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We study relativistic corrections to the exclusive decay of J/y into proton-antiproton final state. We
calculate the relativistic QCD corrections to the dominant decay amplitude, which depend on the nucleon
twist-3 light-cone distribution amplitudes only. It is shown that in this case the collinear factorization is also
valid beyond the leading-order approximation. Our numerical estimates show that relativistic correction of

relative order v? provides a large numerical impact.
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I. INTRODUCTION

In recent years, the BESII and BESIII Collaborations
have obtained many accurate data on baryon-antibaryon
decays of S-wave charmonia; see, e.g., Refs. [1-8]. These
data allow one to get information about various important
hadronic parameters and provide an interesting possibility
to study QCD dynamics.

There are different approaches for a description of the
baryon-antibaryon decays. In Refs. [9,10], it was proposed
to use a phenomenological model based on an empirical
effective Lagrangian with unknown parameters, which are
subject to restrictions from SU(3) flavor symmetry and
experimental data.

Another way is to use effective field theory framework,
combining nonrelativistic expansion and collinear factori-
zation [11-14]. The appropriate effective Lagrangian is
described by nonrelativistic QCD (NRQCD) [15,16] and
collinear copies of QCD [11,12,14].

Such an approach allows one to build a systematic
expansion in powers of 1/m, describing decay amplitudes
as a superposition of perturbative and universal nonpertur-
bative functions. The perturbative part can be computed in
perturbative QCD at the scale of order m,.. The non-
perturbative matrix elements are defined at soft hadronic
scale A < m.. They can be limited to other processes or
evaluated using nonperturbative methods such as QCD sum
rules or lattice QCD.

Since the real mass of the charm quark is not large
enough, a systematic description requires careful analysis
of the various corrections. Existing calculations of exclu-
sive and inclusive reactions show that in many cases
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radiative corrections in a(m,.) and relativistic corrections
can have a significant numerical effect; see, for instance,
reviews [17,18].

The first estimates for exclusive proton-antiproton
decay based on the leading-order (LO) approximation
were obtained already a long time ago in Refs. [11,14].
Recently, this analysis has been extended in Refs. [19-21],
where the power-law corrections ~A/m,. associated with
the collinear expansion were taken into account for
different amplitudes. The collinear power corrections
are associated with the higher twist baryon light-cone
distribution amplitudes (LCDAs). It has been established
that the effect of such corrections is not very strong, and
one can describe various channels of baryon-antibaryon
decay with good accuracy. However, relativistic and QCD
radiative corrections for baryon-antibaryon decays have
not yet been studied.

The available data for various baryons indicate the
possible presence of effects from relativistic corrections.
For example, the so-called “12% rule”

_ Brly(2S) » BB] _Brly(2S) —» efeT]
B Br[J/w — BB] ~ Br[J/y — ete] =0.13 (1)

must hold if the width is dominated by the LO NRQCD
approximation. The available experimental data [22] show
the following results: Q, = 0.1386(3), Q, = 0.146(1),
0, =0.204(1), Qs =0.21(3), Qs+ =0.072(5), and
0% = 0.276(5). Consequently, the data for baryons other
than the nucleon indicate a violation of this expectation.
For nucleon-antinucleon decays, the rule (1) works quite
well, but, on the other hand, the values of the polar angular
distribution coefficient a,, for ground and excited S-wave
charmonium [y (2S) = '] are very different [3,7]:

=0.595 £0.012, a,,|w, = 1.03 £ 0.06. (2)
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This observation may also indicate a significant contribu-
tion of relativistic corrections.

The purpose of this work is to study the effects
of relativistic corrections in proton-antiproton decays.
The technique for calculating relativistic corrections is
well known. Such corrections were already studied
for different exclusive decays as J/y — eTe™ [23,24],
H—y+J/y [2526], and y. — yy [27,28] and for
exclusive production ete™ = J/w+1,. [29,30]. However,
relativistic corrections to exclusive hadronic decays
have not yet been considered.

The feature of hadronic decays is that the hard kernels are
not simple numbers but depend on light quark momentum
fractions. The corresponding decay amplitude is described
by the convolution integral over the momentum fractions of
the hard kernel with LCDAs. In this case, it is more
convenient to perform the hard matching at the amplitude
level. In some cases, the convolution integrals have infrared
divergencies that indicate violation of collinear factoriza-
tion. This is often the case for next-to-leading power
contributions in exclusive processes. However, for the
dominant amplitude describing n°S; — BB decay, collinear
factorization is still applicable, and this makes it possible to
systematically study the relativistic effects.

Our paper is organized as follows. In Sec. II, we give
important definitions and kinematical notation. In Sec. 111,
we calculate the hard kernels and perform the resummation
of some class of relativistic effects. After that, we provide a
qualitative numerical analysis for different choices of the
nucleon LCDAs. In Sec. IV, we discuss the obtained results
and make conclusions. In the appendixes, we give impor-
tant details about the nucleon twist-3 LCDAs and provide
analytical expressions for the hard kernels.

