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We continue our investigation of the QCD dynamics in terms of the Curci-Ferrari effective Lagrangian, a
deformation of the Faddeev-Popov one in the Landau gauge with a tree-level gluon mass term. In a previous
work we have studied the dynamics of chiral symmetry breaking at the level of the quark propagator and, in
particular, the dynamical generation of a constituent quark mass. In the present article, we study the
associated Goldstone mode, the pion, and we compute the pion decay constant in the chiral limit. Our
approach exploits the fact that the coupling (defined in the Taylor scheme) in the pure gauge sector is
perturbative, as observed in lattice simulations which, together with a 1=Nc-expansion, allows for a
systematic, controllable approximation scheme in the low energy regime of QCD. At leading order, this
leads to the well-known rainbow-ladder resummation. We study the region of parameter space of the model
that gives physical values of the pion decay constant. This allows one to constrain the gluon mass parameter
as a function of the coupling using a physically measured quantity.
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I. INTRODUCTION

The most prominent aspects of the QCD dynamics at
large distances, namely confinement and dynamical chiral
symmetry breaking, are of intrinsic nonperturbative nature
in terms of the elementary (quark and gluon) degrees of
freedom of the theory. This common wisdom has two
aspects. The first, rather trivial one is simply that describing
phenomena such as bound states of quarks and gluons (as
required by confinement) or dynamical quark mass gen-
eration (as implied by chiral symmetry breaking) require
resumming diagrams at infinite loop orders. The second,
deeper aspect follows from the fact that the standard
perturbative approach, based on the Faddeev-Popov (FP)
Lagrangian, predicts a Landau pole, where the running
coupling constant diverges, and is thus not applicable in the
infrared regime. Even though the first problem can be
overcome, at least in principle, by standard resummation
techniques, as done, e.g., to describe QED bound states, the
second problem kills this hope because of the lack of a
proper expansion scheme to select the diagrams to be
resummed.

The above, apparently hopeless description, however,
suffers from a serious loophole. On the formal level, first,
the FP approach to gauge theories is known to be plagued
by the issue of Gribov ambiguities [1,2], which inherently
limits its validity to, at best, the deep ultraviolet (UV)
regime. In fact, no nonperturbative version of the FP gauge-
fixed Lagrangian (say, in the Landau gauge) or of any
BRST-invariant Lagrangian has been constructed so far
[3,4]. Moreover, on a practical level, actual lattice calcu-
lations of gauge-dependent quantities in the (lattice)
Landau gauge1 have revealed stringent features of the
infrared QCD dynamics [5–17]. In the pure gauge sector,
one observes, first, that the gluon propagator saturates at
vanishing (Euclidean) momentum, signaling the dynamical
generation of a nonzero screening mass (whereas the ghost
propagator remains massless) and, second, that the cou-
pling constant is finite in the infrared, showing no sign of a
Landau pole. In fact, the (Taylor) coupling in the pure
gauge sector remains moderate at infrared momenta and
even vanishes in the deep infrared. This strongly advocates
for the possibility of a modified perturbative approach to
infrared QCD dynamics.
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1Existing lattice gauge fixing procedures involve an extra
ingredient than the sole (e.g., Landau) gauge fixing condition in
order to solve the Gribov problem. For instance, one explicitly
selects one Gribov copy or one averages over a subset of copies,
etc. It is not known, however, how to formulate such procedures
by means of a local, renormalizable, gauge-fixed action.
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As a completely justified gauge-fixed Lagrangian in the
continuum is still lacking,2 one can resort to model
Lagrangians motivated by phenomenological (lattice)
observations. The simplest such proposal [22,23] consists
in adding a bare gluon mass term to the FP Lagrangian (in
the Landau gauge), which is a particular case of the class of
Curci-Ferrari (CF) Lagrangians [24,25]. Such a soft defor-
mation of the FP theory remains perturbatively renorma-
lizable and does not modify the well-tested ultraviolet
regime of the theory. Most importantly, the model pos-
sesses infrared safe renormalization group trajectories, with
no Landau pole [23,26–28], allowing for a well-defined
perturbative expansion down to arbitrary infrared scales. A
large body of work in the past decade has put this modified
perturbative approach to test and has demonstrated that it
efficiently captures various aspects of the infrared dynam-
ics of both Yang-Mills theories and QCD-like theories with
heavy quarks [22,23,29–41]. One- and, in some cases, two-
loop calculations of numerous infrared sensitive quantities
(two- and three-point functions, phase diagram at nonzero
temperature and densities, etc.) compare very well with
actual lattice calculations. The CF model also leads to
interesting neutron star phenomenology [42–44].
The light quarks dynamics is more intricate because, as

lattice simulations demonstrate, the quark sector (in the
Landau gauge) becomes strongly coupled at infrared
momenta [45,46] (no Landau pole is observed however).
Remarkably, one-loop calculations in the CF model also
exhibit the increase of the quark-gluon coupling in the
infrared relative to the pure gauge coupling [33]. This
suggests the self-consistent picture of a strongly interacting
quark sector coupled to a perturbative gauge sector. In a
recent article [47], we have proposed a systematic expan-
sion scheme in the infrared regime based on a perturbative
treatment of the pure gauge coupling together with an
expansion in the inverse number of colors, 1=Nc. At
leading order, this results in the well-known rainbow-ladder
resummation in the quark sector [48–59], which correctly
captures the essential aspects of dynamical chiral symmetry
breaking. The advantages of the proposed expansion
scheme is, first, that the rainbow-ladder resummation is
obtained in a controlled manner and, second, that one can
systematically implement standard QFT tools, such as
renormalization and renormalization group (RG) improve-
ment. The rainbow resummation of the quark propagator
has been implemented in this context in Ref. [47] using a
simple model for the running quark-gluon coupling—a
simplification which has been removed in Ref. [60], where
we have implemented a complete treatment of the RG
running at leading order in the “rainbow-improved” (RI)
loop expansion. Our results for the quark mass function are

in very good agreement with lattice simulations for all
values of the (degenerate) quark mass.
Although the state of the art technology for handling the

light quark sector of QCD with continuum approaches goes
far beyond the rainbow-ladder resummation (see, for
instance, [61–65]), our work provides an important new
aspect in that it identifies relevant small parameters that one
can use to obtain various levels of approximations in a
systematic and controlled manner with, in principle, no
need for ad-hoc parametrizations of the gluon propagator or
the quark-gluon vertex. It is thus of interest to investigate to
what extent our approach is able to describe other aspects of
the light quark sector. One important application concerns
the study of hadronic observables, which we undertake
in the present work. In particular, we aim here at computing
the prediction of the CF model for the pion decay constant
fπ at leading order in the rainbow-improved loop expan-
sion, where the pion bound state corresponds to the
resummation of ladder diagram with one-(massive)-gluon
exchange.
As a technical simplification, we shall compute fπ in the

chiral limit m2
π → 0, whose value can be accurately

deduced from the actual physical value with chiral pertur-
bation theory at two-loop order [66]: fπðm2

π¼0Þ≈86MeV.
This presents important advantages. First, this allows us to
use a small momentum expansion of Euclidean quantities
(without the need for analytical continuation to Minkowski
momenta) and, second, we can reduce the bound state
problem to a set of coupled one-dimensional integral
equations, allowing for a rather transparent and simple
implementation of RG improvement—essential to correctly
describe the UV tails—and for a simple numerical solution.
We study the region of the (two-dimensional) parameter
space for which fπ equals its physical value, which allows
us to fix in a physical manner the gluon mass parameter in
terms of the coupling. The typical values we obtain are in
agreement with previous results based on fitting lattice
results for, say, the two-point functions in the Landau
gauge. The present work is the first one where we constrain
the parameter space using a physically measured quantity.
The article is organized as follows. Section II reviews the

essentials of the rainbow improved expansion scheme at
leading order. In Sec. III we derive an exact expression for
the decay constant fπðm2

π ¼ 0Þ in terms of the Lorentz
components of the quark propagator and of the components
of the quark-antiquark-pion vertex in the limit of vanishing
Euclidean pion momentum. The latter satisfy a set of
coupled one-dimensional linear integral (Bethe-Salpether)
equations derived in Sec. IV. At the present order of
approximation, the kernel of these integral equations—
corresponding to a one-gluon exchange—can be computed
analytically. The renormalization and RG improvement of
these integral equations is discussed in Sec. V and the
ultraviolet behavior of the solutions is analyzed in Sec. VI.
The numerical solution of the BS equations and our results

2Quantization procedures which aim at solving the Gribov
issue of the FP approach have been proposed [18–21], although
none of them is completely satisfactory so far.
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for fπðm2
π ¼ 0Þ in terms of the parameters of the model (the

gluon mass and the quark-gluon coupling) is detailed in
Sec. VII. In Sec. VIII we discuss the conclusions and
perspectives of the work. Finally, a series of technical
details and results are gathered in Appendices A–E.

