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We analyze the neutral meson mixing by directly solving the dispersion relation obeyed by the mass and
width differences of the two meson mass eigenstates. We solve for the parameters x and y, proportional to
the mass and width differences in the charm mixing, respectively, taking the box-diagram contributions to
xðsÞ and yðsÞ at large mass squared s of a fictitious D meson as inputs. The SU(3) symmetry breaking is
introduced through physical thresholds of different D meson decay channels for yðsÞ. These threshold-
dependent effects, acting like nonperturbative power corrections in QCD sum rules, stabilize the solutions
of yðs ¼ m2

DÞ with the D meson mass mD. We then calculate xðsÞ through the dispersive integration
of yðsÞ, and show that our predictions xðm2

DÞ ≈ 0.21% and yðm2
DÞ ≈ 0.52% are close to the data in both

CP-conserving and CP-violating cases. It is observed that the channel containing dikaon states provides
the major source of SU(3) breaking, which enhances xðm2

DÞ and yðm2
DÞ by four orders of magnitude relative

to the perturbative results. We also predict the coefficient ratio q=p involved in the charm mixing with
jq=pj − 1 ≈ 2 × 10−4 and Argðq=pÞ ≈ 6 × 10−3 degrees, which can be scrutinized by precise future
measurements. The formalism is extended to studies of the BsðdÞ meson mixing and the kaon mixing, and
the small deviations of the obtained width differences from the perturbative inputs explain why the above
mixing can be understood via short-distance dynamics. We claim that the puzzling charm mixing is
attributed to the strong Glashow-Iliopoulos-Maiani suppression on perturbative contributions, instead of to
breakdown of the quark-hadron duality, which occurs only at 15% level.

DOI: 10.1103/PhysRevD.107.054023

I. INTRODUCTION

It has been a long-standing challenge to understand the
observed large D meson mixing, which is manifested by
the parameters x and y of order of 10−3 [1]. The former
(latter) is defined in terms of the mass (width) difference
between the two neutral D meson mass eigenstates. The
inclusive analyses based on the heavy-quark effective field
theory [2,3] led to tiny x and y due to the strong Glashow-
Iliopoulos-Maiani (GIM) suppression [4]. The inclusion
of next-to-leading-order QCD corrections yielded x ∼ y ≃
6 × 10−7 [5], which fall short of the experimental data by
four orders of magnitude. It was speculated [6–8] that
contributions from higher-dimensional operators might
circumvent the GIM suppression, and enhance x and y
significantly. This speculation, requiring information on
numerous nonperturbative matrix elements, has not been
verified quantitatively. On the other hand, the exclusive
analyses, where the mixing parameter y is extracted from

data of hadronic D meson decays [7,9–18], accounted for
roughly a half value of y by summing up the contributions
from the two-body modes [16,18]. However, it is difficult
to estimate the effects from other multibody decays and
to explain x and y simultaneously in this data-driven
approach. For recent reviews on the charm mixing and
related subjects, refer to [19,20].
The above challenge has motivated our proposal to study

theDmeson mixing as an inverse problem, i.e., to solve the
dispersion relation obeyed by xðsÞ and yðsÞ for a fictitious
D meson with an arbitrary mass squared s [21]. The
function yðsÞ was separated into a high-mass piece and
a low-mass piece, with the former and xðsÞ at large s being
input from reliable perturbative computations of the box
diagrams [22–24]. The latter, treated as an unknown, was
derived from the integral equation constructed from the
dispersion relation. The unknown piece of yðsÞ was para-
metrized, and the involved parameters were fixed by the
best fit of its dispersive integral to the perturbative input. It
turned out that many solutions of yðsÞ, corresponding to
minima of the fit, were allowed as a consequence of the
ill-posed nature of an inverse problem, and those matching
the data were selected. Strictly speaking, the large x and y
obtained in [21] are not an unambiguous prediction.
Instead, the point is to demonstrate the existence of the
nontrivial correlated solutions for x and y, which, with
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magnitudes being much greater than from the box
diagrams [25], accommodate the large D meson mixing.
Nevertheless, the attempt in [21] based only on the
analyticity of physical observables is novel, and has been
extended to the constraint on the hadronic vacuum
polarization contribution to the muon-anomalous mag-
netic moment [26] and to the reformulation of QCD
sum rules for determining properties of the series of ρ
resonances [27], glueball masses [28], and the pion light
cone distribution amplitude [29].
We will improve our previous work on charm mixing

[21] by solving the dispersion relation directly, which sets a
stringent connection between the mixing parameters xðsÞ
and yðsÞ, without relying on a discretionary parametriza-
tion. The advantage of the inverse matrix method devel-
oped in [28] is that a unique and stable solution can be
attained before an ill-posed nature appears. The inputs xðsÞ
and yðsÞ at large s come from the perturbative contribu-
tions, which have been known to explain the observed BðsÞ
meson mixing satisfactorily [30–35]. It has been noticed
that the D meson mixing, strongly suppressed by the
GIM mechanism, is sensitive to nonperturbative SU(3)
symmetry-breaking effects [36] characterized by the
strange and down quark mass difference, and to Cabibbo-
Kobayashi-Maskawa (CKM)-suppressed diagrams with
bottom quarks in the loop. In our formalism the SU(3)
breaking is introduced through physical thresholds for yðsÞ,
which depend on final states of D meson decays, such as
4m2

K for the channel involving two strange quarks, mK
being the kaon mass. It will be illustrated that these
threshold-dependent pieces play a role of nonperturbative
condensate, i.e., power corrections in QCD sum rules [37],
which stabilize the solutions of yðs ¼ m2

DÞ solved from the
above inverse problem, mD being the D meson mass. The
function xðsÞ is then derived via the dispersive integration
of the obtained yðsÞ straightforwardly. We find that the
results of xðm2

DÞ and yðm2
DÞ are consistent with the data in

the CP-conserving case, as reasonable values for the bag
parameter and the mass ratio mD=mc associated with the
ðS − PÞðS − PÞ effective ΔC ¼ 2 operator are considered,
where mc is the charm quark mass, and S (P) denotes the
scalar (pseudoscalar) current.
It will be shown that the solution of yðsÞ from the

dispersion relation does not deviate from the corresponding
input much for each D meson decay channel actually. In
other words, the quark-hadron duality assumed in the
inclusive calculations is not broken severely for individual
channel. The contributions from the channel containing two
down quarks and the channel containing one down quark
and one strange quark remain similar, and cancel approx-
imately. The channel with two strange quarks, i.e., dikaon
states, provides the major source of the SU(3) breaking,
which enhances the net contribution to yðm2

DÞ from all
channels by four orders of magnitude relative to the
perturbative one. Our observation supports the postulation

[35] that a modest duality violation of about 20% accounts
for the huge distinction between the data and the predic-
tions for the charm mixing in the inclusive analyses. Once
the solutions of xðsÞ and yðsÞ for each channel are
available, it is straightforward to investigate CP violation
in the mixing by considering the imaginary parts of the
CKM matrix elements. It will be seen that the resultant
xðm2

DÞ and yðm2
DÞ are close to the data in the CP-violating

case, after the reasonable matrix element of the ðS − PÞ×
ðS − PÞ operator is taken into account. At the same time,
we predict the ratio q=p, where p and q are the coefficients
relating the D meson mass eigenstates to the flavor
eigenstates through a linear combination. The prediction
can be confronted by precise future measurements, and
employed to constrain new physics models.
We then extend the formalism to studies of the BsðdÞ

meson mixing and the kaon mixing. As mentioned before,
the former can be well-described in the heavy quark
expansion [30–33]. The latter has also been explored
intensively in perturbation theory based on the effective
Hamiltonian, and the relevant data have been understood to
some extent [38–40]. For example, it was demonstrated [40]
that short-distance contributions amount up to 89% of the
measuredmass difference for the kaonmixing. Hence, we do
not aim at precise evaluations for the above neutral meson
mixing, but at a general picture on the mixing mechanism,
and argue that they can be addressed in our framework
consistently and systematically. As expected, the solution of
the width difference is roughly equal to the corresponding
input for each involved decay channel, similar to what is
found in the D meson case. The major variation originates
from the CKMmatrix elements and the phase space allowed
for decay channels. It is obvious that the GIM suppression is
less effective in the BsðdÞ meson mixing with the different
CKM factors for the up and charm quark channels. The GIM
suppression is absent in the kaonmixing, because only the up
quark channel survives the phase space constraint. We thus
claim that the puzzling D meson mixing, in contrast to the
others, is attributed to the strong GIM suppression on the
perturbative contributions in the inclusive analyses, instead
of to breakdown of the quark-hadron duality.
The rest of the paper is organized as follows. In Sec. II

we start with the dispersion relation between the mixing
parameters xðsÞ and yðsÞ for a fictitious D meson, and
establish the integral equation for the unknown function
yðsÞ that incorporates appropriate boundary conditions at
physical thresholds of involved decay channels. The SU(3)
symmetry breaking effects which mimic nonperturbative
power corrections in QCD sum rules are identified. The
inverse matrix method to solve the integral equation is also
elaborated on. The equation is solved in Sec. III with the
perturbative inputs from the box diagrams responsible for
the charm mixing. The solution for yðsÞ is determined, via
whose dispersive integration the unknown function xðsÞ is
derived. The stability and reliability of the obtained xðm2