II. KINEMATICS AND DECAY AMPLITUDES

In this work, we use notation from Ref. [21]. We define
the kinematics of J/w(P) — p(k)p(k’) decay in the
charmonium rest frame

-

P=M,o, o= (1,0). (3)

The outgoing momenta k and k' are directed along the z
axis and read, respectively,

k=(M,/2,0,0,M,5/2), K =(M,/2,0,0,—M,p/2),

(4)

where my is the nucleon mass and § = /1 —4m3, /M3,

We also define auxiliary light-cone vectors
n=(1,0,0,-1), n=(1,0,0,1), (5)

so that any four-vector V can be represented as

n n
V=V, -4+V_-+V,, 6
+y VstV (6)
where V,=(V-n)=Vy+V; and V_=(V-i)=
Vo — V3.
The decay amplitude J/yw — pp is defined as
(k,K'|iT|P) = (27)*6(P — k — K')iM, (7)
with
N / lo_ﬂb /
M = N(k)q Aigy + Ax(e,), (K + k), o— 2 V(K),  (8)
ZmN

where y = p,r*. The nucleon N (k) and antinucleon V/(k')
spinors have standard normalization NN = 2my and
VV = —2my. The charmonium polarization vector €, =
€y (P, A) satisfies

> _eu(P. Ay (P

The scalar amplitudes A; and A, describe the decay
process. These amplitudes are computed in the effective
field framework by expansion with respect to small relative
heavy quark velocity v and small ratio > ~ A/ mg. The
amplitude A, is suppressed as

PHP

2
M,

A) = —g" + ©)

AyJA; ~ A2, (10)

The decay width is conveniently described in terms of two
combinations

2

M
—2 A, (11)

Gy = A + Ay,
4my,

gE:A1+

and reads

M m
Uy — pp| = Mol (|gM|2+2 N|gE|2) (12)

127z

The ratio |Gg|/|Gy| can be measured through the angular
behavior of the cross section eTe™ — J/y — pp; see, e.g.,
Ref. [31]. Available data indicate that the contribution with
the amplitude Gy is quite small (about 10%) and the value
of width is dominated by the amplitude |G,,|*.

To the leading-order approximation

Gy =AY + O(a,) + O(v?) + O(22), (13)

where in the rhs we indicate various possible corrections.
These are next-to-leading-order (NLO) contributions with
respect to aj, relativistic corrections of relative order »?,
and power corrections associated with the higher twist
light-cone distribution amplitudes, respectively. The NLO
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(a) (b)

FIG. 1. Hadronic (a) and electromagnetic (b) contributions to
the decay amplitudes.

radiative QCD corrections and relativistic corrections are
not known yet. The power-suppressed contribution have
been estimated in Ref. [21], and the corresponding numeri-
cal effect is moderate, about 25%. In this paper, we want to
study the relativistic corrections to the amplitude A‘lo.

The amplitude A'f’ is described by the sum of two
different contributions: the hard and the electromagnetic
one, which correspond to the annihilation into three gluons
or one hard photon as shown in Fig. 1. The electromagnetic
amplitude is relatively small; however, it can provide
numerical impact through interference with the QCD
amplitude [21]. In this paper, for simplicity, the electro-
magnetic contribution is not considered.

The leading-order factorization formula for the ampli-
tude A reads [11,12]

V2M,, (0|07 /) 2 10
0
Ag ) = sz m_ﬁ(ﬂa5)38_1‘]0’ (14)

where the NRQCD matrix element is defined in the
standard way:

(0[O /w) = (Olx"e - (D)) /w(4)) = \/%RIO(O)’ (15)

where R;((0) is the radial charmonium wave function at the
origin. The constant fy has the dimension of the square of
the mass and describes the normalization of the matrix
element of the nucleon. The decay amplitude is sensitive to
nucleon structure that is described by the dimensionless
collinear convolution integral J,, which reads

1 1 1 VX3
Jo=+ [ Dx; | Dy; N
4 X1Xx3 Y1 Y23 D1 D3

X {903(y123>€03(x123) + % (3(y123)

+ @3(y321)) (@3(x123) +fﬂ3(x321))}7 (16)

where D; = x; + y; — 2x;y; and we used short notation for
the twist-3 nucleon LCDA ¢3(x123) = ¢3(x;, x5, x3). This
nonperturbative function depends on the quark momentum
fractions 0 < x; < 1 and the factorization scale, which is
not shown explicitly. The light-cone fractions x; satisfy the

momentum conservation condition x; + x, + x3 = 1.
Therefore, the measure of the convolution integrals in
Eq. (16) includes the § function

D)Ci = dXIdX2dX35(1 - xl - -x2 - X3). (17)

The nucleon LCDA ¢; is defined as the matrix
element of a three-quark operator and is well known
in the literature; see, e.g., Refs. [12,42]. For a con-
venience, the definition and some important details are
given in Appendix A.

Our task is to calculate the relativistic corrections
associated with the higher-order matrix elements in
NRQCD:

| <

010,19/ = Ol¢'a -e() (=) v, ()

where (0|0qy|J/yw) = (0|0|J /y). Usually, it is convenient
to describe the contribution of these matrix elements by
introducing the ratio

(010,17 /w)
(0100l /)

The set of the operators in Eq. (18) does not represent
the complete set of all possible NRQCD operators. The
operator O, provides the correct description of the relativ-
istic correction of relative order »2. But, to describe
relativistic corrections of a higher order, many more differ-
ent operators are used, for example, color-octet ones.
However, resumming the contributions of all orders asso-
ciated with the subset (19) is useful, because it allows one to
study the convergence of the nonrelativistic expansion.
The value of the NLO matrix element (19) can be exactly
found with the help of Kapustin-Gremm relation [33]

(g*") = mi(v*") = (19)

01011/ /y) = m E;,, (0|0l /w). (20)

where E;,, denotes the binding energy. This gives

<q2> = mCEJ/l//' (21)

In Ref. [34], it was found that the higher-order operators
satisfy the approximate relation

(@) = (g)" + O(v?). (22)

Neglecting the higher-order corrections in the rhs in
Eq. (22) allows one to resum the power series of the
higher-order terms with the matrix elements (18) to all
orders. Such resummation includes those relativistic cor-
rections that are contained in the quark-antiquark quarko-
nium wave function in the leading potential model for the
wave function [30].
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The resummation of the relativistic corrections associ-
ated with the matrix elements (19) is already considered
for various processes in Refs. [23,24,30], and this tech-
nique can be easily adapted for calculations of exclusive
hadronic decays.

