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We employ the comparatively minimal extension of hard-wall AdS/QCD due to Katz and Schwartz
which takes into account the U(1), anomaly for computing hadronic light-by-light scattering contributions
of pseudoscalar and axial-vector mesons to the anomalous magnetic moment of the muon a,,. By including
a gluon condensate as one extra tunable parameter besides those fixed by f, and the pion, kaon, and rho
masses, we obtain remarkably accurate fits for  and 7’ masses and their decay rates to photons, leading to

ayu

contributions in complete agreement with the Standard Model result by the Muon g — 2 Theory

Initiative. Turning to the less well understood axial-vector contributions, we update our previous
predictions obtained in flavor-symmetric hard-wall AdS/QCD models without U(1), breaking.
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I. INTRODUCTION

Since in 2021 the Muon g¢—2 Collaboration at
Fermilab [1] has succeeded in confirming and improving
the result of the E821/BNL measurement from 2006 [2] for
the anomalous magnetic moment of the muon [3] and is
under way on further increasing its accuracy, the existing
uncertainties in the disagreeing theoretical Standard Model
result [4] need to be scrutinized and also improved.

Whereas QED [5] and electroweak contributions [6,7]
are sufficiently under control, the theoretical uncertainty is
dominated by hadronic effects [8-31]. The largest contri-
bution by far is the hadronic vacuum polarization (HVP),
where a recent lattice calculation [32] is at variance with the
result of the 2020 White Paper (WP) of the Muon g — 2
Theory Initiative [4] beyond the respective estimated errors,
leading to a less strong deviation from the experimental
result if the lattice result is used in place of the data-driven
one obtained in the WP. Once this discrepancy is resolved,
it will be important to also reduce the uncertainty in
the contribution from hadronic light-by-light scattering
(HLBL), which at present has errors at the level of 20%,
which in absolute numbers are comparable to the small
errors aimed for in the case of HVP.

Besides the dominant pion-pole contribution to HLBL,
which by now seems to be well understood, and where
data-driven approaches and lattice evaluations agree
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perfectly, and the similarly well-determined contributions
from 7 and ' mesons, other single-meson contributions are
much less under control. An important contribution is
expected in particular from axial-vector mesons, which like
pseudoscalars have anomalous couplings to photons.
However, theoretical predictions from various hadronic
models vary a lot [3,8,12,33-35], which has led to a WP
estimate of the axial-vector contribution with 100%
uncertainty.

Holographic QCD models motivated by the AdS/CFT
correspondence [36-38] have proved to be remarkably
successful in qualitatively and also quantitatively describ-
ing hadronic observables, even those with a minimal set of
parameters and the simplest geometry of anti—de Sitter
space with a hard-wall (HW) cutoff. Such AdS/QCD
models are not good enough to help with the current
discrepancy between different predictions for the HVP
contribution, where subpercent accuracy is required.
However, they are certainly of interest for estimating the
HLBL contributions.

In Ref. [39], we have revisited previous studies [40,41]
of the pion-pole contribution to HLBL and its conse-
quences for the value of a, = (9—2),/2 using simple
bottom-up AdS/QCD models in the chiral limit and we
have found a satisfactory agreement with the data-driven
and lattice approaches. The transition form factors obtained
in AdS/QCD involve infinite towers of vector mesons,
realizing vector meson dominance (VMD) in a form that is
consistent with the asymptotic behavior derived from
perturbative QCD [42] for both, the singly and the doubly
virtual case.

In [43,44], also the contribution from the infinite tower
of axial-vector mesons and their anomalous coupling to
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photons has been calculated, and it could be shown that
this takes care of the long-standing problem that simpler
hadronic models had with the Melnikov-Vainshtein (MV)
constraint [8] on the HLBL scattering amplitude (see [45]
for a review assessing its impact on a,). In [46], we have
more recently extended these calculations to include finite
quark masses in the flavor-symmetric case. Besides dem-
onstrating that the saturation of the MV constraint is
entirely due to axial-vector mesons also away from the
chiral limit, we have confirmed the relatively large con-
tribution obtained in the chiral model.

In the present paper, we consider a minimal extension of
the original hard-wall AdS/QCD model [47] due to Katz
and Schwartz [48] for solving the U(1), problem asso-
ciated with the relatively large 1" mass. Going slightly
beyond the setup of [48] by including a nonvanishing gluon
condensate, we find that a very accurate match of the
masses of 7 and ' mesons as well as their coupling strength
to photons can be achieved. We then use this model to
evaluate all contributions of pseudoscalar’ and axial-vector-
meson excitations, and thereby also the effect of the MV
short-distance constraint, to the HLBL contribution to a,.

II. KATZ-SCHWARTZ MODEL: HARD-WALL
AdS/QCD WITH SOLVED U(1), PROBLEM

The model proposed by Katz and Schwartz [48,49] for
solving the U(1), problem builds upon the original HW
AdS/QCD models of Refs. [47,50] which have turned
out to provide a remarkably good approximation to the
physics of light hadrons while introducing a minimal set of
parameters.

In these models, one keeps the background geometry of
pure anti—de Sitter space with metric

ds? = 772 (n,, dx*dx* — dz?), (1)

cut off by a hard wall at a finite value of the holographic
radial coordinate at z = z; with suitable boundary con-
ditions for the five-dimensional fields that at the conformal
boundary at z = 0 represent sources for a set of QCD
operators of interest. In addition to five-dimensional Yang-
Mills fields B5R dual to left and right chiral-quark currents,
a bifundamental scalar X representing quark-antiquark
bilinears is introduced for spontaneous symmetry breaking
of U(N;)xU(N;) = U(Ny)y. Confinement is imple-
mented by the cutoff at z,, where boundary conditions
for the five-dimensional fields are imposed.

"The pseudoscalar contributions to a, have been calculated
before in [40] by Hong and Kim in the Katz-Schwartz model
without gluon condensate. As discussed below, we disagree in the
treatment of the Chern-Simons term.

The five-dimensional Yang-Mills action

1
Sym = — - d*x /Zo dz\/f_}nggQS
495 0
X tf(F]ﬁQfIks +‘7:]1§Q’7:§S)7 (2)
where P,Q,R,SZO,...,3,Z and ]:MN:aMBN_aNBM_
i[By,By], is augmented by a Chern-Simons action Scg =

Sky — SR to account for flavor anomalies, reading (in
differential form notation)

L.R _ Nc
S 24x7

) i 5 1 s LR
tr B]: —EB F—EB ’ (3)

(up to a boundary term at gz, that needs to be
subtracted [46,51]).
The bifundamental bulk scalar X is parametrized as [52]

X = ein"(x.z)t“Xoeir]“(x.z)t“7 (4)
where 1, a =0, ..., 8, is a nonet of pseudoscalars exci-
tations. The five-dimensional mass of X is fixed at’
My = —3 by the scaling dimension of the dual operator

q1.qr, leading to a vacuum solution

X(),-j :%m,‘J‘Z+%GU‘Z3. (5)
Choosing N, = 3, we restrict ourselves to the isospin sym-
metric case m,, =my=m, # m; with X =1diag(v,, v,.v;).

For taking care of the U(l), problem, a massless
complex field Y is introduced, representing the gluon field
strength squared aSGlzw by its modulus and a,GG by its
phase, such that the Lagrangian of scalars reads

Lyxy/\/g = tr[|DX|* + 3|X|?]
1
—— _|DY|?
* 2(1nzA)2| |

n % [¥V/ det(X) + H.c., (6)

where the logarithm in front of the kinetic term for Y
accounts for the fact that its dual operators approach scaling
dimension 4 only asymptotically. The complex scalar field
Y is charged only under the singlet axial-vector field and
hence its coupling is given by

DyY = 0pY + —— (B0 = BEOY.  (7)

/2Ny

Without the logarithm in (6), the field equations for Y
would give a background (Y) = C+Ez* where =

’In [46] we have also studied the generalization to other values
of My as proposed in [53].
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represents a gluon condensate. After absorbing some
numerical factors into C, the authors of [48] use the
axial-anomaly relation and the QCD operator product
expansion (OPE fit) of the flavor-singlet axial-vector
correlation function to find

A

In QCD a; is a running coupling and since in holography
energy is identified with z~!, they argue that o, should be
made z-dependent.