II. THE RAINBOW-IMPROVED LOOP
EXPANSION

We work with the Euclidean QCD action in the Landau
gauge, supplemented with a gluon mass term

S ¼
Z

d4x

�
1

4
Fa
μνFa

μν þ iha∂μAa
μ þ ∂μc̄aðDμcÞa

þ 1

2
m2

ΛðAa
μÞ2 þ

XNf

i¼1

ψ̄ ið=DþMΛÞψ i

�
: ð1Þ

Here, Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gΛfabcAb

μAc
ν is the field-

strength tensor and the covariant derivative is defined as
DμX ¼ ∂μX − igΛAμX, with Aμ the matrix gauge field in
the appropriate representation. Also, =D ¼ γμDμ, where
the Euclidean Dirac matrices are chosen Hermitian and
satisfy fγμ; γνg ¼ 2δμν. Finally, the parameters gΛ,MΛ and
mΛ are the bare coupling constant, quark mass, and gluon
mass, respectively, defined at some ultraviolet regulator
scale Λ. In the present paper, we are interested in the pion
properties in the chiral limit and therefore, we only consider
the case of Nf ¼ 2 degenerate quark flavors.
Thanks to the gluon mass term, the—otherwise

standard—action (1) possesses a well-defined perturbative
expansion down to infrared scales. In perturbative calcu-
lations, this mass appears only in the bare gluon propagator,
Gab

μνðpÞ ¼ δabGμνðpÞ

GμνðpÞ ¼
1

p2 þm2
Λ

�
δμν −

pμpν

p2

�
: ð2Þ

The latter is not modified at leading order in the RI loop
expansion. Instead, the quark propagator gets dressed by
rainbow diagrams and assumes the general form

SðpÞ ¼ Zðp2Þ i=pþMðp2Þ
p2 þM2ðp2Þ ; ð3Þ

where the quark field strength and mass functions assume
the tree-level values Z ¼ 1 andM ¼ MΛ. Finally, the main
quantity of interest in the present work is the quark-
antiquark-pion vertex Γi

πðq; q0;pÞ, where i is the pion
isospin index and where q and −q0 denote the outgoing
quark and antiquark momenta, whereas p ¼ q − q0 is the
incoming pion momentum. Here, the composite pion field
is defined as πiðxÞ ¼ ψ̄ðxÞiγ5σiψðxÞ (properly renormal-
ized), with σi the Pauli matrices in flavor space and

γ5 ¼ γ1γ2γ3γ4 such that γ†5 ¼ γ5 and fγ5; γμg ¼ 0. Dirac,
color, and flavor indices are left implicit.
The RI loop expansion relies on treating both the

coupling in the pure gauge (ghost-gluon) sector gg and
the inverse number of colors 1=Nc as small parameters,
while keeping the quark gluon coupling gq arbitrary.3 In
practice, given a vertex function with E external (quark,
gluon or ghost) legs, the RI l-loop order is obtained as
follows. Include first all standard diagrams up to l loop.
Each l-loop diagram involves given numbers of quark-
gluon and pure gauge vertices and a given power of Nc
resulting from the color algebra. In terms of the rescaled
(t’Hooft) couplings4 ĝ ¼ g

ffiffiffiffiffiffi
Nc

p
, it scales as ĝkqĝk

0
g =N

p
c , with

kþ k0 ¼ 2lþ E − 2 and 0 ≤ k ≤ 2lþ E − 2, and where
p ≥ E=2 − 1. The rule is then to include as well and resum
all higher loop diagrams with arbitrarily more quark-gluon
vertices but with the same order in ĝg and in 1=Nc, that is,
all ðlþ nÞ-loop diagrams of order ĝkþn

q ĝk
0
g =N

p
c , with n ≥ 0.

In particular, this systematically includes, at least, dressing
the quark lines with the infinite series of rainbow diagrams,
which are all ∼ĝk≥0q ðĝg=NcÞ0 and, hence, of the same order
as the tree-level quark propagator. Moreover, it allows one
to reproduce the correct perturbative behavior in the in
ultraviolet regime.
As detailed in Ref. [47], at leading order, the tree-level

gluon propagator (2) does not receive any correction. In
contrast, as just explained, the whole series of rainbow
diagrams contributes at the same order as the tree-level
quark propagator and is thus to be resummed as the leading
order in the RI loop expansion. Similarly, the infinite series
of one-gluon exchange ladder diagrams with dressed quark
lines contributes at the same order ∼ðĝg=NcÞ0 as the tree-
level value to the quark-antiquark-pion vertex and thus
constitute the RI leading order. The fact that both resum-
mations come along is a manifestation of the axial Ward
identities (see Appendix A), which are thus consistently
satisfied at this order of approximation. These resumma-
tions can be formulated in terms of the integral equations
represented diagrammatically in Figs. 1 and 2. The quark
propagator equation has been studied in detail in
Refs. [47,60], to which we refer the reader for details.

FIG. 1. The integral equation for the quark propagator (thick
line) at leading order in the RI-expansion: This generates the
infinite series of rainbow diagrams in terms of the tree-level
propagators (thin lines) and vertices.

3Strictly speaking, we need gq to remain, at most, of order one.
4The t’Hooft couplings are to be held fixed while taking the

large Nc limit.

SMALL PARAMETERS IN INFRARED QCD: THE PION DECAY … PHYS. REV. D 107, 054025 (2023)

054025-3



The equation for the pion vertex is the central focus of the
present work.

III. PION DECAY CONSTANT IN THE
CHIRAL LIMIT

Let us first specify some conventions and normaliza-
tions. As recalled in Appendix A, the pion decay constant
fπ is related to the normalization of the axial current
operator Ai

μðxÞ ¼ ψ̄ðxÞiγμγ5σiψðxÞ and naturally appears
in correlation functions involving the latter. For instance,
the correlator Gij

Aμπ
ðx − yÞ ¼ hAi

μðxÞπjðyÞi presents, in

momentum space, a simple pole at the pion mass. With
our choice of normalization (see Appendix A), we have, for
p2 → −m2

π ,

Gij
Aμπ

ðpÞ ∼ −ipμδ
ij m2

π

MΛ

2f2π
p2 þm2

π
: ð4Þ

The ratio m2
π=MΛ, introduced here for convenience,

remains finite and nonzero in the chiral limit, see
Eq. (A11). The correlator (4) is related to the (bare)
pion-quark-antiquark vertex Γi

πðq; q0Þ (see Fig. 3 for con-
ventions) as

Gij
Aμπ

ðpÞ ¼ −
Z
q
tr½iγμγ5σiSðqÞΓj

πðq; q0ÞSðq0Þ� ð5Þ

where the trace involves color, flavor, and Dirac indices and
where p ¼ q − q0. Writing

Γi
πðq; q0Þ ¼ iγ5σi

m2
π

MΛ

γπðq; q0Þ
p2 þm2

π
; ð6Þ

where γπðq; q0Þ is regular when p2 → −m2
π , we deduce

−ipμf2π ¼ Nc

Z
q
tr½γμSð−qÞγπðq; q0ÞSðq0Þ�p2¼−m2

π
; ð7Þ

with a trace over Dirac indices. The symmetries of the
problem (Lorentz, parity, charge conjugation invariance
and K-symmetry, see for instance [67]) constrain the
Lorentz structure of the pion vertex residues as

γπðq; q0Þ ¼ γPðq; q0Þ þ iσμνqμq0νγTðq; q0Þ
þ iγμ½qμγAðq; q0Þ − q0μγAðq0; qÞ� ð8Þ

with σμν ¼ i
2
½γμ; γν� and where γP;T;A are real scalar

functions. Furthermore, the functions γPðq; q0Þ and
γTðq; q0Þ are symmetric under q ↔ q0. In general, one thus
has to compute those scalar vertex functions, which depend
on three scalar variables and which satisfy a set of coupled
linear integral equations involving the resummed quark
propagator (see Appendix B).
In the chiral limit, where m2

π → 0, the problem greatly
simplifies and can be formulated in terms of three functions
of one variable only. In particular, Eq. (7) becomes

−ipμf2π ¼ Nc

Z
q
tr½γμSð−qÞγπðq; q0ÞSðq0Þ�p2→0

ð9Þ

and it is thus sufficient to expand the right-hand side at
linear order in p. Introducing the quark-antiquark relative
momentum r ¼ ðqþ q0Þ=2, so that q ¼ rþ p=2 and
q0 ¼ r − p=2, we have

γP;Tðq; q0Þ ¼ γP;Tðr2Þ þOðp2Þ ð10Þ

γAðq;q0Þ ¼ γAðr2Þþ
p · r
r2

½γAðr2Þ− γBðr2Þ�þOðp2Þ; ð11Þ

where the right-hand sides (RHSs) define our notations.
Expanding the quark propagator as well in Eq. (7), we have,
in the chiral limit,

f2π ¼
Nc

4π2

Z
∞

0

dx
xZ2ðxÞ

½xþM2ðxÞ�2
�
γPðxÞ

�
MðxÞ−x

2
M0ðxÞ

�

þ3

2
MðxÞ½xγTðxÞ−MðxÞγAðxÞ�þ

xþM2ðxÞ
2

γBðxÞ
�
:

ð12Þ

FIG. 2. The integral equation for the pion-quark-antiquark
vertex function (black disk) at leading order in the RI-expansion:
This generates the infinite series of ladder diagrams with rungs
given by the tree level gluon propagator and quark-antiquark-
gluon vertices and sides given by the leading-order (rainbow-
resummed) quark propagator. The first term on the right-hand
side is the tree-level vertex iγ5σi. The present ladder resummation
is directly related to the rainbow resummation for the quark
propagator through the chiral Ward identities (see Appendix A).

FIG. 3. The Aμ − π correlator (black square) in momentum
space in terms of the quark propagator and of the pion-quark-
antiquark vertex. The vertex on the left is the tree-level one:
iγμγ5σi. A similar expression with the dressed axial current-
quark-antiquark vertex on the left and the bare pion–quark-
antiquark one (iγ5σi) on the right holds (See Fig. 9).
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As recalled in Appendix A, the axial Ward identities
imply that

γPðxÞ ¼
MðxÞ
ZðxÞ : ð13Þ

Equation (12) is exact in the chiral limit. Retaining only
the first line corresponds to the Pagel-Stokar approximation
[61,68], which, thanks to the relation (13), provides an
expression involving only the quark propagator. As we
shall see below, the functions γT;A;BðxÞ satisfy a set of
coupled one-dimensional integral equations. These bare
functions are to be renormalized and we shall discuss this
issue together with the necessary RG improvement of the
integral equations in the following. Note that Eq. (12)
implies that the integral on the RHS is finite and RG
invariant.

