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We employ the comparatively minimal extension of hard-wall AdS/QCD due to Katz and Schwartz
which takes into account the Uð1ÞA anomaly for computing hadronic light-by-light scattering contributions
of pseudoscalar and axial-vector mesons to the anomalous magnetic moment of the muon aμ. By including
a gluon condensate as one extra tunable parameter besides those fixed by fπ and the pion, kaon, and rho
masses, we obtain remarkably accurate fits for η and η0 masses and their decay rates to photons, leading to
aμ contributions in complete agreement with the Standard Model result by the Muon g − 2 Theory
Initiative. Turning to the less well understood axial-vector contributions, we update our previous
predictions obtained in flavor-symmetric hard-wall AdS/QCD models without Uð1ÞA breaking.
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I. INTRODUCTION

Since in 2021 the Muon g − 2 Collaboration at
Fermilab [1] has succeeded in confirming and improving
the result of the E821/BNL measurement from 2006 [2] for
the anomalous magnetic moment of the muon [3] and is
under way on further increasing its accuracy, the existing
uncertainties in the disagreeing theoretical Standard Model
result [4] need to be scrutinized and also improved.
Whereas QED [5] and electroweak contributions [6,7]

are sufficiently under control, the theoretical uncertainty is
dominated by hadronic effects [8–31]. The largest contri-
bution by far is the hadronic vacuum polarization (HVP),
where a recent lattice calculation [32] is at variance with the
result of the 2020 White Paper (WP) of the Muon g − 2
Theory Initiative [4] beyond the respective estimated errors,
leading to a less strong deviation from the experimental
result if the lattice result is used in place of the data-driven
one obtained in the WP. Once this discrepancy is resolved,
it will be important to also reduce the uncertainty in
the contribution from hadronic light-by-light scattering
(HLBL), which at present has errors at the level of 20%,
which in absolute numbers are comparable to the small
errors aimed for in the case of HVP.
Besides the dominant pion-pole contribution to HLBL,

which by now seems to be well understood, and where
data-driven approaches and lattice evaluations agree

perfectly, and the similarly well-determined contributions
from η and η0 mesons, other single-meson contributions are
much less under control. An important contribution is
expected in particular from axial-vector mesons, which like
pseudoscalars have anomalous couplings to photons.
However, theoretical predictions from various hadronic
models vary a lot [3,8,12,33–35], which has led to a WP
estimate of the axial-vector contribution with 100%
uncertainty.
Holographic QCD models motivated by the AdS=CFT

correspondence [36–38] have proved to be remarkably
successful in qualitatively and also quantitatively describ-
ing hadronic observables, even those with a minimal set of
parameters and the simplest geometry of anti–de Sitter
space with a hard-wall (HW) cutoff. Such AdS/QCD
models are not good enough to help with the current
discrepancy between different predictions for the HVP
contribution, where subpercent accuracy is required.
However, they are certainly of interest for estimating the
HLBL contributions.
In Ref. [39], we have revisited previous studies [40,41]

of the pion-pole contribution to HLBL and its conse-
quences for the value of aμ ¼ ðg − 2Þμ=2 using simple
bottom-up AdS/QCD models in the chiral limit and we
have found a satisfactory agreement with the data-driven
and lattice approaches. The transition form factors obtained
in AdS/QCD involve infinite towers of vector mesons,
realizing vector meson dominance (VMD) in a form that is
consistent with the asymptotic behavior derived from
perturbative QCD [42] for both, the singly and the doubly
virtual case.
In [43,44], also the contribution from the infinite tower

of axial-vector mesons and their anomalous coupling to
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photons has been calculated, and it could be shown that
this takes care of the long-standing problem that simpler
hadronic models had with the Melnikov-Vainshtein (MV)
constraint [8] on the HLBL scattering amplitude (see [45]
for a review assessing its impact on aμ). In [46], we have
more recently extended these calculations to include finite
quark masses in the flavor-symmetric case. Besides dem-
onstrating that the saturation of the MV constraint is
entirely due to axial-vector mesons also away from the
chiral limit, we have confirmed the relatively large con-
tribution obtained in the chiral model.
In the present paper, we consider a minimal extension of

the original hard-wall AdS/QCD model [47] due to Katz
and Schwartz [48] for solving the Uð1ÞA problem asso-
ciated with the relatively large η0 mass. Going slightly
beyond the setup of [48] by including a nonvanishing gluon
condensate, we find that a very accurate match of the
masses of η and η0 mesons as well as their coupling strength
to photons can be achieved. We then use this model to
evaluate all contributions of pseudoscalar1 and axial-vector-
meson excitations, and thereby also the effect of the MV
short-distance constraint, to the HLBL contribution to aμ.

II. KATZ-SCHWARTZ MODEL: HARD-WALL
AdS/QCD WITH SOLVED Uð1ÞA PROBLEM

The model proposed by Katz and Schwartz [48,49] for
solving the Uð1ÞA problem builds upon the original HW
AdS/QCD models of Refs. [47,50] which have turned
out to provide a remarkably good approximation to the
physics of light hadrons while introducing a minimal set of
parameters.
In these models, one keeps the background geometry of

pure anti–de Sitter space with metric

ds2 ¼ z−2ðημνdxμdxν − dz2Þ; ð1Þ

cut off by a hard wall at a finite value of the holographic
radial coordinate at z ¼ z0 with suitable boundary con-
ditions for the five-dimensional fields that at the conformal
boundary at z ¼ 0 represent sources for a set of QCD
operators of interest. In addition to five-dimensional Yang-
Mills fields BL;R dual to left and right chiral-quark currents,
a bifundamental scalar X representing quark-antiquark
bilinears is introduced for spontaneous symmetry breaking
of UðNfÞ ×UðNfÞ → UðNfÞV . Confinement is imple-
mented by the cutoff at z0, where boundary conditions
for the five-dimensional fields are imposed.

