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The Abelian decomposition of QCD tells that there are two types of gluons, the color neutral neurons
and colored chromons. We propose to confirm the Abelian decomposition testing the existence of two types
of gluon jets experimentally. We predict that one quarter of the gluon jet is made of the neurons which has
the color factor 3=4 and the sharpest jet radius and smallest charged particle multiplicity, while the three
quarters of the gluon jet are made of the chromons with the color factor 9=4, which have the broadest jet
radius (broader than the quark jet). Moreover, we argue that the neuron jet has a distinct color flow which
forms an ideal color dipole, while the quark and chromon jets have distorted dipole pattern. To test the
plausibility of this proposal, we suggest to analyze the gluon distribution against the jet shape (the
sphericity) and/or particle multiplicity from the existing gluon jet events and look for two distinct peaks in
the distribution.
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I. INTRODUCTION

A common misunderstanding on QCD is that the non-
Abelian color gauge symmetry is so tight that it defines
the theory almost uniquely and thus, does not allow any
simplification. This is not true. The Abelian decomposi-
tion of QCD tells that we can construct the restricted QCD
(RCD), which inherits the full non-Abelian color gauge
symmetry with the restricted potential obtained by the
Abelian projection. This tells that QCD has a nontrivial
core, RCD, which describes the Abelian subdynamics of
QCD but has the full color gauge symmetry. Moreover, it
tells that QCD can be viewed as RCD which has the gauge
covariant valence gluons as the colored source [1,2].
This is because the Abelian decomposition decomposes
the color gauge potential to the restricted potential made
of the color neutral gluon potential, the topological
monopole potential, and the gauge covariant valence
potential, which describes the colored gluon gauge
independently.

There are ample motivations for the Abelian decom-
position. Consider the proton made of three quarks.
Obviously, we need the gluons to bind the quarks in the
proton. However, the quark model tells that the proton has
no valence gluon. If so, what is the binding gluon that bind
the quarks in proton, and how do we distinguish it from the
valence gluon?
Moreover, the simple group theory tells that the color

gauge group has the Abelian subgroup generated by the
diagonal generators and that the gauge potential, which
corresponds to these generators, must be color neutral,
while the potential which corresponds to the off diagonal
generators must carry the color. This strongly implies that
there are two types of gluon, the color neutral ones and
colored ones. And they should behave differently, because
they have different color charges. If so, how can we
distinguish them?
Another motivation is the color confinement in

QCD. Two popular proposals for the confinement are
the monopole condensation [2,3] and the Abelian domi-
nance [4,5]. To prove the monopole condensation, we first
have to separate the monopole potential gauge independ-
ently. Similarly, to prove the Abelian dominance, we
have to know what is the Abelian part and how to
separate it.
The Abelian decomposition tells how to do this. It

decomposes the non-Abelian gauge potential to two parts,
the restricted Abelian part, which has the full non-Abelian
gauge symmetry and the gauge covariant valence part,

*ymcho0416@gmail.com
†zhangpm5@mail.sysu.edu.cn
‡zoulp5@mail.sysu.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 054024 (2023)

2470-0010=2023=107(5)=054024(9) 054024-1 Published by the American Physical Society

https://orcid.org/0000-0003-4861-2121
https://orcid.org/0000-0001-8976-9171
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.054024&domain=pdf&date_stamp=2023-03-17
https://doi.org/10.1103/PhysRevD.107.054024
https://doi.org/10.1103/PhysRevD.107.054024
https://doi.org/10.1103/PhysRevD.107.054024
https://doi.org/10.1103/PhysRevD.107.054024
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


which describes the colored gluons. Moreover, it separates

the restricted potential to the nontopological Maxwell part,
which describes the colorless binding gluons and the
topological Dirac part, which describes the non-Abelian
monopole [1,2].
This has deep consequences. It tells us that QCD has two

types of gluons, the color neutral binding gluons (the
neurons) and the colored valence gluons (the chromons),
which play totally different roles. The neurons, just like the
photon in QED, play the role of the binding gluon. On the
other hand, the chromons, like the quarks, play the role of
the constituent gluon. This has a deep impact in hadron
spectroscopy, replacing the quark and gluon model by the
quark and chromon model.
Moreover, this allows us to decompose the QCD