Matching z0.a,(z) ~ —fya? with the one-loop QCD f
function where f,=9/2z for N.=N;=3 gives

' = ByIn(Az), which is adopted for all z < z5 = A~
Making a, and therefore C depend on z is of course
inconsistent with the equations of motion (without the
logarithm), hence we use the modified version (6) including
the logarithms. The presence of the logarithm in the action
modifies the field equations for Y, leading to the general
solution’

(Y) = Dy + Dyz* [(lnzA)2 —%lnzA—l-%]. 9)

- 45 -
For later convenience we define” Y, = \/ng( —InzA)~H(Y),

which is parametrized as

1
¥, = _ 2yt (InzA) - - |
07 Thza <(nz ) +81nz/\> (10)

with Cy=/2N;/(27*fy) =+/2/3/(3x). This background
now naturally incorporates the running of a, consistently
and permits a nonvanishing gluon condensate through
nonzero values of E.

The coupling constant g5 can be fixed by the OPE of the
vector current correlator as

g2 = 122*/N. = (2z)> (OPEfit), (11)
but we shall alternatively consider matching the decay
constant of the p meson, which in the hard-wall model leads
to [54]

= 0.894(27°) (F ,fit). (12)
The latter leads to a significant improvement of the holo-

graphic result for the hadronic vacuum polarization: With the
leading-order OPE fit (11), there is a deviation of 14% from

3Here we also deviate from Ref. [48], where a gluon con-
densate, here parametrized by D; was neglected and only C of the
background solution had to be modified.

This is the same redefinition that [48] use, except for the
logarithm.

N, = 2 dispersive results, which is reduced to about 5% with
(12) [54]. A reduction of g2 by about 10% appears to be
warranted also by comparing with next-to-leading order
QCD results for the vector correlator at moderately large Q2
values [55-57]. Italso brings our N ; = 2 results for the pion-
pole contribution to a, [46] in line with the WP result.

With g5 and C, fixed by the UV behavior, the free
parameters of the model are (i) the location of the hard
wall, zo, which can be identified with A~', and will be set
by the p meson mass, (ii) quark masses in m;; =
diag(m,, m,,m,), (iii) chiral condensates o;;, which we
shall assume to be given by a single parameter, 6;; = 66;;,
and (iv) Z,, which corresponds to the gluon condensate
a,(G?). The coupling constant iy, on the other hand, can be
set to some sufficiently large value, since it turns out that for
ko >> 1 all results depend only weakly on x, [48].

III. MESON MODES AND TRANSITION
FORM FACTORS

Vector-meson dominance is naturally part of this model
by relating a nonzero boundary value B} (0) = ¢ QAS™ to
the background electromagnetic potential and setting Q =
diag(%,—1, —1) according to the charges of up, down, and
strange quarks. Normalizable modes of By and 5, corre-
spond to vector and axial-vector mesons, the longitudinal
polarizations of the latter mixing with the pseudoscalars #*
in X. Ignoring scalar excitations, which in this model do not
couple to photons,’ the additional Y field also involves a
pseudoscalar a through its phase

= (Y)exp[i2a(x,z)//2Ny]. (13)

which corresponds to a pseudoscalar glueball in the
boundary theory (G) that couples to photons via its mixing
with the flavor-singlet pseudoscalar mesons.

To determine the pseudoscalar eigenmodes in the mixed
a = (0, 8)-sector, we consider the equations of motion”

1 M?
0 (Eaz(pg) + g3 Z§‘b (nn — oh)
?2
+ 89g2 Z—? (a,— ) =0, (14)
Y2 Y2
az <Z_§) azan> + m%l Z_g) (an - §091)

(YXO) ) —a,) =0,  (15)

3See Ref. [58] for extensions of the HW model where further
interactions are switched on to have scalars couple to photons in
order to study their potential contribution to a, in AdS/QCD.

'We assume a summation over a = (0, 8) for contracted flavor
indices and work in the A, = 0 gauge.
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1 y? M?
m—zga(p 6“0Z06a - Z;”’aznf; —0, (16)
5

with the longitudinal component of the axial gauge field
9,9" = A,‘jH and an effective 5-dimensional mass term

, _1< 202 4 12 ﬂ(vi—v%)) (1)

“TINVARE - 1?) 024203
with v, :mq,sz+az3. Here we have also absorbed
numerical constants in k, and renamed it to x, and we
defined Yoy = =Y, InzA/C,.

The fields ¢* are dual to QCD operators —d,J;, and the
glueball field a is dual to —,/2N/K, where K is the
instanton density K = ¢* GZDG“’“’. This new field a allows
then among other things to compute overlaps of the
instanton density K with pseudoscalar modes 7,7/, ...
and the topological susceptibility.

All fields of the normalizable modes have Dirichlet
boundary conditions in the UV at z = 0, Neumann boun-
dary conditions in the IR at z = z;, and are canonically
normalized by

M, Y2
/dZ< Z3b (s (o, — b)) +Z%an(a

m= fp9n)> = Sum-
(18)

From the Chern-Simons term (3) we obtain the transition
form factor (TFF)
F,(07. 03) = u(1*Q*)Fii(07. 03). (19)

with [46]

NC la
F(010) = - 315 ([ a7 07 (02)

- () - 1T (01T (), )
(20)
where the vector bulk-to-boundary propagator

Ko(QZo)
1(Qz0)

describes virtual photons with spacelike momentum
q2 — _ QZ-

Note that (20) involves the subtraction of a boundary
term at z = z, which is absent in [48], but (20) also differs
from the corresponding expression given in [51], where
(@¢ —n%) appears in the integral. As discussed in [46], this
is only correct in the chiral limit and for the ground-state

7(0.2) = 02| K1 (02) + 11<Qz>} 1)

pion, but not in the massive case. Our results for the
pseudoscalar TFFs therefore also differ from Ref. [40],
where the TFFs for ground-state pseudoscalars in the Katz-
Schwartz model have been evaluated with the inapplicable
chiral formula of [51].

We can also generalize the asymptotic results and the
sum relations obtained in [46] in the nonchiral but flavor-
symmetric case to the asymmetric case mg # m, with
broken U(1), symmetry. Most importantly, we can derive
the anomaly equations

S faFs(0.0) =

n

o —5. a=0,3, or 8 ((fixed), (22)

and the short-distance constraint (SDC)

Fi(Q* (1 +w), Q*(1 = w)) = >3 653 sz( w)  (23)

for Q — oo with the asymmetry function

1 1-w?2 14w

T =2~ Moy @

and the pseudoscalar decay constants

Note that the decay rate associated with the glueball field,

f’é = Y(z)azan/z3|z—>0 (26)

does not contribute to the TFF. In QCD f7, computes
(=/2N;){(QIK|P,), where P, is the respective pseudo-
scalar particle.

As far as we know, the sum rules (22) have not appeared
in the literature before in this general form where they
include mixing due to finite quark masses mg # m, and
breaking of the U(1), symmetry at finite N,.. They involve
the components F¢ of the TFFs F,, defined by (19), which
at least in lattice QCD could be determined directly by
varying the quark-charge matrix Q.

In general, all modes contribute to (22). In the limit of
vanishing quark masses, one has m2f;® = O(m,) for each
n (as discussed in the Appendix of [46] in the holographic
setup). This implies that for ¢ = 3 and 8 only the massless
Goldstone bosons contribute to the sum rules, whereas
excited pseudoscalar modes decouple from the anomaly
relations, while they can still have nonzero F,(0,0). In the
a = 0 sector, we instead find fOm2 + f% = O(m,), and the
mass of the #' meson is nonzero (in the chiral limit between
600 MeV and 700 MeV, depending on the precise value of
Ey). This means that even in the chiral limit (22) receives
contributions from all higher modes in the a = 0 sector,
which is qualitatively different from the a = 3, 8 sectors.
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Comparing the axial-vector sector to [46], the a =3
sector is unmodified, but the a = (0,8) equations of
motion are changed to

1 1
0, (g RV (Z)> + ;mi,nwi,n(Z)

G (M2, + 80,60, Y3
_ 5( b Z30 0b O)Wz'n(z):()' (27)

In each case the axial-vector TFF is given by7

A,(Q1. 03) = u(1"Q*) A3 (01, 93). (28)

with

2 20 d
asen o =22 | dZ[J(Ql,Z)] T ().
Ql 0 dz

(29)

At large Q? we obtain as in [43,46]

a 2 2 ggFZn
AL(Q (1 +w), 0*(1 —w)) = 0 faw), (30)

with the decay constants

Fi = —g520.y4,/7l (31)

and the asymmetry function

1 1 1-
fA(W):F W<3_2W)+E(W+3)(1_W)lnl+w ,

(32)
in agreement with the asymptotic form derived from
QCD in [42].

