TTðx213; y213Þ; ðB3Þ

½Ck�AVðx123; y123Þ ¼ −½Ak�AVðx213; y213Þ: ðB4Þ

The other coefficients read

½A0�VV ¼ 2C13 − ð1 − m̄Þðx3 þ y3Þ − 2m̄ð1 − m̄Þ; ðB5Þ

½A0�AV ¼ 2

1þ m̄
ð−2C13 þ ð1 − m̄2Þðx1 − x2 þ y1 − y2ÞÞ;

ðB6Þ

½A0�TT ¼ −4ð1 − m̄Þðm̄þ 1 − x3 − y3Þ; ðB7Þ

½B0�VV ¼ −ð1 − m̄Þð2m̄þ x3 þ y3Þ; ðB8Þ

½B0�AV ¼ 2ð1 − m̄Þðx1 − x2 þ y1 − y2Þ; ðB9Þ

½B0�TT ¼ 4ð2C12 þ ð1 − m̄Þðx3 þ y3Þ þ m̄2 − 1Þ; ðB10Þ

½A1�VV ¼ m̄
1þ m̄

ð4ðx1y3 − x3y1Þ
þ ð1 − m̄Þðx3 − x1 þ y1 − y3ÞÞ; ðB11Þ

½A1�AV ¼ −½A1�VV; ðB12Þ

½A1�TT ¼ 0; ðB13Þ

½B1�VV ¼ 0; ðB14Þ

½B1�AV ¼ 0; ðB15Þ

½B1�TT ¼ 4m̄
1þ m̄

ð4ðx1y2 − x2y1Þ
þ ð1 − m̄Þðx2 − x1 þ y1 − y2ÞÞ; ðB16Þ

½A2�VV ¼ m̄2

ð1þ m̄Þ2 ð2C13 þ ð1þ m̄Þð2þ x3 þ y3Þ

− 3ð1 − m̄2ÞÞ; ðB17Þ

½A2�AV ¼ −
m̄2

1þ m̄
ð4ðx1 þ y1 − 1Þ þ 2ðx3 þ y3Þ þ m̄ − 1Þ;

ðB18Þ

½A2�TT ¼ 4m̄2

1þ m̄
ð1 − x3 − y3 þ m̄Þ; ðB19Þ

½B2�VV ¼ m̄2

1þ m̄
ðx3 þ y3 þ 2m̄Þ; ðB20Þ

½B2�AV ¼ 2m̄2

1þ m̄
ðx2 − x1 þ y2 − y1Þ; ðB21Þ

½B2�TT ¼ 4m̄2

ð1þ m̄Þ2 ð2C12 þ ð1 − m̄Þð2 − x3 − y3Þ

− 2ð1 − m̄2ÞÞ; ðB22Þ

½A3�VV ¼ m̄3

ð1þ m̄Þ2 ð2ðx1 − y1Þ þ y3 − x3Þ; ðB23Þ

½A3�AV ¼ 0; ðB24Þ

½A3�TT ¼ −
4m̄3

ð1þ m̄Þ2 ðx3 − y3Þ; ðB25Þ

½B3�VV ¼ m̄3

ð1þ m̄Þ2 ðx1 − x2 − y1 þ y2Þ; ðB26Þ

½B3�AV ¼ 0; ðB27Þ

½B3�TT ¼ 4m̄3

ð1þ m̄Þ2 ðx1 − x2 − y1 þ y2Þ; ðB28Þ

½A4�VV ¼ ½B4�VV ¼ 2m̄4

ð1þ m̄Þ2 ; ðB29Þ

½A4�AV ¼ ½B4�AV ¼ 0; ðB30Þ

½A4�TT ¼ ½B4�TT ¼ 4m̄4

ð1þ m̄Þ2 : ðB31Þ

RELATIVISTIC CORRECTIONS TO J=ψ → pp̄ … PHYS. REV. D 107, 054026 (2023)

054026-13



[1] M. Ablikim et al. (BES Collaboration), Phys. Lett. B 648,
149 (2007).

[2] M. Ablikim et al. (BES Collaboration), Phys. Rev. D 78,
092005 (2008).

[3] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 86,
032014 (2012).

[4] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 93,
072003 (2016).

[5] M. Ablikim et al. (BESIII Collaboration), Phys. Lett. B 770,
217 (2017).

[6] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 95,
052003 (2017).

[7] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 98,
032006 (2018).

[8] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett.
125, 052004 (2020).

[9] M. Alekseev, A. Amoroso, R. B. Ferroli, I. Balossino, M.
Bertani, D. Bettoni, F. Bianchi, J. Chai, G. Cibinetto, F.
Cossio et al., Chin. Phys. C 43, 023103 (2019).

[10] R. Baldini Ferroli, A. Mangoni, S. Pacetti, and K. Zhu,
Phys. Lett. B 799, 135041 (2019); Phys. Rev. D 103,
016005 (2021); A. Mangoni, arXiv:2202.08542.