DÞ
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and yðm2
DÞ are justified. Our predictions for the relevant

observables in both the CP-conserving and CP-violating
cases are presented. We repeat the above procedures to the
BsðdÞ meson mixing and the kaon mixing, and highlight the
uniqueness of the D meson mixing in Sec. IV. Section V
contains the conclusion and outlook.

II. FORMALISM

The dispersive piece M12ðsÞ and the absorptive piece
Γ12ðsÞ of the analytical transition matrix elements, which
govern the time evolution of a fictitious D meson of
invariant mass squared s, satisfy the dispersion relation [15]

M12ðsÞ ¼
1

2π

Z
∞

4m2
π

ds0
Γ12ðs0Þ
s − s0

; ð1Þ

where the application of the principal-value prescription
to the right-hand side is implicit, and 4m2

π with the pion
massmπ is the threshold for hadronicDmeson decays. The
mass eigenstates jD1;2i ¼ pjD0i � qjD̄0i are written as the
linear combinations of the flavor eigenstates D0 and D̄0

with the coefficient ratio

q
p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M�

12 − iΓ�
12

2M12 − iΓ12

s
: ð2Þ

We adopt the phase convention CPjD0i ¼ −jD̄0i for the
CP transformation. The mass and width differences of the
D1;2 mesons define the mixing parameters [41]

x≡m2 −m1

Γ
¼ 1

Γ
Re

�
q
p
ð2M12 − iΓ12Þ

�
;

y≡ Γ2 − Γ1

2Γ
¼ −

1

Γ
Im

�
q
p
ð2M12 − iΓ12Þ

�
; ð3Þ

with the total decay width Γ, which reduce to

x ¼ 2M12

Γ
; y ¼ Γ12

Γ
; ð4Þ

in the CP-conserving case. The masses of the other quarks
maintain their physical values, so the fictitious D meson
decays into the allowed final states, as its mass crosses each
threshold.
We decompose the absorptive piece into

Γ12ðsÞ ¼
X
i;j

λiλjΓijðsÞ; ð5Þ

with the internal quarks i; j ¼ d, s, b, and λk ≡ VckV�
uk,

k ¼ d, s, b, being the products of the CKM matrix
elements. The component ΓijðsÞ, calculable perturbatively
at large s, approaches to the box-diagram contribution

Γbox
ij ðsÞ ¼ G2

Ff
2
Dm

3
WBD

12π2
Abox
ij ðsÞ; ð6Þ

where GF is the Fermi constant, fD is the D meson
decay constant, mW is the W boson mass and BD is the
bag parameter. The perturbative function Abox

ij combines
the results from the ðV − AÞðV − AÞ and ðS − PÞðS − PÞ
operators in the effective weak Hamiltonian [23],

Abox
ij ðsÞ ¼ π

2x3=2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2D − 2xDðxi þ xjÞ þ ðxi − xjÞ2

q

ð1− xiÞð1− xjÞ

×

��
1þ xixj

4

�
½3x2D − xDðxi þ xjÞ− 2ðxi − xjÞ2�

þ 2xDðxi þ xjÞðxi þ xj − xDÞ
�
; ð7Þ

which is symmetric under the exchange of the subscripts i
and j, i.e., Abox

ij ðsÞ ¼ Abox
ji ðsÞ. We have flipped the sign

of the formula in [23] to match the convention in Eq. (3).
In the above expression the variables are defined as
xi ¼ m2

i =m
2
W , mi being the mass of the quark i, and xD ¼

s=m2
W . Note that Abox

ij contribute up to Abox
dd (Abox

ds , Abox
ss ,

Abox
db , Abox

sb , Abox
bb ) allowed in the range s < ðmd þmsÞ2

[ðmdþmsÞ2≤ s<4m2
s , 4m2

s ≤ s < ðmd þmbÞ2, ðmd þ
mbÞ2 ≤ s < ðms þmbÞ2, ðmsþmbÞ2≤ s<4m2

b, 4m
2
b ≤ s].

Similarly, we decompose the dispersive piece into
M12ðsÞ ¼

P
i;j λiλjMijðsÞ. In principle, the dispersion

relation, as a result of QCD dynamics which has nothing
to do with the CKM factors, holds for each pair of the
components MijðsÞ and ΓijðsÞ. This fact was noticed in
[21], but was not implemented in the preliminary attempt
there. Though Γ12ðsÞ deceases fast enough at large s [21],
so that the dispersive integral on the right-hand side of
Eq. (1) converges, each component ΓijðsÞ grows like s3=2 as
indicated in Eq. (7). These divergent behaviors cancel in the
sum in Eq. (5), when the unitarity of the CKM factors is
imposed. We thus reformulate the dispersion relation,
starting with the contour integral for the analytical function
ΠijðsÞ ¼ MijðsÞ − iΓijðsÞ=2,

1

2πi

I
ds0

Πijðs0Þ
s − s0

¼ 0: ð8Þ

The contour in Eq. (8) consists of two pieces of horizontal
lines above and below the branch cut along the positive real
axis on the complex s0 plane, a circle of small radius r
around the pole s0 ¼ s located on the positive real axis, and
a circle CR of large radius R as depicted in Fig. 1. The
integral vanishes, since there is no pole in the contour,
which encloses only unphysical regions. The contribution
along the small clockwise circle yields Mij, and that
from the two pieces of the honrizontal lines leads to the
dispersive integral of Γij. Equation (8) then gives
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MijðsÞ ¼
1

2π

Z
R

mIJ

ds0
Γijðs0Þ
s − s0

þ 1

2πi

Z
CR

ds0
Πbox

ij ðs0Þ
s − s0

; ð9Þ

where mIJ represents the threshold mass squared of the
hadronic states contributing to Γij, such as mππ ¼ 4m2

π ,
mπK ¼ ðmπ þmKÞ2, mKK ¼ 4m2

K , mπB ¼ ðmπ þmBÞ2; ...
with the B meson mass mB. The unknown function ΓijðsÞ,
containing nonperturbative dynamics from the low s
region, will be solved from the dispersion relation. The
integrandΠij, taking values along the large clockwise circle
CR, can be safely replaced by the perturbative expression
Πbox

ij from the box-diagram computation.
The dispersive piece Mbox

ij ðsÞ and the absorptive piece
Γbox
ij ðsÞ associated with the box diagrams apparently

respect the dispersion relation,

Mbox
ij ðsÞ ¼ 1

2π

Z
R

mij

ds0
Γbox
ij ðs0Þ
s − s0

þ 1

2πi

Z
CR

ds0
Πbox

ij ðs0Þ
s − s0

;

ð10Þ

where mij is the threshold mass squared of the quark
states contributing to Γbox

ij , such as mdd ¼ 4m2
d, mds ¼

ðmd þmsÞ2, mss ¼ 4m2
s , mdb ¼ ðmd þmbÞ2; .... Because

a heavy neutral meson mixing can be well-described by
perturbative contributions, we approximate MijðsÞ by
Mbox

ij ðsÞ, i.e., equate Eqs. (9) and (10) at large enough s,
arriving at

Z
R

mIJ

ds0
Γijðs0Þ
s − s0

¼
Z

R

mij

ds0
Γbox
ij ðs0Þ
s − s0

; ð11Þ

where the box-diagram contributions from the large circle
CR on the two sides have canceled.
It has been emphasized [28] that the boundary condition

of an unknown function is crucial for the determination
of its solutions from a dispersion relation. As s is near a

threshold, the fictitious D meson decay is dominated by a
single mode D → PP, with P representing a light pseu-
doscalar meson of mass mP. For instance, the components
Γdd, Γds, and Γss are dominated by D → ππ, πK, and KK,
respectively, when the fictitious D meson mass approaches
the corresponding thresholds from above. The D → PP
decay width is proportional to pcjMj2=s, with pc being the
center-of-mass momentum of the pseudoscalar meson, and
the amplitude M ∝ s −m2