At Q% = Q3 = 0, the axial-vector TFF in (28) is related to
the form factor FS)W* (0,0) defined in [59] via

m2FY) . (0.0) = 25A,(0,0). (See the Appendix of [43]
for more details.)

The most general expression for axial-vector amplitudes
has actually one further asymmetric structure func-
tion [34,59,60], which is set to zero in the holographic
model and whose phenomenological importance has not
yet been established; see Ref. [60] for a compilation of the
available phenomenological information.

"Note that in the flavor-symmetric case considered in [43] A
without flavor index was defined differently, corresponding to
(the then a-independent) A* here.

IV. RESULTS

A. Parameter settings

As one of the input data which we fit, we take the p
meson mass® m, = yq,2;" = 2.40483...75", where 7y, is
the first zero of the Bessel function J,. Following Ref. [52],
we have chosen z5! =0.3225 GeV corresponding to
m, =775.556 MeV. This fixes the location of the hard
wall, zo, and A in the expression for ay. The coupling g5 is
either set by the leading-order OPE result (11) or the
slightly reduced value (12) obtained by fitting the p meson
decay constant, where the TFFs reach only 89.4% of the
OPE and Brodsky-Lepage limits, thereby coming closer to
next-to-leading order results at moderately large, exper-
imentally relevant energy scales.

The isospin-symmetric quark-mass parameter m, and
the chiral-condensate parameter ¢ are chosen such that
m, = 134.97 MeV and f, = 92.21 MeV [61]; the strange
quark mass parameter m, is chosen such that [62]

= S0+ ) =5 (i, =,

2
= (495.007 MeV)? (33)

in order to minimize isospin-breaking contributions.

For the two choices of g5, we consider the model with
and without a gluon condensate parameter =, When
Ey = 0 (referred to as model version v0 in the following),
we obtain predictions for m, and m;, that are around 10%
lower than the real-world values, in accordance with
Ref. [48] who had omitted to turn on a nonzero E,.
Fitting Z such that (1 —my/my")* + (1 —my}/m")?
is minimized (model v1), m, and mj can be matched at
the percent level, as shown in Table II. In the four versions
of our model, we have chosen a large value of x = 700, in
order to be in the regime where the dependence on « is

rather weak.

B. Decay constants and photon coupling

Up to the slightly different choice of f,, the results for
the mesons in the isotriplet sector, where =, does not play a
role, are identical to the HW 1m model presented in [46] for
gs = 2z. Table I generalizes this to the case where g5 is
fitted to match F,,.

In Tables II and III, detailed results for the two versions
v0 and v1 are given for the first few pseudoscalar and axial-
vector modes in the isosinglet sector, showing their mixing
behavior in the decay constants %, f0, f for the s, and
F8, FQ for the f,’s, as well as in the coupling to real

¥A shortcoming of the minimal HW models considered here is
that the strange quark mass modifies the vector meson masses too
little compared to reality: p, @, and ¢ mesons are degenerate, the
mass of K* is raised to only 0.79 GeV.

054021-5
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TABLE L.

—_
=)

Results for pseudoscalar and axial-vector mesons in the isotriplet sector (the gluon condensate parameter =, does not play a

role here). All quantities in units of (powers of) GeV; values marked with a star (*) are input data.

gs = (2n)? @ = 0.894(27)?
”0 jt* a, aT aT* aT** aT*** ”0 ﬂ,'* a aT aT* aT** a’]ﬁ***
m 0.135*  1.891 1363 2.137 2987 3.935 4916 0.135*  1.841 1278 2.047 2.936 3.902 4.891
FVF,/m, 0.09221* 0.00157 0.175 0.204 0.263 0.311 0.330 0.09221* 0.00173 0.173 0217 0.280 0.329 0.330
F(0,0)vA*(0,0) 0277  —0203 2096 331 —-0336 2.16 0370 0276  —0.199 1946 487 —0413 2.05 0.325
a, x 101! 66.1 073 783 124 044 028 0.1 634 071 709 147 042 026 0.10

photons given by F(0,0) and A(0,0), respectively. All
results are given in units of GeV raised to the appropriate
power; note that the mass dimension of f® and f° is 1, but
that of f is 3; F(0,0) and A(0,0) have mass dimensions
—1 and -2, respectively.

Mixing is in fact energy dependent in the holographic
model because the components of the holographic wave
functions depend nontrivially on the holographic coordinate
z which corresponds to inverse energy. The mixing angles
read from decay constants thus differ from those read from

TABLE II.

the components of the photon coupling. Moreover, the
pseudoscalar mixings are different when determined from
n or ' (and similarly in the case of f| and f/). Indeed, a
phenomenological need for an energy-dependent mixing in
the case of 77 and #’ has been argued for in [63,64].

The pseudoscalars 7, ' and a third ground-state #” meson
arise from mixing of flavor-octet and flavor-singlet degrees of
freedom with the pseudoscalar glueball G, each followed by
an infinite tower of excited states. The ground state modes are
dominantly flavor octet, singlet, and glueball judging from

Results for the isoscalar pseudoscalar sector, for the model with (v1) and without (v0) gluon condensate, and for two

choices of g5: g5 = 2z corresponding to matching the vector correlator to the leading-order UV-behavior in QCD, and the reduced value
corresponding to a fit of F,. All dimensionful quantities in units of (powers of) GeV.

EOZO EOZO

@ = (2n)? ¢ = 0.894(27)?
(v0) n " G/n' n® n® n n " G/ 7' 7 7
m 0513 0840 1862 1999 2257 2705 0503 0819 1764 1948 2207 2.638
m—m® —64% —12.3% —82% —14.5%
18 0.0917 —0.0565 0.00197 0.0266 0.0121 0.0080 0.0902 —0.0624 0.00405 0.0293  0.0132 0.00837
70 0.0394  0.0945 —0.0212 —0.00823 —0.0390  0.0362 0.0446  0.0952 —0.0224 —0.00802 —0.0416 0.0337
fo —0.0264 —0.0385 0.0674 —0.0400 0.154 —0.310 —0.0265 —0.0344 0.0600 —0.0454 0.156 —0.280
F8(0,0) 146 —0.674 0.177 —1.18 000233 0236 141 —0737 00640 —1.16  0.0239 0241
FO0,0) 0776 142 0169 00383 1.08 0229 0828 134 000310 000492 1.10  0.253
F(0,0) 0351 0322 00629 —0.103 0293 00851 0361 0295  0.00700 —0.110  0.302  0.0922
F—F 128(2)% —6(2)% +32(2)% —14(2)%
a, x 10" 328 157 0055  0.14 079 016 340 133 0003 0.6 085  0.16

g, = 0.01051 g, = 0.01416

gs = (2n)? ¢ = 0.894(27)
1) n " G/ ¥ n® 7t n " G/n' 7 7 7
m 0557 0950 1.992 2390 2954 3214 0561 0947 1.943 2428 2914 3317
m—m™® +17% —0.8% 124% —1.1%
18 0.101 —0.0385 —0.0267 0.0116 —0.0228 —0.0049 0.103 —0.0393 —0.0299  0.0112 —0.0253 —0.00767
70 00272 0.113  0.0049 —0.0492 —0.00115 —0.0214 0.0298 0.121  0.00761 —0.0522 0.00320 —0.0128
fo —0.0298 —0.0774 0.053 0233  0.1483 0269 —0.0313 —0.0821 0.048 0260 0.1236 0214
F30,0) 155 —0431 119 —0.0478 —0.887  0.167 153 —0442 1.149  —0.0312 —0.877  0.129
F9(0,0) 0468 140 00051 0904 00300 00867 0444 131 —0.000026 0.837 00307 0.130
F(0,0) 0276 0340 0.116 0241 —-0.0772 0.0397 0268 0313 0.111 0225 —0.0760  0.0477
F—F +1(2)% —0(2)% +2(2)% -8(2)%
a,x10" 193 169 019 053 0043 0008 176 149 0.8 045 0039  0.007
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the corresponding decay constants evaluated at z — 0, while
the first excited triplet ) to #(>) shows a more involved
mixing behavior. The decay constants for 7 and 7' agree
reasonably well with the recent lattice results of Ref. [65],
where also pseudoscalar matrix elements have been evalu-
ated. Our results for f; correspond to \/N,/2a in [65] and
also agree reasonably well. The ratio a,/ / a,, is between 2 and
2.5 depending on the renormalization scale. This is better in
line with our model vl that includes a nonzero gluon
condensate, where f¢,/f¢, = 2.60 and 2.66 for the two
choices of gs, while model vO has 1.46 and 1.30.