[11] S. J. Brodsky and G. P. Lepage, Phys. Rev. D 24, 2848
(1981).

[12] V. L. Chernyak and A. R. Zhitnitsky, Phys. Rep. 112, 173
(1984).

[13] N. Brambilla et al. (Quarkonium Working Group), arXiv:
hep-ph/0412158.

[14] V. L. Chernyak, A. A. Ogloblin, and I. R. Zhitnitsky, Yad.
Fiz. 48, 1398 (1988) [Z. Phys. C 42, 583 (1989)] [Sov. J.
Nucl. Phys. 48, 889 (1988)].

[15] G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D
51, 1125 (1995); 55, 5853 (1997).

[16] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Rev. Mod.
Phys. 77, 1423 (2005).

[17] N. Brambilla et al. (Quarkonium Working Group), Heavy
Quarkonium Physics (CERN, Geneva, 2005).

[18] M. B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008).
[19] N. Kivel, Eur. Phys. J. A 56, 64 (2020); 57, 271(E) (2021).
[20] N. Kivel, Eur. Phys. J. A 58, 26 (2022).
[21] N. Kivel, Eur. Phys. J. A 58, 138 (2022).
[22] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp.

Phys. 2020, 083C01 (2020).
[23] G. T. Bodwin and A. Petrelli, Phys. Rev. D 66, 094011

(2002); 87, 039902(E) (2013).

[24] G. T. Bodwin, H. S. Chung, D. Kang, J. Lee, and C. Yu,
Phys. Rev. D 77, 094017 (2008).

[25] G. T. Bodwin, H. S. Chung, J. H. Ee, J. Lee, and F. Petriello,
Phys. Rev. D 90, 113010 (2014).

[26] N. Brambilla, H. S. Chung, W. K. Lai, V. Shtabovenko, and
A. Vairo, Phys. Rev. D 100, 054038 (2019).

[27] J. P. Ma and Q. Wang, Phys. Lett. B 537, 233 (2002).
[28] N. Brambilla, E. Mereghetti, and A. Vairo, J. High Energy

Phys. 08 (2006) 039; 04 (2011) 058(E).
[29] E. Braaten and J. Lee, Phys. Rev. D 67, 054007 (2003); 72,

099901(E) (2005).
[30] G. T. Bodwin, J. Lee, and C. Yu, Phys. Rev. D 77, 094018

(2008).
[31] T. Barnes, X. Li, and W. Roberts, Phys. Rev. D 77, 056001

(2008).
[32] V. Braun, R. J. Fries, N. Mahnke, and E. Stein, Nucl. Phys.

B589, 381 (2000); 607, 433 (2001).
[33] M. Gremm and A. Kapustin, Phys. Lett. B 407, 323 (1997).
[34] G. T. Bodwin, D. Kang, and J. Lee, Phys. Rev. D 74, 014014

(2006).
[35] J. H. Kuhn, J. Kaplan, and E. G. O. Safiani, Nucl. Phys.

B157, 125 (1979).
[36] J. Kublbeck, H. Eck, and R. Mertig, Nucl. Phys. B, Proc.

Suppl. 29, 204 (1992); V. Shtabovenko, R. Mertig, and F.
Orellana, Comput. Phys. Commun. 256, 107478 (2020).

[37] I. V. Anikin, V. M. Braun, and N. Offen, Phys. Rev. D 88,
114021 (2013).

[38] I. I. Balitsky, V. M. Braun, and A. V. Kolesnichenko, Sov. J.
Nucl. Phys. 44, 1028 (1986); I. I. Balitsky, V. M. Braun, and
A. V. Kolesnichenko, Nucl. Phys. B312, 509 (1989); V. L.
Chernyak and I. R. Zhitnitsky, Nucl. Phys. B345, 137
(1990).

[39] V. M. Braun, S. E. Derkachov, G. P. Korchemsky, and A. N.
Manashov, Nucl. Phys. B553, 355 (1999); V. M. Braun,
A. N. Manashov, and J. Rohrwild, Nucl. Phys. B807, 89
(2009).

[40] Y. J. Zhang, Y. j. Gao, and K. T. Chao, Phys. Rev. Lett. 96,
092001 (2006); B. Gong and J. X. Wang, Phys. Rev. D 77,
054028 (2008).

[41] V. L. Chernyak and I. R. Zhitnitsky, Nucl. Phys. B246, 52
(1984).

[42] V. Braun, R. J. Fries, N. Mahnke, and E. Stein, Nucl. Phys.
B589, 381 (2000); B607, 433(E) (2001).

[43] G. S. Bali et al. (RQCD Collaboration), Eur. Phys. J. A 55,
116 (2019).