The five-dimensional Yang-Mills action

SYM ¼ −
1

4g25

Z
d4x

Z
z0

0

dz
ffiffiffi
g

p
gPRgQS

× trðFL
PQF

L
RS þ FR

PQF
R
RSÞ; ð2Þ

where P;Q;R;S¼0;…;3;z and FMN¼∂MBN−∂NBM −
i½BM;BN �, is augmented by a Chern-Simons action SCS ¼
SLCS − SRCS to account for flavor anomalies, reading (in
differential form notation)

SL;RCS ¼ Nc

24π2

Z
tr

�
BF 2 −

i
2
B3F −

1

10
B5

�
L;R

; ð3Þ

(up to a boundary term at z0 that needs to be
subtracted [46,51]).
The bifundamental bulk scalar X is parametrized as [52]

X ¼ eiη
aðx;zÞtaX0eiη

aðx;zÞta ; ð4Þ

where ηa, a ¼ 0;…; 8, is a nonet of pseudoscalars exci-
tations. The five-dimensional mass of X is fixed at2

MX ¼ −3 by the scaling dimension of the dual operator
q̄LqR, leading to a vacuum solution

X0ij ¼
1

2
mijzþ

1

2
σijz3: ð5Þ

Choosing Nf ¼ 3, we restrict ourselves to the isospin sym-
metric case mu ¼md ¼mq ≠ms with X¼ 1

2
diagðvq;vq;vsÞ.

For taking care of the Uð1ÞA problem, a massless
complex field Y is introduced, representing the gluon field
strength squared αsG2

μν by its modulus and αsGG̃ by its
phase, such that the Lagrangian of scalars reads

LX;Y=
ffiffiffi
g

p ¼ tr½jDXj2 þ 3jXj2�

þ 1

2ðln zΛÞ2 jDYj2

þ κ0
4
½ȲNf detðXÞ þ H:c:�; ð6Þ

where the logarithm in front of the kinetic term for Y
accounts for the fact that its dual operators approach scaling
dimension 4 only asymptotically. The complex scalar field
Y is charged only under the singlet axial-vector field and
hence its coupling is given by

DMY ¼ ∂MY þ iffiffiffiffiffiffiffiffiffi
2Nf

p ðBL;0
M − BR;0

M ÞY: ð7Þ

Without the logarithm in (6), the field equations for Y
would give a background hYi ¼ Cþ Ξz4, where Ξ1The pseudoscalar contributions to aμ have been calculated

before in [40] by Hong and Kim in the Katz-Schwartz model
without gluon condensate. As discussed below, we disagree in the
treatment of the Chern-Simons term.

2In [46] we have also studied the generalization to other values
of MX as proposed in [53].
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represents a gluon condensate. After absorbing some
numerical factors into C, the authors of [48] use the
axial-anomaly relation and the QCD operator product
expansion (OPE fit) of the flavor-singlet axial-vector
correlation function to find

C ¼ αs
2π2

ffiffiffiffiffiffiffiffiffi
2Nf

p
: ð8Þ

In QCD αs is a running coupling and since in holography
energy is identified with z−1, they argue that αs should be
made z-dependent.
Matching z∂zαsðzÞ ≃ −β0α2s with the one-loop QCD β

function where β0 ¼ 9=2π for Nc ¼ Nf ¼ 3 gives
α−1s ¼ β0 lnðΛzÞ, which is adopted for all z < z0 ¼ Λ−1.
Making αs and therefore C depend on z is of course
inconsistent with the equations of motion (without the
logarithm), hence we use the modified version (6) including
the logarithms. The presence of the logarithm in the action
modifies the field equations for Y, leading to the general
solution3

hYi ¼ D0 þD1z4
�
ðln zΛÞ2 − 1

2
ln zΛþ 1

8

�
: ð9Þ

For later convenience we define4 Ỹ0¼ 2ffiffiffiffiffiffi
2Nf

p ð−lnzΛÞ−1hYi,
which is parametrized as

Ỹ0 ¼
C0

− ln zΛ
− Ξ0z4

�
ðln zΛÞ − 1

2
þ 1

8 ln zΛ

�
ð10Þ

with C0¼
ffiffiffiffiffiffiffiffiffi
2Nf

p
=ð2π2β0Þ¼

ffiffiffiffiffiffiffiffi
2=3

p
=ð3πÞ. This background

now naturally incorporates the running of αs consistently
and permits a nonvanishing gluon condensate through
nonzero values of Ξ0.
The coupling constant g5 can be fixed by the OPE of the

vector current correlator as

g25 ¼ 12π2=Nc ¼ ð2πÞ2 ðOPE fitÞ; ð11Þ

but we shall alternatively consider matching the decay
constant of the ρmeson, which in the hard-wall model leads
to [54]

g25 ¼ 0.894ð2π2Þ ðFρ-fitÞ: ð12Þ

The latter leads to a significant improvement of the holo-
graphic result for the hadronic vacuum polarization:With the
leading-order OPE fit (11), there is a deviation of 14% from

Nf ¼ 2 dispersive results, which is reduced to about 5%with
(12) [54]. A reduction of g25 by about 10% appears to be
warranted also by comparing with next-to-leading order
QCD results for the vector correlator at moderately largeQ2

values [55–57]. It also brings ourNf ¼ 2 results for the pion-
pole contribution to aμ [46] in line with the WP result.
With g5 and C0 fixed by the UV behavior, the free

parameters of the model are (i) the location of the hard
wall, z0, which can be identified with Λ−1, and will be set
by the ρ meson mass, (ii) quark masses in mij ¼
diagðmq;mq;msÞ, (iii) chiral condensates σij, which we
shall assume to be given by a single parameter, σij ¼ σδij,
and (iv) Ξ0, which corresponds to the gluon condensate
αshG2i. The coupling constant κ0, on the other hand, can be
set to some sufficiently large value, since it turns out that for
κ0 ≫ 1 all results depend only weakly on κ0 [48].