Without gluon condensate (v0), the results for F(0,0)
show rather poor agreement with experimental results for
the # meson with deviations of around 30%, while those
for F,_,,(0,0) are much better. With gluon condensate
(model vl1), where the masses of # and 5 agree with
experimental data at the percent level, both couplings turn
out to agree remarkably well with the experimental values.

For isosinglet axial-vector mesons (Table IIT), both model
versions predict generally too high values of f; and f}
masses (+8% to +28% compared to PDG data [66]). The f
and f) mesons are obtained as dominantly flavor octet and
flavor singlet, respectively. In the holographic model, the
mixing angle is an energy or z dependent quantity. In the case
of the f; mesons, it is usually extracted from equivalent
photon decay rates at zero virtuality, where the experimental
results from the L3 experiment read [67,68]

£ {3.5(8) keV for f, = f,(1285) (34)
7 13.2(9) keV  for f = f,(1420)°
With the definition
f1=cosO,f° +sin0,f8 (35)
and the assumption that f“yy  my, one has
1 /]
tan’ ( 0, — arcsin~ | = By (36)
3 mp

leading to [42] 0, = 62(5)°, superficially agreeing with
model version v0. However, in the holographic model we
have

- matmy {Ncmi

2
nyy — 12 47.[2 An (O, O):| ~ mA(mA/A)4’ (37)
resulting in 6, = 56(5)° for the experimental value, which
does not fit to the results for either vO or v1, the latter
disagreeing even more than the former.” While the mixing

°It would be interesting to revisit this issue in other holographic
QCD models, in particular ones that are closer to a string-theoretic
top-down construction such as the models of Refs. [69-71].

TABLE III. Results for the isoscalar axial-vector sector, for
the model with (vl) and without (vO) gluon condensate, and
the two choices gs (OPE fit) and g5 (F,-fit). Here 6, =
arctan(A%(0,0)/A%(0,0)) for both f, and f}, and A(0,0) =
tr(2°Q?)A%(0,0) = [A%(0,0) + /8A4°(0,0)]/6+/3. All dimen-
sionful quantities are given in units of (powers of) GeV. In the
a,, contributions, about 58% are due to the longitudinal part of the
axial-vector-meson propagator, which contributes to the MV
constraint.

B, =0 B, =0

gt = (2n)? g2 = 0.894(2x)?
(v0) S 1 S fi
m 1.460 1.651 1.388 1.598
m — m®P +14% +16% +8% +12%
Fi/m 0.163 —-0.0732 0.165 —0.0627
FS/m 0.0743 0.169 0.0690 0.180
A3(0,0) 19.27 —8.649 18.38 —7.194
A%(0,0) 8.676 19.21 7.310 18.62
04 65.8° —24.2° 68.3° =21.1°
A(0,0) 422 4.40 3.76 437
m* 2.241 2.614 2.147 2.561
m* 3.056 3.580 2.999 3.535
a, X 101 11.0 10.8 9.08 11.0
a, X 10" 0.61 1.50 0.62 1.54
a;’ x 10! 0.18 1.08 0.16 0.99
a;” x 10! 0.09 0.42 0.08 0.39
;" x 10" 0.04 0.27 0.03 0.25

Zy = 0.01051 Ey =0.01416

g = (2r)? g2 = 0.894(2x)?
(v1) fi /1 fi /1
m 1.481 1.810 1.410 1.820
m — m®P +15% +27% +10% +28%
F&/my 0.176 —0.0299 0.176 —0.0167
FO /m, 00365 0201  0.0292 0.219
A3(0,0) 20.77 —3.842 19.58 —2.556
A%(0,0) 3.857 20.07 2.690 19.00
04 79.5° —10.8° 82.2° =7.7°
A(0,0) 3.05 5.09 2.62 4.93
m* 2.246 2.862 2.153 2.891
m** 3.058 3.869 3.004 3.907
a, x 10" 5.71 14.3 4.34 13.6
a, x 10" 0.36 1.01 0.33 091
a,;” x 10 0.11 1.11 0.05 0.99
;" x 10 0.01 0.33 0.02 0.24
;" x 101 0.01 0.28 0.05 0.15

angle depends rather strongly on Z,, the combination
V/[A%(0,0)]> + [A°(0,0)]?> changes only slightly between
models vO and v1, and it is also close to the value of A(0, 0) in
the isotriplet sector, as well as to the same quantity in the
chiral hard-wall model [43], (21.04 GeV)~™2. Matching
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A(0,0) with T, o my (ms/A)* to the L3 results leads to a
value of 15.2(2.0) GeV~2 so that the holographic results,
which read 20-21 GeV~2 when g5 = 27 and 19-20 GeV~>
for the reduced gs, are somewhat too high for f; and f/, but
not excluded for a;, for which Ref. [34] has a concordant
estimate of 19.3 (5.0) GeV~—2.

C. Transition form factors

For the HLBL contribution of single mesons to a,, their
singly- and doubly-virtual TFFs are of critical importance.

As in the chiral HW model [39], we find excellent
agreement of the singly virtual result for the pion TFF
with available experimental data, see Fig. 1. At virtualities
relevant for a,, the results with gs fitted to F,, where the
asymptotic limit is 89.4% of the Brodsky-Lepage value,
seem to give the best match.

For the symmetric doubly virtual TFF the comparison is
made with the dispersive result of Ref. [21] and the lattice
result of Ref. [22] in Fig. 2. Both choices of g5 are within
the error band of the dispersive result, while the result for
the reduced g5 is also within the error band of the lattice
result and moreover happens to coincide with the central
values of the dispersive approach within line thickness of
the plot throughout the entire range of Q7.

With 77 and ' mesons, there is a rather strong dependence
on the parameter =, representing a gluon condensate. With
this parameter turned on, the masses of # and # can be

Q2F7r0'y*'y(Q23 0) [GEV]

0.35 ——
+¢+  BESIII (preliminary)

030F ki Belle 1

t & BABAR 1

o5l 4 CLEO 1

4+ CELLO T <

0.20

0.15

0.10

0.05

0.00 MY e e w M
0.1 0.5 1 5 10 50

Q* [GeV?]

FIG. 1. Holographic results for the single virtual TFF
Q*F(Q?,0) for z°, plotted on top of experimental data as compiled
in Fig. 53 of Ref. [4] for g5 = 2z (OPE fit, blue) and the reduced
value (red) corresponding to a fit of F,. (For 7° results for the
model with and without gluon condensate coincide.)

0.07

006 —— - T~ ———= = —=

0.05F

0.04
0.03F

QFp (R0

0.02F
0.01

000 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 25 3.0

02

FIG. 2. Holographic results for the doubly virtual Fj,.,.
compared to the dispersive result of Ref. [21] (green band)
and the lattice result of Ref. [22] (yellow band); the OPE limit
given by the dashed horizontal line. The upper full line (blue)
corresponds to gs = 2z (OPE fit), the lower (red) one to the
reduced value gs (F,-fit). (Here the two versions with and without
gluon condensate coincide.)

matched to percent level accuracy, and the resulting
prediction for Fp,,(0,0) is then in complete agreement
with experiment for gs = 2z (see Table II), while with
reduced g5 this value is slightly underestimated in the case
of #'. For the singly virtual TFF of #, only the results with
nonzero E; are close to the experimental data, see Fig. 3.
They match those at low Q? quite well, but are generally
larger at higher virtualities. In the case of 7, all model
versions agree with the low-Q2 date due to L3, while at
higher Q? the results without gluon condensate agree with
more of the data points, but only with unreduced g5 = 2.