Feynman diagrams made of the gluon propagators in terms
of the neuron and chromon propagators, in such a way that
the conservation of color is made explicit.
As importantly, this allows us to prove the Abelian

dominance, that RCD is responsible for the confine-
ment [4,5]. This is because the chromons, being colored,
have to be confined. So it can not play any role in the
confinement. Furthermore, this provides us an ideal
platform for us to prove the monopole condensation.
Indeed, integrating out the chromons under the monopole
background gauge invariantly, we can demonstrate that
the true QCD vacuum is given by stable monopole
condensation [6,7].
This makes the experimental verification of the Abelian

decomposition an urgent issue [8]. The prediction and
subsequent confirmation of the gluon jet was a great
success of QCD [9,10]. It proved that QCD is indeed
the right theory of strong interaction. Moreover, it justified
the asymptotic freedom and extended our understanding of
QCD greatly [11]. Certainly, the experimental confirmation
of the existence of two types of gluons will extend our
understanding of QCD to a totally new level. The purpose
of this paper is to show how to do this with the existing data
on a gluon jet.

II. ABELIAN DECOMPOSITION: A REVIEW

To show QCD has two types of gluons, consider the SU
(2) QCD first. Let ðn̂1; n̂2; n̂3 ¼ n̂Þ be an arbitrary SU(2)
basis and select n̂ to be the Abelian direction. Project out
the restricted potential Âμ, which parallelizes n̂ [1,2],

Dμn̂ ¼ ð∂μ þ gA⃗μ×Þn̂ ¼ 0;

A⃗μ → Âμ ¼ Aμn̂ −
1

g
n̂ × ∂μn̂ ¼ Ãμ þ C̃μ;

Ãμ ¼ Aμn̂; C̃μ ¼ −
1

g
n̂ × ∂μn̂: ð1Þ

The restricted potential is made of two parts, the non-
topological (Maxwellian) Ãμ, which describes the colorless
neuron and the topological (Diracian) C̃μ, which describes
the non-Abelian monopole [12,13]. Moreover, it has the
full SU(2) gauge degrees of freedom.
With this, we have

F̂μν¼ðFμνþHμνÞn̂¼F0
μνn̂;

Fμν¼ ∂μAν−∂νAμ;

Hμν¼−
1

g
n̂ · ð∂μn̂×∂νn̂Þ¼ ∂μCν−∂νCμ;

Cμ ¼−
1

g
n̂1 ·∂μn̂2;

F0
μν¼ ∂μA0

ν−∂νA0
μ; A0

μ ¼AμþCμ: ð2Þ

From this, we can construct RCD which has the full non-
Abelian gauge symmetry,

LRCD ¼ −
1

4
F̂2
μν ¼ −

1

4
F2
μν

þ 1

2g
Fμνn̂ · ð∂μn̂ × ∂νn̂Þ −

1

4g2
ð∂μn̂ × ∂νn̂Þ2; ð3Þ

which describes the Abelian subdynamics of QCD.
We can express the full SU(2) gauge field adding

the gauge covariant colored chromon X⃗μ to Âμ [1,2],

A⃗μ ¼ Âμ þ X⃗μ;

n̂ · X⃗μ ¼ 0; F⃗μν ¼ F̂μν þ D̂μX⃗ν − D̂νX⃗μ þ gX⃗μ × X⃗ν: ð4Þ

With this, we recover the full SU(2) QCD,

LQCD ¼ −
1

4
F̂2
μν −

1

4
ðD̂μX⃗ν − D̂νX⃗μÞ2

−
g
2
F̂μν · ðX⃗μ × X⃗νÞ −

g2

4
ðX⃗μ × X⃗νÞ2: ð5Þ

This shows that QCD can be viewed as RCD, which has the
chromon as the colored source [1,2].
The Abelian decomposition of SU(3) QCD is more

complicated but similar [6,7]. Let n̂iði ¼ 1; 2;…; 8Þ be the
orthonormal SU(3) basis and choose n̂3 ¼ n̂ and n̂8 ¼ n̂0
to be the two Abelian directions, and make the Abelian
projection imposing the condition,
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Dμn̂ ¼ 0; Dμn̂0 ¼ 0;

A⃗μ → Âμ ¼ Aμn̂þ A0
μn̂0 −

1

g
n̂ × ∂μn̂ −

1

g
n̂0 × ∂μn̂0

¼
X

p

2

3
Âp
μ ; ðp ¼ 1; 2; 3Þ;