III. MESON MODES AND TRANSITION
FORM FACTORS

Vector-meson dominance is naturally part of this model
by relating a nonzero boundary value BV

μ ð0Þ ¼ eQAe:m:
μ to

the background electromagnetic potential and setting Q ¼
diagð2

3
;− 1

3
;− 1

3
Þ according to the charges of up, down, and

strange quarks. Normalizable modes of BV and BA corre-
spond to vector and axial-vector mesons, the longitudinal
polarizations of the latter mixing with the pseudoscalars ηa

in X. Ignoring scalar excitations, which in this model do not
couple to photons,5 the additional Y field also involves a
pseudoscalar a through its phase

Y ¼ hYi exp½i2aðx; zÞ= ffiffiffiffiffiffiffiffiffi
2Nf

p �; ð13Þ
which corresponds to a pseudoscalar glueball in the
boundary theory (G) that couples to photons via its mixing
with the flavor-singlet pseudoscalar mesons.
To determine the pseudoscalar eigenmodes in the mixed

a ¼ ð0; 8Þ-sector, we consider the equations of motion6

∂z

�
1

z
∂zφ

a
n

�
þ g25

M2
ab

z3
ðηbn − φb

nÞ

þ δa0g25
Ỹ2
0

z3
ðan − φ0

nÞ ¼ 0; ð14Þ

∂z

�
Ỹ2
0

z3
∂zan

�
þm2

n
Ỹ2
0

z3
ðan − φ0

nÞ

þ κNf
v2qvs
z5

�
Ỹ00

4

�Nf

ðη0n − anÞ ¼ 0; ð15Þ

3Here we also deviate from Ref. [48], where a gluon con-
densate, here parametrized byD1 was neglected and only C of the
background solution had to be modified.

4This is the same redefinition that [48] use, except for the
logarithm.

5See Ref. [58] for extensions of the HW model where further
interactions are switched on to have scalars couple to photons in
order to study their potential contribution to aμ in AdS/QCD.

6We assume a summation over a ¼ ð0; 8Þ for contracted flavor
indices and work in the Az ¼ 0 gauge.
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m2
n

g25

1

z
∂zφ

a
n − δa0

Ỹ2
0

z3
∂zan −

M2
ab

z3
∂zη

b
n ¼ 0; ð16Þ

with the longitudinal component of the axial gauge field

∂μφ
a ¼ Aak

μ and an effective 5-dimensional mass term

M2
ab ¼

1

3

�
2v2q þ v2s

ffiffiffi
2

p ðv2q − v2sÞffiffiffi
2

p ðv2q − v2sÞ v2q þ 2v2s

�
; ð17Þ

with vq;s ¼ mq;szþ σz3. Here we have also absorbed
numerical constants in κ0 and renamed it to κ, and we
defined Ỹ00 ¼ −Ỹ0 ln zΛ=C0.
The fields φa are dual to QCD operators −∂μJ

μ;a
A , and the

glueball field a is dual to −
ffiffiffiffiffiffiffiffiffi
2Nf

p
K, where K is the

instanton density K ¼ αs
8πG

a
μνG̃

aμν. This new field a allows
then among other things to compute overlaps of the
instanton density K with pseudoscalar modes η; η0;…
and the topological susceptibility.
All fields of the normalizable modes have Dirichlet

boundary conditions in the UV at z ¼ 0, Neumann boun-
dary conditions in the IR at z ¼ z0, and are canonically
normalized by

Z
dz

�
Mab

z3
ðηanðηbm − φb

mÞÞ þ
Ỹ0

2

z3
anðam − φ0

mÞ
�

¼ δnm:

ð18Þ

From the Chern-Simons term (3) we obtain the transition
form factor (TFF)

FnðQ2
1; Q

2
2Þ ¼ trðtaQ2ÞFa

nðQ2
1; Q

2
2Þ; ð19Þ

with [46]

Fa
nðQ2

1; Q
2
2Þ ¼ −

Nc

2π2

�Z
dzφ0a

n ðzÞJ ðQ1; zÞJ ðQ2; zÞ

− ½φa
nðzÞ − ηanðzÞ�J ðQ1; zÞJ ðQ2; zÞjz0

�
;

ð20Þ

where the vector bulk-to-boundary propagator

J ðQ; zÞ ¼ Qz

�
K1ðQzÞ þ K0ðQz0Þ

I0ðQz0Þ
I1ðQzÞ

�
ð21Þ

describes virtual photons with spacelike momentum
q2 ¼ −Q2.
Note that (20) involves the subtraction of a boundary

term at z ¼ z0, which is absent in [48], but (20) also differs
from the corresponding expression given in [51], where
ðφa

n − ηanÞ0 appears in the integral. As discussed in [46], this
is only correct in the chiral limit and for the ground-state

pion, but not in the massive case. Our results for the
pseudoscalar TFFs therefore also differ from Ref. [40],
where the TFFs for ground-state pseudoscalars in the Katz-
Schwartz model have been evaluated with the inapplicable
chiral formula of [51].
We can also generalize the asymptotic results and the

sum relations obtained in [46] in the nonchiral but flavor-
symmetric case to the asymmetric case ms ≠ mq with
broken Uð1ÞA symmetry. Most importantly, we can derive
the anomaly equations

X
n

fanFa
nð0; 0Þ ¼

Nc

2π2
; a ¼ 0; 3; or 8 ðfixedÞ; ð22Þ

and the short-distance constraint (SDC)

Fa
nðQ2ð1þ wÞ; Q2ð1 − wÞÞ → Nc

2π2
g25f

a
n
1

Q2
fðwÞ ð23Þ

for Q → ∞ with the asymmetry function

fðwÞ ¼ 1

w2
−
1 − w2

2w3
ln
1þ w
1 − w

; ð24Þ

and the pseudoscalar decay constants

fan ¼ −g−25 ∂zφ
a
n=zjz→0: ð25Þ

Note that the decay rate associated with the glueball field,

fnG ¼ Ỹ2
0∂zan=z

3jz→0 ð26Þ

does not contribute to the TFF. In QCD fnG computes
ð− ffiffiffiffiffiffiffiffiffi

2Nf
p ÞhΩjKjPni, where Pn is the respective pseudo-

scalar particle.
As far as we know, the sum rules (22) have not appeared

in the literature before in this general form where they
include mixing due to finite quark masses ms ≠ mq and
breaking of the Uð1ÞA symmetry at finite Nc. They involve
the components Fa

n of the TFFs Fn defined by (19), which
at least in lattice QCD could be determined directly by
varying the quark-charge matrix Q.
In general, all modes contribute to (22). In the limit of

vanishing quark masses, one has m2
nf

3;8
n ¼ OðmqÞ for each

n (as discussed in the Appendix of [46] in the holographic
setup). This implies that for a ¼ 3 and 8 only the massless
Goldstone bosons contribute to the sum rules, whereas
excited pseudoscalar modes decouple from the anomaly
relations, while they can still have nonzero Fnð0; 0Þ. In the
a ¼ 0 sector, we instead find f0nm2

n þ fnG ¼ OðmqÞ, and the
mass of the η0 meson is nonzero (in the chiral limit between
600 MeV and 700 MeV, depending on the precise value of
Ξ0). This means that even in the chiral limit (22) receives
contributions from all higher modes in the a ¼ 0 sector,
which is qualitatively different from the a ¼ 3, 8 sectors.
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Comparing the axial-vector sector to [46], the a ¼ 3
sector is unmodified, but the a ¼ ð0; 8Þ equations of
motion are changed to