In contrast to the case of z°, there are also several
experimental data points for the doubly virtual TFF of 7.
As opposed to the simple VMD model considered in [72]
and represented by the cyan circles in Fig. 4, the holo-
graphic results are within 1 and 2 standard deviations. For
the lowest virtualities Q2 = Q3 = 6.48 GeV?2, which are
the most significant for a,, all versions of the model come
close to the experimental result. With gluon condensate, the
agreement is better with the reduced gs, whereas without
gluon condensate, a reduction of gs to fit F,, moves the
prediction slightly outside the error bar.

All in all, the model with gluon condensate and reduced
gs seems to be the optimal choice regarding pseudoscalar
TFFs.

D. HLBL contribution to a,

Tables I and II include also the individual contributions
of the listed pseudoscalar and axial-vector meson modes to
a,, which are collected in Table IV for the model with
nonzero gluon condensate (v1) with g5 = 2z (OPE-fit) and
the reduced value (12) from fitting the p meson decay. Only
with the extra parameter Z for the gluon condensate, the
predictions for Fp,,(0,0) and masses of # and 5 match

experimental data with good accuracy. With reduced gs
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FIG. 3. Holographic results for the single virtual TFF

Q*F(Q?.,0) for n and 5’ plotted on top of experimental data
as compiled in Fig. 54 of Ref. [4] for g5 = 2z (OPE fit, blue) and
the reduced value (red) corresponding to a fit of F,. Full lines are
with gluon condensate (version v1), dashed lines without (vO0).

0 /
7 and a, are extremely close

(F,-fit), the predictions for aj
to the central values adopted by the White Paper [4], and
those for 5 agree within lo.

The holographic model also includes a third ground-state
n meson, which we called 7", the result of mixing with the
pseudoscalar glueball G. It contributes only 0.2 x 107!,
but there is also a whole tower of excited n modes,
which together with excited pion modes contribute around
1.5 x 107! so that the total pseudoscalar poles prediction
for model vl (F,-fit) is close to the upper end of the

0-000 1 1 1 i
(6.48,6.48) (16.85,16.85) (14.83,4.27) (38.11,14.95) (45.63,45.63)

FIG. 4. Holographic results for the doubly virtual F,/.,
compared to BABAR data points (black) and a simple VMD
model fitted with singly virtual data (cyan circles) [72]. Full lines
are with gluon condensate (version vl), dashed lines without
(v0); blue color corresponds to gs = 2z (OPE fit) and red to the
reduced value gs (F,-fit).

WP prediction, whereas the result for model v1 (OPE fit) is
2.50 higher.

The main aim of this study is of course the experimentally
less well constrained axial-vector meson contribution, which
in holographic QCD has been shown to take into account the
Melnikov-Vainshtein short-distance constraint [43,44], also
away from the chiral limit [46]. The holographic result thus
presents an alternative estimate of the combined contribution
of axial-vector mesons, for which the WP estimate is
6(6) x 107!, and of short-distance contributions,'® esti-
mated in the WP as 15(10) x 10~!'. With errors added
linearly, the WP value is at 21(16) x 107",

It is difficult to estimate errors for any holographic result,
but we expect our results for a, to be in good shape despite
some deviations in its ingredients. The holographic results
for axial-vector mesons have turned out to overestimate the
masses of f| and f| by 8-28%, where the models with
gluon condensate have the higher deviations. On the other
hand, all our models have an equivalent real photon
coupling A(0,0) that is 20-28% too large compared to
the value derived from L3 data for f; and f*, albeit in good
agreement with the estimate of Ref. [34] for a,(1260). The
mixing angles for f| and f are poorly predicted, and even
worse when the gluon condensate is turned on. However,

the prediction for the amplitude +/(A®)? + (A%)? appears to
be fairly robust and only weakly dependent on E,. A
different modeling of the gluon condensate could perhaps
lead to better predictions for the mixing with similar overall
amplitude. Our summary in Table IV therefore lists the
presumably more reliable combined contribution of f; and
f1- Since the contribution to a, decreases with increasing
axial-vector meson mass by approximately two inverse

"In the symmetric high-energy limit, the holographic results for
the HLBL scattering amplitude have the correct dependence on
Q?, but reproduce the OPE value only at the level of 81% when
g5 = 2x, where the asymmetric MV limit is saturated fully [44,46].
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TABLE IV. Summary of the results for the different contribu-
tions to a, in comparison with the White Paper [4] values.

a; x 10" v1(OPE fit) VI(F -fit) WP
7’ 66.1 63.4 62.6132
n 19.3 17.6 16.3(1.4)
7 16.9 14.9 14.5(1.9)
G/ 0.2 0.2
S e 1.6 1.4
PS poles total 104 97.5 93.8(4.0)
a 7.8 7.1
fi+ /) 20.0 17.9
a 2.2 2.4
> o 3.6 3.0

J1
AV + LSDC total 33.7 30.5 21(16)
Total 138 128 115(16.5)

powers while the amplitude A enters quadratically, we
expect that the errors in the predictions of both will largely
cancel out, so that the holographic results can still be a
reasonably good prediction for the axial-vector meson
contributions to a,. For our favored model vI(F,-fit),
the contribution from the ground-state axial-vector mesons

is azl+f‘+f/‘ =25.0x 107!, about four times the WP
estimate. The contribution from f; + f/ is 2.5 times that
of a;, somewhat reduced from the flavor-U(3)-symmetric
value of 3 that was assumed in our previous estimates
in Ref. [46]. For this contribution, Pauk and
Vanderhaeghen [12] have estimated a value of only
6.4(2.0) x 107!, much smaller than our holographic pre-
diction of 17.9 x 107!, Besides the differences in A(0, 0)
and the mass parameters, a crucial difference of the TFF
assumed in [12] is that it is obtained from a factorized
ansatz that unlike the holographic result does not have the
correct asymptotic behavior [42] in the doubly virtual case,
where it falls off as 1/Q* instead of 1/Q>.

In the holographic models, the excited axial-vector
mesons ensure agreement with the longitudinal
(Melnikov-Vainshtein) short-distance constraint. This con-
straint derived from the axial anomaly is satisfied to 100%
in the model v1 (OPE fit), and to 89.4% in the case of vl
(F ,-fit). The latter should provide a better approximation at
large but still physically relevant energy scales, where
typically ~10% of next-to-leading order pQCD corrections
apply [56,57].

In the chiral HW1 model and in the U(3)-symmetric
massive HWIm model that we have investigated in
Refs. [43,46], we have obtained 9.2 and 9.4 x 10~ from
excited axial vectors, where 25% are due to a; by U(3)
symmetry. The contribution of excited a;’s in our present
models are essentially the same as in the HW 1m model (up
to a slightly different fit value of f,), but the excited
isoscalars remain below the extra factor of 3 expected from

u@3) symmetry.” Instead, the latter provide only 1.6 and
1.4 times the contributions from excited «;’s in the case of
vl (OPE fit) and vI(F ,-fit), respectively.

The total contribution from axial-vector mesons is thus
significantly smaller than the estimates we have come up
with in the flavor-symmetric case of Ref. [46]: 33.7 and
30.5 x 107! for the two choices of gs (instead of 40.8 and
38.8 x 10°"" for HW1m and HW1m with reduced gs,
respectively). Comparing this to the combined estimate of
axial-vector mesons and short-distance contributions in the
WP, 21(16) x 107!, we find values that are about 50%
higher, but well within the estimated error.

V. CONCLUSION

In this paper, we have upgraded our previous studies of
the HLBL contribution in HW AdS/QCD models to 2 + 1
flavors with strange quark mass m; > m, = m, plus a
Witten-Veneziano mass for the flavor-singlet degree of
freedom generated by interaction terms involving a pseu-
doscalar glueball with the latter that implement the anoma-
lous Ward identities of the U(1), symmetry in the line of
Refs. [48,49].