P in the naive factorization
assumption. It is then easy to acquire the power-law
behaviors pc ∼OðmPÞ, M ∼Oðm2

PÞ and Γij ∼Oðm3
PÞ

around the threshold s ∼Oðm2
PÞ. The naive factorization

assumption may not be reliable in the above low-mass
regions, but it is interesting to note that the obtained
observation is the same as deduced from the K → ππ
amplitude in chiral perturbation theory [15]. Certainly, the
above argument does not apply to the boundary conditions
of the components Γðd;s;bÞb, to which the states containing
heavy B mesons contribute; the similar reasoning leads to
Γdb ∼ Γsb ∼OðmPÞ at s ∼ ðmB þmPÞ2. Nevertheless, we
will assume the same threshold behaviors for the deriva-
tions of Γðd;s;bÞb, since their contributions to the D meson
mixing are negligible owing to the strong suppression by
the CKM factors as explicitly verified in the next section.
Following the procedure in [28], we introduce a sub-

tracted unknown function ΔΓij, which is related to the
original Γij via

ΔΓijðs;ΛÞ ¼ ΓijðsÞ − Γbox
ij ðsÞf1 − exp½−ðs −mIJÞ2=Λ2�g:

ð12Þ

The scale Λ characterizes the order of s, at which ΓijðsÞ
transits to the perturbative expression Γbox

ij ðsÞ. The sub-
traction term in Eq. (12) vanishes like ðs −mIJÞ2 ∼Oðm2

IJÞ
near the threshold s ∼OðmIJÞ, because Γbox

ij ðmIJÞ with
mIJ > mij is finite as implied by Eq. (7). Namely,
ΔΓijðs;ΛÞ exhibits the low-mass behavior the same as

ΓijðsÞ ∼Oðm3=2
IJ Þ. We have tested other choices of the

subtraction function, like 1 − exp½−ðs −mIJÞ3=Λ3�, which
diminishes more rapidly as s → mIJ and does not modify
the low-mass behavior of ΓijðsÞ either, and made sure that
our solutions for the mixing parameters alter by only few
percent. The function 1 − exp½−ðs −mIJÞ2=Λ2� in Eq. (12)
approaches to unity, i.e., ΔΓijðs;ΛÞ vanishes only at large
s ≫ Λ. In other words, the quark-hadron duality is not
postulated at any finite s in our formalism.
The subtraction term in Eq. (12) can be regarded as an

ultraviolet regulator for a dispersive integral mentioned in
[42]. The dispersive integral, formulated with the sub-
tracted unknown function, then converges, and Eq. (11) can
be rewritten as

FIG. 1. Contour considered in Eq. (8), where the thick line
represents the branch cut.

HSIANG-NAN LI PHYS. REV. D 107, 054023 (2023)

054023-4



Z
∞

mIJ

ds0
ΔΓijðs0;ΛÞ

s − s0

¼
Z

∞

mIJ

ds0
Γbox
ij ðs0Þ exp½−ðs0 −mIJÞ2=Λ2�

s − s0

þ
Z

mIJ

mij

ds0
Γbox
ij ðs0Þ
s − s0

; ð13Þ

where the upper bounds R have been pushed to infinity due
to the finiteness of the integrals. Note that an emitted W
boson can become real when s is large enough, and the
expression of Γbox

ij ðsÞ should be modified. As observed in
the next section, the scale Λ takes values of order of a few
GeV2, so the concerned high-mass region, greatly sup-
pressed by the exponential factor exp½−ðs0 −mIJÞ2=Λ2�, is
not important. Strictly speaking, the decay constant fD and
the bag parameter BD depend on the fictitious D meson
mass. However, the decay constants of the physical
pseudoscalar mesons do not vary much in the low-s region,
ranging fromm2

π ≈ 0.02 GeV2 tom2
Bs
≈ 29 GeV2, to which

Eq. (13) is relevant. That is, the value of fD does not matter
to the explanation of the 104 enhancement factor. The bag
parameters fluctuate only a bit in the range of s from m2

K ≈
0.25 GeV2 to m2

Bs
≈ 29 GeV2 as shown in the lattice

calculations [43–46]. Hence, it is numerically appropriate
to treat both fD and BD as constants in the dominant s0
region for Eq. (13).
We then remove the common constant prefactors on the

two sides of Eq. (13), and replace ΔΓijðs;ΛÞ [Γbox
ij ðsÞ] by

the function ΔAijðs;ΛÞ [Abox
ij ðsÞ] according to Eq. (6).

Since ΔAijðs;ΛÞ is a dimensionless quantity, it can be cast
into the form ΔAijðs=ΛÞ. Other ratios like s=mIJ can be
reexpressed as ðs=ΛÞðΛ=mIJÞ, so s=Λ is the only variable
of ΔAij. Equation (13) becomes, under the substitution
s0 → s0 þmIJ and the variable changes s −mIJ ¼ uΛ,
s0 ¼ vΛ, mij ¼ rijΛ and mIJ ¼ rIJΛ,

Z
∞

0

dv
ΔAijðvÞ
u − v

¼
Z

∞

0

dv
Abox
ij ðvΛþmIJÞe−v2

u − v

þ
Z

0

rij−rIJ
dv

Abox
ij ðvΛþmIJÞ

u − v
: ð14Þ

The lower bound of the second term on the right-hand side
represents the sources of nonperturbative dynamics with
mIJ ≠ mij, and of the SU(3) symmetry breaking with the
dependence ofmIJ on the hadronic states labeled by IJ. The
solutions for the mixing parameters, as physical observ-
ables, should be insensitive to the transition scale Λ, which
is introduced through the ultraviolet regulation for the
dispersive integrals. It will be elaborated that the second
term on the right-hand side of Eq. (14) plays the role of
nonperturbative condensate, i.e., power corrections in QCD

sum rules, which stabilize the solutions with respect to
the variation of Λ. When Λ increases, the magnitude of the
first integral on the right-hand side grows, for Abox

ij behaves
monotonically with s. On the contrary, the second integral
picks up values of Abox

ij at lower s specified by the
integration interval, where Abox

ij changes slowly. The
shrinking of the integration interval with Λ yields stronger
reduction, such that the magnitude of the second integral
decreases. It is possible that the changes of the two terms
compensate each other, and stable solutions may exist in a
window ofΛ, which are then identified as our results for the
mixing parameters. The numerical analysis to be performed
in the next section does reveal the stability of the solutions.
Viewing the boundary condition of ΔAijðvÞ ∼ v3=2 at

v → 0, we expand it in terms of the generalized Laguerre

polynomials LðαÞ
n ðvÞ for the parameter α ¼ 3=2,

ΔAijðvÞ ¼
XN
n¼1

aðijÞn vαe−vLðαÞ
n−1ðvÞ; ð15Þ

up to degree N − 1with the unknown coefficients aðijÞn . The
generalized Laguerre polynomials obey the orthogonality

Z
∞

0

vαe−vLðαÞ
m ðvÞLðαÞ

n ðvÞdv ¼ Γðmþ αþ 1Þ
m!