IV. BETHE-SALPETER EQUATION
FOR THE VERTEX

At leading order in the present expansion scheme, the
quark-antiquark-pion vertex Γi

πðq; q0;pÞ resums the infinite
series of ladder diagrams with rungs given by the tree-level
one-gluon exchange Eq. (2) and stiles given by rainbow-
resummed quark propagators Eq. (3); see Fig. 1. This can

be cast into the linear integral equation depicted in Fig. 2,
which reads

Γi
πðq; q0Þ ¼ iγ5σi − λΛ

Z
k
GμνðkÞγμSðlÞΓi

πðl;l0ÞSðl0Þγν;

ð14Þ

where λΛ ¼ CFg2Λ, with CF ¼ ðN2
c − 1Þ=ð2NcÞ ∼ Nc=2 for

N2
c ≫ 1, l ¼ q − k and l0 ¼ q0 − k.
Using the definition (6) and the Lorentz decomposition

(8), one obtains a set of coupled integral equations for the
scalar functions γP;T;A;Bðq; q0Þ. Expanding the latter around
p2 ¼ 0 up to linear order in pμ, this reduces to a set of one-
dimensional integral equations for the functions γP;T;A;Bðr2Þ
defined in Eqs. (10) and (11). These equations are explicitly
derived in Appendix B. The equation for γPðr2Þ actually
decouples and reads, in the chiral limit

γPðr2Þ ¼ 3λΛ

Z
s

Z2ðs2Þ
s2 þM2ðs2Þ

γPðs2Þ
ðr − sÞ2 þm2

Λ
: ð15Þ

We recover the equation for the ratio Mðr2Þ=Zðr2Þ [54],
as expected from the Ward identity (13). The remaining
equations read

γTðxÞ ¼
λΛ
16π3

Z
∞

0

dy

�
xþ y
2x

fm2
Λ
ðx; yÞ þ ðx − yÞ2

2x
Δfm2

Λ
ðx; yÞ þ ΔIm2

Λ
ðx; yÞ

�
NðyÞ ð16Þ

γAðxÞ ¼
λΛ
16π3

Z
∞

0

dy
��

fm2
Λ
ðx; yÞ − ΔIm2

Λ
ðx; yÞ

�
HðyÞ −

�
2Im2

Λ
ðx; yÞ þ ðx − yÞΔIm2

Λ
ðx; yÞ

�
LðyÞ

�
ð17Þ

γBðxÞ ¼ −
3λΛ
16π3

Z
∞

0

dy

�
ΔIm2

Λ
ðx; yÞHðyÞ −

�
yfm2

Λ
ðx; yÞ − 2Im2

Λ
ðx; yÞ þ yΔIm2

Λ
ðx; yÞ

�
LðyÞ

�
; ð18Þ

where

NðxÞ ¼
�

ZðxÞ
xþM2ðxÞ

�
2

fγPðxÞ þ ½x −M2ðxÞ�γTðxÞ − 2MðxÞγAðxÞg ð19Þ

HðxÞ ¼
�

ZðxÞ
xþM2ðxÞ

�
2

fMðxÞγPðxÞ þ 2xMðxÞγTðxÞ þ ½x −M2ðxÞ�γAðxÞg ð20Þ

LðxÞ ¼
�

ZðxÞ
xþM2ðxÞ

�
2
�
M0ðxÞγPðxÞ þMðxÞγTðxÞ þ

�
2þM2ðxÞ

x

�
γAðxÞ −

�
1þM2ðxÞ

x

�
γBðxÞ

�
; ð21Þ

and where we defined the functions

fm2ðx; yÞ ¼ π

2x
ðb −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − xy

q
Þ ð22Þ

Im2ðx; yÞ ¼ π

2x

�
byþ 2

3x

�
ðb2 − xyÞ3=2 − b3

��
; ð23Þ
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with b ¼ ðxþ yþm2Þ=2, as well as

Δfm2ðx; yÞ ¼ fm2ðx; yÞ − f0ðx; yÞ
m2

ð24Þ

and similarly for ΔIm2ðx; yÞ.

V. RENORMALIZATION AND RG
IMPROVEMENT

The above equations involve bare quantities and need to
be properly renormalized. Also, a proper description of the
ultraviolet regime requires to implement a RG improve-
ment. As discussed in Ref. [47], this also ensures to get a
proper solution of the rainbow integral equation for the
quark propagator. As we shall see below, this is also crucial
so that the right-hand side of Eq. (12) is finite. We refer the
reader to Refs. [47,60] for the treatment of the quark
propagator equation and briefly recall the main necessary
ingredients here.
We introduce the renormalized fields Aa

μ ¼
ffiffiffiffiffiffi
ZA

p
Aa
R;μ,

ψ ¼ ffiffiffiffiffiffi
Zψ

p
ψR, and ψ̄ ¼ ffiffiffiffiffiffi

Zψ

p
ψ̄R, as well as the renormalized

parameters5 m2
Λ¼Zm2m2, MΛ¼ZMM, and gΛ ¼ Zgqgq.

The renormalized quark propagator is obtained as

SðpÞ ¼ Zψ ðμ20ÞSRðp; μ20Þ; ð25Þ

where μ0 is an arbitrary renormalization scale. Clearly the
mass function Mðp2Þ is not renormalized, whereas we can
define

Zðp2Þ ¼ Zψ ðμ20ÞZRðp2; μ20Þ: ð26Þ

We choose the renormalization condition

ZRðp2 ¼ μ20; μ
2
0Þ ¼ 1; ð27Þ

from which it follows, evaluating Eq. (26) at μ20 ¼ p2, that

Zðp2Þ ¼ Zψ ðp2Þ: ð28Þ

We now come to the Bethe-Salpether equations (16)–
(18). These can be formally written as the following
integral matrix equation

γðxÞ ¼ g2Λ

Z
∞

0

dyKðx; yÞγðyÞ; ð29Þ

where γ ≡ ðγP; γT; γA; γBÞ and the matrix kernel Kðx; yÞ,
which can be read off Eqs. (16)–(21), is proportional to one

gluon propagator and two quark propagators,K ∝ GS2; see
Eq. (14). Here, we made explicit the bare quark-gluon
coupling constant but we leaved the gluon mass depend-
ence of the kernel K implicit for the sake of the argument.
We shall reintroduce it at the end. Upon introducing
renormalized quantities as before as well as a renormaliza-
tion factor Zπ for the composite pion field, the renormalized
kernel reads

Kðx; yÞ ¼ Z2
ψ ðμ20ÞZAðμ20ÞKRðx; y; μ20Þ ð30Þ

while the renormalized quark-antiquark-pion vertex is

γðxÞ ¼ Z−1
ψ ðμ20ÞZMðμ20ÞZπðμ20ÞγRðx; μ20Þ: ð31Þ

The renormalization factors in this equation come from the
relation between γ and the actual pion-quark-antiquark
vertex as given in Eq. (6). In particular, this relation
involves an explicit factorMΛ which explains the presence
of the factor ZM in Eq. (31).
The quark condensate operator σðxÞ ¼ ψ̄ðxÞψðxÞ is the

chiral partner of the pion field and, thus receives the same
renormalization factor: Zσ ¼ Zπ , Moreover, this operator is
sourced by the tree-level quark mass MΛ, which implies
that ZMZσ ¼ ZMZπ is finite. Choosing a renormalization
scheme with ZMZπ ¼ 1, we have

γðxÞ ¼ Z−1
ψ ðμ20ÞγRðx; μ20Þ: ð32Þ

The equation for the renormalized vertex then reads

γRðx; μ20Þ ¼ Z2
gqðμ20ÞZ2

ψ ðμ20ÞZAðμ20Þ

× g2qðμ20Þ
Z

∞

0

dyKRðx; y; μ20ÞγRðy; μ20Þ: ð33Þ

As explained in Ref. [60], at the present order of approxi-
mation, we have ZgqZψ

ffiffiffiffiffiffi
ZA

p ¼ 1, so that, finally,

γRðx; μ20Þ ¼ g2qðμ20Þ
Z

∞

0

dyKRðx; y; μ20ÞγRðy; μ20Þ ð34Þ

This equation is finite but involves potentially large
logarithms, which can be resummed using renormalization
group methods. First, we can set μ20 ¼ x in (34) to get

γRðx; xÞ ¼ g2qðxÞ
Z

∞

0

dyKRðx; y; xÞγRðy; xÞ; ð35Þ

with gqðxÞ the running quark-gluon coupling, to be
determined from the appropriate beta function [60].
Then, we relate the functions KR and γR at different scales
through Eqs. (30) and (32):

5As mentioned before the quark-gluon and pure gauge
couplings differ significantly in the infrared. It is, therefore,
relevant to introduce different renormalization factors as
gΛ ¼ Zgggg ¼ Zgqgq. This is discussed in detail in Ref. [60]
but will be of no direct relevance to the discussion below.
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γRðy; xÞ ¼
Z−1
ψ ðyÞ

Z−1
ψ ðxÞ γRðy; yÞ ð36Þ

KRðx; y; xÞ ¼
Z2
ψðyÞ

Z2
ψðxÞ

KRðx; y; yÞ; ð37Þ

where we used the fact that, at the present order of
approximation, the gluon propagator is at tree level so that
ZA ¼ 1. We also note that, at this order, Zψ ðxÞ is finite [47].
Defining γ̂ðxÞ ¼ ZψðxÞγRðx; xÞ, we obtain the RG-

improved equation

γ̂ðxÞ ¼ g2qðxÞ
Z

∞

0

dyKRðx; y; yÞγ̂ðyÞ; ð38Þ

where the renormalized kernel KR is computed as the bare
one but with the bare quark and gluon propagators replaced
by their renormalized counterpart at the scale y, that is with
ZðyÞ → ZRðy; yÞ ¼ 1. The previous argument is easily
repeated to include the dependence of the kernel K on
the gluon mass m2

Λ ¼ Zm2ðμ20Þm2ðμ20Þ, with m2ðμ20Þ the
renormalized square mass. At the present order of approxi-
mation, we have Zm2 ¼ 1 and we conclude that, just as for
the quark-gluon coupling, Eq. (38) involves the running
gluon massm2ðxÞ, obtained by solving the appropriate flow
equation. The compete flow of the parameters gqðxÞ and

m2ðxÞ at leading order in the RI loop expansion has been
discussed in Ref. [60], to which we refer the reader for
details. Here we shall make direct use of the results
presented there for these flows and for the RG-improved
quark propagator. We stress that, having a systematic set of
expansion parameters allows us to properly justify the RG
improvement without any extra ad hoc hypothesis.
As clear from Eq. (15), the equation for γ̂PðxÞ decouples

from the others and we check that the resulting RG
improved equation is consistent with the Ward identity
for the renormalized vertex. In particular, the latter reads

γR;Pðx; μ20Þ ¼
MðxÞ

ZRðx; μ20Þ
; ð39Þ

from which it follows, using ZRðx; xÞ ¼ 1, that

γ̂PðxÞ ¼ ZψðxÞMðxÞ: ð40Þ

One can check that the pseudoscalar component of the RG
improved equation (38) coincides with the RG improved
equation for MðxÞ obtained in Ref. [60].
As a result, the equations for the remaining components

γ̂T;A;BðxÞ are linear integral equations with nonhomogene-
ous (source) terms given by the pseudoscalar contribution.
Defining λðxÞ ¼ CFg2qðxÞ, these read, explicitly,