∂z

�
1

z
∂zψ

a
A;nðzÞ

�
þ 1

z
m2

A;nψ
a
A;nðzÞ

−
g25ðM2

ab þ δ0aδ0bỸ2
0Þ

z3
ψb
A;nðzÞ ¼ 0: ð27Þ

In each case the axial-vector TFF is given by7

AnðQ2
1; Q

2
2Þ ¼ trðtaQ2ÞAa

nðQ2
1; Q

2
2Þ; ð28Þ

with

Aa
nðQ2

1; Q
2
2Þ ¼

2g5
Q2

1

Z
z0

0

dz

�
d
dz

J ðQ1; zÞ
�
J ðQ2; zÞψA;a

n ðzÞ:

ð29Þ

At large Q2 we obtain as in [43,46]

Aa
nðQ2ð1þ wÞ; Q2ð1 − wÞÞ → g25F

a
A;n

Q4
fAðwÞ; ð30Þ

with the decay constants

Fa
n ¼ −g−25 ∂zψ

a
A;n=zjz→0

ð31Þ

and the asymmetry function

fAðwÞ¼
1

w4

�
wð3−2wÞþ1

2
ðwþ3Þð1−wÞ ln1−w

1þw

�
; ð32Þ

in agreement with the asymptotic form derived from
QCD in [42].
AtQ2

1 ¼ Q2
2 ¼ 0, the axial-vector TFF in (28) is related to

the form factor Fð1Þ
Anγ

�γ� ð0; 0Þ defined in [59] via

m−2
An
Fð1Þ
Anγ

�γ�ð0; 0Þ ¼ Nc
4π2

Anð0; 0Þ. (See the Appendix of [43]
for more details.)
The most general expression for axial-vector amplitudes

has actually one further asymmetric structure func-
tion [34,59,60], which is set to zero in the holographic
model and whose phenomenological importance has not
yet been established; see Ref. [60] for a compilation of the
available phenomenological information.

IV. RESULTS

A. Parameter settings

As one of the input data which we fit, we take the ρ
meson mass8 mρ ¼ γ0;1z−10 ¼ 2.40483…z−10 , where γ0;1 is
the first zero of the Bessel function J0. Following Ref. [52],
we have chosen z−10 ¼ 0.3225 GeV corresponding to
mρ ¼ 775.556 MeV. This fixes the location of the hard
wall, z0, and Λ in the expression for αs. The coupling g5 is
either set by the leading-order OPE result (11) or the
slightly reduced value (12) obtained by fitting the ρ meson
decay constant, where the TFFs reach only 89.4% of the
OPE and Brodsky-Lepage limits, thereby coming closer to
next-to-leading order results at moderately large, exper-
imentally relevant energy scales.
The isospin-symmetric quark-mass parameter mq and

the chiral-condensate parameter σ are chosen such that
mπ ¼ 134.97 MeV and fπ ¼ 92.21 MeV [61]; the strange
quark mass parameter ms is chosen such that [62]

m2
K ¼ 1

2
ðm2

K� þm2
K0
Þ − 1

2
ðm2

π� −m2
π0Þ

¼ ð495.007 MeVÞ2 ð33Þ

in order to minimize isospin-breaking contributions.
For the two choices of g5, we consider the model with

and without a gluon condensate parameter Ξ0. When
Ξ0 ¼ 0 (referred to as model version v0 in the following),
we obtain predictions for mη and m0

η that are around 10%
lower than the real-world values, in accordance with
Ref. [48] who had omitted to turn on a nonzero Ξ0.
Fitting Ξ0 such that ð1 −mth

η =m
exp
η Þ2 þ ð1 −mth

η0=m
exp
η0 Þ2

is minimized (model v1), mη and m0
η can be matched at

the percent level, as shown in Table II. In the four versions
of our model, we have chosen a large value of κ ¼ 700, in
order to be in the regime where the dependence on κ is
rather weak.

B. Decay constants and photon coupling

Up to the slightly different choice of fπ , the results for
the mesons in the isotriplet sector, where Ξ0 does not play a
role, are identical to the HW1m model presented in [46] for
g5 ¼ 2π. Table I generalizes this to the case where g5 is
fitted to match Fρ.
In Tables II and III, detailed results for the two versions

v0 and v1 are given for the first few pseudoscalar and axial-
vector modes in the isosinglet sector, showing their mixing
behavior in the decay constants f8, f0, fG for the η’s, and
F8
A, F

0
A for the f1’s, as well as in the coupling to real

7Note that in the flavor-symmetric case considered in [43] A
without flavor index was defined differently, corresponding to
(the then a-independent) Aa here.

8A shortcoming of the minimal HW models considered here is
that the strange quark mass modifies the vector meson masses too
little compared to reality: ρ, ω, and ϕ mesons are degenerate, the
mass of K� is raised to only 0.79 GeV.
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photons given by Fð0; 0Þ and Að0; 0Þ, respectively. All
results are given in units of GeV raised to the appropriate
power; note that the mass dimension of f8 and f0 is 1, but
that of fG is 3; Fð0; 0Þ and Að0; 0Þ have mass dimensions
−1 and −2, respectively.
Mixing is in fact energy dependent in the holographic

model because the components of the holographic wave
functions depend nontrivially on the holographic coordinate
z which corresponds to inverse energy. The mixing angles
read from decay constants thus differ from those read from

the components of the photon coupling. Moreover, the
pseudoscalar mixings are different when determined from
η or η0 (and similarly in the case of f1 and f01). Indeed, a
phenomenological need for an energy-dependent mixing in
the case of η and η0 has been argued for in [63,64].
The pseudoscalars η, η0 and a third ground-state η00 meson

arise frommixing of flavor-octet and flavor-singlet degrees of
freedom with the pseudoscalar glueball G, each followed by
an infinite tower of excited states. The ground statemodes are
dominantly flavor octet, singlet, and glueball judging from

TABLE II. Results for the isoscalar pseudoscalar sector, for the model with (v1) and without (v0) gluon condensate, and for two
choices of g5: g5 ¼ 2π corresponding to matching the vector correlator to the leading-order UV-behavior in QCD, and the reduced value
corresponding to a fit of Fρ. All dimensionful quantities in units of (powers of) GeV.