δmn: ð16Þ

The number of polynomials N should be as large as
possible, such that Eq. (15) best describes the subtracted
unknown function, but cannot be too large in order to avoid
the appearance of an ill posed nature. Because ΔAijðvÞ
decreases quickly enough with v, as designed in Eq. (12),
the major contribution to its integral arises from a finite
range of v. It is then justified to expand the integral on the
left-hand side of Eq. (14) into a series in 1=u up to the
power N for a sufficiently large juj by inserting

1

u − v
¼

XN
m¼1

vm−1

um
: ð17Þ

The right-hand side of Eq. (14) can be expanded into a
power series in 1=u: the exponential factor e−v

2

in the first
integral diminishes the contribution from large v, and v is
restricted in a finite interval in the second integral.
Substituting Eqs. (15) and (17) into Eq. (14), and

equating the coefficients of 1=um in the power series on
the two sides of Eq. (14), we construct the matrix equation
UaðijÞ ¼ bðijÞ with the matrix elements

Umn ¼
Z

∞

0

dvvm−1þαe−vLðαÞ
n−1ðvÞ; ð18Þ

where m and n run from 1 to N. We have Umn ¼ 0 actually
for n > m with the orthogonality condition in Eq. (16).
The vector
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aðijÞ ¼ ðaðijÞ1 ; aðijÞ2 ;…; aðijÞN Þ; ð19Þ

collects the unknowns. The power expansion on the right-

hand side of Eq. (14) gives the coefficient bðijÞm of the term
1=um, i.e., the mth element of the input vector bðijÞ,

bðijÞm ¼
Z

∞

0

dvvm−1Abox
ij ðvΛþmIJÞe−v2

þ
Z

0

rij−rIJ
dvvm−1Abox

ij ðvΛþmIJÞ: ð20Þ

One can then solve for the vector aðijÞ through aðijÞ ¼
U−1bðijÞ by applying the inverse matrix U−1. The existence
of U−1 implies the uniqueness of the solution for aðijÞ. An
inverse problem is usually ill posed; namely, some elements
of U−1 rise fast with its dimension. Nevertheless, the
convergence of Eq. (15) can be achieved at a finite N,
before U−1 goes out of control. The difference between an
obtained solution and a true one produces a correction to

Eq. (14) only at power 1=uNþ1, and the coefficients aðijÞn

built up previously are not altered by the inclusion of an
additional higher-degree polynomial into the expansion in
Eq. (15), because of the orthogonality condition in Eq. (16).
The convergence of solutions in the polynomial expansion
and their insensitivity to Λ will validate our approach,
which is thus free of tunable parameters.
We get AijðsÞ from ΔAijðs;ΛÞ by adding back the

subtraction term, and the solution

yðsÞ ¼ G2
Ff

2
Dm

3
WBD

12π2Γ

X
i;j

λiλjfΔAijðs;ΛÞ þ Abox
ij ðsÞ

× ½1 − e−ðs−mIJÞ2=Λ2 �g; ð21Þ

in which only the components withmIJ < m2
D contribute to

the physical value yðm2
DÞ. In principle, one can evaluate

xðsÞ by inserting Eq. (21) into Eq. (1). Note that the
integration of the subtraction term to s → ∞ in Eq. (1)
develops divergences, which ought to cancel in the sum-
mation over i, j. This delicate cancellation renders numeri-
cal outcomes unstable. A trick is to utilize the facts that the
contributions to xðsÞ and yðsÞ from the box diagrams
satisfy the dispersion relation in Eq. (10), and that they are
four orders of magnitude smaller than our solutions as seen
later. We then have

xðsÞ ¼ G2
Ff

2
Dm

3
WBD

12π3Γ

X
i;j

λiλj

�Z
∞

mIJ

ds0

s − s0
½ΔAijðs0;ΛÞ

− Abox
ij ðs0Þe−ðs−mIJÞ2=Λ2 � þ

Z
mij

mIJ

ds0

s − s0
Abox
ij ðs0Þ

�
;

ð22Þ

where the integrals of Abox
ij ðs0Þ in the interval ½mij;∞Þ have

been dropped in the light of the above argument. It is
obvious that each term on the right-hand side of Eq. (22) is
convergent. Our formalism can be extended to investiga-
tions of other neutral meson mixing straightforwardly with
appropriate replacements of quark flavors, hadronic states,
and the CKM matrix elements.

III. D MESON MIXING

We first conduct the numerical analysis of the D meson
mixing using the method developed in the previous section
with the Fermi constant GF ¼ 1.1663788 × 10−5 GeV−2,
the decay constant fD ¼ 0.213 GeV, the D meson decay
width Γ ¼ 1.60 × 10−12 GeV (corresponding to the life-
time τ ¼ 410.3 × 10−15 s), the masses mD ¼ 1.865 GeV,
md ¼ 0.005 GeV, ms ¼ 0.093 GeV, mb ¼ 4.8 GeV, and
mW ¼ 80.377 GeV, the Wolfenstein parameters λ ¼ 0.225,
A ¼ 0.826, ρ̄ ¼ 0.159, and η̄ ¼ 0.348 for the CKM matrix
elements [47], and the typical bag parameter BD ≈ 1. The
unitarity of the CKM matrix turns Eq. (5) for s ¼ m2

D into

Γ12ðm2
DÞ ¼ λ2s ½Γddðm2

DÞ − 2Γdsðm2
DÞ þ Γssðm2

DÞ�
þ 2λsλb½Γddðm2

DÞ − Γdsðm2
DÞ� þ λ2bΓddðm2

DÞ;
ð23Þ

which indicates clearly that the charm mixing is sensitive to
the flavor symmetry breaking. Substituting Eq. (6) from the
box diagrams into the above expression, we find in the
CP-conserving case, where only the real part of the CKM
matrix element Vub is considered, that the λsλb piece is
positive with its magnitude being larger than of the negative
λ2s piece. The λ2b piece, being of order of 10

−8, is negligible
compared with the first two, which are of order of 10−7. In
total, the box diagrams contribute 3.7 × 10−7 to the
parameter y for the D meson mixing, lower than the
measured value by four orders of magnitude.
We solve for the component ΓdsðsÞ in the decomposition

of Γ12ðsÞ in Eq. (5) as a demonstration, computing the
matrix U in Eq. (18) and the input vector bðdsÞ in Eq. (20)
for a given transition scale Λ, and deriving the unknown
vector aðdsÞ ¼ U−1bðdsÞ. The dimension N of the matrix U
is increased one by one to search for a convergent
expansion in Eq. (15). When the convergence is attained,
the solutions of aðdsÞ and of ΔAdsðs;ΛÞ become stable with
respect to the variation of N, which are then selected to

form the solutions of ΓdsðsÞ in Eq. (12). We list aðdsÞn for
Λ ¼ 5 GeV2 up to n ¼ 23 below,

105 × ðaðdsÞ1 ; aðdsÞ2 ; aðdsÞ3 ;…; aðdsÞ12 ; aðdsÞ13 ; aðdsÞ14 ;…; aðdsÞ22 ; aðdsÞ23 Þ
¼ ð4.04;2.47;1.45;…;−2.08× 10−2;−4.59× 10−3;

9.25× 10−3;…;7.49× 10−2;1.04Þ; ð24Þ
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whose magnitudes keep decreasing till n ¼ 13, then

increase with n, and aðdsÞ23 becomes as large as the first

few coefficients. The small ratio jaðdsÞ13 =aðdsÞ1 j ≈ 10−3 marks
a satisfactory convergence of the series up to n ¼ 13, and
the ill posed nature emerges gradually afterwards. We
display the functions ydsðsÞ≡ ΓdsðsÞ=Γ corresponding to
N ¼ 3, 8, 13 and 23 for the expansion in Eq. (15) in Fig. 2.
The dependencies on s match the pattern of Eq. (24); the
curve of N ¼ 3 differs from those of N ¼ 8 and N ¼ 13,
which coincide with each other approximately. In fact, the
curves for N around 13, including N ¼ 11–15, overlap
perfectly, confirming the convergence of the expansion in
N. The curve of N ¼ 23 with obvious oscillations signals
that the matrix elements of U−1 have gone out of control.
The above examination suggests that N ¼ 13 is the optimal
choice, and the corresponding ydsðsÞ is the solution for the
given Λ ¼ 5 GeV2.
Repeating the steps, we determine the solutions of

the components ΓddðsÞ and ΓssðsÞ with the optimal
choices N ¼ 16 and N ¼ 10, respectively, for the given
Λ ¼ 5 GeV2. The results of ΓijðsÞ are compared with
the inputs Γbox

ij ðsÞ in terms of their ratios over the total
width Γ in Fig. 3. It is seen that the solutions maintain the
monotonic increase of the input functions with s basically,
but the detailed behaviors have been modified by the

physical thresholds. For yðboxÞdd ðsÞ≡ ΓðboxÞ
dd ðsÞ=Γ, the

hadron-level threshold 4m2
π and the quark-level threshold

4m2
d are both tiny, so the modification is minimal as shown

in Fig. 3(a). The thresholds ðmπ þmKÞ2 and 4m2
K for yds

and yss ≡ ΓssðsÞ=Γ at the hadron level are not only much
greater than ðmd þmsÞ2 and 4m2

s at the quark level,
respectively, but sizable. Therefore, the difference between
the solutions and the inputs is more salient, as exhibited in
Figs. 3(b) and 3(c). The solutions stay vanishing till s
crosses the physical thresholds, such that their magnitudes
at higher s must be enhanced in order to compensate the
loss at lower s, if the integral on the left-hand side of
Eq. (11) remains equal to the right-hand side. This also
explains why the enhancement is the most prominent in
yssðsÞ, which is about 15% around the D meson mass
squared s ¼ m2