γ̂TðxÞ ¼
λðxÞ
16π3

Z
∞

0

dy

�
xþ y
2x

fm2ðx; yÞ þ ðx − yÞ2
2x

Δfm2ðx; yÞ þ ΔIm2ðx; yÞ
�
N̂ðyÞ ð41Þ

γ̂AðxÞ ¼
λðxÞ
16π3

Z
∞

0

dy

�
½fm2ðx; yÞ − ΔIm2ðx; yÞ�ĤðyÞ − ½2Im2ðx; yÞ þ ðx − yÞΔIm2ðx; yÞ�L̂ðyÞ

�
ð42Þ

γ̂BðxÞ ¼
3λðxÞ
16π3

Z
∞

0

dy

�
−ΔIm2ðx; yÞĤðyÞ þ ½yfm2ðx; yÞ − 2Im2ðx; yÞ þ yΔIm2ðx; yÞ�L̂ðyÞ

�
; ð43Þ

where, as explained above, the gluon mass is the running one at the scale x, m2 ≡m2ðxÞ and where

N̂ðxÞ ¼ N̂sourceðxÞ þ ½x −M2ðxÞ�γ̂TðxÞ − 2MðxÞγ̂AðxÞ
½xþM2ðxÞ�2 ð44Þ

ĤðxÞ ¼ ĤsourceðxÞ þ 2xMðxÞγ̂TðxÞ þ ½x −M2ðxÞ�γ̂AðxÞ
½xþM2ðxÞ�2 ð45Þ

L̂ðxÞ ¼ L̂sourceðxÞ þ xMðxÞγ̂TðxÞ þ ½2xþM2ðxÞ�γ̂AðxÞ − ½xþM2ðxÞ�γ̂BðxÞ
x½xþM2ðxÞ�2 ; ð46Þ

with

N̂sourceðxÞ ¼ ZψðxÞ
MðxÞ

½xþM2ðxÞ�2 ð47Þ

ĤsourceðxÞ ¼ ZψðxÞ
M2ðxÞ

½xþM2ðxÞ�2 ð48Þ

L̂sourceðxÞ ¼ ZψðxÞ
MðxÞM0ðxÞ
½xþM2ðxÞ�2 : ð49Þ

SMALL PARAMETERS IN INFRARED QCD: THE PION DECAY … PHYS. REV. D 107, 054025 (2023)

054025-7



Accordingly, we shall refer to the nonhomogeneous source
terms γ̂sourceT;A;BðxÞ as the right-hand sides of Eqs. (41)–(43),
with N̂ðxÞ → N̂sourceðxÞ, etc. These equations can be solved
numerically, e.g., by successive iterations of the source terms
until convergence.
Finally, the pion decay constant in the chiral limit

Eq. (12) reads, in terms of renormalized quantities,

f2π ¼
Nc

4π2

Z
∞

0

xdx
½xþM2ðxÞ�2

�
Zψ ðxÞM2ðxÞ

�
1 −

x
2

M0ðxÞ
MðxÞ

�

þ 3

2
MðxÞ½xγ̂TðxÞ −MðxÞγ̂AðxÞ� þ

xþM2ðxÞ
2

γ̂BðxÞ
�
:

ð50Þ

We stress again that this equation is exact in the chiral limit.
It reproduces Eq. (6.27) of Ref. [61] in the case were we
only consider the pseudoscalar tensor of the quark-pion
vertex (first line), which is an extension of Pagels-Stokar
formula [68].
For later use, we mention the following compact

expression in terms of the functions (45) and (46)

f2π ¼
Nc

4π2

Z
∞

0

dxx

�
ĤðxÞ − x

2
L̂ðxÞ

�
: ð51Þ

The Pagel-Stokar formula then corresponds to keeping only
the source terms (48) and (49).

VI. ULTRAVIOLET BEHAVIOR

Before to present the numerical solution of the equations
derived above, we analyze here the ultraviolet behavior
of the solutions. We check explicitly that the integrals
obtained by successive iterations of the source terms are
ulraviolet convergent and we then solve for the leading
large-momentum asymptotics of the vertex functions
γ̂T;A;BðxÞ. The large momentum behaviors of the quark
propagator in the chiral limit and of the quark-gluon
coupling are6 [60,61]

ZψðxÞ ∼ 1; MðxÞ ∼ AM

x
ðln xÞγM−1; ð52Þ

and

λðxÞ ∼ CF

β0 ln x
; ð53Þ

with

β0 ¼
11Nc − 2Nf

48π2
; ð54Þ

and the quark mass anomalous dimension

γM ¼ 9CF

11Nc − 2Nf
: ð55Þ

The actual value of γM is of importance in the following.
In the large-Nc limit used here, γM ¼ 9=22 ≈ 0.410. For
Nc ¼ 3 and Nf ¼ 2, γM ¼ 12=29 ≈ 0.414.
We then have the following leading ultraviolet behaviors

for the functions (47)–(49)

N̂sourceðxÞ ∼ AM

x3
ðln xÞγM−1 ð56Þ

ĤsourceðxÞ ∼ A2
M

x4
ðln xÞ2γM−2 ð57Þ

L̂sourceðxÞ ∼ −
A2
M

x5
ðln xÞ2γM−2: ð58Þ

Inserting these in Eqs. (41)–(43) we obtain, for the source
terms,

γ̂sourceT ðxÞ ∼ AM

12x2
ðln xÞγM−1 ð59Þ

γ̂sourceA ðxÞ ∼ cA
x ln x

ð60Þ

γ̂sourceB ðxÞ ∼ cB
x2 ln x

; ð61Þ

with

cA ¼ γM
6

Z
∞

0

dxx
Zψ ðxÞM2ðxÞ
½xþM2ðxÞ�2

�
1 −

x
2

M0ðxÞ
MðxÞ

�
ð62Þ

cB ¼ γM
4

Z
∞

0

dxx2
Zψ ðxÞM2ðxÞ
½xþM2ðxÞ�2

�
1 −

x
3

M0ðxÞ
MðxÞ

�
: ð63Þ

In deriving these asymptotic behaviors, we have used that,
for x ≫ m2, the various functions in Eqs. (41)–(43) read,
for arbitrary y,

f0ðx; yÞ ¼
π

2x
½yθðx − yÞ þ ðx ↔ yÞ� ð64Þ

I0ðx; yÞ ¼
πy
4x

�
y

�
1 −

y
3x

�
θðx − yÞ þ ðx ↔ yÞ

�
ð65Þ

Δf0ðx; yÞ ¼ −
π

2x

�
y

x − y
θðx − yÞ þ ðx ↔ yÞ

�
ð66Þ

6Of course, for dimensional reasons, the logarithmic terms
must be understood as lnðx=x0Þ, with x0 an arbitrary (though not
too infrared) scale. We take x0 ¼ 1 for simplicity.
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ΔI0ðx; yÞ ¼ −
π

4x2
½y2θðx − yÞ þ ðx ↔ yÞ�; ð67Þ

and, thus, in the same range of x,

γ̂TðxÞ ¼
λðxÞ
64π2

Z
x

0

dy
y2

x2
N̂ðyÞ þ λðxÞ

64π2

Z
∞

x
dyN̂ðyÞ ð68Þ

γ̂AðxÞ ¼
λðxÞ
32π2

Z
x

0

dy
�
y
x

�
ĤðyÞ − y

2
L̂ðyÞ

�

þ y2

2x2

�
ĤðyÞ − y

3
L̂ðyÞ

��

þ 3λðxÞ
64π2

Z
∞

x
dy

�
ĤðyÞ þ

�
5x
9
− y

�
L̂ðyÞ

�
ð69Þ

γ̂BðxÞ ¼
3λðxÞ
64π2

Z
x

0

dy
y2

x2

�
ĤðyÞ − y

3
L̂ðyÞ

�

þ 3λðxÞ
64π2

Z
∞

x
dy

�
ĤðyÞ þ

�
2x
3
− y

�
L̂ðyÞ

�
: ð70Þ

Writing γ̂ ¼ ðγ̂T; γ̂A; γ̂BÞ and

γ̂ ¼ γ̂source þ λK̄R · γ̂; ð71Þ

successive iterations of the source terms yield a formal
expansion in powers of λðxÞ

γ̂ ¼ γ̂source þ
X
n≥1

λnγ̂ðnÞ: ð72Þ

One easily verifies that the first iteration of the source

term yields, up to logarithms, γ̂ð1ÞT ∼x−2 and γ̂ð1ÞA ∼ γ̂ð1ÞB ∼x−1

and that these power laws are stable against further iter-
ations. Assuming that this is indeed the leading power-law
behavior, we have

N̂ðxÞ ∼MðxÞ
x2

þ γ̂TðxÞ
x

þOðx−4Þ; ð73Þ

ĤðxÞ ∼ γ̂AðxÞ
x

þOðx−4Þ; ð74Þ

L̂ðxÞ ∼ 2γ̂AðxÞ − γ̂BðxÞ
x2

þOðx−5Þ: ð75Þ

A detailed analysis of the leading ultraviolet behavior of
the solutions is presented in Appendix C. We give here a
brief summary. In all cases, the contributions y ≫ x to the
integral equations are suppressed. The integrals in Eq. (68)
are dominated by y ∼ x, which yield contributions of the
same order as the source term (59). The equation for γT
decouples from those of γA and γB and is driven by the
source term, that is, in turn, by the quark mass (52), with a
modified coefficient AM=12 → AM=11 due from the

integral contributions. Instead, the integrals in Eq. (69)
are dominated by y ≪ x, but, as before, these yield
contributions of the same order as the source term (60).
It follows that γA is also driven also driven by its source
term with a modified coefficient cA → c̄A. Finally, the
integrals in (70) are dominated by y ∼ x and the source term
(61) is subdominant. As a consequence γB decouples (at
leading order) and is driven by γA ∼ x−1ðln xÞ−1. We also
find that the leading term ∼x−1ðln xÞ−2 of each integral in
Eq. (70) actually cancels out and that the resulting leading
behavior of γB is further suppressed by one inverse power
of ln x. The final result is