In holographic QCD, the Melnikov-Vainshtein constraint
on the HLBL scattering amplitude is naturally satisfied, to the
same degree that TFFs satisfy the Brodsky-Lepage and OPE
limits. All these are saturated at the level of 100% for the
standard value of g5 = 27 in HW1 models.'” However,
because these models do not involve a running coupling
in the UV, the UV limits of TFFs are approached too quickly,
likely leading to overestimated HLBL contributions to a,,.
Next-to-leading-order gluonic corrections in pQCD suggest
a reduction by about 10% at large but still experimentally
relevant virtualities. Precisely such a correction is obtained
by fitting g5 such that the decay constant of the p meson is
matched instead of the OPE result for the vector correlator. In
Ref. [54], we have found that this also moves the Ny = 2
result of HW AdS/QCD models for the HVP contribution
much closer to the dispersive results [19,20].

In Refs. [43,46] we have shown that the MV short-
distance constraint is realized by the infinite tower of axial-
vector mesons, with the excited axial-vector mesons adding
about a third of the contribution from the ground-state axial

"In order to approximate the sum of contributions from the
infinite tower of axial-vector mesons we have used the observa-
tion that in the chiral HW models as well as in the HW 1m model
the infinite series of contributions can be roughly approximated
by a geometric one with a,;/a, = 0.6 for n > 2. The full sum
can thus be approximated by multiplying the last contribution of a
truncated sum by a factor of 1/(1 —0.6) = 2.5. In the case of
excited pseudoscalars, which do not contribute to the longitudinal
short-distance constraint [46], the contributions drop much more
quickly. Our results for those are obtained simply from the sum of
the first few modes.

2The simpler Hirn-Sanz (HW2) model, which omits the
bifundamental scalar X, reaches 62% when f, and m,, are fitted.
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vectors in the flavor-symmetric case. A much smaller
contribution comes from excited pseudoscalars, which
do not contribute to the longitudinal short-distance behav-
ior at leading order.

In our present study with U(1), anomaly included,
where we have obtained a remarkably accurate fit of the
masses of # and 1’ mesons as well as of their Fp,,(0,0)
values when including a nonzero gluon condensate that was
omitted in [48], we have found a reduction of the ratio 3: 1
for the isoscalar:isotriplet contributions of axial-vector
mesons to about 2.5:1. For excited mesons (axial vector
as well as pseudoscalar), we have obtained an even more
pronounced reduction, which reduces our prediction for
the a, contribution of axial-vector mesons in the U(3)-
symmetric case from around 41 and 39 x 107! t0 33.7 and
30.5x 107" for gs(OPE) and gs(F,-fit), respectively.
These values are above the estimate of the White
Paper [4] for the contribution of (ground-state) axial-vector
mesons plus short-distance constraints, but still within the

error given there. The pseudoscalar contributions obtained
in our model vI(F,-fit) agree completely with the WP
results for 7%, 5, and 5/, however this model also has a
contribution of 1.6 x 107! from excited pseudoscalars,
where the tower of 1’s mixes with a pseudoscalar glueball.
The complete contribution from summing pseudoscalar and
axial-vector contributions is approximately 128 x 107!,
which we consider our currently best estimate obtained
from AdS/QCD:; it thus turns out to be close to (but below)
the upper end of the corresponding WP estimate.

ACKNOWLEDGMENTS

We would like to thank Gilberto Colangelo, Martin
Hoferichter, Bastian Kubis, Elias Kiritsis, and Pablo
Sanchez-Puertas for helpful discussions. J.L. and J. M.
have been supported by the Austrian Science Fund FWF,
Project No. P33655, and by the FWF doctoral program
Particles and Interactions, Project No. W1252-N27.

[1] B. Abi et al. (Muon g — 2 Collaboration), Measurement of
the Positive Muon Anomalous Magnetic Moment to
0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021).

[2] G.W. Bennett et al., Final report of the E821 muon
anomalous magnetic moment measurement at BNL, Phys.
Rev. D 73, 072003 (2006).

[3] F. Jegerlehner, The anomalous magnetic moment of the
muon, Second edition, Springer Tracts Mod. Phys. 274, 1
(2017).

[4] T. Aoyama et al., The anomalous magnetic moment of the
muon in the Standard Model, Phys. Rep. 887, 1 (2020).

[5] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio,
Complete Tenth-Order QED Contribution to the Muon
g—2, Phys. Rev. Lett. 109, 111808 (2012); T. Aoyama,
T. Kinoshita, and M. Nio, Revised and improved value of
the QED tenth-order electron anomalous magnetic moment,
Phys. Rev. D 97, 036001 (2018); Theory of the anomalous
magnetic moment of the electron, Atoms 7, 28 (2019).

[6] A. Czarnecki, W.J. Marciano, and A. Vainshtein, Refine-
ments in electroweak contributions to the muon anomalous
magnetic moment, Phys. Rev. D 67, 073006 (2003); 73,
119901(E) (2006).

[7] C. Gnendiger, D. Stockinger, and H. Stockinger-Kim, The
electroweak contributions to (g —2),, after the Higgs boson
mass measurement, Phys. Rev. D 88, 053005 (2013).

[8] K. Melnikov and A. Vainshtein, Hadronic light-by-light
scattering contribution to the muon anomalous magnetic
moment revisited, Phys. Rev. D 70, 113006 (2004).

[9] J. Prades, E. de Rafael, and A. Vainshtein, The hadronic
light-by-light scattering contribution to the muon and
electron anomalous magnetic moments, Adv. Ser. Dir. High
Energy Phys. 20, 303 (2009).

[10] A. Kurz, T. Liu, P. Marquard, and M. Steinhauser, Hadronic
contribution to the muon anomalous magnetic moment to
next-to-next-to-leading order, Phys. Lett. B 734, 144 (2014).

[11] G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera, and
P. Stoffer, Remarks on higher-order hadronic corrections to
the muon g — 2, Phys. Lett. B 735, 90 (2014).

[12] V. Pauk and M. Vanderhaeghen, Single meson contributions
to the muon’s anomalous magnetic moment, Eur. Phys. J. C
74, 3008 (2014).

[13] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang,
Reevaluation of the hadronic vacuum polarisation contri-
butions to the Standard Model predictions of the muon g — 2
and a(m%) using newest hadronic cross-section data, Eur.
Phys. J. C 77, 827 (2017).

[14] P. Masjuan and P. Sanchez-Puertas, Pseudoscalar-pole
contribution to the (g, —2): A rational approach, Phys.
Rev. D 95, 054026 (2017).

[15] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer,
Dispersion relation for hadronic light-by-light scattering:
Two-pion contributions, J. High Energy Phys. 04 (2017)
161.

[16] A. Keshavarzi, D. Nomura, and T. Teubner, Muon g — 2 and
a(M2%): A new data-based analysis, Phys. Rev. D 97,
114025 (2018).

[17] G. Colangelo, M. Hoferichter, and P. Stoffer, Two-pion
contribution to hadronic vacuum polarization, J. High
Energy Phys. 02 (2019) 006.

[18] M. Hoferichter, B.-L. Hoid, and B. Kubis, Three-pion
contribution to hadronic vacuum polarization, J. High
Energy Phys. 08 (2019) 137.

[19] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, A new
evaluation of the hadronic vacuum polarisation contributions

054021-11


https://doi.org/10.1103/PhysRevLett.126.141801
https://doi.org/10.1103/PhysRevD.73.072003
https://doi.org/10.1103/PhysRevD.73.072003
https://doi.org/10.1007/978-3-319-63577-4
https://doi.org/10.1007/978-3-319-63577-4
https://doi.org/10.1016/j.physrep.2020.07.006
https://doi.org/10.1103/PhysRevLett.109.111808
https://doi.org/10.1103/PhysRevD.97.036001
https://doi.org/10.3390/atoms7010028
https://doi.org/10.1103/PhysRevD.67.073006
https://doi.org/10.1103/PhysRevD.73.119901
https://doi.org/10.1103/PhysRevD.73.119901
https://doi.org/10.1103/PhysRevD.88.053005
https://doi.org/10.1103/PhysRevD.70.113006
https://doi.org/10.1142/ASDHEP
https://doi.org/10.1142/ASDHEP
https://doi.org/10.1016/j.physletb.2014.05.043
https://doi.org/10.1016/j.physletb.2014.06.012
https://doi.org/10.1140/epjc/s10052-014-3008-y
https://doi.org/10.1140/epjc/s10052-014-3008-y
https://doi.org/10.1140/epjc/s10052-017-5161-6
https://doi.org/10.1140/epjc/s10052-017-5161-6
https://doi.org/10.1103/PhysRevD.95.054026
https://doi.org/10.1103/PhysRevD.95.054026
https://doi.org/10.1007/JHEP04(2017)161
https://doi.org/10.1007/JHEP04(2017)161
https://doi.org/10.1103/PhysRevD.97.114025
https://doi.org/10.1103/PhysRevD.97.114025
https://doi.org/10.1007/JHEP02(2019)006
https://doi.org/10.1007/JHEP02(2019)006
https://doi.org/10.1007/JHEP08(2019)137
https://doi.org/10.1007/JHEP08(2019)137

JOSEF LEUTGEB, JONAS MAGER, and ANTON REBHAN

PHYS. REV. D 107, 054021 (2023)

to the muon anomalous magnetic moment and to a(m?%), Eur.
Phys. J. C 80, 241 (2020).