D ≈ 3.5 GeV2, with the much larger thresh-
old 4m2

K ≈ 1 GeV2. It is reasonable to claim 15% violation
of the quark-hadron duality in the channel with two strange
quarks for the D meson mixing, of the same order as
postulated in [35]. All the solutions approach to the inputs
as s → ∞, following the design in Eq. (12). The afore-
mentioned modifications originate from the nonperturba-
tive effects characterized by the physical thresholds
mIJ ≠ mij, whose introduction for the components ΓijðsÞ
in our formalism is unambiguous.
We present in Fig. 4 the dependencies of the combina-

tions ydd − 2yds þ yss and ydd − yds on s, which are
associated with the CKM factors λ2s and λsλb, respectively,
for the given Λ ¼ 5 GeV2. The oscillations of the curve in
Fig. 4(a) (not completely displayed in the plot) with the first
peak (valley) located at s ≈ ðmπ þmKÞ2 (s ≈ 4m2

K) are
anticipated [21]: when s increases and crosses the threshold
ðmπ þmKÞ2 (4m2

K), the single (double) strange quark
channel with a destructive (constructive) contribution is
opened, so the curve starts to descend (ascend). It is not
difficult to understand the minor oscillations at higher s,
since heavier states stemming from the dd, ds, and ss
channels are allowed to contribute in turn. These oscil-
lations attenuate gradually, when the solutions for ΓddðsÞ,
ΓdsðsÞ, and ΓssðsÞ approach to the perturbative inputs at

(a) (b) (c)

FIG. 3. Comparison of the solutions yijðsÞ≡ ΓijðsÞ=Γ (solid lines) with the inputs yboxij ðsÞ≡ Γbox
ij ðsÞ=Γ (dashed lines) for (a) ij ¼ dd,

(b) ij ¼ ds, and (c) ij ¼ ss at Λ ¼ 5 GeV2.

FIG. 2. Dependencies of ydsðsÞ≡ ΓdsðsÞ=Γ on s for N ¼ 3
(dotted line), N ¼ 8 (dashed line), N ¼ 13 (solid line), and N ¼
23 (dot-dashed line) with Λ ¼ 5 GeV2.
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large s, as indicated in Fig. 3, and the GIM suppression
becomes effective. The curve for the combination ydd − yds
in Fig. 4(b) also reveals several oscillations but with smaller
amplitudes, because of the stronger cancellation between
ydd and yds than between yds and yss. This pattern can be
interpreted by means of Fig. 3, which shows the increasing
enhancements from ydd to yds and to yss at s ¼ m2

D
compared with the inputs. Hence, the SU(3) symmetry
breaking between the first two is smaller than between the
last two. The first peak in Fig. 4(b) appears at s ≈ ðmπ þ
mKÞ2 as expected, but the other peaks and valleys are
shifted toward slightly higher s compared to Fig. 4(a); the
constructive ss channel is absent, so the descent of the
curve cannot be reversed at s ≈ 4m2

K.
The aforementioned combinations of yij, where the box-

diagram terms in Eq. (12) cancel almost exactly, are in fact
proportional to those of the subtracted functions ΔΓij. The
results in Figs. 4(a) and 4(b), multiplied by the correspond-
ing CKM factors λ2s and 2λsλb, respectively, then behave
differently from the box-diagram contributions: both pieces
from the box diagrams are of Oð10−7Þ at the D meson
mass, but the λ2s piece in our solutions becomes Oð10−3Þ,
and dominant over the λsλb piece, which is ofOð10−6Þ. The
smallness of the latter is not only attributed to the shorter
peak of ydd − yds, but to its shift away from the D meson
mass, as shown in Fig. 4(b). The λ2b piece, depending on ydd
in Fig. 3(a), is as tiny as Oð10−7Þ. The SU(3) symmetry-
breaking effects from the various thresholds mIJ, i.e.,

various enhancements in Figs. 3(a)–3(c), are manifested
by the dramatically different magnitudes of the combina-
tion ydd − 2yds þ yss in Fig. 4(a) and of yboxdd − 2yboxds þ yboxss

in Fig. 4(c). Another feature of Fig. 4(c) is that the shape of
the curve is trivial; it reaches a peak at s ≈ ðmd þmsÞ2 and
a valley at s ≈ 4m2

s , and then approaches zero smoothly.
We then investigate how the solutions for the mixing

parameter yðsÞ change with the transition scale Λ, starting
from the CP-conserving case. The contributions from all
the three pieces λ2s , λsλb, and λ2b are included, though the
behavior of yðsÞ is governed by the first piece as stated
above. It is encouraging to see in Fig. 5(a) that the curves
for Λ ¼ 4.0 GeV2, 4.5 GeV2, 5.0 GeV2, and 5.5 GeV2 all
pass through the small region around s ≈m2

D and y ≈ 0.5%.
Namely, a stability window in Λ may exist, within which
the obtained yðm2

DÞ is insensitive to Λ. The tails of these
curves are far apart from each other, implying that they will
not cross again at higher s. Therefore, yðm2

DÞ ≈ 0.5% is the
unique solution from our method. Note that the above
curves overlap completely in the region with s < 1 GeV2,
which, however, do not represent solutions for the physical
D meson apparently. To verify the postulation that the
nonperturbative effects from the physical thresholds are
crucial for stabilizing the solutions, we drop the second
term in the input in Eq. (20), and derive yðsÞ for the same
set of Λ values in Fig. 5(b). The curves have shapes similar
to those in Fig. 5(a), but scatter to some degree, such that
the area in which they cross each other stretches. It means

(a) (b) (c)

FIG. 4. Dependencies of (a) ydd − 2yds þ yss, (b) ydd − yds and (c) yboxdd − 2yboxds þ yboxss on s for Λ ¼ 5 GeV2.

(a) (b)

FIG. 5. Solutions of yðsÞ for Λ ¼ 4.0 GeV2, 4.5 GeV2, 5.0 GeV2, and 5.5 GeV2, corresponding to the curves with the peaks from left
to right, in the cases (a) with and (b) without the second term in Eq. (20).
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that the stability deteriorates in the absence of the non-
perturbative effects. Besides, the magnitudes at s ≈m2

D
reduce by about 40%, which is the appropriate weight of
nonperturbative contributions to achieve the stability in
QCD sum rules.
We read off the values of yðm2

DÞ at the D meson mass
squared s ¼ m2

D from the curves like those in Fig. 5, and
plot the dependencies of yðm2

DÞ on the transition scale Λ in
the cases with and without the second term in Eq. (20). It is
noticed in Fig. 6 that the former ascends with Λ first,
reaches a plateau around Λ ¼ 4.5 GeV2, and then descends
as s > 4.8 GeV2. Selecting the values in the range Λ ¼
½4.2; 5.1� GeV2 as our representative results, we have
yðm2

DÞ ¼ ð0.52� 0.01Þ%, where the central value is
located at Λ ¼ 4.3 GeV2, and the tiny error reflects the
remarkable stability of yðm2

DÞ with respect to the variation
of Λ. For s slightly below (above) m2

D, say, s ¼ 3.0 GeV2

(s ¼ 4.0 GeV2), Fig. 5(a) indicates that y always decreases
(increases) with Λ. The obtained yðm2

DÞ, greater than in the
exclusive analysis focusing only on two-body decays [18],
hints the sizable contributions from the resonances or
multibody states near the D meson mass [7,18,48]. As
the nonperturbative effects are ignored, the plateau in Λ
disappears; the curve ascends with Λ, and then descends

from the maximum located at Λ ¼ 4.6 GeV2 directly, such
that it is hard to extract any physical outcomes in this case.
We stress that there is no free parameter in our approach,
which can be tuned to achieve data fitting. The solutions of
yðm2