Âp
μ ¼ Ap

μ n̂p −
1

g
n̂p × ∂μn̂p ¼ Ap

μ þ Cpμ ;

A1
μ ¼ Aμ; A2

μ ¼ −
1

2
Aμ þ

ffiffiffi
3

p

2
A0
μ;

A3
μ ¼ −

1

2
Aμ −

ffiffiffi
3

p

2
A0
μ; n̂1 ¼ n̂;

n̂2 ¼ −
1

2
n̂þ

ffiffiffi
3

p

2
n̂0; n̂3 ¼ −

1

2
n̂ −

ffiffiffi
3

p

2
n̂0: ð6Þ

Notice that, although SU(3) has only two Abelian direc-
tions, Âμ can be expressed by three SU(2) restricted
potential Âi

μ (i ¼ 1, 2, 3) in Weyl symmetric way, sym-
metric under the permutation of three SU(2) subgroups (or
equivalently, permutation of three Abelian directions n̂i).
With this, we have the Weyl symmetric SU(3) RCD,

LRCD ¼ −
1

4
F̂2
μν ¼ −

X

p

1

6
ðF̂p

μνÞ2; ð7Þ

which has the full SU(3) gauge symmetry.
Adding the valence part X⃗μ to Âμ, we have the SU(3)

Abelian decomposition,

A⃗μ ¼ Âμ þ X⃗μ ¼
X

p

�
2

3
Âp
μ þ W⃗p

μ

�
;

F⃗μν ¼ F̂μν þ D̂μX⃗ν − D̂νX⃗μ þ gX⃗μ × X⃗ν ¼
X

p

�
2

3
F̂p
μν þ ðD̂p

μW⃗
p
ν − D̂p

μW⃗
p
ν Þ
�
þ
X

p;q

W⃗p
μ × W⃗q

ν ;

W⃗1
μ ¼ X1

μn̂1 þ X2
μn̂2; W⃗2

μ ¼ X6
μn̂6 þ X7

μn̂7; W⃗
3
μ ¼ X4

μn̂4 þ X5
μn̂5; ð8Þ

where D̂p
μ ¼ ∂μ þ gÂp

μ×. Notice that X⃗μ is decomposed to three (red, blue, and green) SU(2) chromons ðW⃗1
μ; W⃗

2
μ; W⃗

3
μÞ. Here

again, A⃗μ is expressed in a Weyl symmetric way, but unlike Âi
μ, the three chromons are completely independent.

From this, we obtain [6,7]

LQCD ¼
X

p

�
−
1

6
ðF̂p

μνÞ2 − 1

4
ðD̂p

μW⃗
p
ν − D̂p

ν W⃗
p
μ Þ2 −

g
2
F̂p
μν · ðW⃗p

μ × W⃗p
ν Þ
�
−
X

p;q

g2

4
ðW⃗p

μ × W⃗q
μÞ2

−
X

p;q;r

g
2
ðD̂p

μW⃗
p
ν − D̂p

ν W⃗
p
μ Þ · ðW⃗q

μ × W⃗r
μÞ −

X

p≠q

g2

4
½ðW⃗p

μ × W⃗q
νÞ · ðW⃗q

μ × W⃗p
ν Þ þ ðW⃗p

μ × W⃗p
ν Þ · ðW⃗q

μ × W⃗q
νÞ�: ð9Þ

This is the Abelian decomposition of the Weyl symmetric
SU(3) QCD.
We can add quarks in the Abelian decomposition,

Lq ¼ Ψ̄ðiγμDμ −mÞΨ
¼ Ψ̄ðiγμD̂μ −mÞΨþ g

2
X⃗μ · Ψ̄ðγμ ⃗tÞΨ

¼
X

p

�
Ψ̄pðiγμD̂p

μ −mÞΨp þ g
2
W⃗p

μ · Ψ̄pðγμτ⃗pÞΨp

�
;

D̂μ ¼ ∂μ þ
g
2i
⃗t · Âμ; D̂p

μ ¼ ∂μ þ
g
2i
τ⃗p · Âp

μ ; ð10Þ

where m is the mass, p denotes the color of the quarks, and
Ψp represents the three SU(2) quark doublets ([i.e., ðr; bÞ,
ðb; gÞ, and ðg; rÞ doublets] of the ðr; b; gÞ quark triplet.
Notice that here we have suppressed the flavor
degrees [6,7].