[20] A. Keshavarzi, D. Nomura, and T. Teubner, g — 2 of charged
leptons, a(M%), and the hyperfine splitting of muonium,
Phys. Rev. D 101, 014029 (2020).

[21] M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P.
Schneider, Pion-Pole Contribution to Hadronic Light-by-
Light Scattering in the Anomalous Magnetic Moment of the
Muon, Phys. Rev. Lett. 121, 112002 (2018); Dispersion
relation for hadronic light-by-light scattering: Pion pole,
J. High Energy Phys. 10 (2018) 141.

[22] A. Gérardin, H. B. Meyer, and A. Nyffeler, Lattice calcu-
lation of the pion transition form factor with Ny =2 + 1
Wilson quarks, Phys. Rev. D 100, 034520 (2019).

[23] J. Bijnens, N. Hermansson-Truedsson, and A. Rodriguez-
Sanchez, Short-distance constraints for the HLbL contribu-
tion to the muon anomalous magnetic moment, Phys. Lett.
B 798, 134994 (2019).

[24] J. Bijnens, N. Hermansson-Truedsson, L. Laub, and A.
Rodriguez-Sanchez, Short-distance HLbL contributions to
the muon anomalous magnetic moment beyond perturbation
theory, J. High Energy Phys. 10 (2020) 203.

[25] G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub, and P.
Stoffer, Short-distance constraints on hadronic light-by-light
scattering in the anomalous magnetic moment of the muon,
Phys. Rev. D 101, 051501 (2020).

[26] G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub, and P.
Stoffer, Longitudinal short-distance constraints for the
hadronic  light-by-light contribution to (g—2), with
large-N,. Regge models, J. High Energy Phys. 03 (2020)
101.

[27] 1. Danilkin, C.F. Redmer, and M. Vanderhaeghen, The
hadronic light-by-light contribution to the muon’s anoma-
lous magnetic moment, Prog. Part. Nucl. Phys. 107, 20
(2019).

[28] T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C.
Jung, and C. Lehner, Hadronic Light-by-Light Scattering
Contribution to the Muon Anomalous Magnetic Moment
from Lattice QCD, Phys. Rev. Lett. 124, 132002 (2020).

[29] E.-H. Chao, R.J. Hudspith, A. Gérardin, J. R. Green, H. B.
Meyer, and K. Ottnad, Hadronic light-by-light contribution
to (g —2), from lattice QCD: A complete calculation, Eur.
Phys. J. C 81, 651 (2021).

[30] M. Hoferichter and T. Teubner, Mixed Leptonic and
Hadronic Corrections to the Anomalous Magnetic Moment
of the Muon, Phys. Rev. Lett. 128, 112002 (2022).

[31] L. Danilkin, M. Hoferichter, and P. Stoffer, A dispersive
estimate of scalar contributions to hadronic light-by-light
scattering, Phys. Lett. B 820, 136502 (2021).

[32] S. Borsanyi et al., Leading hadronic contribution to the
muon magnetic moment from lattice QCD, Nature (London)
593, 51 (2021).

[33] J. Bijnens, E. Pallante, and J. Prades, Comment on the pion
pole part of the light by light contribution to the muon g — 2,
Nucl. Phys. B626, 410 (2002).

[34] P. Roig and P. Sanchez-Puertas, Axial-vector exchange
contribution to the hadronic light-by-light piece of the
muon anomalous magnetic moment, Phys. Rev. D 101,
074019 (2020).

[35] P. Masjuan, P. Roig, and P. Sanchez-Puertas, The interplay
of transverse degrees of freedom and axial-vector mesons
with short-distance constraints in g —2, J. Phys. G 49,
015002 (2022).

[36] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Int. J. Theor. Phys. 38, 1113
(1999).

[37] E. Witten, Anti-de Sitter space, thermal phase transition, and
confinement in gauge theories, Adv. Theor. Math. Phys. 2,
505 (1998).

[38] O. Aharony, S.S. Gubser, J. M. Maldacena, H. Ooguri, and
Y. Oz, Large N field theories, string theory and gravity,
Phys. Rep. 323, 183 (2000).

[39] J. Leutgeb, J. Mager, and A. Rebhan, Pseudoscalar tran-
sition form factors and the hadronic light-by-light contri-
bution to the anomalous magnetic moment of the muon
from holographic QCD, Phys. Rev. D 100, 094038 (2019);
104, 059903(E) (2021).

[40] D.K. Hong and D. Kim, Pseudo scalar contributions to
light-by-light correction of muon g — 2 in AdS/QCD, Phys.
Lett. B 680, 480 (2009).

[41] L. Cappiello, O. Cata, and G. D’ Ambrosio, The hadronic
light by light contribution to the (g — 2) . With holographic
models of QCD, Phys. Rev. D 83, 093006 (2011).

[42] M. Hoferichter and P. Stoffer, Asymptotic behavior of
meson transition form factors, J. High Energy Phys. 05
(2020) 159.

[43] J. Leutgeb and A. Rebhan, Axial vector transition form
factors in holographic QCD and their contribution to the
anomalous magnetic moment of the muon, Phys. Rev. D
101, 114015 (2020).

[44] L. Cappiello, O. Cata, G. D’Ambrosio, D. Greynat, and A.
Iyer, Axial-vector and pseudoscalar mesons in the hadronic
light-by-light contribution to the muon (g — 2), Phys. Rev. D
102, 016009 (2020).

[45] G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub, and P.
Stofter, Short-distance constraints for the longitudinal com-
ponent of the hadronic light-by-light amplitude: An update,
Eur. Phys. J. C 81, 702 (2021).

[46] J. Leutgeb and A. Rebhan, Hadronic light-by-light contri-
bution to the muon g—2 from holographic QCD with
massive pions, Phys. Rev. D 104, 094017 (2021).

[47] J. Erlich, E. Katz, D. T. Son, and M. A. Stephanov, QCD and
a Holographic Model of Hadrons, Phys. Rev. Lett. 95,
261602 (2005).

[48] E. Katz and M. D. Schwartz, An eta primer: Solving the
U(1) problem with AdS/QCD, J. High Energy Phys. 08
(2007) 077.

[49] T. Schifer, Euclidean correlation functions in a holographic
model of QCD, Phys. Rev. D 77, 126010 (2008).

[50] L. Da Rold and A. Pomarol, Chiral symmetry breaking
from five-dimensional spaces, Nucl. Phys. B721, 79
(2005).

[51] H.R. Grigoryan and A. V. Radyushkin, Pion form-factor in
chiral limit of hard-wall AdS/QCD model, Phys. Rev. D 76,
115007 (2007).

[52] Z. Abidin and C. E. Carlson, Strange hadrons and kaon-to-
pion transition form factors from holography, Phys. Rev. D
80, 115010 (2009).