III. MATCHING AND ALL-ORDER
RESUMMATION

In order to calculate the decay amplitude, we use
the covariant spin-projector technique [35]. The generali-
zation of this technique to higher orders in v is considered
in Refs. [23,24]. Here, we briefly describe the NRQCD
matching and clarify some features of the present
calculation.

Our task is to compute the hard coefficient functions in
front of higher-order operators (18). The matching can be
conveniently done using the QQ state as the initial state
instead of the charmonium state. The corresponding
heavy quark and antiquark have the momenta p and p/,

respectively:
E=\/mg+q*. (23)

Then the total and relative momenta read, respectively,

p=I(E.q), p =(E—q),

1
P=p+p, q=§(p—19’)- (24)

In the rest frame,
P = (2E,0), q=1(0,9). (25)

Let the perturbative amplitude be described as

Agg = Vo(P'.5). Agoug(p.s), (26)

where 7y and u, denote heavy quark spinors. The

amplitude projected onto the S-wave state of heavy
quark-antiquark QQ(3S,) reads

Ago(S)) = Tr[I Ay (x;. y:)l. (27)

where the spin-triplet projector I1; is given by [23]

1 ! <1P+q+ )
== m
' 2VRE(E + my) \2 ¢
P+2E (1 1
—P—q- . (28
g AP dme) @ e (29)
This projector is relativistically normalized:
Tr[IT,IT]] = 4E2. (29)

In order to project the amplitude onto a state with L = 0,
the expression in Eq. (27) must be averaged over the angles
of the momentum gq:

1

-_— / dQTr[HIAQQ (x,-, yl)] .

Apo (@), 1o = A00(d®) = e

(30)
In NRQCD, the amplitude reads

ANRQCD = V/ ZMV/ch<0|0n|J/W>7 (31)

n>0

where /2M,,, arises from relativistic normalization. The

coefficients ¢, can be obtained from the amplitude (30)
using that

(0|0,|Q0) = \/2N .2Eq*" (32)
and
Agold? Zc (0]0,|Q0) = Z /2N 2Eq*".

Using this, one finds

V2N .nlog? 2E

(34)

C, =

Substituting this into Eq. (31) and using Eq. (22), one finds

! n A A (BSI)
Anwen = /M, 01OV 3 @ 5o A5

(35)

— AL, 000 2L o

The specific of our calculation is that the amplitude
Apo(3S)) also includes the nonperturbative matrix elements
describing the couplings with the nucleons. The amplitude
Q0 — pp is described by the diagrams in Fig. 2. Each
diagram can be described as consisting of a heavy quark
subdiagram 'y, describing the QQ annihilation into three
gluons and a residual part describing the transition of three
virtual gluons to the pp state. The expression for each
diagram can be written in the following form:

o !

x o(p. 5T g (p.) (37)
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where 7y and u, denote heavy quark spinors and A’; i
denotes the gluon propagator (we use Feynman gauge and
do not write the color indices for simplicity)

Mg (_i)gﬂiﬂ"'

it — k; = x;k,
C T k)2 *

ki=yk', (38)

where the proton and antiproton momenta read

k~En, k' ~ En, K =K*=0. (39)

The heavy quark subdiagram reads

k

PI24G

+ 5 more diagrams

P/2-q ——et

K

FIG. 2. The diagrams, which describe the QO — pp
subprocess.
|
P2 o mo) (P2 + = =+ mg)r w0

To " (xioyi) = (i) =

The set of indices {y;, pi..p;} describes six possible trans-
positions of the indices {u, uo, p3 }, which correspond to the
different diagrams: {uy, o, i3}, {43, pos 1 }o b2 p1s 13}

{uz mr, ok, {mr, ps. ma by and {py, pis, py }. Therefore, each
diagram can be coded by the set icj, and the sum of these

diagrams gives the total result.

The term B, ;.. (X;, ;) 'in Eq. 37) d.escri.bes' the trace,
which occurs after contractions of the Dirac indices «; and
a; of the proton and antiproton light-cone matrix elements
with the y matrices of the quark-gluon vertices

<0| [Otw3]a’la’2a; |p<kl)> [(lg)yﬂl ]a’]al [(ig)yﬂz]a’zaz [(i9)7ﬂ3](,/3{,3
X (0] [Ows]ayaya | P (K)) (41)

= FT[BHleMP(xi’yi)]’ (42)

The symbol “FT” denotes Fourier transformations, which
occur from the light-cone matrix elements (the definition
of the light-cone operator O,,; is given in Appendix A).
The nucleon matrix elements are described by the con-
venient combinations of LCDAs V,A;, and 7|, which are
defined as

Vi(xi23) :%((P3(x123)+(ﬂ3(x213)), (43)
Ay(x13) = %(%(xm) - 93(x213)), (44)
Ty(x123) = %(%(xm) + @3(x231))- (45)

The B term (42) is universal for all diagrams. The
calculation of the Dirac contractions yields

= P/2+q)* =mp|((P/2+ q — k; — k})* — mp)]

(kKT g (X0 V0).
(46)

B

Bﬂlﬂzﬂz (xi’ yi) = Nﬁyivn(ig)3

with

T gz (X Vi)
= gﬁlyzgﬁﬁ{vl (x123)Vi(y123) + A1 (x123)A1(V123) }
- iﬁ’im' ;ﬁp{v ("123)A1(x123) + A1 (V123) Vi (x123) }

+ G/Jt_l;h(mG/J)_y(zﬁT (y123)T1(x123), (47)

where we used the following short notations:

1 _ _ ) 1. .-

gi_r/j = gaﬁ - 5 (nanﬂ + nﬂna)7 lgi_ﬁ - E leaﬂo‘ln I’li,
(48)
G(iﬂryp = g(%o'g/#/) + g(#pgp’%; - g(J;pgé/;’ (49)