Ξ0 ¼ 0 Ξ0 ¼ 0

g25 ¼ ð2πÞ2 g25 ¼ 0.894ð2πÞ2

(v0) η η0 G=η00 ηð3Þ ηð4Þ ηð5Þ η η0 G=η00 ηð3Þ ηð4Þ ηð5Þ

m 0.513 0.840 1.862 1.999 2.257 2.705 0.503 0.819 1.764 1.948 2.207 2.638
m −mexp −6.4% −12.3% −8.2% −14.5%
f8 0.0917 −0.0565 0.00197 0.0266 0.0121 0.0080 0.0902 −0.0624 0.00405 0.0293 0.0132 0.00837
f0 0.0394 0.0945 −0.0212 −0.00823 −0.0390 0.0362 0.0446 0.0952 −0.0224 −0.00802 −0.0416 0.0337
fG −0.0264 −0.0385 0.0674 −0.0400 0.154 −0.310 −0.0265 −0.0344 0.0600 −0.0454 0.156 −0.280
F8ð0; 0Þ 1.46 −0.674 0.177 −1.18 0.00233 0.236 1.41 −0.737 0.0640 −1.16 0.0239 0.241
F0ð0; 0Þ 0.776 1.42 0.169 0.0383 1.08 0.229 0.828 1.34 0.00310 0.00492 1.10 0.253
Fð0; 0Þ 0.351 0.322 0.0629 −0.103 0.293 0.0851 0.361 0.295 0.00700 −0.110 0.302 0.0922
F − Fexp þ28ð2Þ% −6ð2Þ% þ32ð2Þ% −14ð2Þ%
aμ × 1011 32.8 15.7 0.055 0.14 0.79 0.16 34.0 13.3 0.003 0.16 0.85 0.16

Ξ0 ¼ 0.01051 Ξ0 ¼ 0.01416

g25 ¼ ð2πÞ2 g25 ¼ 0.894ð2πÞ2
(v1) η η0 G=η00 ηð3Þ ηð4Þ ηð5Þ η η0 G=η00 ηð3Þ ηð4Þ ηð5Þ

m 0.557 0.950 1.992 2.390 2.954 3.214 0.561 0.947 1.943 2.428 2.914 3.317
m −mexp þ1.7% −0.8% þ2.4% −1.1%
f8 0.101 −0.0385 −0.0267 0.0116 −0.0228 −0.0049 0.103 −0.0393 −0.0299 0.0112 −0.0253 −0.00767
f0 0.0272 0.113 0.0049 −0.0492 −0.00115 −0.0214 0.0298 0.121 0.00761 −0.0522 0.00320 −0.0128
fG −0.0298 −0.0774 0.053 0.233 0.1483 0.269 −0.0313 −0.0821 0.048 0.260 0.1236 0.214
F8ð0; 0Þ 1.55 −0.431 1.19 −0.0478 −0.887 0.167 1.53 −0.442 1.149 −0.0312 −0.877 0.129
F0ð0; 0Þ 0.468 1.40 0.0051 0.904 0.0300 0.0867 0.444 1.31 −0.000026 0.837 0.0307 0.130
Fð0; 0Þ 0.276 0.340 0.116 0.241 −0.0772 0.0397 0.268 0.313 0.111 0.225 −0.0760 0.0477
F − Fexp þ1ð2Þ% −0ð2Þ% þ2ð2Þ% −8ð2Þ%
aμ × 1011 19.3 16.9 0.19 0.53 0.043 0.008 17.6 14.9 0.18 0.45 0.039 0.007

TABLE I. Results for pseudoscalar and axial-vector mesons in the isotriplet sector (the gluon condensate parameter Ξ0 does not play a
role here). All quantities in units of (powers of) GeV; values marked with a star (⋆) are input data.

g25 ¼ ð2πÞ2 g25 ¼ 0.894ð2πÞ2
π0 π� a1 a�1 a��1 a���1 a����1 π0 π� a1 a�1 a��1 a���1 a����1

m 0.135⋆ 1.891 1.363 2.137 2.987 3.935 4.916 0.135⋆ 1.841 1.278 2.047 2.936 3.902 4.891
f∨FA=mA 0.09221⋆ 0.00157 0.175 0.204 0.263 0.311 0.330 0.09221⋆ 0.00173 0.173 0.217 0.280 0.329 0.330
Fð0; 0Þ∨A3ð0; 0Þ 0.277 −0.203 20.96 3.31 −0.336 2.16 0.370 0.276 −0.199 19.46 4.87 −0.413 2.05 0.325

aμ × 1011 66.1 0.73 7.83 1.24 0.44 0.28 0.11 63.4 0.71 7.09 1.47 0.42 0.26 0.10
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the corresponding decay constants evaluated at z → 0, while
the first excited triplet ηð3Þ to ηð5Þ shows a more involved
mixing behavior. The decay constants for η and η0 agree
reasonably well with the recent lattice results of Ref. [65],
where also pseudoscalar matrix elements have been evalu-
ated. Our results for fG correspond to

ffiffiffiffiffiffiffiffiffiffiffi
Nf=2

p
a in [65] and

also agree reasonably well. The ratio aη0=aη is between 2 and
2.5 depending on the renormalization scale. This is better in
line with our model v1 that includes a nonzero gluon
condensate, where fG;η0=fG;η ¼ 2.60 and 2.66 for the two
choices of g5, while model v0 has 1.46 and 1.30.
Without gluon condensate (v0), the results for Fð0; 0Þ

show rather poor agreement with experimental results for
the η meson with deviations of around 30%, while those
for Fη0→γγð0; 0Þ are much better. With gluon condensate
(model v1), where the masses of η and η0 agree with
experimental data at the percent level, both couplings turn
out to agree remarkably well with the experimental values.
For isosinglet axial-vector mesons (Table III), both model

versions predict generally too high values of f1 and f01
masses (þ8% toþ28% compared to PDG data [66]). The f1
and f01 mesons are obtained as dominantly flavor octet and
flavor singlet, respectively. In the holographic model, the
mixing angle is an energy or z dependent quantity. In the case
of the f1 mesons, it is usually extracted from equivalent
photon decay rates at zero virtuality, where the experimental
results from the L3 experiment read [67,68]