The Abelian decomposition is expressed graphically in
Fig. 1. Although the decomposition does not change QCD,
it reveals the important hidden structures of QCD. In
particular, it shows the existence of two types of gluons,
the neuron and chromon. In the literature, the Abelian

(a)

(b)

FIG. 1. The Abelian decomposition of the gauge potential. In
(a), it is decomposed to the restricted potential (kinked line) and
the chromon (straight line). In (b), the restricted potential is
further decomposed to the neuron (wiggly line) and the monopole
(spiked line).
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decomposition is known as the Cho decomposition, Cho-
Duan-Ge (CDG) decomposition, or Cho-Faddeev-Niemi
(CFN) decomposition [14–17].
The Abelian decomposition has deep implications. In the

perturbative regime, this tells that the Feynman diagram can
be decomposed in such a way that the color conservation is
explicit. This is graphically shown in Fig. 2. Notice that
here the monopole does not appear in the Feynman
diagram, because it is not a dynamical degree. Moreover,
it makes the condensation so that it has no role in the
perturbative regime.
A remarkable feature of the decomposition of the

Feynman diagram is that the color conservation is explicit
in the decomposition. There are no three-point vertex made
of two or three neuron legs, and no four-point vertex made
of three or four neuron legs. This is because the color
conservation forbids them.
As importantly, this shows that neurons and chromons

play totally different roles. The neuron, just like the photon
in QED, provides the binding. But the chromons, just like
the quarks, become the colored source. This could be shown
graphically by the Feynman diagrams of two neuron binding
and chromon-antichromon binding shown in Fig. 3.
Notice that the two neuron binding in Fig. 3(a) looks

totally different from the other two bindings. The leading
order of this binding is of the order of Oðg4Þ, while the
leading order of the other two in 3(b) and 3(c) is of the order
of Oðg2Þ. Moreover, the neuron binding looks very much
like two photon binding in QED, while the chromon-
antichromon binding look just like the quark-antiquark
binding in QCD.
This strongly implies that the neurons may not be viewed

as the constituent of hadrons. In contrast, the chromon
binding strongly implies that they, just like the quarks,
become the constituent of hadrons. This changes the quark
and gluon model to the quark and chromon model, which
provides a new picture of hadrons [18,19].

III. MONOPOLE CONDENSATION

In the nonperturbative regime, the Abelian decomposi-
tion allows us to proves the Abelian dominance, or more
precisely, the monopole dominance, that the monopole
plays the central role in color confinement. The logic for the
monopole dominance is the following. First, the chromons
(being colored) are destined to be confined, so that they can
not be the confining agent. This is because the prisoners
(who are confined in jail) can not play the role of the jailer
(who confines the prisoners).
This means that only the restricted potential plays the

important role in the confinement, which proves the
Abelian dominance that ’tHooft proposed [1,2,4].
Indeed, theoretically, we can show rigorously that only
the restricted potential contributes to the Wilson
loop integral which produces the area law for the
confinement [5].
But the restricted potential is made of two parts, the

nontopological neuron and topological monopole. On
the other hand, Fig. 3 tells that the neuron in QCD plays
the role of the photon in QED. This implies that it can not
play any role in the confinement. This tells that only the
monopole can confine the color [6,7].
Indeed, with the decomposition, we can rigorously prove

that only the restricted potential contributes to the area law
in the Wilson loop integral [5]. This is the Abelian
dominance. This can be confirmed numerically in lattice
QCD. Implementing the Abelian decomposition on the
lattice, we can calculate the Wilson loop integral with the
full potential, the restricted potential, and the monopole
potential separately, and show that all three potentials
produce exactly the same linear confining force
Fig. 4 [20,21]. The lattice result for SU(3) QCD is shown
in Fig. 4. This tells that the monopole plays the crucial role
in the confinement.
On the other hand, this lattice result does not tell how the

monopole can confine the color. To show that the mono-
pole confines the color by dual Meissner effect as Nambu

(a)

(b)

(c)

FIG. 2. The decomposition of the Feynman diagrams in SU(3)
QCD. In (a) and (b), the three-point and four-point gluon vertices
are decomposed, and in (c), the quark-gluon vertices are
decomposed. Notice that the monopole does not appear in the
Feynman diagrams because it describes topological degree, not
dynamical degree.