054021-12


https://doi.org/10.1140/epjc/s10052-020-7792-2
https://doi.org/10.1140/epjc/s10052-020-7792-2
https://doi.org/10.1103/PhysRevD.101.014029
https://doi.org/10.1103/PhysRevLett.121.112002
https://doi.org/10.1007/JHEP10(2018)141
https://doi.org/10.1103/PhysRevD.100.034520
https://doi.org/10.1016/j.physletb.2019.134994
https://doi.org/10.1016/j.physletb.2019.134994
https://doi.org/10.1007/JHEP10(2020)203
https://doi.org/10.1103/PhysRevD.101.051501
https://doi.org/10.1007/JHEP03(2020)101
https://doi.org/10.1007/JHEP03(2020)101
https://doi.org/10.1016/j.ppnp.2019.05.002
https://doi.org/10.1016/j.ppnp.2019.05.002
https://doi.org/10.1103/PhysRevLett.124.132002
https://doi.org/10.1140/epjc/s10052-021-09455-4
https://doi.org/10.1140/epjc/s10052-021-09455-4
https://doi.org/10.1103/PhysRevLett.128.112002
https://doi.org/10.1016/j.physletb.2021.136502
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1016/S0550-3213(02)00074-3
https://doi.org/10.1103/PhysRevD.101.074019
https://doi.org/10.1103/PhysRevD.101.074019
https://doi.org/10.1088/1361-6471/ac3892
https://doi.org/10.1088/1361-6471/ac3892
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n3.a3
https://doi.org/10.4310/ATMP.1998.v2.n3.a3
https://doi.org/10.1016/S0370-1573(99)00083-6
https://doi.org/10.1103/PhysRevD.100.094038
https://doi.org/10.1103/PhysRevD.104.059903
https://doi.org/10.1016/j.physletb.2009.09.026
https://doi.org/10.1016/j.physletb.2009.09.026
https://doi.org/10.1103/PhysRevD.83.093006
https://doi.org/10.1007/JHEP05(2020)159
https://doi.org/10.1007/JHEP05(2020)159
https://doi.org/10.1103/PhysRevD.101.114015
https://doi.org/10.1103/PhysRevD.101.114015
https://doi.org/10.1103/PhysRevD.102.016009
https://doi.org/10.1103/PhysRevD.102.016009
https://doi.org/10.1140/epjc/s10052-021-09513-x
https://doi.org/10.1103/PhysRevD.104.094017
https://doi.org/10.1103/PhysRevLett.95.261602
https://doi.org/10.1103/PhysRevLett.95.261602
https://doi.org/10.1088/1126-6708/2007/08/077
https://doi.org/10.1088/1126-6708/2007/08/077
https://doi.org/10.1103/PhysRevD.77.126010
https://doi.org/10.1016/j.nuclphysb.2005.05.009
https://doi.org/10.1016/j.nuclphysb.2005.05.009
https://doi.org/10.1103/PhysRevD.76.115007
https://doi.org/10.1103/PhysRevD.76.115007
https://doi.org/10.1103/PhysRevD.80.115010
https://doi.org/10.1103/PhysRevD.80.115010

HADRONIC LIGHT-BY-LIGHT CONTRIBUTION TO THE MUON ...

PHYS. REV. D 107, 054021 (2023)

[53] O. Domenech, G. Panico, and A. Wulzer, Massive pions,
anomalies and baryons in holographic QCD, Nucl. Phys.
A853, 97 (2011).

[54] J. Leutgeb, A. Rebhan, and M. Stadlbauer, Hadronic
vacuum polarization contribution to the muon ¢g—2 in
holographic QCD, Phys. Rev. D 105, 094032 (2022).

[55] M. A. Shifman, A. 1. Vainshtein, and V. 1. Zakharov, QCD
and resonance physics. Theoretical foundations, Nucl. Phys.
B147, 385 (1979).

[56] B. Melic, D. Mueller, and K. Passek-Kumericki, Next-to-
next-to-leading prediction for the photon to pion transition
form-factor, Phys. Rev. D 68, 014013 (2003).

[57] J. Bijnens, N. Hermansson-Truedsson, L. Laub, and A.
Rodriguez-Séanchez, The two-loop perturbative correction to
the (g —2), HLbL at short distances, J. High Energy Phys.
04 (2021) 240.

[58] L. Cappiello, O. Cata, and G. D’Ambrosio, Scalar reso-
nances in the hadronic light-by-light contribution to the
muon (g — 2), Phys. Rev. D 105, 056020 (2022).

[59] V. Pascalutsa, V. Pauk, and M. Vanderhaeghen, Light-by-
light scattering sum rules constraining meson transition
form factors, Phys. Rev. D 85, 116001 (2012).

[60] M. Zanke, M. Hoferichter, and B. Kubis, On the transition
form factors of the axial-vector resonance f(1285) and its
decay into eTe™, J. High Energy Phys. 07 (2021) 106.

[61] Y. Aoki et al. (Flavour Lattice Averaging Group (FLAG)),
FLAG review 2021, Eur. Phys. J. C 82, 869 (2022).

[62] F. Briinner and A. Rebhan, Constraints on the 7’ decay rate
of a scalar glueball from gauge/gravity duality, Phys. Rev. D
92, 121902 (2015).

[63] R. Escribano and J.-M. Frere, Phenomenological evidence
for the energy dependence of the #-/ mixing angle, Phys.
Lett. B 459, 288 (1999).

[64] R. Escribano and J.-M. Frere, Study of the -1’ system in the
two mixing angle scheme, J. High Energy Phys. 06 (2005)
029.

[65] G.S. Bali, V. Braun, S. Collins, A. Schiifer, and J. Simeth
(RQCD Collaboration), Masses and decay constants of the #
and 7/ mesons from lattice QCD, J. High Energy Phys. 08
(2021) 137.

[66] R.L. Workman et al. (Particle Data Group), Review of
particle physics, Prog. Theor. Exp. Phys. 2022, 083C01
(2022).

[67] P. Achard er al. (L3 Collaboration), f(1285) formation in
two-photon collisions at LEP, Phys. Lett. B 526, 269 (2002).

[68] L3 Collaboration, Study of resonance formation in the
mass region 1400-1500 MeV through the reaction
Yy = KgKiiﬁ, J. High Energy Phys. 03 (2007) 018.

[69] R. Casero, E. Kiritsis, and A. Paredes, Chiral symmetry
breaking as open string tachyon condensation, Nucl. Phys.
B787, 98 (2007).

[70] D. Aredn, I. Iatrakis, M. Jiarvinen, and E. Kiritsis, The
discontinuities of conformal transitions and mass spectra of
V-QCD, J. High Energy Phys. 11 (2013) 068.

[71] F. Giannuzzi and S. Nicotri, U(1), axial anomaly, 7/, and
topological susceptibility in the holographic soft-wall
model, Phys. Rev. D 104, 014021 (2021).

[72] J. P. Lees et al. (BABAR Collaboration), Measurement of the
y*v* — ' transition form factor, Phys. Rev. D 98, 112002
(2018).

054021-13


https://doi.org/10.1016/j.nuclphysa.2011.02.002
https://doi.org/10.1016/j.nuclphysa.2011.02.002
https://doi.org/10.1103/PhysRevD.105.094032
https://doi.org/10.1016/0550-3213(79)90022-1
https://doi.org/10.1016/0550-3213(79)90022-1
https://doi.org/10.1103/PhysRevD.68.014013
https://doi.org/10.1007/JHEP04(2021)240
https://doi.org/10.1007/JHEP04(2021)240
https://doi.org/10.1103/PhysRevD.105.056020
https://doi.org/10.1103/PhysRevD.85.116001
https://doi.org/10.1007/JHEP07(2021)106
https://doi.org/10.1140/epjc/s10052-022-10536-1
https://doi.org/10.1103/PhysRevD.92.121902
https://doi.org/10.1103/PhysRevD.92.121902
https://doi.org/10.1016/S0370-2693(99)00629-2
https://doi.org/10.1016/S0370-2693(99)00629-2
https://doi.org/10.1088/1126-6708/2005/06/029
https://doi.org/10.1088/1126-6708/2005/06/029
https://doi.org/10.1007/JHEP08(2021)137
https://doi.org/10.1007/JHEP08(2021)137
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1016/S0370-2693(01)01477-0
https://doi.org/10.1088/1126-6708/2007/03/018
https://doi.org/10.1016/j.nuclphysb.2007.07.009
https://doi.org/10.1016/j.nuclphysb.2007.07.009
https://doi.org/10.1007/JHEP11(2013)068
https://doi.org/10.1103/PhysRevD.104.014021
https://doi.org/10.1103/PhysRevD.98.112002
https://doi.org/10.1103/PhysRevD.98.112002