For the projected nucleon spinors N(k) and V(k'), we used

NK) @ _ N, @ VY=V, (50

Therefore, the expression for the amplitude (30) reads

24ﬂ/dQZ/Dxi

{icj}

iAo (q°)

(51)
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where we also show explicitly the symmetry factor 1/2.
Calculating the trace and contracting the indices, we obtain
the following result':

Aoold?) = VAN, T
e “mg (my +47)

IOMQ+E 2 )

(7a,)’

where the dimensionless collinear integral reads

2
32fN/x1x2x3 )’1)’2)’3

A(x;,y;) | Blxi,yi) | Clxiy;
» (x,y)Jr (x y)+ (i yi) | (53)
D, Ds DD, D, D5

The integrand in Eq. (53) has the following structure:

D;=x;+y; x;) > 0. (54)

=2x;y; = x;(1 = y;) +y;(1 -

The functions A, B, and C also depend on v*> = ¢°/ m2Q,

which is not explicitly shown for simplicity. They can be
presented in the following way:

4

A(x123,y123) = ZAk(x1237)’123)1k(173)7 (55)
i=0
4

B(x123.y123) = ZBk(x1237YI23)Ik(172)v (56)
i=0

4
C(x123.y123) = ch<x123’)’123)1k(2v3)~ (57)
i=0

These expressions include the angular integrals /;, which
appear due to the integration over d€2 = dpdcosf. The
polar integration can be easily computed, and the remaining
azimuth integrals read

! v|kn*
I |ij ——/ dn ,
A= ) M lam = Plag

(58)

= |q|/my, and convenient
short notation

a =2tV (59)
E D

The numerator in Eq. (58) arises from the trace and

contractions in Eq. (51). The denominators [1 + |v|a;n]

[1 —[v|a;n] occur from the heavy quark propagators. The

'We used the package FeynCalc [36].

angular dependence occurs from the scalar products

(gk) = —Eq. = —E|q|cos0,  (qk') = Eq. = E|q| cos0.

(60)
From the definition (58), it follows that
Iy~ O(1),

L1, ~O(v?), L4~ O(*). (61)

If one neglects by the contribution form the denominators
setting a; = a; = 0, then

g g LV
Llijl =1 Llij]=0.  blijj==.
g v?
13[1]] :O, 14:g (62)
One can also easily find that
Llji] = (=D)*Iij). (63)

These integrals can be computed analytically that gives

.1 1+ |v]a; 1+ |v]a;
1 = 1
ol/] 2a;+a <n1—|v|a4 T g
i iy |
a’ —1)" n+
1
<1+ (-1, (64)
and for k > 0
R B 1)" 1+ |v|a;
1 1
eli) = 24 +a; a! <|v|a - v|a;

_Z|v|l l ( 1)) (65)

= l+1
+1 1 1 1 1+’V|a Z| |[ l )l
2a; +a;a;™! |v|a 1—|v|a l—l—l
(66)
RN T 1
_ n —1)" n+1 _[1 -1 Vl+k:|.
a,»—l—ajnzon—i-l—l—k(aj D)7 [+ D

(67)

The coefficients A;, By, and Cy in Egs. (55)—(57) depend
on the nucleon LCDAs, and their general structure reads
X ={A,B,C})

054026-6
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Xi(x123, ¥123) = [Xa]yy AV (x123)Vi(V123)
+ Ay (x123)A1 (y123) }
+ [XiJav{A1 (x123)Vi(v123)
+ Vi(x123)A1 (V123) }
+ XilrrT1(%123)T1 (V123), (68)

where coefficients [X;]yy 4y 77 are polynomial functions of
the momentum fractions x; and y;. Their analytical expres-
sions are presented in Appendix B.

The convolution integral J in Eq. (53) is well defined that
can be easily understood taking into account the general
behavior of the LCDAsS:

Z(x123) = x1X2x3 X (polynomial functionin x;),
Z={V,A,T\}. (69)

Using the expression in Eq. (52), one finds the NRQCD
amplitude A; defined in Eq. (8):

V/2M,,0[0J /w) I
m2\/1+ (7)) mi(1+ (%))

L4 (02)) 57((0%). (70)

(AI)NRQCD = (”%)3

10
2
g+

In the limit (v?) — 0, this result reproduces the well-known
leading-order approximation in Eq. (14). The obtained
expression depends on the power of heavy quark mass m_®
as required by the scale properties of the amplitude. The
charm mass in the factor |/2M,, is usually calculated as

M,, ~2m.+/1+ (v?). The factor (1 + (v*))~? is naturally
provided by the hard propagators in the diagrams. The
essential part of the relativistic corrections is included in the
convolution integral, which depends on the twist-3 LCDAs,
which describe the nonperturbative overlaps with outgoing
nucleons. Therefore, the total effect of the relativistic
corrections also depends on the nonperturbative structure
of nucleon.

To see the numerical impact of the obtained relativistic
corrections, we need to compute the convolution integral J.
This integral is not simple and, in the general case, can be
calculated only numerically. In order to understand better
the dependence of the integral on the model of the LCDA,
we consider two different models. As an example of a
relatively simple case, consider the asymptotic LCDA,
which is defined as

thls = T?S = IZOfo1x2x3, A‘lls =0. (71)
Appropriate analysis allows better understanding numeri-
cal values of various convolution integrals. For a more
realistic description, we use the Anikin-Braun-Offen

(ABO) model [37], which provides a reliable description
of various data.

For our consideration, we use m, = 1.4 GeV for the pole
heavy quark mass and use the estimate for the binding
energy J/y from Ref. [24]:

E;, = 0.306 GeV, (72)
that gives
<”2>J/u/ ~().225. (73)

The value (v%),,2s)

(v?),, can be estimated as

E, ~ Ml// - MJ/'I/ + EJ/'I/
m. (MJ/V/_EJ/U/>/2

(1) = =0.64, (74)

which is quite large due to the large difference
M, —M;;,, ~589 MeV.