(a)

(b)

(c)

FIG. 3. The possible Feynman diagrams of the neurons and
chromons. Two neuron interaction is shown in (a), chromon-
antichromon interaction is shown in (b), and quark-antiquark
interaction is shown in (c).
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and Mandelstam conjectured, we have to demonstrate the
monopole condensation in QCD. The Abelian decompo-
sition provides us an ideal platform to calculate the QCD
effective potential and prove the monopole condensation
gauge independently. This is because it puts QCD to the
background field formalism, since we can treat the
restricted part and the valence part as the slow varying
classical background and the fast moving quantum
fluctuation [22,23].
Indeed, choosing the monopole potential as the back-

ground and integrating out the chromons in (9) gauge
invariantly, we can calculate the QCD effective potential,
which has the Weyl symmetric unique minimum described
by the monopole condensation. This prove that the true
QCD vacuum is given by the gauge invariant monopole
condensation [6,7].

IV. NEURON JET AND CHROMON JET

The Abelian decomposition is not just a theoretical
proposition. There are many ways to test it experimentally.
For example, we can test it by showing the quark
and chromon model describes the correct hadron
spectrum [18,19]. Or we can test it by demonstrating that
the monopole condensation does describe the true QCD
vacuum [6,7]. But these are indirect tests. If QCD really has
two types of gluons, we should be able to confirm this
directly by experiment.
During the last twenty years, there has been huge

progress on jet structure in QCD. New ways to tag different
jets have been developed [24–26]. Moreover, new features
of the quark and gluon jet substructures have been
known [27–30]. Now, we argue that these progresses could
allow us to confirm the existence of two types of gluon jets
experimentally.
Early experiments that established the existence of the

gluon are based on planar three jet events made of two
quark jets and one gluon jet [10]. So the problem here is to
divide the gluon jets to neuron jet and chromon jet. For this,

we have two questions. First, how many of them are the
neuron jet? Second, how can we differentiate the neuron jet
from the chromon jet to identify the existence of the
neuorn jet?
The first question is easy. Since two of the eight gluons

are neurons, one quarter of the gluon jet should be the
neuron jet, and three quarters of them should be the
chromon jet. The difficult problem is the second question.
Actually, the problem here is not just how to separate the
neuron jet from the chromon jet. Since we have the quark
jet as well in QCD, we have to tell how to tag all three jets,
the neuron jet, the chromon jet, and the quark jet,
separately. So we have to know the difference of each
jet from the other two.
To tell the difference, it is important to remember that the

gluons and quarks emitted in the p-p collisions evolve into
hadron jets in two steps, the soft gluon radiation of the hard
partons described by the perturbative process and the
hadronization described by the nonperturbative process.
The hadronization in the second step is basically the same
in all three jets. The difference comes from the parton
shower (the soft gluon radiation) of the hard partons in the
first step [8]. This is shown in Fig. 5 in the first order
interaction.
Clearly, the neuron jet (the soft gluon radiation of hard

neuron) shown in Fig. 5(a) has only two chromon radiation
with no other soft gluon radiation, which exists in both the
chromon jet Fig. 5(b) and the quark jet Fig. 5(c). But the
chromon and quark jets have the neuron and chromon
radiations, and qualitatively look similar. The only differ-
ence is that the chromon jet has four point vertex, while the
quark jet has only three point vertex. As importantly, the
leading order of the soft gluon radiation of neuron shown in
Fig. 5(a) is of Oðg2Þ, while that of the chromon and quark
shown in Figs. 5(b) and 5(c) are of the order of OðgÞ. This
is a direct consequence of the decomposition of the
Feynman diagram shown in Fig. 2.
This tells that the neuron jet is almost like the photon jet,

which is fundamentally different from the chromon and

(a)

(b)

(c)

FIG. 5. The parton shower (the soft gluon radiation) of hard
partons. The neuron jet shown in (a) is qualitatively different from
the chromon jet and the quark jet shown in (b) and (c), while the
chromon and quark jets are similar.