Γ̃γγ ¼
�
3.5ð8Þ keV for f1 ¼ f1ð1285Þ
3.2ð9Þ keV for f01 ¼ f1ð1420Þ

: ð34Þ

With the definition

f1 ¼ cos θAf0 þ sin θAf8 ð35Þ

and the assumption that Γ̃γγ ∝ mA, one has

tan2
�
θA − arcsin

1

3

�
¼ mf1 Γ̃

f0
1

γγ

mf0
1
Γ̃f1
γγ

; ð36Þ

leading to [42] θA ¼ 62ð5Þ°, superficially agreeing with
model version v0. However, in the holographic model we
have

Γ̃n;γγ ¼
πα2mA

12

�
Ncm2

A

4π2
Anð0; 0Þ

�
2

∼mAðmA=ΛÞ4; ð37Þ

resulting in θA ¼ 56ð5Þ° for the experimental value, which
does not fit to the results for either v0 or v1, the latter
disagreeing even more than the former.9 While the mixing angle depends rather strongly on Ξ0, the combinationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½A8ð0; 0Þ�2 þ ½A0ð0; 0Þ�2
p

changes only slightly between
models v0 and v1, and it is also close to the value ofAð0; 0Þ in
the isotriplet sector, as well as to the same quantity in the
chiral hard-wall model [43], ð21.04 GeVÞ−2. Matching

TABLE III. Results for the isoscalar axial-vector sector, for
the model with (v1) and without (v0) gluon condensate, and
the two choices g5 (OPE fit) and g5 (Fρ-fit). Here θA ≡
arctanðA8ð0; 0Þ=A0ð0; 0ÞÞ for both f1 and f01, and Að0; 0Þ ¼
trðtaQ2ÞAað0; 0Þ ¼ ½A8ð0; 0Þ þ ffiffiffi

8
p

A0ð0; 0Þ�=6 ffiffiffi
3

p
. All dimen-

sionful quantities are given in units of (powers of) GeV. In the
aμ contributions, about 58% are due to the longitudinal part of the
axial-vector-meson propagator, which contributes to the MV
constraint.

Ξ0 ¼ 0 Ξ0 ¼ 0

g25 ¼ ð2πÞ2 g25 ¼ 0.894ð2πÞ2
(v0) f1 f01 f1 f01
m 1.460 1.651 1.388 1.598
m −mexp þ14% þ16% þ8% þ12%

F8
A=m 0.163 −0.0732 0.165 −0.0627

F0
A=m 0.0743 0.169 0.0690 0.180

A8ð0; 0Þ 19.27 −8.649 18.38 −7.194
A0ð0; 0Þ 8.676 19.21 7.310 18.62
θA 65.8° −24.2° 68.3° −21.1°
Að0; 0Þ 4.22 4.40 3.76 4.37
m� 2.241 2.614 2.147 2.561
m�� 3.056 3.580 2.999 3.535

aμ × 1011 11.0 10.8 9.08 11.0
a�μ × 1011 0.61 1.50 0.62 1.54
a��μ × 1011 0.18 1.08 0.16 0.99
a���μ × 1011 0.09 0.42 0.08 0.39
a����μ × 1011 0.04 0.27 0.03 0.25

Ξ0 ¼ 0.01051 Ξ0 ¼ 0.01416

g25 ¼ ð2πÞ2 g25 ¼ 0.894ð2πÞ2
(v1) f1 f01 f1 f01
m 1.481 1.810 1.410 1.820
m −mexp þ15% þ27% þ10% þ28%

F8
A=mA 0.176 −0.0299 0.176 −0.0167

F0
A=mA 0.0365 0.201 0.0292 0.219

A8ð0; 0Þ 20.77 −3.842 19.58 −2.556
A0ð0; 0Þ 3.857 20.07 2.690 19.00
θA 79.5° −10.8° 82.2° −7.7°
Að0; 0Þ 3.05 5.09 2.62 4.93
m� 2.246 2.862 2.153 2.891
m�� 3.058 3.869 3.004 3.907

aμ × 1011 5.71 14.3 4.34 13.6
a�μ × 1011 0.36 1.01 0.33 0.91
a��μ × 1011 0.11 1.11 0.05 0.99
a���μ × 1011 0.01 0.33 0.02 0.24
a����μ × 1011 0.01 0.28 0.05 0.15

9It would be interesting to revisit this issue in other holographic
QCDmodels, in particular ones that are closer to a string-theoretic
top-down construction such as the models of Refs. [69–71].
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Að0; 0Þ with Γ̃γγ ∝ mAðmA=ΛÞ4 to the L3 results leads to a
value of 15.2ð2.0Þ GeV−2 so that the holographic results,
which read 20–21 GeV−2 when g5 ¼ 2π and 19–20 GeV−2

for the reduced g5, are somewhat too high for f1 and f01, but
not excluded for a1, for which Ref. [34] has a concordant
estimate of 19.3 ð5.0Þ GeV−2.

C. Transition form factors

For the HLBL contribution of single mesons to aμ, their
singly- and doubly-virtual TFFs are of critical importance.
As in the chiral HW model [39], we find excellent

agreement of the singly virtual result for the pion TFF
with available experimental data, see Fig. 1. At virtualities
relevant for aμ, the results with g5 fitted to Fρ, where the
asymptotic limit is 89.4% of the Brodsky-Lepage value,
seem to give the best match.
For the symmetric doubly virtual TFF the comparison is

made with the dispersive result of Ref. [21] and the lattice
result of Ref. [22] in Fig. 2. Both choices of g5 are within
the error band of the dispersive result, while the result for
the reduced g5 is also within the error band of the lattice
result and moreover happens to coincide with the central
values of the dispersive approach within line thickness of
the plot throughout the entire range of Q2.
With η and η0 mesons, there is a rather strong dependence

on the parameter Ξ0 representing a gluon condensate. With
this parameter turned on, the masses of η and η0 can be

matched to percent level accuracy, and the resulting
prediction for FPγγð0; 0Þ is then in complete agreement
with experiment for g5 ¼ 2π (see Table II), while with
reduced g5 this value is slightly underestimated in the case
of η0. For the singly virtual TFF of η, only the results with
nonzero Ξ0 are close to the experimental data, see Fig. 3.
They match those at low Q2 quite well, but are generally
larger at higher virtualities. In the case of η0, all model
versions agree with the low-Q2 date due to L3, while at
higher Q2 the results without gluon condensate agree with
more of the data points, but only with unreduced g5 ¼ 2π.
In contrast to the case of π0, there are also several

experimental data points for the doubly virtual TFF of η0.
As opposed to the simple VMD model considered in [72]
and represented by the cyan circles in Fig. 4, the holo-
graphic results are within 1 and 2 standard deviations. For
the lowest virtualities Q2