A. Relativistic corrections with asymptotic LCDAs

The asymptotic DA (71) is not a realistic model, but the
use of this approximation makes it possible to simplify
analytical expressions and study the properties of convo-
lution integrals. As the first step, we also calculate the
correction of relative order v? only.

The results in Eqs. (64) and (67) yield

1
Iolij] = 1+ (v?) 5 (af — a;a; + a3) + O(v*)

3
~ 1+ ()] (75)
712 ..

00 =5 - a) + 000 1, (76)

L @ 4 - 4
Llij] = + O(v*), I34~0"), (77)

3

where a; is defined in Eq. (59). Therefore, the contributions
with 154 can be neglected. It is convenient to define

Jul@) =S W), )

where the coefficient in front of the sum is chosen in order
to get a convenient normalization. In what follows, we are
going to discuss the values of the integrals
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k Dy;
T 120 fN X1X2X3 ) Y1Y2)3

JAPL3] | BPL02)  CpLs) (719)
D, D, DD, D,D;,

and their dependence on the parameter (v?).
For the coefficients A{*, we get

AP = [Adyy VT (x123) VI (V123) }

+ [Ad 7T (x123) T (V123) (80)
= f3120%(x12023) (719233) ([Adlvy + [Adlrr)
= f120%(x120523) (91 9273)AL, (81)
with
AP = [Adyy + [Adrr. (82)

and similarly for B; and C;. Substituting this in Eq. (79),
we obtain

9 o /Dx, / ABT, [13] , BEL(12] Co 1,23
D, D, DD, D,D;
(83)

S (=DPRCE)

= oo

where the transposition operator I3ij interchanges the
arguments {x;,y;} <> {x;,y;}; for instance,

(84)

1323f(x123’)7123> :f(x1327Y132)- (85)

Substituting the explicit expressions for the coefficients
A%, B, and C¢ and neglecting the higher-order terms,
we get

2
kz:;J(ai)(@z)) = /Dxi/Dyiﬁ{Zbclyz—S(vz)
+ 2402, y, (187 [12) + 1{12))
+ <02> <2x1y2 _é(xl + Xy +y; +)72)> }
(86)

The integrals which enter in these formulas can be easily
calculated numerically:

/ Dx, / Dy,.l;”i)2 — 0.140. (87)
172

=2.029, (88)
2

1
NLO: 1St_/Dxi/Dyi—

D\D

NLO: 21 /Dx /Dy, abeay}

=0.012, (89)

1
NLO: 3¢= /Dxi/Dy,-DlD2 <2x1y2

1
—6(X1 +x+ 0 +y2)> =-0.121. (90)

W2+ 1V 12))

This gives

S U

=24+0.140— 8(v?) % (2.029) ,
+24<112>(0.012)2nd+<112>(—O.121)3d (91)

= 3.36,, — 16.232(v?)  + 0.167(v*)sn4 34
=3.36(1 — 4.90(1%)). (92)

Substituting the numerical values for (v?) 7y (73) and
(v%),/ (74), we obtain

S
SR

These results show that the relativistic correction is
negative and provides about 100% and 300% numerical
effect for 1S5 and 25 states, respectively. To better under-
stand the origin of such a large numerical impact, consider
the structure of the expression in Eq. (91).

From this result, it follows that relativistic correction is
dominated by the terms which appear from the integral (88).
This integral is about an order of magnitude larger than the
leading-order integral (87). This has a natural mathematical
explanation: Both integrands in Egs. (87) and (88) are
positive, but the leading-order integrand in Eq. (87) has in
the numerator a small factor x;y, that reduces the value of
the integral (87) comparing to the one in Eq. (88). The actual
values of the NRQCD parameter (v?) for charmonium
states cannot compensate for the numerical enhancement of
the subleading integral. This indicates the relative smallness
of the charm quark mass.

The mechanism of enhancement of the subleading
integral does not depend on the model of LCDA of the
nucleon. The structure of leading and subleading integrals
is closely related to the structure of the numerators of the
Feynman diagrams and can be interpreted as a specific
feature of the hard perturbative subprocess. In order to see
this, consider the leading-order approximation with ¢ = 0;
then the trace in Eq. (51) reads

%)) = —0.33, (93)

= -7.14. (94)
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T [T (x| ~ Tl + 1)¢,
X (=P/24mog + ki + k)Y
< (P/2+ K+ K +mo)/ V] (95)

where we used the expression from Eq. (40) and

o = 2_—\/15(¢>+ 1), (9)

Notice that all Dirac matrices with open Lorentz indices in
Eq. (95) are transverse because of contraction with trans-
verse tensor T, ..., in Eq. (47). Recall that the heavy quark
velocity

(n + 7). (97)

[NSH

a)“zéﬂ(}:

If one neglects collinear momenta k;, k;- or kj, k;- in the trace

Eq. (95), then the trace vanishes; for instance,

Tr((h + 1), 7' (=P/2+ mo)Ve (P/2+ K + K+ mg)YY ]
(98)

= moTr[(h+ 1), 7 (= + D)/t ()7L (99)

= mgTr[(h + 1)(=p + )¢, T/ (..)7 ] =0, (100)

where we used [,y ] = [#.¢,] = 0. Therefore, the non-
trivial result is obtained only from the term with collinear
momenta in both quark propagators:

T [TV AG5 " ()| ~ Tol( + D (s + K)

x Y (K + k})ﬁ’] ~ Xy XY
(101)

This explains the structure of the leading-order integral
in Eq. (87).