FIG. 4. The SU(3) lattice QCD calculation, which establishes
the monopole dominance in the confining force in Wilson loop.
Here, the confining forces shown in full, dashed, and dotted lines
are obtained with the full potential, the Abelian potential, and the
monopole potential, respectively.
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quark jets. This strongly suggests that the neuron jet must
have different jet shape, different from the chromon and
quark jets.
Intuitively, we could imagine that the neuron jet is sharp

with relatively small jet radius compared to the chromon
jet. This is because the neuron has only chromon-
antichromon radiation, while the chromon has three more
soft gluon radiations (as well as the chromon-antichromon
radiation). And this could only broaden the jet. This is
obvious from Fig. 5. This strongly implies that the neuron
jet can not be broader than the chromon jet. But, of course,
to find how much sharp the neuron jet is, we definitely need
the numerical simulation.
Moreover, this also strongly implies that the neuron jet

should have different (charged) particle multiplicity, con-
siderably smaller than that of the quark and/or chromon
jets. This must also be clear from Fig. 5, which shows that
the neuron has weaker [of the order Oðg2Þ] soft gluon
radiation than the chromon and quark.
Another important feature of the neuron jet is that it has

different color flow. Clearly, the chromons and quarks carry
color charge, but the neurons are color neutral. So the
neuron jet must have different color flow. In fact, Fig. 5 tells
that the color flow of the neuron jet generates an ideal color
dipole pattern, but the other two jets have distorted dipole
pattern.
The above observations show that the neuron jet must be

quantitatively different from the chromon and quark jets,
and that we should be able to confirm this experimentally.
To quantify the differences, of course, we need more
serious theoretical calculations and numerical simulations.
For instance, we need to implement the Abelian decom-
position in the existing PYTHIA and FastJet programs, and
find how the numerical simulations predict the differences
between the neuron and chromon jets.
For this, we have to know the color factors of the neuron

and chromon jets, one of the most important quantities that
determines the characters of the jet. It has been well known
that the parton shower (the soft gluon radiation) of the
quark and gluon jets are proportional to their color factors
CF ¼ 4=3 and CA ¼ 3 in the eikonal approximation, and
that the quark/gluon tagging performance crucially depends
on their ratio CA=CF. This means that it is important to
know the neuron and chromon color factors.
Onemight think that the neurons have no color factor, but

this is not so. Although they are color neutral, they are not
color singlet. So they have finite color factor. But at the
moment, it appears unclear if one can calculate the neuron
and chromon color factors from the first principle,
because the color gauge symmetry is replaced to the
24-element color reflection symmetry after the Abelian
decomposition [1,2,6,7]. On the other hand, from the fact
that the gluon color factor is given by the trace of the
quadratic Casimir invariant made of the eight gluon gen-
erators, we could assume the neuron color factor to be the

trace of the quadratic Casimir invariant corresponding to the
neuron generators. In this case, we can easily calculate the
neuron and chromon color factors. Since each of the eight
gluon generators contributes equally to the gluon color
factor, we can deduce the neuron color factors to be 3=4, one
quarter of the gluon color factor 3. By the same reason, we
can say that the chromon color factor must be 9=4. A more
intuitive way to understand this comes from the simple
democracy of the gauge interaction. Since the neurons
constitute one quarter of eight gluons, their color factor
must be one quarter of the gluon color factor 3, that is 3=4.
According to the above reasoning, the color factor ratio

of the quark, chromon, and neuron jets should be
Cq∶ Cc∶Cn ¼ 4=3∶9=4∶3=4 ≃ 1.78∶3∶1, since the quark
color factor is given by CF ¼ 4=3. If this is so, the recent
experiments that separated the quark jet from the gluon jet
based on the color factor ratio CA=CF ¼ 9=4 need to be
completely reanalyzed [24–26].
In this respect, we notice two interesting reports that

could support the above interpretation. The reanalysis of
DELPHI eþe− three jet data at LEP strongly indicates that
actual CA=CF could be around 1.74, much less than the
popular value 2.25 but close to our prediction Cc=Cq ¼
1.69 [31,32]. Moreover, the pp̄ DØ jets experiment at
Fermilab Tevatron shows that the quark to gluon jets
particle multiplicity ratio is around 1.84, again close to
our prediction 1.69 [33]. They could be an indication that
the observed gluon jets are indeed the chromon jets.
If this is true, one might ask what are the gluon jets

identified by ATLAS and CMS. Probably they are the
chromon jets, because the chromon jet has the character-
istics of the known gluon jet. This is evident from Fig. 5.
Perhaps a more interesting question is why they have not
found the neuron jet. There could be two explanations.
First, they have not searched for the neuron jet yet, because
they had no motivation to do that. Or they might have
misidentified some of the neuron jets as the quark jet. This
is because the color factor of neuron and quark jets are not
much different. This tells that we need a more careful
analysis of quark and gluon jets.
A simple way to search for the neuron jet is to