1 ¼ Q2
2 ¼ 6.48 GeV2, which are

the most significant for aμ, all versions of the model come
close to the experimental result. With gluon condensate, the
agreement is better with the reduced g5, whereas without
gluon condensate, a reduction of g5 to fit Fρ moves the
prediction slightly outside the error bar.
All in all, the model with gluon condensate and reduced

g5 seems to be the optimal choice regarding pseudoscalar
TFFs.

D. HLBL contribution to aμ
Tables I and II include also the individual contributions

of the listed pseudoscalar and axial-vector meson modes to
aμ, which are collected in Table IV for the model with
nonzero gluon condensate (v1) with g5 ¼ 2π (OPE-fit) and
the reduced value (12) from fitting the ρmeson decay. Only
with the extra parameter Ξ0 for the gluon condensate, the
predictions for FPγγð0; 0Þ and masses of η and η0 match
experimental data with good accuracy. With reduced g5

FIG. 2. Holographic results for the doubly virtual Fπ0γ�γ�

compared to the dispersive result of Ref. [21] (green band)
and the lattice result of Ref. [22] (yellow band); the OPE limit
given by the dashed horizontal line. The upper full line (blue)
corresponds to g5 ¼ 2π (OPE fit), the lower (red) one to the
reduced value g5 (Fρ-fit). (Here the two versions with and without
gluon condensate coincide.)

FIG. 1. Holographic results for the single virtual TFF
Q2FðQ2; 0Þ for π0, plotted on top of experimental data as compiled
in Fig. 53 of Ref. [4] for g5 ¼ 2π (OPE fit, blue) and the reduced
value (red) corresponding to a fit of Fρ. (For π0 results for the
model with and without gluon condensate coincide.)
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(Fρ-fit), the predictions for aπ
0

μ and aη
0
μ are extremely close

to the central values adopted by the White Paper [4], and
those for η agree within 1σ.
The holographic model also includes a third ground-state

η meson, which we called η00, the result of mixing with the
pseudoscalar glueball G. It contributes only 0.2 × 10−11,
but there is also a whole tower of excited η modes,
which together with excited pion modes contribute around
1.5 × 10−11 so that the total pseudoscalar poles prediction
for model v1 (Fρ-fit) is close to the upper end of the

WP prediction, whereas the result for model v1 (OPE fit) is
2.5σ higher.
The main aim of this study is of course the experimentally

less well constrained axial-vector meson contribution, which
in holographic QCD has been shown to take into account the
Melnikov-Vainshtein short-distance constraint [43,44], also
away from the chiral limit [46]. The holographic result thus
presents an alternative estimate of the combined contribution
of axial-vector mesons, for which the WP estimate is
6ð6Þ × 10−11, and of short-distance contributions,10 esti-
mated in the WP as 15ð10Þ × 10−11. With errors added
linearly, the WP value is at 21ð16Þ × 10−11.
It is difficult to estimate errors for any holographic result,

but we expect our results for aμ to be in good shape despite
some deviations in its ingredients. The holographic results
for axial-vector mesons have turned out to overestimate the
masses of f1 and f01 by 8–28%, where the models with
gluon condensate have the higher deviations. On the other
hand, all our models have an equivalent real photon
coupling Að0; 0Þ that is 20–28% too large compared to
the value derived from L3 data for f1 and f01, albeit in good
agreement with the estimate of Ref. [34] for a1ð1260Þ. The
mixing angles for f1 and f01 are poorly predicted, and even
worse when the gluon condensate is turned on. However,
the prediction for the amplitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA8Þ2 þ ðA0Þ2

p
appears to

be fairly robust and only weakly dependent on Ξ0. A
different modeling of the gluon condensate could perhaps
lead to better predictions for the mixing with similar overall
amplitude. Our summary in Table IV therefore lists the
presumably more reliable combined contribution of f1 and
f01. Since the contribution to aμ decreases with increasing
axial-vector meson mass by approximately two inverse

FIG. 3. Holographic results for the single virtual TFF
Q2FðQ2; 0Þ for η and η0 plotted on top of experimental data
as compiled in Fig. 54 of Ref. [4] for g5 ¼ 2π (OPE fit, blue) and
the reduced value (red) corresponding to a fit of Fρ. Full lines are
with gluon condensate (version v1), dashed lines without (v0).

FIG. 4. Holographic results for the doubly virtual Fη0γ�γ�

compared to BABAR data points (black) and a simple VMD
model fitted with singly virtual data (cyan circles) [72]. Full lines
are with gluon condensate (version v1), dashed lines without
(v0); blue color corresponds to g5 ¼ 2π (OPE fit) and red to the
reduced value g5 (Fρ-fit).

10In the symmetric high-energy limit, the holographic results for
the HLBL scattering amplitude have the correct dependence on
Q2, but reproduce the OPE value only at the level of 81% when
g5 ¼ 2π, where the asymmetricMV limit is saturated fully [44,46].
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powers while the amplitude A enters quadratically, we
expect that the errors in the predictions of both will largely
cancel out, so that the holographic results can still be a
reasonably good prediction for the axial-vector meson
contributions to aμ. For our favored model v1(Fρ-fit),
the contribution from the ground-state axial-vector mesons

is a
a1þf1þf0

1
μ ¼ 25.0 × 10−11, about four times the WP

estimate. The contribution from f1 þ f01 is 2.5 times that
of a1, somewhat reduced from the flavor-U(3)-symmetric
value of 3 that was assumed in our previous estimates
in Ref. [46]. For this contribution, Pauk and
Vanderhaeghen [12] have estimated a value of only
6.4ð2.0Þ × 10−11, much smaller than our holographic pre-
diction of 17.9 × 10−11. Besides the differences in Að0; 0Þ
and the mass parameters, a crucial difference of the TFF
assumed in [12] is that it is obtained from a factorized
ansatz that unlike the holographic result does not have the
correct asymptotic behavior [42] in the doubly virtual case,
where it falls off as 1=Q4 instead of 1=Q2.
In the holographic models, the excited axial-vector