The calculation of the subleading correction involves the
relative momentum ¢ that introduces the traces with two
insertions of ¢ instead of collinear momenta; for instance,

(k

T[T ()| ~ el + D ity e drY) + .
(102)

Such subleading contributions give terms of relative order
v?, but the corresponding integral has no momentum
fractions in the numerator; see Eq. (88). As a result, the
large numerical contributions are generated by the integrals

Jg? and Jg? only, which can get appropriate contribu-

tions only from the trace and contractions in Eq. (51).
Parametrically, such integrals are suppressed by small
velocity; however, in reality, such suppression is not
sufficiently strong in order to provide a small numerical
correction with respect to the leading-order contribution.

The enhanced integral also takes place in the relative
order v*, but the corresponding numerical effect is already
suppressed by additional factor (v?), and for J/y such a
contribution can be estimated at about 20%—-30%. But for
the excited state such a contribution still remains quite large
because of the large value of (v?),,.

In order to study the more general situation and the
possible numerical effects of higher-order terms in 22, we
present in Table I the results for the integrals J S,IE) which are
calculated with the resummed relativistic corrections.
Recall that the leading-order approximation is given by
the integral J'0 ((+2) = 0) = 3.36.

The largest numerical effects are provided by the NLO
corrections in integrals Jg;fz) for the same reason as
discussed above. The numerical effect from the resumma-

tion is most visible for JE,‘?, but the corresponding effects

are not sufficiently large and do not change the qualitative
picture discussed for the NLO approximation. Therefore,
we can conclude that relativistic expansion for J/y is well
convergent. The large numerical impact is generated only
by the correction of relative order »?> and associated with
the numerical enhancement of the NLO convolution
integral.

In Table I (bottom), we also show the results for the 25
state, which has much larger relativistic corrections. In
this case, the general structure remains quite similar: The

largest numerical effect is provided by the NLO contribu-

(0.2)

tion in Jg5 ', but the higher-order power corrections also

. Numerical results for integrals J,5 for an top and bottom, respectively.

TABLE L N ical Its for integrals J,¢ for J/y and y/, top and b , respectively

(%), = 0225 I3 Ju 72 ) @ 5

NLO —-1.84 —0.18 1.89 —0.13

All orders -1.00 -0.19 1.66 —0.01 0.13 0.59

<1}2> . =0.64 J(O) J(]> J(Z) J(”;) J(4) Z‘](k)
"4 . as as as as as as

NLO —11.68 —-0.50 5.37 e e —6.81

All orders —6.78 —0.69 4.53 —0.14 0.98 -2.10
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make a significant numerical contribution, reducing the
total sum by a factor of 3. This clearly illustrates the
expected conclusion: The relativistic expansion for excited
charmonium has very large relativistic corrections and
converges rather slowly.

B. Relativistic corrections with realistic nucleon LCDA

The value of the collinear integral also depends on the
model of the LCDA ¢, which describes a distribution of
the quark longitudinal momenta at zero transverse sepa-
ration. To illustrate the possible effect of the nucleon
structure, we calculate in this section the convolution
integrals with a realistic LCDA model. For that purpose,
we use the ABO-I model from Ref. [37]. This model
gives a reliable description of the electromagnetic form
factor data within the light-cone sum rules [38] and also
provides a good description of J/yw — pp decay data in
the leading-order approximation [21]. The expression for
the model reads

380 (x;) = 120x1x2x3{1 + @10P10(x;) + @11 P11 (x;)
+ 920P20(x:) + 021 P21(x;) + 922 Paa(x;)}

(103)
where the orthogonal polynomials P;;(x;) read
Pro(x;) = 21(x; — x3), Pri(xi) = T(x; = 22 + x3),
(104)
63 5 5
Pao(xi) = 10 [3(x) = x3)% = 3xp(xy + x3) +2x3],  (105)
63
Pai(x;) = 5 (x1 = 3x5 + x3) (X1 — X3), (106)
9 5 2, .2
Pas(x;) =2 [xF 4+9x5(x) +x3) — 122 x3 —6x3 +x3]. (107)

5

The moments ¢;; = ¢;;(u) are multiplicatively renorma-
lizable; more details about properties of the polynomials
P;; and about the evolution of the moments can be found
in Ref. [39]. In Appendix A, we also provide some useful

(k)

details. In our calculation, we fix the relatively low
normalization scale > = 1.5 GeV following Ref. [21].
Then the values of the twist-3 moments read

P10 = 0051,
Py = —0028,

@1 = 0052,
Py = 0.179.

Pr0 = 0078,
(108)

Again, we rewrite the corresponding collinear integral
J = Jpo defined in Eq. (53) as the sum

120
Japo((0?)) = Z T8 (2. (109)
where each integral JX%O is defined as
(k) / / Dy;
J v
ABO(< 1202f1v X1X2X3.) Y1Y2)3
» ARBOL[13]  BRBOIL[12]
D\ D; DD,
CpBOIL (23
kik[]} (110)
D,D;
The value of the leading-order integral reads
JO ((v?) = 0) = 5.08 (111)
ABO =) =2.Vs.

The numerical results for different integrals JX%O for J/y

and y’' are presented in Table II.

The qualitative picture remains the same as described
above; the sum of integrals JEx];o +JEU;O provides the
largest numerical impact, but the values of all integrals

JX%O are larger. We can conclude that the described
mechanism of the large numerical effect also works for
the realistic model of LCDAs. In the case of J/y, the total
sum is negative, which indicates that the negative rela-
tivistic correction is somewhat larger than the LO
contribution.

To better show the effect of a large contribution of the
order of »%, we also present the results in Table II in the
following form:

TABLE II. Numerical results for the integrals J, 3, for J/w and y’, top and bottom, respectively.