concentrate on the gluon jet production process like
H → gg and to try to separate the neuron jet from the
chromon jet. In an idealized setup with eþe− collision, we
can have the quark and gluon jets separately [30],

quark jet∶ eþe− → γ=Z → uū; dd̄; ss̄;

gluon jet∶ eþe− → H → gg; ð11Þ

when we focus on the light quarks. Similarly, in the pp
collision we have [30]

quark enriched jet∶ pp → Z þ jet;

gluon enriched jet∶ pp → dijet: ð12Þ
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In this case, we could forget about the quark jet and
concentrate on the gluon (enriched) jet, and try to separate
the neuron jet from the chromon jet. In principle, this could
be simpler for two reasons. First, the parton shower (the
soft gluon radiation) of the neuron and chromon jets shown
in Fig. 5 is totally different. Second, the ratio of the color
factors of the neuron and chromon jets becomes bigger
Cc=Cn ¼ 3. This strongly implies that about one quarter of
the gluon (enriched) jet must be the neuron jet, which has
sharper shape than the other and has much less charged
particle multiplicity and ideal color dipole pattern.
Independent of the details on the differences between the

neuron and chromon jets, however, we like to emphasize that
in principle there is a simple and straightforward way to
confirm the existence of two types of gluon jets from the
existing jet data. This is because, independent of what is
the neuron jet and what is the chromon jet, one quarter of the
existing gluon jets should actually have different jet shape
(the sphericity), particle multiplicity, and color dipole pat-
tern. If this is so, we can simply plot the jet shape (the solid
angle) and/or charged particle multiplicity of all existing
gluon jets, and find the gluon jet distribution made of two
peaks populated by one quarter and three quarters of the jets.
The expected gluon jet distribution is shown in Fig. 6. In

this figure we have assumed that the distribution of neuron
and chromon is Gaussian, and plot the expected gluon jet
distribution when the neuron peak is 1, 2, and 3 standard
deviation away from the chromon peak. Notice that the
shape of the overall gluon jet distribution crucially depends
on the distance between the two peaks. For instance, when
the distance between the two peaks becomes three standard
deviation or more, the two peaks are well separated.
But when the distance becomes two standard deviation
or less, the neuron peak is submerged completely under the
chromon peak as shown in Fig. 6. This strongly indicates
that the neuron jet could easily be left unnoticed in the
gluon jet analysis, when the distance between the neuron
and chromon peaks becomes less than two standard
deviation. The exact size (the solid angle) and particle

multiplicity (number of particles) of the neuron and
chromon jets could be predicted implementing the
Abelian decomposition in the PYTHIA and FastJet. But
independent of the details the characteristic feature of
the above gluon jet distribution is that it is asymmetric
(tilted) against the peak axis. This tells that the asymmetry
(tilt) of the gluon distribution against the peak axis is a
strong indication that there are two gluon jets. This is the
most important qualitative feature of the above analysis.
This tells that, without trying to identify the neuron jet

from the chromon jet, we could tell the existence of the
neuron jet in the gluon jet distribution checking if the gluon
distribution is asymmetric against the peak axis or not,
from the existing gluon jet data. This asymmetry could be
an unmistakable indication that there are indeed two types
of gluons, the neuron and chromon.
A straightforward way to do this is to use the existing

2071 gluon jet events of ALEPH data coming from eē →
Z → bb̄g three jet events [34], find out the distribution of
the gluon jet on the sphericity and/or particle multiplicity,
and see if the gluon jet has the predicted distribution shown
in Fig. 6. In principle, this could be done without much
difficulty.
One advantage in searching for the neuron jet is that we

do not need any new experiment. LHC produces billions of
hadron jets in a second, and ATLAS and CMS have already
filed up huge data on jets. Moreover, DESY, LEP, ALEPH,
and Tevatron have old data on three jet events (the gluon
jets), which we could use to confirm the existence of the
neuron jet. Here again, the simple number counting
strongly suggests that one quarter of the gluon jets coming
from the three jets events could actually be the neuron jets
which do not fit to the conventional gluon jet category.