γ̂TðxÞ ∼
AM

11x2
ðln xÞγM−1; ð76Þ

γ̂AðxÞ ∼
c̄A

x ln x
; ð77Þ

γ̂BðxÞ ∼
γMc̄A

4xðln xÞ3 : ð78Þ

Using these behaviors, we show in Appendix C that the
constant c̄A verifies c̄A ¼ 4π2γMf2π=ð6NcÞ. Interestingly,
we thus find that the UV asymptotics of both the pseudo-
scalar and the tensor components of the pion-quark-
antiquark vertex is governed by the (renormalized) quark
condensate AM ∝ hΨ̄Ψi (see Appendix D) and the corre-
sponding anomalous dimension γM, whereas that of the
vector and pseudovector components is governed by f2π.
Finally, it is worth emphasizing that the enhanced loga-
rithmic decay of γ̂B—with an exponent strictly larger than
one—is crucial for the expression (50) of fπ to be finite.
This last remark brings a question about how accurate

the control of the UV tails must be to get a reliable
determination of fπ . The UV contribution to Eq. (50) can
be estimated as

f2π;UV ¼ Nc

4π2

Z
∞

Λ2

dxx

�
HðxÞ − x

2
LðxÞ

�
ð79Þ

¼ Nc

8π2

Z
∞

Λ2

dxγ̂BðxÞ þOðA2
MΛ−4Þ; ð80Þ

with Λ a UV scale. Using the asymptotic behavior (78), we
deduce

f2π;UV
f2π

¼ γ2M
96ðlnΛ2Þ2 þOðA2

MΛ−4Þ: ð81Þ

Despite the slow (logarithmic) convergence, the prefactor
γ2M=96 ∼ 10−3 ensures that this contribution is negligible.
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VII. RESULTS

In this section, we compute the pion decay constant in
the chiral limit as a function of the parameters of the CF
Lagrangian. We numerically solve Eqs. (41)–(43) and we
obtain fπ from Eq. (50). This requires prior knowledge of
the running parameters λðxÞ and m2ðxÞ and of the quark
propagator functions ZψðxÞ and MðxÞ. We compute these
quantities consistently within the present approximation
scheme using the techniques put forward in Ref. [60]. For
completeness, we shall briefly recall the main aspects of the
numerical procedure implemented there.
At first, we need to set the scale of our calculation. We

use the same procedure as in Ref. [60], which corresponds
to fitting the quark propagator functions obtained by lattice
simulations for physical values of the pion mass against the
corresponding results in the present approach. In such a
way our definition of the GeV corresponds to that of the
lattice.
As a first estimate, we can use the quark propagator

functions obtained in this case—close to but not quite in the
chiral limit—to compute the value of fπ using the expres-
sion derived above—valid in the chiral limit. This should
provide a good estimate of the physical fphysπ ¼ 92 MeV as
the chiral corrections are expected to be relatively small,
roughly of the order of 5%. We obtain7 fπ ¼ 87.9 MeV.
For comparison the Pagel-Stockar approximation for this
case gives fPSπ ¼ 83.5 MeV.
As for our numerical procedure, we use a regular grid in

the momentum p ¼ ffiffiffi
x

p
with a lattice spacing of 0.1 GeV

divided in two regions. For momenta p ≤ Λ1 ¼ 10 GeV,
we iterate the rainbow equations for the functions ZψðxÞ
and MðxÞ together with the corresponding RG equations
for λðxÞ and m2ðxÞ until convergence. As the integral
rainbow equations involve integrating over large momenta,
we use an extension of Zψ ðxÞ and MðxÞ for Λ1 ≤ p ≤
Λ2 ¼ 30 GeV determined by the UV expressions

ZUV
ψ ðxÞ ¼ 1;

MUVðxÞ ¼ b0

�
ln
xþm2

0

m2
0

�−γM
þ b2

x

�
ln
xþm2

0

m2
0

�
γM−1

:

ð82Þ

For the quark mass function we use a combination of the
UV behaviors in either the chiral limit (term proportional to
b2) or the nonzero bare quark mass (term proportional
to b0). The coefficients, b0 and b2, are chosen in order to
make MðxÞ continuous and differentiable at Λ1. The
iteration starts with the functions (82) extended to both
regions and is done at fixed values of the input parameters
M0 ¼ MðΛ2

1Þ, m0 ¼ mðΛ2
1Þ, and λ0 ¼ λðΛ2

1Þ. The chiral

limit is reached by lowering the value of M0 until the
contribution ∝ b0 in Eq. (82) becomes negligible over the
whole range of momenta.8 We use the lowest value for
which our numerical algorithm is stable, that is, M0 ¼
0.5 MeV and compute the functions ZψðxÞ, MðxÞ, λðxÞ,
and mðxÞ for various values of m0 and λ0. In the following
we quote the results in terms of the coupling g0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ0=CF

p
,

with CF ¼ 4=3.
We then compute the pion vertex components γ̂T;A;BðxÞ,

over the range x ≤ Λ2
1 (in a grid in p ¼ ffiffiffi

x
p

) by solving
the system (41)–(43) recursively, with initial condition
γ̂TðxÞ ¼ γ̂AðxÞ ¼ γ̂BðxÞ ¼ 0. The iterative process con-
verges fast, typically after a few iterations only. This is
illustrated in Fig. 4, which shows the value of fπ at each
iteration for a typical choice of parameters. We see that the
zeroth iteration, which corresponds to the Pagel-Stockar
approximation, that is, which retains only the pseudoscalar
component of the pion-quark-antiquark vertex, gives a

relatively good approximation, fð0Þπ ¼ 81.4 MeV, and that
the tensor and vector components contribute about 5% of
the final fπ ¼ 85.9 MeV in that case. The (converged)
functions M, Zψ , and γ̂T;A;B for this set of parameters are
shown in Figs. 5 and 6.
Figure 7 shows the value of fπ in the chiral limit as a

function of the parameters m0 and g0. We also show the
same plot in terms of the running parameters mðμ2Þ and
gðμ2Þ evaluated at μ ¼ 1 GeV. The first main observation is
that there exists values of these parameters for which fπ is
close to its physical value f�π ¼ 86 MeV in the chiral limit
(deduced from the actual measured value by means of
chiral perturbation theory [66]). The second important
observation is that the parameters for which fπ is close
to its physical value are clearly correlated. Hence, fixing the
value of g0 essentially fixes the (physical) value of the mass

0 1 2 3 4 5 6

82

83

84

85

86

iteration number

f
M

eV

FIG. 4. Evolution of fπ with the number of iterations for g0 ¼
1.93 and m0 ¼ 0.11 GeV.

7This corresponds to the parameters (see below): g0 ¼ 1.94,
m0 ¼ 0.15 GeV, and M0 ¼ 3 MeV.

8For instance, for g0 ¼ 0.193 and m0 ¼ 0.11 GeV, we have
b0 ¼ 4 × 10−4 GeV and b2 ¼ 0.227 GeV3. We check that
b0 ≪ b2=Λ2

1.
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parameter m0. The physically acceptable values of the
gluon mass parameter are then uniquely determined in
terms of the coupling only. In particular, one can use these
values to predict other quantities. As an immediate
example here, we can compare the corresponding pre-
diction for the quark mass function to the existing lattice
results (in the chiral limit). We show in Fig. 8 the values of
the parameters for which the overall9 agreement between
the predicted MðxÞ and the lattice results of Ref. [69] is
less than 15%. This overlaps well with the region where
fπ is less than 5% away from its expected value. It is worth
mentioning that, for the purpose of calculating fπ , the
optimal gluon mass values are appreciably smaller than
those required, for instance, to fit the gluon propagator in
Yang-Mills theory. This is consistent with a previous work
[60] according to which, within the RI approximation, the
optimal gluon mass values required to fit the quark
mass function in the light-quark regime, are smaller than
those required to fit the gluon propagator. A similar
tendency (although much less marked) is obtained when
considering purely perturbative calculations of these two
quantities [39].

VIII. SUMMARY AND CONCLUSIONS

We have computed the pion-quark-antiquark vertex
function in the limit of vanishing pion momentum and
the pion decay constant in the chiral limit in the context of
the CF model approach to infrared QCD. The latter allows
for a controlled expansion scheme in powers of both the
coupling in the pure gauge sector and the inverse number of
colors. At leading order, this leads to the resummation
of rainbow-ladder diagrams in the quark sector with the
tree-level (massive) gluon propagator and quark-gluon
vertex. In the chiral limit, this results in a system of
coupled one-dimensional integral equations for the various
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FIG. 5. The quark propagator functions Zψ and M as functions
of the momentum p for g0 ¼ 1.93 and m0 ¼ 0.11 GeV. All units
are in GeV.
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FIG. 6. Scalar functions γ̂T;A;B as functions of the momentum p
for g0 ¼ 1.93 and m0 ¼ 0.11 GeV. All units are in GeV.

9The error functions are the ones defined in [60].
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Lorentz components of the pion vertex. The RILO approxi-
mation allows us to implement the RG running of the
parameters in a systematic and controlled manner, which is
crucial in order to get consistent solutions and, in turn, a
finite result for fπ. In particular this implies that there is no
reliable solution in the limit m0 → 0 for which the RG
running presents a Landau pole.
We have obtained an exact expression for fπ in the chiral

limit that extends the known Pagel-Stockar approximation
in terms of the vector and tensor components of the

pion-quark-antiquark vertex. We have performed a detailed
analysis of the UV behavior of the relevant functions with
the interesting results that the power-law decays in the
chiral limit are controlled by either the quark condensate or
the pion decay constant. Finally we have obtained a
numerical solution of the RG-improved coupled integral
equations in terms of the parameters of the model, namely
the gluon mass parameter m0 and the coupling g0.
Our main result is that there exist correlated values of the

parameters m0 and g0 for which the pion decay constant fπ
takes its physical value in the chiral limit. This thus defines
a physical constraint mphys

0 ðg0Þ which allows one to predict
other quantities in terms of the coupling only. Of course, it
would be be extremely interesting to fit a second exper-
imental observable to fully determine the two parameters
directly from experimental data.
One possibility would be to use the transition temper-

ature associated to the QCD phase transition. Studies
of the deconfinement transition exist within the CF model

]31,32,34 ] but they have been so far restricted to the case of
pure Yang-Mills theory or QCD in the limit where all
quarks are considered heavy. Those situations are very far
from the chiral limit addressed here which prevents us from
combining the results. For this reason, it becomes pressing
to extend the study of the QCD phase structure within the
CF model to the light quark region. Part of this analysis in
under way.
A second quantity that could be used to fully determine

the parameters of the CF model is the strong coupling
constant αS. However, to make the comparison reliable it
would be necessary to include two elements that are beyond
the scope of the present study. First, one would need to
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FIG. 7. Regions in parameter space where jfπ − f�πj=f�π , with
f�π ¼ 86 MeV, is less than 3%, 5%, and 8% (from darker to
lighter) in terms of the parametermðμ2Þ and gðμ2Þ at μ ¼ 10 GeV
(upper plot) and at μ ¼ 1 GeV (lower plot).