(0) (1) 2 3 (4) k
<v2>J/1// = 0.225 JaBO JaBo JxBO J Eu;o JaBO > Eu)so
NLO —-5.18 -0.27 3.66 e e -1.79
All orders —-3.65 —-0.35 3.30 —-0.03 0.22 —-0.51

0 2 3 4 k
<"2>1,/ = 0.64 J(AI)SO Jﬁu%o J&éo Jﬁu%o J&éo > JEu)so
NLO —24.09 -0.75 10.42 e e —14.42
All orders —15.69 -1.39 9.31 -0.30 1.78 -6.29
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1207 5
JABO(<U >) ~——X 508(1 - 60<U >l// + 5,,,),

= (112)

where 6,, denotes the sum of the higher-order contributions
starting from the terms (v?)? ~ O(v*). Their values are as
follows: 6/, = 0.25 and 6, = 1.60. Taking into account
the values of (vz>w from Egs. (73) and (74), it is easy to find

that the contribution of the order of v is about 5 and 2
times larger than J,,, and J,,, respectively.

Let us notice that the ABO model (103) gives a
reasonable description of the branching ratio J/yw — pp
in the leading-order approximation [19,21], as well as
electromagnetic nucleon form factors at large momentum
transfer [37]. But now the sum of different contributions in
the parentheses in Eq. (112) yields ~ — 0.1 instead of one.
As aresult, the value of the branching ratio turns out to be 2
orders of magnitude smaller than the data. Qualitatively,
this is a consequence of the strong cancellation between the
leading-order and next-to-leading-order contributions in
Eq. (112). It seems extremely unlikely that such a large
effect can somehow be compensated for by a different
choice of parameters of the nucleon LCDA. This is also
confirmed by comparing the collinear integrals J for the
asymptotic LCDA in Eq. (92) and for the ABO model in
Eq. (112), which shows that the numerical effect from the
higher moments of LCDA is not large.

Additional numerical impact is also provided by (v?)
dependence of the coefficient in front of the convolution
integral in Eq. (70). The dominant numerical effect is
provided by the factor 1/(1 + (v?))2, which occurs from
the hard propagators. It seems that this factor can be
understood as an indication that the charmonium mass M 5, ~

4m?%(1 + (v?)) is a more natural scale for the hard gluon
propagators in the Feynman diagrams. The corresponding
numerical effect is smaller in comparison with one in the
convolution integral discussed above. For J/y, the modi-
fication of the coefficient in Eq. (70) gives a reduction about
37%. For v/, a similar effect is already 67%.

IV. DISCUSSION

We presented the first study of relativistic corrections
in exclusive S-wave charmonium decays into a proton-
antiproton final state. The relativistic corrections are
calculated within the NRQCD and collinear factorization
frameworks. We consider only the helicity-conserving
amplitude A;, which provides the dominant numerical
contribution to the decay width. In this case, the baryon
nonperturbative light-cone matrix elements depend on the
twist-3 LCDAs only, and the formula for the amplitude with
relativistic corrections includes the collinear convolution
integral, which is free from any infrared singularities.

The result obtained provides a full correction of the
relative order »> and also includes the summation of
all orders of relativistic corrections associated with the

quark-antiquark quarkonia wave function in the potential
model [30].

The largest numerical impact is provided by the NLO
relativistic correction with the matrix element, which can
be computed using the equation of motion and is propor-
tional to the binding energy. Because of a specific
structure of the LO and NLO hard scattering kernels,
the value of the NLO collinear integral is about an order of
magnitude larger than the value of the LO one. The
charmonium parameter (v?) is not small enough to
compensate for this effect, and the magnitude of the
resulting relativistic correction is numerically of the same
order as the LO contribution.

The order v? correction is dominant and has the opposite
sign with respect to the leading-order term; in the case of
J /y, the sum of these contributions almost cancels out. The
calculated higher-order corrections are relatively small, and
their partial resummation shows that relativistic expansion
converges sufficiently well. The numerical effect also
depends on the model of the nucleon LCDA; however,
this dependence does not change the main qualitative
conclusions about the large relativistic corrections. For
instance, in order to compensate for the effect of large
relativistic corrections, it is necessary to increase the
nucleon normalization coupling f by a factor of 3, which
strongly contradicts available sum rule estimates [12,42]
and lattice calculations [43].

A description of excited state y’ is more challenging
because of the relatively large value of <v2>y,/. In this case,
the numerical effect from relativistic corrections is much
larger than the LO contribution and is more sensitive to the
higher-order contributions. Therefore, a description of v’
baryonic decays suffers from large uncertainties, which are
associated with the higher-order contributions of the
relativistic expansions.

Taking into account these large relativistic corrections,
one cannot expect the 13% rule in Eq. (1) to hold in the
general case. The rather good agreement for the nucleon
channel is probably an accidental consequence of different
numerical cancellations.

The large effect from relativistic corrections raises the
question about a phenomenological description of baryon
decays in the effective field theory framework. Various
existing phenomenological estimates for J/y decay width
and angular behavior are based on the LO approximation
and provide qualitative reliable estimates [21]. However,
such a qualitative picture is violated by the large value of
relativistic corrections. The large negative correction
almost cancels the LO contribution, which greatly reduces
the amplitude value and, therefore, makes the description
problematic. A possible solution of this problem might be
associated with the large and positive NLO radiative
correction, which is not yet known. Cancellation of
radiative and relativistic corrections could resolve the
situation. Large NLO radiative corrections are already
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observed in the exclusive production ete™ — J/y + 1,;
see, e.g., Ref. [40]. Probably a similar situation also arises
in the baryonic decays. Therefore, the calculation of the
NLO radiative correction is necessary in order to better
understand the hadronic decay dynamics.
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APPENDIX A: DEFINITION AND PROPERTIES
OF NUCLEON LCDA