DÞ are insensitive to the number N for the polynomial
expansion and to the arbitrary transition scale Λ as stated
before. We mention that the renormalization scales asso-
ciated with the different channels for y in the heavy quark
expansion took different values so as to accommodate the
data by avoiding the stringent GIM cancellation [49].
We then calculate the mixing parameter xðm2

DÞ accord-
ing to Eq. (22), for which the other three components
involving b quarks, i.e., ΓdbðsÞ, ΓsbðsÞ, and ΓbbðsÞ should
be available first. Similarly, we seek the most convergent
solutions in the polynomial expansion with the same
power-law behaviors near the physical thresholds for the
above three components. The dependences of the combi-
nation ysb − ydb ≡ ðΓsb − ΓdbÞ=Γ on s for Λ ¼ 15 GeV2,
20 GeV2, 25 GeV2, 30 GeV2, and 35 GeV2 are displayed
in Fig. 7. The curves run along the horizontal axis till the
threshold near m2

B (the pion and kaon masses can be
ignored here), and then oscillate, similar to the curves in
Fig. 4. It is seen that the curves corresponding to Λ ¼
25 GeV2 and 30 GeV2 are relatively close to each other,
revealing sort of stability. Since the result of xðm2

DÞ has
little dependence on these components, which take sub-
stantial values at s far away from m2

D, we simply fix Λ to
30 GeV2, with which N ¼ 10 (N ¼ 11) is chosen for
ΓdbðsÞ (ΓsbðsÞ). The contribution to xðm2

DÞ from the
component ΓbbðsÞ is even less important, so we also set
Λ ¼ 30 GeV2 for its evaluation for simplicity. It turns out
that the contributions from the above three components to
xðm2

DÞ via Eq. (22) are as low as 2.2 × 10−7, among which
ΓbbðsÞ, contributing Oð10−10Þ, is absolutely negligible.
The curve of yðsÞ for Λ ¼ 4.3 GeV2, which gives rise to

the central value of yðm2
DÞ, together with the corresponding

xðsÞ derived from Eq. (22), are exhibited in Fig. 8, from
which we read off the central value xðm2

DÞ ¼ 0.21%. The
correlation between xðsÞ and yðsÞ is similar to what was
observed in [21]. The lower (upper) bound of yðm2

DÞ

FIG. 6. Dependencies of yðm2
DÞ on Λ in the cases with (upper

curve) and without (lower curve) the second term in Eq. (20).

FIG. 7. Behaviors of ysb − ydb ≡ ðΓsb − ΓdbÞ=Γ for
Λ ¼ 15 GeV2, 20 GeV2, 25 GeV2, 30 GeV2, and 35 GeV2,
corresponding to the curves with the peaks from left to right.

FIG. 8. Behaviors of xðsÞ (dotted line) and yðsÞ (solid line) for
Λ ¼ 4.3 GeV2.
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located at Λ ¼ 4.2 (Λ ¼ 4.5) GeV2 leads to the upper
(lower) bound of xðm2

DÞ ¼ 0.24% (0.15%). That is, we
obtain xðm2

DÞ ¼ ð0.21þ0.03
−0.06Þ%, whose error reflects the

uncertainty in our method. We then survey the uncertainties
from the theoretical inputs. The parameters involved in the
CKM matrix and the hadron masses have been known
precisely, so the associated uncertainties are minor. It has
been affirmed that our results are insensitive to the down
quark mass md, and the �10% variation of the strange
quark mass ms induces only ∓ 0.6% error to the value of
yðm2

DÞ. The uncertainty form the overall hadronic param-
eters, like the bag parameters, is about 5% according
to [44,50]. We present our predictions for the mixing
parameters in theCP-conserving case, including the overall
5% uncertainty, as

xðm2
DÞ ¼ ð0.21þ0.04

−0.07Þ%; yðm2
DÞ ¼ ð0.52� 0.03Þ%: ð25Þ

It is emphasized that the uncertainties from neglected
subleading contributions to the inputs at large mass have
not been taken into account.According to [32], theOðαsÞ and
Oð1=mbÞ corrections, αs being the strong coupling constant,
amount to about 20% of the leading contribution to the Bs
meson width difference. It is thus likely that the results in
Eq. (25) suffer additional uncertainties of order 20%.
It has been shown in lattice analyses [51] that the ðS − PÞ×

ðS − PÞ hadronic matrix element for the D meson mixing
is larger than the ðV − AÞðV − AÞ one. This observation is
understandable, because the former is proportional to an
additional factorm2

D=ðmc þmuÞ2 ≈ 2 actually,mu being the
u quarkmass. Therefore, it is possible to gain an overall 30%
enhancement of our predictions by considering the above
factor, which then agree with the data [1]

x ¼ ð0.44þ0.13
−0.15Þ%; y ¼ ð0.63� 0.07Þ%; ð26Þ

in theCP-conserving case.Our goal is not to achieve an exact
fit to the data, but to demonstrate that the box-diagram
contribution to the D meson mixing can be amplified by a
factor of 104 under the nonperturbative SU(3) breaking
effects. A precise study can be carried out by employing the
weak effective Hamiltonian and the hadronic matrix ele-
ments with higher accuracy for the perturbative inputs in our
formalism.
The CP violation in the D meson mixing has been

discussed and formulated in detail in [52]. In the CP
violating case we simply multiply our solution for each
component Γij in Eq. (5) by the associated complex CKM
factors, and both M12 and Γ12 become complex. We then
adopt the general definitions of the mixing parameters x
and y in Eq. (3), and find that the imaginary parts of M12

and Γ12, being of Qð10−3Þ and Oð10−4Þ of the real parts,
respectively, are negligible. Hence, our predictions for x
and y remain the same as in Eq. (25) basically, and will be
close to the data

x ¼ ð0.409þ0.048
−0.049Þ%; y ¼ ð0.615þ0.056

−0.055Þ%; ð27Þ

in the CP-violating case [1], after the enhancement from
the ðS − PÞðS − PÞ hadronic matrix element is taken into
account. We also derive

				 qp
				 − 1 ¼ ð−3.0þ0.1

−0.0Þ × 10−4;

Arg

�
q
p

�
¼ ð3.1−0.3þ0.4Þ° × 10−3; ð28Þ

where the central values (the upper errors, the lower errors)
come from the scales Λ ¼ 4.3 GeV2 (Λ ¼ 4.2 GeV2,
Λ ¼ 4.5 GeV2). They can be compared with the measured
values jq=pj ¼ 0.995� 0.016 and Argðq=pÞ ¼ ð−2.5�
1.2Þ° [1], which were obtained under the same phase
convention for the CP transformation of neutral D mesons,
and help constrain new physics models [53,54] due to
their small theoretical uncertainties. Besides, we predict
the quantity ϕ12 ≡ ArgðM12=Γ12Þ ≈ −0.049° in accordance
with the data ϕ12 ¼ ð0.58þ0.91

−0.90Þ° [1].

IV. BsðdÞ MESON MIXING AND KAON MIXING

Tremendous efforts have been devoted to perturbative
studies of the BdðsÞ meson mixing and the kaon mixing, and
to their confrontation with data in the literature. The

transition matrix elements MsðdÞ
12 − iΓsðdÞ

12 =2 for the BdðsÞ
meson mixing have been evaluated up to two-loop QCD
corrections in the heavy quark expansion [55,56]. The
ratio of the width difference over the mass difference,

ΔΓsðdÞ=ΔMsðdÞ ¼ ReðΓsðdÞ
12 =MsðdÞ

12 Þ, where hadronic uncer-
tainties largely cancel, was computed in [56]. The exper-
imental input ΔMexp

sðdÞ was then inserted to predict ΔΓsðdÞ,
which was shown to be consistent with the data. It implies
that the BsðdÞ meson mixing can be accommodated by
short-distance dynamics within hadronic uncertainties. A
similar conclusion on the dominance of short-distance
dynamics in the measured kaon mass difference was also
drawn [38–40]. Therefore, we do not attempt precise
explanations of the BsðdÞ meson mixing and the kaon
mixing in this paper, on which a lot of progresses have
been made, but corroborate that the neutral meson mixing,
no matter whether it is governed by perturbative or non-
perturbative dynamics, can be addressed consistently and
systematically in our framework.
We decompose the absorptive piece of the transition

matrix elements for the BsðdÞ meson mixing into

ΓsðdÞ
12 ðm2

BsðdÞ Þ ¼ λsðdÞ2u ΓsðdÞ
uu ðm2

BsðdÞ Þ þ 2λsðdÞu λsðdÞc ΓsðdÞ
uc ðm2

BsðdÞ Þ
þ λsðdÞ2c ΓsðdÞ

cc ðm2
BsðdÞ Þ; ð29Þ

HSIANG-NAN LI PHYS. REV. D 107, 054023 (2023)