NIKOLAY KIVEL PHYS. REV. D 107, 054026 (2023)

054026-14

https://doi.org/10.1016/j.physletb.2007.02.029
https://doi.org/10.1016/j.physletb.2007.02.029
https://doi.org/10.1103/PhysRevD.78.092005
https://doi.org/10.1103/PhysRevD.78.092005
https://doi.org/10.1103/PhysRevD.86.032014
https://doi.org/10.1103/PhysRevD.86.032014
https://doi.org/10.1103/PhysRevD.93.072003
https://doi.org/10.1103/PhysRevD.93.072003
https://doi.org/10.1016/j.physletb.2017.04.048
https://doi.org/10.1016/j.physletb.2017.04.048
https://doi.org/10.1103/PhysRevD.95.052003
https://doi.org/10.1103/PhysRevD.95.052003
https://doi.org/10.1103/PhysRevD.98.032006
https://doi.org/10.1103/PhysRevD.98.032006
https://doi.org/10.1103/PhysRevLett.125.052004
https://doi.org/10.1103/PhysRevLett.125.052004
https://doi.org/10.1088/1674-1137/43/2/023103
https://doi.org/10.1016/j.physletb.2019.135041
https://doi.org/10.1103/PhysRevD.103.016005
https://doi.org/10.1103/PhysRevD.103.016005
https://arXiv.org/abs/2202.08542
https://doi.org/10.1103/PhysRevD.24.2848
https://doi.org/10.1103/PhysRevD.24.2848
https://doi.org/10.1016/0370-1573(84)90126-1
https://doi.org/10.1016/0370-1573(84)90126-1
https://arXiv.org/abs/hep-ph/0412158
https://arXiv.org/abs/hep-ph/0412158
https://doi.org/10.1007/BF01557664
https://doi.org/10.1103/PhysRevD.51.1125
https://doi.org/10.1103/PhysRevD.51.1125
https://doi.org/10.1103/PhysRevD.55.5853
https://doi.org/10.1103/RevModPhys.77.1423
https://doi.org/10.1103/RevModPhys.77.1423
https://doi.org/10.1016/j.ppnp.2008.02.001
https://doi.org/10.1140/epja/s10050-020-00064-5
https://doi.org/10.1140/epja/s10050-021-00575-9
https://doi.org/10.1140/epja/s10050-021-00626-1
https://doi.org/10.1140/epja/s10050-022-00762-2
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRevD.66.094011
https://doi.org/10.1103/PhysRevD.66.094011
https://doi.org/10.1103/PhysRevD.77.094017
https://doi.org/10.1103/PhysRevD.90.113010
https://doi.org/10.1103/PhysRevD.100.054038
https://doi.org/10.1016/S0370-2693(02)01937-8
https://doi.org/10.1088/1126-6708/2006/08/039
https://doi.org/10.1088/1126-6708/2006/08/039
https://doi.org/10.1007/JHEP04(2011)058
https://doi.org/10.1103/PhysRevD.67.054007
https://doi.org/10.1103/PhysRevD.72.099901
https://doi.org/10.1103/PhysRevD.72.099901
https://doi.org/10.1103/PhysRevD.77.094018
https://doi.org/10.1103/PhysRevD.77.094018
https://doi.org/10.1103/PhysRevD.77.056001
https://doi.org/10.1103/PhysRevD.77.056001
https://doi.org/10.1016/S0550-3213(00)00516-2
https://doi.org/10.1016/S0550-3213(00)00516-2
https://doi.org/10.1016/S0550-3213(01)00254-1
https://doi.org/10.1016/S0370-2693(97)00744-2
https://doi.org/10.1103/PhysRevD.74.014014
https://doi.org/10.1103/PhysRevD.74.014014
https://doi.org/10.1016/0550-3213(79)90055-5
https://doi.org/10.1016/0550-3213(79)90055-5
https://doi.org/10.1016/0920-5632(92)90444-W
https://doi.org/10.1016/0920-5632(92)90444-W
https://doi.org/10.1016/j.cpc.2020.107478
https://doi.org/10.1103/PhysRevD.88.114021
https://doi.org/10.1103/PhysRevD.88.114021
https://doi.org/10.1016/0550-3213(89)90570-1
https://doi.org/10.1016/0550- 3213(90)90612-H
https://doi.org/10.1016/0550- 3213(90)90612-H
https://doi.org/10.1016/S0550-3213(99)00265-5
https://doi.org/10.1016/j.nuclphysb.2008.08.012
https://doi.org/10.1016/j.nuclphysb.2008.08.012
https://doi.org/10.1103/PhysRevLett.96.092001
https://doi.org/10.1103/PhysRevLett.96.092001
https://doi.org/10.1103/PhysRevD.77.054028
https://doi.org/10.1103/PhysRevD.77.054028
https://doi.org/10.1016/0550- 3213(84)90114-7
https://doi.org/10.1016/0550- 3213(84)90114-7
https://doi.org/10.1016/S0550-3213(00)00516-2
https://doi.org/10.1016/S0550-3213(00)00516-2
https://doi.org/10.1016/S0550- 3213(01)00254-1
https://doi.org/10.1140/epja/i2019-12803-6
https://doi.org/10.1140/epja/i2019-12803-6