V. DISCUSSION

The gauge potential of QCD is thought to represent the
gluons, but the role of gluons in QCD has been confusing.
On the one hand, they are supposed to provide the binding
of the (colored) quarks. But at the same time, they are
supposed to play the role of the constituent of hadrons,
because they are colored. The Abelian decomposition tells
that there are two types of gluons, the binding gluons and
the valence gluons, that play different roles.
As we have emphasized, the fact that there should be two

types of gluons is evident from the simple group theory.
Group theory tells that two of eight gluons must be color
neutral. The question is how to separate the neutral gluons
gauge independently. The Abelian decomposition does
the job [1,2]. As importantly, it tells that the Abelian
(restricted) potential contains not only the neurons but also
the topological monopole part, which plays the crucial role
to retain the full non-Abelian gauge degrees of freedom to
the restricted potential.
This clarifies the role of gauge potential in QCD. The

neurons andmonopole potential together bind and confine the

FIG. 6. The expected gluon jet distribution against the jet shape
(the sphericity) and/or the particle multiplicity. Here we have
assumed that the distribution is Gaussian, and plotted the overall
gluon distribution when the distance between two peaks becomes
1, 2, and 3 standard deviations.
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colored objects with the monopole condensation [6,7], but
the chromons play the role of constituent of hadrons [18,19].
In this paper, we have argued that the existence of two

types of gluon could actually be confirmed by experiment
and proposed intuitive idea to verify this. Of course, to
verify this experimentally, we need more concrete predic-
tions and numerical simulations. But this is beyond the
scope of this paper, because our aim here is to present the
theoretical foundation why QCD must have two types of
gluon, discuss the experimental plausibility of neuron and
chromon jet tagging, and suggest basic idea how we can
actually do this without ambiguity.
In fact, experimentally the quark/gluon tagging is a very

complicated and ongoing issue that is not completely
settled yet. It is well known that the gluon tagging has
many unclear and unresolved problems [29,30]. In par-
ticular, the success rate of the gluon jet identification is
known to be at best 70%. We believe that this could be, at
least partly, due to the existence of two types of gluon jet. In
fact, we interpret that this strongly implies that about 30%
could actually be different jet, i.e., the neuron jet. To test
the plausibility of this suggestion, we propose two step
analysis. First, we could look at the existing gluon jet data
and check if there are events which do not fit to the well
known predicted characters of the gluon jet, in particular,
the jets which have sharper radius. Second, if we confirm
this, we could try to identify them as the neuron jet.
Our prediction tells that about one quarter of the gluon

jets should actually be the neuron jets which have sharper
jet shape, less charged particle multiplicity, and ideal color
dipole pattern. This could be done without much difficulty.
After we confirm this, we could try to do the neuron and
chromon jets tagging. A nice thing about this proposal is
that we do not need any new experiment. All that we have
to do is to reanalyze the existing old data at LHC.
To do that, however, we have to have quantitative

predictions based on the numerical simulations on the
characteristic features of the neuron and chromon jets. For

this, we have to modify the existing PYTHIA and/or FastJet

programs implementing the Abelian decomposition and
have new Monte Carlo simulations on the neuron and
chromon jets based on the soft gluon radiations shown in
Fig. 5 and the new color factors of the neuron and chromon
jets. On this, the recent machine learning algorithm could
also be very useful for us to find the characteristic features
of the neuron and chromon jets [29,30]. But this could
take time.
What one can do immediately is trying to confirm the

existence of two types of gluon jet based on the gluon
distribution against the jet shape (the sphericity) and/or
particle multiplicity shown in Fig. 6, using the existing
ALEPH data [34]. Currently we are working on this and
expect to have the result soon [35]. The confirmation of the
existence of two types of gluons could be a giant step
forward that will help us to identify the existence of the
neuron and chromon jets successfully.

ACKNOWLEDGMENTS

The work is supported in part by National Research
Foundation of Korea funded by the Ministry of Science and
Technology (Grant No. 2022-R1A2C1006999), National
Natural Science Foundation of China (Grants No.
11975320 and No. 12175320), and by the Center for
Quantum Spacetime, Sogang University.

Note added.—Recently, it is suggested by the MIT high
energy experimental group that the anomaly in gluon
distribution observed in heavy ion collision at LHC could
be explained by the existence of two types of gluons [36].
This is probably because neuron undergoes less gluon
quenching than the chromon in the collision and thus,
could escape the quark-gluon plasma fireball more easily.
One of us (YMC) thanks Yen-Jie Lee for the constructive
discussion.
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