054023-10



to which a top quark does not contribute, with the CKM

factors λsðdÞu ¼ VubV�
usðdÞ and λsðdÞc ¼ VcbV�

csðdÞ, and the

meson mass mBd
. The box-diagram contributions

ΓsðdÞbox
ij ðsÞ are the same as Eq. (6), but with the replace-

ments of fD (mD, BD) by fBdðsÞ (mBdðsÞ , BBdðsÞ), and of md

(ms) by mu (mc). They yield the width difference ΔΓs ¼
0.099 ps−1 from Eq. (29) for the Bs meson mass (decay
constant) mBs

¼ 5.367 GeV (fBs
¼ 0.230 GeV) [47], the

quark masses mu ¼ 0.005 GeV and mc ¼ 1.3 GeV, and
the typical bag parameter BBs

¼ 1, close to the observed
value ΔΓexp

s ¼ ð0.084� 0.005Þ ps−1 [1] as stated above.

The components ΓsðdÞ
uu ðsÞ, ΓsðdÞ

uc ðsÞ, and ΓsðdÞ
cc ðsÞ for a

fictitious BsðdÞ meson with the invariant mass squared s
will be derived in our method. The solutions for the Bs and
Bd mesons are expected to be very similar, so the
distinction between Γs

12ðsÞ and Γd
12ðsÞ mainly comes from

the CKM factors. Because of the hierarchy jλsuj ≪ λsc, no
cancellation occurs among the three pieces in Eq. (29), such
that the last term dominates Γs

12ðm2
Bs
Þ, as having been

noticed in [57]. As to the Bd meson mixing, for which jλduj
and jλdc j are of the same order of magnitude but unequal, a
milder cancellation exists, and all the three pieces in
Eq. (29) contribute to Γd

12ðm2
Bd
Þ.

The construction of the dispersion relation for the
BdðsÞ meson mixing follows the steps in Sec. II, and the

aforementioned ΓsðdÞbox
ij ðsÞ from the box diagrams are taken

as the inputs. We solve for the unknown vector aðijÞ with
the input vector bðijÞ in Eq. (20) to get the components

ΓsðdÞ
uu ðsÞ, ΓsðdÞ

uc ðsÞ and ΓsðdÞ
cc ðsÞ for various transition scalesΛ

as in the previous section. Here we consider the ratio

rsðdÞðsÞ≡ ΓsðdÞ
12 ðsÞ

ΓsðdÞbox
12 ðm2

BsðdÞ Þ
; ð30Þ

which is free of the hadronic uncertainties from the decay
constant fBdðsÞ and the bag parameters BBdðsÞ . It will be seen
that there are stable solutions of order of unity for the ratio

rsðdÞðm2
BsðdÞ Þ. In other words, the obtained BsðdÞ meson

width difference does not deviate from the box-diagram
contribution much under the nonperturbative effects. We
mention that the quark-hadron duality, i.e., the equivalence
between the quark-level and hadron-level evaluations of the
Bs meson width difference, has been demonstrated in [58].
We focus only on the CP-conserving case by picking up

the real part of the CKM matrix element Vub, and adopt
the quark masses mu ¼ 0.005 GeV and mc ¼ 1.3 GeV,
and the meson masses mBs

¼ 5.369 GeV and mBd
¼

5.280 GeV [47]. The best convergence of the polynomial

expansion associated with the component ΓsðdÞ
uu ðsÞ (ΓsðdÞ

uc ðsÞ,
ΓsðdÞ
cc ðsÞ, fixes the optimal numbers N ¼ 16, 16 and 16

(N ¼ 14, 15 and 15, N ¼ 11, 11 and 10) for Λ ¼ 30 GeV2,
40 GeV2, and 50 GeV2, respectively. It is encouraging to
find that the three curves of rs (rd) for the above Λ values
cross each other in the small region around s ≈m2

BsðdÞ and

rs ≈ 1.3 (rd ≈ 1.5) in Fig. 9(a) [Fig. 9(b)]. Namely, a
stability window in Λ is present, within which the solutions
of rsðdÞðm2

BsðdÞ Þ are insensitive toΛ. This feature is similar to

that of yðm2
DÞ in Fig. 6. Since all the three pieces on the

right-hand side of Eq. (29) contribute to rdðsÞ, it does
not vanish below the threshold s ¼ 4m2

D as displayed in
Fig. 9(b). Moreover, the width difference for the Bd meson
is about λ2 ∼ 0.05 of the Bs meson one in agreement with
the data [1].
We read off the values of rsðdÞðm2

BsðdÞ Þ, and plot its

dependence on the scale Λ in Fig. 9(c). It is noticed that the
curve for rsðdÞðm2

BsðdÞ Þ ascends with Λ first, becomes

relatively flat aroundΛ ¼ 38 GeV2 (Λ ¼ 34 GeV2), where
the maximum is located, and then descends monotonically.
Selecting the values in the intervals Λ ¼ ½32; 46� GeV2 and
Λ ¼ ½30; 42� GeV2 as our representative results, we have

rsðm2
Bs
Þ ¼ 1.29� 0.01; rdðm2

Bd
Þ ¼ 1.49� 0.02; ð31Þ

respectively, whose tiny errors reflect the excellent stability
of our solutions in the wide ranges of Λ. The solution
for Γs

12ðm2
Bs
Þ is indeed of the same order as the input

(a) (b) (c)

FIG. 9. Solutions of (a) rsðsÞ and (b) rdðsÞ for Λ ¼ 30 GeV2, 40 GeV2, and 50 GeV2, corresponding to the curves which rise at the
threshold s ¼ 4m2

D from left to right. (c) Dependencies of rsðm2
Bs
Þ and rdðm2

Bd
Þ on Λ.
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Γs box
12 ðm2

Bs
Þ, as indicated by Eq. (31). The value rdðm2

Bd
Þ is

slightly larger owing to the partial cancellation among
the perturbative contributions to the three pieces in
Eq. (29). The above investigation confirms that the non-
perturbative effects associated with the physical thresholds
do not impact much the width differences, the quark-
hadron duality holds reasonably well for the BsðdÞ meson
mixing, and short-distance dynamics dominates the rel-
evant observables.
The absorptive piece ΓK

12ðsÞ for a fictitious kaon with the
invariant mass squared s is also decomposed in terms of the
CKM factors λk ≡ VksV�

kd, k ¼ u, c, t. Only the component
ΓK
uuðm2

KÞ contributes to ΓK
12ðm2

KÞ, because a kaon does not
decay into final states with charm quarks. The expression of
the corresponding input ΓKbox

uu ðsÞ at large s is the same as
Eq. (6), but with the appropriate replacements of the decay
constant, the particle masses, and the bag parameter. Note
that the CP transformation sets CPjD0i ¼ −jD̄0i in Sec. II,
so K1 (K2) refers to KL (KS) in the analogous convention.
The width difference is almost equal to the width of KS,
i.e., ΓK

2 − ΓK
1 ¼ 2ΓK

12 ≈ ΓK
2 ¼ 7.347× 10−15 GeV in experi-

ments [47]. It is straightforward to check that the box-
diagram contribution is lower, but accounts for the
measured width difference at the order of magnitude.
The higher-order QCD corrections to the effective weak
Hamiltonian [59] and the penguin contribution [60] can be
included into the input for a more precise analysis. Here we
simply calculate the ratio

rKðsÞ≡ ΓK
12ðsÞ

ΓKbox
12 ðm2

KÞ
; ð32Þ

with the denominator being derived from the box diagrams,
and examine whether the ratio is of order of unity.
We solve for the component ΓK

uuðsÞ for various scales Λ
by repeating the procedures, and search for stable solu-
tions of rKðm2