FIG. 8. The region in parameter space where jfπ − f�π j=f�π is
less than 5% (dark blue) compared to that where the overall error
for the quark mass function compared with lattice data from [69]
is less than 15% (light blue).

PELÁEZ, REINOSA, SERREAU, and WSCHEBOR PHYS. REV. D 107, 054025 (2023)

054025-12



establish the evolution of the coupling constant in a realistic
way (including the various heavier quarks) up to the scales
where the coupling αS is small and well measured. In
particular, this would require including two loop correc-
tions to the running, which has already been done in the
Nf ¼ 2 case, see [39], and could easily be extended above
the heavier quark thresholds. Second, it would be necessary
to establish, in the weak coupling regime, the correspon-
dence between the running calculated here in the Taylor
scheme with the MS which is the scheme usually reported
in the literature.
Once the parameters are fully determined in that way,

one could envisage studying the predictions of our
approach for the pion bound state at nonzero pion mass
or other light mesonic bound states. There exist well-
developed techniques to study the relevant integral equa-
tions (see, for instance,[65,70–72]) which could be easily
implemented in the CF model.
Beyond these considerations, we stress that another

interesting take on the present work is that the CF model
in fact provides a well-defined notion of a gluon mass
parameter that could serve as a benchmark for testing the
masslessness of the gluon. Giving reliable experimental
constraints on the gluon mass requires a proper definition
of the latter. The situation is similar to the case of the quark
mass or of the gauge coupling, which being unphysical,
require a proper definition (e.g. defined at a given scale in a
given scheme) in order to be given experimental con-
straints/values. Although the latter is well understood and
has been studied in great detail [73], the theoretical status of
the gluon mass is much less clear. For instance, the particle
data book [73] mentions limits on a possible gluon mass
that are based on ideas from the early days of QCD, which
are now completely obsolete, in particular, because the
notion of gluon mass used there is ill-defined. The CF
model offers a proper theoretical definition of a gluon mass
parameter that can be constrained by experimental data.
The present work makes a step in that direction.
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Paris Sorbonne, where part of this work has been realized,
for hospitality. U. R. and J. S. acknowledge the support
and hospitality of the Universidad de la República de
Montevideo during various stages of this work.

APPENDIX A: AXIAL WARD IDENTITIES AND
THEIR CONSEQUENCES

Introducing source terms for the chiral multiplets ðσ; πiÞ
and ðVi

μ;Ai
μÞ, with the composite fields σðxÞ ¼ ψ̄ðxÞψðxÞ,

πiðxÞ ¼ ψ̄ðxÞiγ5σiψðxÞ, Vi
μðxÞ ¼ ψ̄ðxÞiγμσiψðxÞ, and

Ai
μðxÞ ¼ ψ̄ðxÞiγμγ5σiψðxÞ, the QCD action is

modified as10

SQCD → SQCD − Ss; ðA1Þ

with

Ss ¼
Z

d4xfη̄ψ þ ψ̄ηþ Jσ þ Jiπi þ JiμVi
μ þ Li

μAi
μg:

ðA2Þ

Using the invariance of the functional integration
measure under infinitesimal axial SUAðNfÞ transforma-
tions of the quark fields, δiχψ ¼ iσiγ5ψ and δiχψ̄ ¼ iψ̄σiγ5,
one derives the following (Ward) identity in terms
of the effective action Γ½ψ ; ψ̄ ;J � at nonzero sources J ¼
ðJ; Ji; Jiμ; Li

μÞ:

ðMΛ − JÞ δΓ
δJi

þ Ji
δΓ
δJ

− ϵijk
�
Jjμ

δΓ
δLk

μ
þ Lj

μ
δΓ
δJkμ

�

−
1

2
∂μ

δΓ
δLi

μ
þ ψ̄

iγ5σi

2

δΓ
δψ̄

−
δΓ
δψ

iγ5σi

2
ψ ¼ 0; ðA3Þ

where the first term in the last line stems from the fact that
we considered gauged axial transformations. Taking func-
tional derivatives and evaluating at vanishing sources yields
the set of axial Ward identities relating various vertex and
correlation functions.
We first discuss the correlators

Gij
ππðx − yÞ ¼ hπiðxÞπjðyÞi ¼ −

δ2Γ
δJiðxÞδJjðyÞ

				
J¼0

ðA4Þ

Gij
Aμπ

ðx − yÞ ¼ hAi
μðxÞπjðyÞi ¼ −

δ2Γ
δLi

μðxÞδJjðyÞ
				
J¼0

:

ðA5Þ

Equation (A3) implies the following identity, in momentum
space,

MΛG
ij
ππðpÞ þ i

pμ

2
Gij

Aμπ
ðpÞ ¼ −δijσ; ðA6Þ

where σ ¼ hψ̄ðxÞψðxÞi ¼ −
R
q trSðqÞ is the quark conden-

sate. With our convention, pμ is the outgoing (incoming)

axial vector (pion) momentum for the correlator Gij
Aμπ

ðpÞ;
see Fig. 3.
The pion decay constant fπ characterizes the amplitude

of the pion-to-lepton disintegration and is related to the

10Both the FP gauge-fixing terms and the CF gluon mass term
in the action are insensitive to chiral transformation and do not
alter the present discussion.
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normalization of the axial vector operator11 Aμ. In the
chiral limit, one has an isolated one-particle (pion) pole in
the vicinity of p2 ¼ 0 and the propagators in Eq. (A6) have
the analytic structures

Gij
ππðpÞ ∼ δij

Nπ

p2 þm2
π

ðA7Þ

Gij
Aμπ

ðpÞ ∼ −ipμδ
ij 2fπ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NANπ

p
p2 þm2

π
ðA8Þ

in a finite interval of p2, where Nπ and NA are some
normalization factors.12 Writing the identity (A6) for
p2 → −m2

π , we get the relation

MΛ
ffiffiffiffiffiffi
Nπ

p
¼ m2

πfπ
ffiffiffiffiffiffiffi
NA

p
: ðA9Þ

The fact that ZMZπ is finite implies that the product
MΛ

ffiffiffiffiffiffi
Nπ

p
is finite and, hence, NA as well. The standard

definition of fπ [74] corresponds to choosing NA ¼ 1,
from which we arrive at Eq. (4). Also, in the chiral limit,
where m2

π → 0, the expressions (A7) and (A8) are valid
near p ¼ 0. Writing the identity (A6) at p ¼ 0 yields

MΛNπ

m2
π

¼ −σ; ðA10Þ

where σ is the quark condensate in the chiral limit. Together
with Eq. (A9), this yields the famous Gell-Mann–Oakes–
Renner relation [75]

−σMΛ ¼ f2πm2
π: ðA11Þ

Next, consider the vertex Ward identity, derived from
Eq. (A3), relating the pion-quark-antiquark πqq̄ and the
Aμqq̄ vertices:

MΛΓi
πðq; q0Þ −

ipμ

2
Γi
Aμ
ðq; q0Þ

¼ S−1ðqÞ iγ5σ
i

2
þ iγ5σi

2
S−1ðq0Þ; ðA12Þ

where p ¼ q − q0 denotes the incoming pion or axial-
vector momentum.13 From Eqs. (6) and (8), we have
Γi
πðq; qÞ ¼ iγ5σiγPðq2Þ=MΛ. Thus, taking the limit p →

0 in Eq. (A12), and under the assumption that Γi
Aμ
ðq; qÞ is

regular, this directly yields

γPðq2Þ ¼
Mðq2Þ
Zðq2Þ : ðA14Þ

Another consequence of the chiral Ward identities is the
relation between the rainbow and the ladder integral
equations for the quark propagator and the pion or axial-
vector vertices, respectively, see Figs. 1 and 2. The former
writes

FIG. 9. The Aμ − π correlator (black square) in momentum
space in terms of the quark propagator and of the axial-vector-
quark-antiquark vertex. This is an expression equivalent to the
one shown in Fig. 3.

11The amplitude of the matrix element of the axial vector
operator between the hadronic vacuum j0i and on-shell one-pion
states jπiðp̃Þi, with the Minkowskian 4-momentum p̃μ ¼ ðεp; p⃗Þ,
where εp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

π

p
is fixed by using Lorentz invariance and

isospin symmetry. We write, with Lorentz-invariant normaliza-
tions of the one-particle states,

h0jπ̃iðx̃Þjπjðp̃Þi ¼ e−ip̃·x̃δij
ffiffiffiffiffiffi
Nπ

p
h0jÃi

μðx̃Þjπjðp̃Þi ¼ −ip̃μe−ip̃·x̃δij2fπ
ffiffiffiffiffiffiffi
NA

p
;

where the tildes refer to Minkowskian quantities.
12Note that we are dealing with bare fields and, in particular,

Nπ is not to be confused with the renormalization factor Zπ which
defines the renormalized pion field in Eq. (31).