mesons ensure agreement with the longitudinal
(Melnikov-Vainshtein) short-distance constraint. This con-
straint derived from the axial anomaly is satisfied to 100%
in the model v1 (OPE fit), and to 89.4% in the case of v1
(Fρ-fit). The latter should provide a better approximation at
large but still physically relevant energy scales, where
typically ∼10% of next-to-leading order pQCD corrections
apply [56,57].
In the chiral HW1 model and in the U(3)-symmetric

massive HW1m model that we have investigated in
Refs. [43,46], we have obtained 9.2 and 9.4 × 10−11 from
excited axial vectors, where 25% are due to a1 by U(3)
symmetry. The contribution of excited a1’s in our present
models are essentially the same as in the HW1m model (up
to a slightly different fit value of fπ), but the excited
isoscalars remain below the extra factor of 3 expected from

U(3) symmetry.11 Instead, the latter provide only 1.6 and
1.4 times the contributions from excited a1’s in the case of
v1 (OPE fit) and v1(Fρ-fit), respectively.
The total contribution from axial-vector mesons is thus

significantly smaller than the estimates we have come up
with in the flavor-symmetric case of Ref. [46]: 33.7 and
30.5 × 10−11 for the two choices of g5 (instead of 40.8 and
38.8 × 10−11 for HW1m and HW1m with reduced g5,
respectively). Comparing this to the combined estimate of
axial-vector mesons and short-distance contributions in the
WP, 21ð16Þ × 10−11, we find values that are about 50%
higher, but well within the estimated error.

V. CONCLUSION

In this paper, we have upgraded our previous studies of
the HLBL contribution in HWAdS/QCD models to 2þ 1
flavors with strange quark mass ms > mu ¼ md plus a
Witten-Veneziano mass for the flavor-singlet degree of
freedom generated by interaction terms involving a pseu-
doscalar glueball with the latter that implement the anoma-
lous Ward identities of the Uð1ÞA symmetry in the line of
Refs. [48,49].
In holographic QCD, the Melnikov-Vainshtein constraint

on theHLBLscattering amplitude is naturally satisfied, to the
same degree that TFFs satisfy the Brodsky-Lepage and OPE
limits. All these are saturated at the level of 100% for the
standard value of g5 ¼ 2π in HW1 models.12 However,
because these models do not involve a running coupling
in the UV, the UV limits of TFFs are approached too quickly,
likely leading to overestimated HLBL contributions to aμ.
Next-to-leading-order gluonic corrections in pQCD suggest
a reduction by about 10% at large but still experimentally
relevant virtualities. Precisely such a correction is obtained
by fitting g5 such that the decay constant of the ρ meson is
matched instead of theOPE result for thevector correlator. In
Ref. [54], we have found that this also moves the Nf ¼ 2

result of HW AdS/QCD models for the HVP contribution
much closer to the dispersive results [19,20].
In Refs. [43,46] we have shown that the MV short-

distance constraint is realized by the infinite tower of axial-
vector mesons, with the excited axial-vector mesons adding
about a third of the contribution from the ground-state axial

TABLE IV. Summary of the results for the different contribu-
tions to aμ in comparison with the White Paper [4] values.

a…μ × 1011 v1(OPE fit) v1(Fρ-fit) WP

π0 66.1 63.4 62.6þ3.0
−2.5

η 19.3 17.6 16.3(1.4)
η0 16.9 14.9 14.5(1.9)
G=η00 0.2 0.2P

PS� 1.6 1.4

PS poles total 104 97.5 93.8(4.0)

a1 7.8 7.1
f1 þ f01 20.0 17.9P

a�
1

2.2 2.4P
fð0Þ�
1

3.6 3.0

AVþ LSDC total 33.7 30.5 21(16)

Total 138 128 115(16.5)

11In order to approximate the sum of contributions from the
infinite tower of axial-vector mesons we have used the observa-
tion that in the chiral HW models as well as in the HW1m model
the infinite series of contributions can be roughly approximated
by a geometric one with anþ1=an ≈ 0.6 for n > 2. The full sum
can thus be approximated by multiplying the last contribution of a
truncated sum by a factor of 1=ð1 − 0.6Þ ¼ 2.5. In the case of
excited pseudoscalars, which do not contribute to the longitudinal
short-distance constraint [46], the contributions drop much more
quickly. Our results for those are obtained simply from the sum of
the first few modes.

12The simpler Hirn-Sanz (HW2) model, which omits the
bifundamental scalar X, reaches 62% when fπ and mρ are fitted.
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vectors in the flavor-symmetric case. A much smaller
contribution comes from excited pseudoscalars, which
do not contribute to the longitudinal short-distance behav-
ior at leading order.
In our present study with Uð1ÞA anomaly included,

where we have obtained a remarkably accurate fit of the
masses of η and η0 mesons as well as of their FPγγð0; 0Þ
values when including a nonzero gluon condensate that was
omitted in [48], we have found a reduction of the ratio 3∶1
for the isoscalar:isotriplet contributions of axial-vector
mesons to about 2.5∶1. For excited mesons (axial vector
as well as pseudoscalar), we have obtained an even more
pronounced reduction, which reduces our prediction for
the aμ contribution of axial-vector mesons in the U(3)-
symmetric case from around 41 and 39 × 10−11 to 33.7 and
30.5 × 10−11 for g5ðOPEÞ and g5ðFρ-fitÞ, respectively.
These values are above the estimate of the White
Paper [4] for the contribution of (ground-state) axial-vector
mesons plus short-distance constraints, but still within the

error given there. The pseudoscalar contributions obtained
in our model v1(Fρ-fit) agree completely with the WP
results for π0, η, and η0, however this model also has a
contribution of 1.6 × 10−11 from excited pseudoscalars,
where the tower of η’s mixes with a pseudoscalar glueball.
The complete contribution from summing pseudoscalar and
axial-vector contributions is approximately 128 × 10−11,
which we consider our currently best estimate obtained
from AdS/QCD; it thus turns out to be close to (but below)
the upper end of the corresponding WP estimate.
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