KÞ. The best convergence of the polynomial
expansion associated with ΓK

uuðsÞ determines the numbers

N ¼ 11, 10 and 12 for Λ ¼ 0.3 GeV2, 0.5 GeV2, and
0.7 GeV2, respectively. The corresponding results of rKðsÞ
are exhibited in Fig. 10(a), whose curves cross each other in
the small region around s ≈m2

K and rK ≈ 1.2. That is, a
stability window in Λ can be identified, within which
rKðm2

KÞ is insensitive to Λ. We acquire the solutions for
rKðsÞ, read off the values of rKðm2

KÞ, and present its
dependence on Λ in Fig. 10(b). The curve, with the shape
similar to that of rsðdÞðm2

BsðdÞ Þ in Fig. 9(c), is relatively flat

around Λ ¼ 0.4 GeV2. Selecting rKðm2
KÞ in the interval

Λ ¼ ½0.3; 0.7� GeV2 as our representative results, we get

rKðm2
KÞ ¼ 1.17� 0.03; ð33Þ

which, close to unity, hints the importance of short-distance
contributions in the kaon mixing. We point out that the
scale Λ also bears the meaning of a resolution power of
the inverse matrix method [28], so Λ takes values near the
resonance to be explored. It is then realized why the
stability window appears at Λ about hundreds of MeV2,
few GeV2 and tens of GeV2 in the kaon mixing, the D
meson mixing and the BsðdÞ meson mixing, respectively.
At last, we summarize our observations on the neutral

meson mixing mechanism, and highlight the uniqueness of
the charm mixing. For a more transparent illustration, we
reexpress the absorptive piece of the transition matrix
elements for the charm mixing as

Γ12ðm2
DÞ ¼ λ2dΓddðm2

DÞ þ 2λdλsΓdsðm2
DÞ þ λ2sΓssðm2

DÞ;
ð34Þ

which turns the cancellation among the decay channels in
Eq. (23) into the cancellation among the components
associated with the three CKM factors, because of the
relation λ2d ≈ −λdλs ≈ λ2s . In fact, at most 15% duality
violation for each component in the D meson mixing is
less severe than in the others given in Eqs. (31) and (33).
Comparing 2mK with mD and 2mD with mBs

, we see that

(a) (b)

FIG. 10. (a) Solutions of rKðsÞ forΛ ¼ 0.3 GeV2, 0.5 GeV2, and 0.7 GeV2, corresponding to the curves which rise from the threshold
s ¼ 4m2

π from left to right. (b) Dependence of rKðm2
KÞ on Λ.
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the physical threshold is further below the neutral meson
mass in the D meson mixing than in the Bs meson mixing.
It is the reason why the deviation of the solution from the
perturbative input caused by the threshold is minor in the
former. As shown in [61], the charm width difference
receives corrections from next-to-leading order QCD below
50%, and 1=mc corrections of 30%. That is, subleading
contributions in the charm mixing do not reveal signs of
breakdown of the perturbative approach. Besides, the life-
time ratio τðDþÞ=τðD0Þ, which is insensitive to SU(3)
breaking and not subject to the GIM suppression, agrees
with the data [47], as calculated up to leading order in
the 1=mc expansion based on the formulation in [62].
Therefore, it is the GIM cancellation in Eq. (34) which
strongly suppresses the perturbative contributions, and
fails the inclusive analyses. It has been known that such
cancellation does not take place in the BsðdÞ meson mixing,
since the CKM factors in Eq. (29) do not follow the pattern
in the charm mixing. The CKM factors for the kaon mixing
obey the similar pattern, λ2u ≈ −λuλc ≈ λ2c. However, only
the first piece associated with λ2u survives the phase space
constraint, so the delicate cancellation does not happen
either. Without the GIM cancellation, short-distance
dynamics remains important in the BsðdÞ meson mixing
and the kaon mixing.

V. CONCLUSION

We have analyzed the neutral meson mixing in the
framework based on the dispersion relation, from which the
width difference of the two neutral meson mass eigenstates
is solved directly. The idea is to treat the dispersion relation
as an inverse problem, in which nonperturbative observ-
ables at low mass are solved with perturbative inputs from
high mass. It was emphasized that initial conditions of
solutions at physical thresholds for involved decay chan-
nels play an essential role. Their distinctions from the
thresholds at the quark level provide the nonperturbative
effects, which determine how significantly the solution for
each channel deviates from the corresponding perturbative
input. The physical thresholds for various channels induce
the SU(3) symmetry breaking, which is the key to explain
the D meson mixing. The threshold-dependent contribu-
tions, acting like nonperturbative power corrections in
QCD sum rules, also stabilize the results of the mixing
parameter yðs ¼ m2

DÞ in the inverse problem: the conver-
gence of the solutions in the polynomial expansion and the
insensitivity to the arbitrary transition scale, which was
introduced through the ultraviolet regularization of the
dispersive integrals, have been demonstrated. In this sense,
our formalism is free of tunable parameters, and this work
represents an improvement of our previous one, which
relies on a discretionary parametrization for the mixing
parameter yðsÞ.
It is intriguing to find that the solutions of yðsÞ exhibit

several oscillations, which reflect the alternate opening of

the destructive and constructive channels with the increase
of the phase space. The peak of the function yðsÞ around the
D meson mass with the height greater than in the previous
exclusive analyses based only on two-body modes suggests
that nearby resonances or multiparticle decays give the
sizable contributions to yðm2

DÞ. The channel with two
strange quarks, i.e., dikaon states, provides the major
source of the SU(3) breaking relative to the channels with
two down quarks and with one down quark and one strange
quark, which enhances the net contribution to yðm2

DÞ by
four orders of magnitude compared with the perturbative
inputs. The mixing parameter xðm2

DÞ was derived from the
dispersive integration of yðsÞ, to which the contributions
from the three channels containing b quarks are negligible.
The solutions for the various channels can be employed to
calculate the mixing parameters in both the CP-conserving
and CP-violating cases; we simply multiply the solutions
by the associated CKM factors without and with the
imaginary parts, respectively. It has been argued that our
results for xðm2

DÞ and yðm2
DÞ can accommodate the data,

after the enhancement from the matrix element of the
ðS − PÞðS − PÞ effective operator is taken into account.
The theoretical uncertainty in our method is controllable,
reflected by the very flat plateau of yðm2

DÞ in the stability
window of Λ. In addition, we have predicted the coefficient
ratio q=p in the CP-violating case, which can be scruti-
nized by future precise measurements.
We have also studied the BsðdÞ meson mixing and the

kaon mixing in the same framework. It was found that the
deviation of the solution from the corresponding perturba-
tive input is at the Oð10%Þ level for each channel in the
width difference, and the breakdown of the quark-hadron
duality is similar to the amount in the charm mixing.
Because there exists no or milder cancellation of the
perturbative pieces among the different channels, short-
distance dynamics can be relatively important. Hence, the
duality violation is not the major cause that renders the D
meson mixing special from the others. It is the GIM
cancellation that makes the tiny perturbative contributions
in the inclusive analyses, in contrast to which the SU(3)
breaking effects manifest in theDmeson mixing. We stress
that our work does not aim at a precise calculation and an
exact match to the data, but at the verification that the box-
diagram contributions can be greatly enhanced to the order
of magnitude of the observed charmmixing, and the neutral
meson mixing, no matter whether it is governed by
perturbative or nonperturbative dynamics, can be addressed
consistently and systematically in our formalism.
To improve the precision of the predictions, more

accurate hadronic matrix elements of the effective oper-
ators, available higher-order corrections to the effective
weak Hamiltonian [63,64], subleading contributions
from heavy quarks [65], and corrections with amplitudes
being topologically distinct from the box diagrams, like the
double penguin contribution [66], can be included into the
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inputs of our method. Simply speaking, the ultimate
precision of the results is controlled by the accuracy of
the inputs at large mass, i.e., of our understanding on the B
meson mixing. It is then promising to lower the uncer-
tainties down to 10% level [64]. A thorough picture of the
neutral meson mixing mechanism will help explorations of
other observables, such as effects of theDmeson mixing in
the extraction of the weak phase γ from the B → DK
decays [67,68], and the determination of the quantity yCP
from the D → Kπ, KK decays [69]. Once the D meson
mixing is realized, relevant data, such as those associated

with the coefficient ratio q=p, can be used to constrain new
physics models [70–85]. Our formalism is expected to have
potential and broad applications in phenomenology.
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