13Our conventions are such that, at tree level, Γi
πðq; q0Þ → iγ5σi

and Γi
Aμ
ðq; q0Þ → iγμγ5σi. Note that isospin symmetry guarantees

that the flavor structure of both the pion vertex is Γi
πðq; q0Þ ¼

iγ5σiΓπðq; q0Þ and similarly for Γi
Aμ
. Finally, note that the identity

(A6) can be obtained from the vertex identity (A12) using the
exact relations

Gij
ππðpÞ ¼ −

Z
q
tr½Γi

πðq0; qÞSðqÞiγ5σjSðq0Þ�;

Gij
Aμπ

ðpÞ ¼ −
Z
q
tr½Γi

Aμ
ðq0; qÞSðqÞiγ5σjSðq0Þ�;

where, by convention, p is the incoming pion momentum in both
cases, hence the outgoing axial-vector momentum. Figure 9
shows the diagrammatic representation of the second equation
above, equivalent to the one shown in Fig. 3. The relations above
express identities such as

δ2Γ
δJiðxÞδJjðyÞ ¼ −

δhπjðyÞi
δJiðxÞ ¼ tr

�
iγ5σj

δSJ ðy; yÞ
δJiðxÞ

�

¼ −
Z
z;z0

tr

�
iγ5σjSJ ðy; zÞ

δS−1J ðz; z0Þ
δJiðxÞ SJ ðz0; yÞ

�
;

ðA13Þ

with SJ the quark propagator and δS−1J =δJi is the pion vertex in
the presence of sources. A similar identity involving the axial-
vector current holds.
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S−1ðqÞ ¼ −i=qþMΛ þ λΛ

Z
k
GρσðkÞγρSðlÞγσ; ðA15Þ

and the latter are14

Γi
πðq; q0Þ ¼ iγ5σi − λΛ

Z
k
GρσðkÞγρSðlÞΓi

πðl;l0ÞSðl0Þγσ;

ðA18Þ

Γi
Aμ
ðq;q0Þ

¼ iγμγ5σi−λΛ

Z
k
GρσðkÞγρSðlÞΓi

Aμ
ðl;l0ÞSðl0Þγσ;

ðA19Þ

with l ¼ q − k and l0 ¼ q0 − k. One easily verifies that
these satisfy the symmetry identity (A12).

APPENDIX B: DETAILS OF LINEAR-ORDER BSE

We present here the derivation of the on-shell Bethe-
Salpether equations in the chiral limit, Eqs. (16)–(18). First,
let us consider Eq. (14) at p2 ¼ 0. Using the definition (6),
with (8) and (10), and denoting GðkÞ ¼ 1=ðk2 þm2Þ, we
find

γPðr2Þ ¼ MΛ þ 3λ

Z
s
GðkÞ Z2ðs2Þ

s2 þM2ðs2Þ γPðs
2Þ; ðB1Þ

with k ¼ r − s, which is identical to the integral equation
corresponding to the resummation of rainbow diagrams for
the quantity MðxÞ=ZðxÞ, as demanded by the axial Ward
identities for any value of MΛ; see Appendix A.
Next, we evaluate Eq. (14) on the pion mass shell,

p2 ¼ −m2
π , which gives

γπðq; q0Þ ¼ λ

Z
k
GμνðkÞγμSð−lÞγπðl;l0ÞSðl0Þγν: ðB2Þ

In the chiral limit, we expand at linear order in pμ around
p2 ¼ 0. Using the definitions (10) and (11), the left-hand
side reads

γπðq; q0Þ ¼ γPðr2Þ þ iσμνpμrνγTðr2Þ þ i=pγAðr2Þ
þ 2i=r

p · r
r2

½γAðr2Þ − γBðr2Þ� þOðp2Þ; ðB3Þ

whereas, upon writing l ¼ sþ p=2 and l0 ¼ s − p=2 for
the integrand on the right-hand side, we obtain, after some
algebra,

Sð−lÞγπðl;l0ÞSðl0Þ

¼ Zðs2ÞMðs2Þ
s2 þM2ðs2Þ − iσμνpμsνNðs2Þ − i=pHðs2Þ

þ 2i=sp · sLðs2Þ þOðp2Þ; ðB4Þ

where we used Eq. (13) in the first line and where the
functions N, H, and L are defined in Eqs. (19)–(21). We
then project out the scalar, tensor, and vector components
of Eq. (B2). As expected, the scalar part reduces to Eq. (B1)
in the limit MΛ → 0. The tensor and scalar component
yields

ðpμrν − pνrμÞγTðr2Þ

¼ λ

Z
s
GðkÞNðs2Þ

�
pμsν − pνsμ − 2

k · s
k2

ðpμkν − pνkμÞ

− 2
k · p
k2

ðkμsν − kνsμÞ
�

ðB5Þ

and

pμγAðr2Þ þ 2
p · r
r2

rμ½γAðr2Þ − γBðr2Þ�

¼ λ

Z
s
GðkÞ

�
Hðs2Þ

�
pμ þ 2

k · p
k2

kμ

�

− 2p · sLðs2Þ
�
sμ þ 2

k · s
k2

kμ

��
: ðB6Þ

To proceed, we exploit the Euclidean Lorentz symmetry
and choose, with no loss of generality, rμ ¼ ð0; 0; 0; rÞ and
pμ ¼ ð0; 0; p3; p4Þ. Accordingly, wewrite sμ ¼ ðs⃗⊥; s3; s4Þ
and kμ ¼ ð−s⃗⊥;−s3; r − s4Þ and we note that the functions
GðkÞ, Nðs2Þ, Hðs2Þ, and Lðs2Þ are all even in s3. We can,
thus, discard explicit odd powers of s3 in the various
integrals. Finally, we choose to systematically eliminate
any explicit occurrence of s4 in favor of s2, s23, and s2⊥. We
obtain, after some algebra

14The relation between rainbows and ladders follows directly
from the general relation

Γi
πðq; q0Þ ¼ −

δS−1J ðq; q0Þ
δJiðpÞ

				
J¼0

ðA16Þ

where S−1J ðq; q0Þ is the (nondiagonal) momentum space quark
propagator in presence of the source term (A2). The rainbow
resummation for the latter reads

S−1J ðq; q0Þ ¼ S−1ðq; q0Þ − JiðpÞiγ5σi

þ λΛ

Z
k
GρσðkÞγρSJ ðl;l0Þγσ ; ðA17Þ

with l ¼ q − k and l0 ¼ q0 − k and where S−1ðq; q0Þ ¼ ð−i=qþ
MΛÞð2πÞ4δð4Þðq − q0Þ is the tree-level propagator. Deriving with
respect to the source and setting it to zero gives Eq. (A18). A
similar treatment leads to Eq. (A19).
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γTðr2Þ ¼ λ

Z
s
GðkÞNðs2Þ

�
r2 þ s2

2r2
−
ðr2 − s2Þ2
2r2k2

−
2s23
k2

�

ðB7Þ

γAðr2Þ ¼ λ

Z
s
GðkÞ

�
Hðs2Þ

�
1þ 2s23

k2

�

− 2Lðs2Þs23
�
2 −

r2 − s2

k2

��
ðB8Þ

γBðr2Þ ¼ λ

Z
s
GðkÞ

�
Hðs2Þ 4s

2
3 þ s2⊥
k2

þ Lðs2Þ
�
3s2 − 8s23 − 2s2⊥

þ r2

k2
½2s23 − s2⊥� −

s2

k2
½4s23 þ s2⊥�

��
ðB9Þ

Choosing s, s⊥, and s4 as independent variables, we can
perform the integrals over s⊥ and s4 explicitly, using

Z
s
¼ 1

32π3

Z
∞

0

ds2
Z

s2

0

ds2⊥
Z

sB

−sB

ds4
s3

ðB10Þ

where s3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − s2⊥ − s24

p
and sB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − s2⊥

p
. We intro-

duce the function

hm2ðr2; s2; s2⊥Þ ¼
Z

sB

−sB
ds4

s3
r2 þ s2 þm2 − 2rs4

¼ π

2r2
ðb −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − r2ðs2 − s2⊥Þ

q
Þ; ðB11Þ

with b ¼ ðr2 þ s2 þm2Þ=2, in term of which, the relevant
integrals for our purposes read

fm2ðr2; s2Þ ¼
Z

s2

0

ds2⊥
Z

sB

−sB

ds4
2s3

GðkÞ

¼ −
Z

s2

0

ds2⊥∂s2⊥hm2ðr2; s2; s2⊥Þ

¼ hm2ðr2; s2; 0Þ ðB12Þ

and

Im2ðr2; s2Þ ¼
Z

s2

0

ds2⊥
Z

sB

−sB

ds4
2s3

2s23GðkÞ

¼
Z

s2

0

ds2⊥hm2ðr2; s2; s2⊥Þ; ðB13Þ

whose explicit expressions are given in Eqs. (22) and (23).
We also note the identity

Z
s2

0

ds2⊥
Z

sB

−sB

ds4
2s3

s2⊥GðkÞ ¼ −
Z

s2

0

ds2⊥s2⊥∂s2⊥hm2ðr2; s2; s2⊥Þ

¼ Im2ðr2; s2Þ ðB14Þ

We have, then,

Z
s
fðs2ÞGðkÞ ¼ 1

16π3

Z
∞

0

ds2fðs2Þfm2ðr2; s2Þ ðB15Þ
Z
s
fðs2ÞGðkÞ2s23 ¼

1

16π3

Z
∞

0

ds2fðs2ÞIm2ðr2; s2Þ ðB16Þ
Z
s
fðs2ÞGðkÞs2⊥ ¼ 1

16π3

Z
∞

0

ds2fðs2ÞIm2ðr2; s2Þ ðB17Þ

for any function fðs2Þ. Also, writing GðkÞ=k2 ¼ ½1=k2−
GðkÞ�=m2, one has

Z
s
fðs2ÞGðkÞ 1

k2
¼ −

1

16π3

Z
∞

0

ds2fðs2ÞΔfm2ðr2; s2Þ

ðB18Þ
Z
s
fðs2ÞGðkÞ 2s

2
3

k2
¼ −

1

16π3

Z
∞

0

ds2fðs2ÞΔIm2ðr2; s2Þ

ðB19Þ
Z
s
fðs2ÞGðkÞ s

2⊥
k2

¼ −
1

16π3

Z
∞

0

ds2fðs2ÞΔIm2ðr2; s2Þ

ðB20Þ

Inserting these in Eqs. (B7)–(B9), one finally arrives at
Eqs. (16)–(18).