In this appendix, we provide a definition of the light-
cone matrix element for a proton state. The formulas
for the antiproton state can be obtained by charge con-
jugation. In order to simplify formulas, we also use the
light-cone gauge

n-A(x) =0. (Al)

In this case, the light-cone three-quark operator which
we need for the proton state can be defined as (i, j, k are the
color indices)

Oy = %E(212)E) (20- )8k (23-). (A2)

where the projected quark field &£(z) Eé’/l//(z) and the

arguments of the fields read

zi- = (- z) (A3)

NS

The proton flavor structure implies that O3 = uud.
The twist-3 light-cone matrix element is defined as

(0]Ows3(z1.22.23) [P (K))

= % [KClslrsNal ,FT[V i (y;)]

+ % [Fr5Clos N3 FTA, (3)]

L.
+ K liowCloylrirsNal FTIT ()], (A4)
where the projected nucleon spinor reads
Nj = @N (k) (A5)

and C is the charge conjugation matrix. The Fourier
transformation “FT” is defined as

FT[F(yi)} :/Dyie—iylkzl+/2—i,vzk22+/2—iy3k23+/2

XF(YI.Yz,}’B)v (A6)
with the integration measure
Dy; = dy,dy,dy;0(1 —=y; =y —y3). (A7)

Three LCDAs V,, A, and T satisfy the following proper-
ties [42]:

Vi(y2, y1:¥3) = Vilyi, y2. ¥3), (A8)
Al()’2a)’1,y3) = —Al()’l,y27)’3)7 (A9)
Ty(y2,y1,¥3) = T1(y1,¥2.3)- (A10)

The isospin symmetry allows one to get the following
relation (see details in Refs. [41,42]):

1
T\(y1.y2,y3) = E(Vl —A)(V1.y3.)2)

1
+ (Vi =A) (2. y3.31)-

5 (A11)

It is convenient to define the following combination:

Ine3 (1 y2,33) = Vi, y2,93) = A1, v2,¥3), - (Al2)
which allows one to describe the set of three LCDAs V,
A;, and T in terms of the one function. The coupling fy
describes the normalization so that ¢5 is dimensionless and
normalized as

/DJ’i€03(Y1’)’2’)’3) =1. (A13)

The LCDA ¢5 also depends on the factorization scale,
which is not shown for simplicity:

@3(¥1,Y2.¥3) = 0331, Y2, Y3 ). (A14)

The evolution properties of this LCDA were studied in
Ref. [39]. The moments in Eq. (103) are multiplicatively
renormalizable and can be calculated as

as (ﬂ) 7’;.///30
A (ﬂO)) ’

¢ij(,“) = ¢ij(ﬂo)< (AIS)

where fy =11-2n,/3 and y;; are the corresponding
anomalous dimensions:

20 8 32 40
7’10:37 }’1125, }’zo:j, }’21237

14
I =5 (A16)
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APPENDIX B: ANALYTICAL EXPRESSIONS
FOR THE COEFFICIENTS 4,, By,
AND C;, DEFINED IN EQS. (55)—(57)

Here, we provide the explicit expressions for the coef-
ficients [Xy]yy 4y 7 defined in Eq. (68). These coefficients
are functions of the momentum fractions

[Xk]vv,Av.TT = [Xk}VV,AV,TT(x]23vy123)' (B1)

Below, we also use the following short notation:

_m, 1
== T Cij=xy; +x;y;..  (B2)

The coefficients C, can be obtained using the simple
relations

[Cilyy r1(*123: Y123) = [Alyv rr(X213,y213),  (B3)

[Cilav(x123: ¥123) = —[Adlay (X213, ¥213).  (B4)

The other coefficients read

[Aolyy = 2C13 = (1 = m)(x3 +y;) =2m(1 —m),  (B5)

Aolay = 1 (=2C15 (1= A2) (31 =52+ 31 = ),
(B6)
[Aolrr = —4(1 = m)(m + 1 — x3 — y3), (B7)
[Bolyy = —(1 = m)(2m + x3 + y3), (B8)
[Bolay = 2(1 = m)(x; = x2 + y1 = ¥2). (B9)
[Bolyr = 4(2C 1 + (1 —im)(x3 + y3) + m*> —1);  (B10)
Ay = 1= (33 = )
+ (1 =m)(x3 —x1 +y1 = 3)), (B11)
[Ai]av = —[Ai]yv. (B12)
[Ai]rr =0, (B13)
[Bilyy = 0. (B14)
[Bilay =0, (B15)

[Bilrr = H—m(4(x'y2 — X2)1)
+ (1 =m)(xy = x; +y1 = ¥2)); (B16)
Py
[As]yy = m(zcn + (1 +m)(2 + x3 + 3)
- 3(1 —m?)), (B17)
=2
[Az]ay = 7 +’,71(4()51 +y1 = 1) +2(x3 +y3) +m—1),
(B18)
4n?
[As]rr = 1+m(1—x3—y3+ﬁ1), (B19)
2
[Ba]yy = 1+ m (x3 +y3 +2m), (B20)
2im?
[ 2]Av:1+m<x2—x1+)’z—y1)’ (B21)
4m? _
[Bolrr = m(zcu + (1 =m)(2=x3 —y3)
—2(1 —m?)); (B22)
Py
[As]yy :m(z(xl —y1) +y3 —x3), (B23)
[A3]ay =0, (B24)
4im’
[As]rr —<1 +ﬁ1)2 (3 = y3), (B25)
Balve = e (1 =32 =31 4 32, (B26)
[B3]ay = 0. (B27)
[Bs]rr = (lj_%)z(xl =Xy = Y1 +¥2); (B28)
2m*
[Aslyy = [Balyy = A+ m)? (B29)
[A4]AV = [B4]AV =0, (B3O)
4m*
[Aslrr = [Balrr = s (B31)
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