APPENDIX C: ULRAVIOLET BEHAVIOR

To analyze the leading ultraviolet behavior, we first write

γ̂TðxÞ ¼
yTðln xÞ

x2
; ðC1Þ

γ̂AðxÞ ¼
yAðln xÞ

x
; ðC2Þ

γ̂BðxÞ ¼
yBðln xÞ

x
; ðC3Þ

where the functions yT;A;BðuÞ are expected to be some
power laws at large u ¼ ln x. In this section we assume
Eqs. (73)–(75) and check their validity a posteriori. Under
this assumption, the equation for γT decouples from those
of γA and γB. Let us analyze the former first.
First note (e.g., using the dominant iterated behaviors of

γT;A;B) that the integral
R
x
0 on the left-hand side of Eq. (68) is

dominated by its upper bound: Separate
R
x
0 ¼ R x0

0 þ R
x
x0
with
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m2 ≪ x0 ≪ x and check that the contribution
R x0
0 is sup-

pressed by powers of ln x as compared to that of
R
x
x0
. We

can thus neglect the former and replace the various inte-
grands by their UV behaviors in the latter. Also, for the
present analysis it is convenient to momentarily introduce a
UV cutoff by replacing

R∞
x →

R Λ2

x . Introducing u0 ¼ ln x0
and uΛ ¼ lnΛ2, we get

yTðuÞ ¼
AM

12
uγM−1 þ γM

12u

Z
u

u0

dvyTðvÞ

þ γM
12u

Z
uΛ

u
dve2ðu−vÞyTðvÞ: ðC4Þ

This can be turned into a second order differential equation.
Introducing zTðuÞ ¼ uyTðuÞ, zsðuÞ ¼ ðAM=12ÞuγM , and
α ¼ γM=12, we have

zTðuÞ ¼ zsðuÞ þ α

Z
u

u0

dv
v
zTðvÞ þ α

Z
uΛ

u

dv
v
e2ðu−vÞzTðvÞ;

ðC5Þ

where we have introduced an ultraviolet cutoff uΛ. One
easily checks that

z00T − 2z0T þ 2α

u
zT ¼ z00s − 2z0s ∼ −2αAMu12α−1; ðC6Þ

with the boundary condition

z0TðuΛÞ ¼ z0sðuΛÞ: ðC7Þ

The general solution at large u (keeping 1 ≪ u ≪ uΛ) is, for
α > 0,

zT ∼
AM

11
u12α þ ATuα þ BTe2uu−α ðC8Þ

with AT and BT some integration constants. All lead to
ultraviolet finite integrals. The term ∝ AT is negligible as
compared to the (always present) first term so we can write

zT ∼
AM

11
u12α þ BTe2uu−α ðC9Þ

The constant BT is obtained from the boundary condition
(C7) as

BT ¼ −
αAM

22
u13α−1Λ e−2uΛ ðC10Þ

and thus vanishes in the limit uΛ → ∞. We finally have

zT ∼
AM

11
u12α: ðC11Þ

A similar analysis can be made for the coupled
integral equations in the A − B sector. In this case, the
contribution

R u0
0 amounts to a constant term—called c̄A in

the following—that must be taken into account in the
equation for zA and to a term ∝ 1=x ¼ e−u that can be
safely neglected in the equation for zB. As before we use
the dominant UV behavior of the various integrands in the
contributions

R
u
u0

and
R
uΛ
u0
. Introducing the functions

I1ðuÞ ¼ α

Z
u

u0

dv
v
zBðvÞ; ðC12Þ

I2ðuÞ ¼ α

Z
u

u0

dv
v
ev−u½zAðvÞ þ zBðvÞ�; ðC13Þ

I3ðuÞ ¼ α

Z
uΛ

u

dv
v
eu−v½zBðvÞ − zAðvÞ�; ðC14Þ

I4ðuÞ ¼ α

Z
uΛ

u

dv
v
e2ðu−vÞ½2zAðvÞ − zBðvÞ�; ðC15Þ

we have

zAðuÞ ¼ c̄A þ I1ðuÞ þ
1

3
I2ðuÞ þ 3I3ðuÞ þ

5

3
I4ðuÞ ðC16Þ

zBðuÞ ¼ I2ðuÞ þ 3I3ðuÞ þ 2I4ðuÞ ðC17Þ

One checks that these satisfy the following coupled differ-
ential equations

zB þ 2z0B ¼ 3z0A ðC18Þ

and

z000B − 2z00B − z0B þ 2zB ¼ 6α

u

�
zA
u
− z0A þ zB

�
; ðC19Þ

together with the condition

z0BðuΛÞ ¼ 3z0AðuΛÞ: ðC20Þ

Alternatively, Eq. (C19) rewrites

z000B −2z00B−
�
1−

4α

u

�
z0Bþ2

�
1−

2α

u

�
zB¼

6αzA
u2

: ðC21Þ

It is an easy matter to find the solutions in an expansion at
large u. We obtain, for the dominant terms,

zA ∼ A1 þ A2eu þ A3e−uu4α=3 þ A4e2uu−4α=3 ðC22Þ
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zB ∼
3αA1

u2
þ A2eu þ 3A3e−uu4α=3 þ

6

5
A4e2uu−4α=3:

ðC23Þ

Clearly, not all solutions of the above differential
equations are solution of the original integral equation.
To select the required solution, we plug the expressions
(C22) and Eq. (C23) back in integral equations (C16)
and (C17). A consistent solution requires A1 ¼ c̄A and
A2 ¼ 3αA4euΛ=ð5u4α=3þ1

Λ Þ. Requiring a finite solution in
the limit uΛ → ∞ therefore implies A4 ¼ A2 ¼ 0. The
term ∝ A3 can be neglected because A1 ¼ c̄A ≠ 0 and we
arrive at

zA ∼ c̄A and zB ∼
3αc̄A
u2

: ðC24Þ

Finally, the constant c̄A can be determined by inserting
these results back in Eq. (69). One easily checks that

γ̂AðxÞ ¼
λðxÞ
32π2

Z
∞

0

dyZψðyÞ
y
x

�
ĤðyÞ − y

2
L̂ðyÞ

�

þO
�

1

xðln xÞ2
�
; ðC25Þ

where one recognize the integral in Eq. (50). It follows that

c̄A ¼ CFf2π
8Ncβ0

¼ 4π2γM
6Nc

f2π: ðC26Þ

APPENDIX D: ULTRAVIOLET TAILS

We have tested the UV behavior of our numerical results
against the analytical results (52), (76), (77), and (78). This
is shown in Figs. 10 and 11. Although we do not have more
than essentially a decade in the square-momentum x, our
result reproduce well the expected power laws and the
logarithmic corrections for all the functions but γ̂BðxÞ. For
instance, we observe that the predicted ratio xγ̂T=M is well
reproduced, but not the ratio γ̂A=γ̂B. We understand this as
due to the fact that, as explained in Sec. VI, the behavior
(78) arises from a cancellation of the naive leading behavior
in Eq. (70). Because the UV tails contribution to fπ are
negligible, see Eq. (81), we have not attempted to resolve
this issue further.
From the UV behaviors ofM and γ̂A, we fit the constants

AM and c̄A, although these should be taken with a grain of
salt because those fits are realized over a restricted range of
UV momenta. We simply check here that this gives the
expected orders of magnitude. A detailed analysis would
require a dedicated study of the deep UV regime. As
recalled in Appendix E, the constant AM is related to the
renormalized RG-invariant quark condensate in the chiral
limit σ̃R as (Nc ¼ 3, γM ≈ 0.4)

AM ¼ −
21−γMπ2γM

Nc
σ̃R ≈ −1.99σ̃R: ðD1Þ

For the parameters g0¼0.193 and m0 ¼ 0.11GeV that give
fπ ≈86MeV, we fit AM≈0.12GeV3, σ̃R≈ð392MeVÞ3,
which is the correct order of magnitude [76–79]. In the
parameter space studied here, we find 355 MeV≲
σ̃1=3R ≲ 411 MeV.
As for the constant c̄A, we can compare it to the predicted

value

c̄A
f2π

¼ 4π2γM
6Nc

≈ 0.87 ðD2Þ

For the sameparameters as above,we obtain c̄A≈0.01GeV2,
that is, c̄A=f2π ≈ 1.35, roughly in the right ballpark.

APPENDIX E: THE QUARK CONDENSATE

For completeness, we briefly recall some aspects of the
quark condensate in the chiral limit and its relation to the
power-law decrease of the quark mass function at large
momentum [80]. The bare quark condensate σ ¼ hΨ̄Ψi is
UV divergent and requires regularization. Using a hard
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FIG. 10. The large momentum behavior of the functions MðxÞ
and γ̂TðxÞ for g0 ¼ 1.93 and m0 ¼ 0.11 GeV compared with the
expected asymptotic behaviors (52) and (76). We fit the value
AM ¼ 0.12 GeV3.
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cutoff, it reads, in terms of the renormalized quark
propagator,

σ ¼ −
NfNc

4π2

Z
Λ2

0

dxx
ZψðxÞMðxÞ
xþM2ðxÞ : ðE1Þ

The integral is controlled by the large-x behavior (52) of the
integrand and reads

σ ¼ −
NfNc

4π2
AM

γM

�
ln

Λ2

Λ2
QCD

�
γM
; ðE2Þ

where the scale under the logarithm is arbitrary.

One defines the renormalized quark condensate as

σ ¼ Zσðμ20ÞσRðμ20Þ ¼ Z−1
Mðμ20ÞσRðμ20Þ; ðE3Þ

where we used the renormalization condition
Zσðμ20ÞZMðμ20Þ ¼ 1, with ZM the quark mass renormaliza-
tion factor, see the discussion below Eq. (31). In the present
scheme, the latter is defined asMΛ ¼ ZMðμ20ÞMðμ20Þ, with
MΛ the bare quark mass. Although the bare quark mass
MΛ vanishes in the chiral limit, the renormalization factor
ZMðμ20Þ has a nontrivial limit, given by the standard RG
analysis [74]: At one-loop order, one has, in the UV,
d lnZM=d ln μ ¼ 2γMβ0g2ðμÞ, with gðμÞ the running cou-
pling. It follows that ZM ∝ g−2γM and thus that σRg2γM is RG
invariant.
Choosing the renormalization condition σRðΛ2Þ ¼ σ and

defining the RG-invariant condensate

σ̃R ¼ σRðμ0Þ½2β0g2ðμ20Þ�γM ¼ σRðμ0Þ�
1
2
ln

μ2
0

Λ2
QCD

�
γM

; ðE4Þ

we deduce from Eq. (E2) that

AM ¼ −
21−γMπ2γM

Nc
σ̃R: ðE5Þ

With these definitions, the large-momentum behavior of the
quark mass function writes

MðxÞ ∼ 2π2γM
NfNc

−σ̃R
xð1

2
ln x

Λ2
QCD

Þ1−γM ðE6Þ

and the running quark condensate is given by

σRðμ2Þ ¼ σ̃R

�
1

2
ln

μ2

Λ2
QCD

�
γM
: ðE7Þ

These reproduce the corresponding expressions in
Ref. [80].
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