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We show that the momentum sum rule is a necessary condition for factorization of double parton
distributions into a product of two single parton distributions for small values of the parton momentum
fractions x and large enough values of the evolution scaleQ2. This is a somewhat surprising result since the
momentum sum rule involves integration over all values of the momentum fraction. In essence, the
momentum sum rule provides a proper relation between the double and single parton distributions, which is
necessary for the small x factorization at large Q2.
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I. INTRODUCTION

Multiparton interactions play an important role in high
energy scattering of hadrons [1–60]. In particular, the
double parton scattering (DPS) in which two pairs of
partons from colliding hadrons take part in a hard scattering
process is of special importance. The DPS processes were
first observed at the Tevatron [61–64] and are presently
studied at the Large Hadron Collider by the ATLAS
[65–70], CMS [71–74], and LHCb [75–78] collaborations.
The computation of DPS cross sections within the

collinear framework makes use of the double parton
distribution functions (DPDFs) which obey QCD evolution
equations [1–3,10–12,14,30], similar to the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equa-
tions for the single parton distribution functions (PDFs);
see also [23] for a pedagogical presentation and [48] for
an overview. The evolution equations for DPDFs conserve
sum rules which relate the double and single parton
distribution functions. It means that once these rules are
imposed on initial conditions for the evolution equations at
an initial scale Q2

0, they are also obeyed by evolved
distributions at the scale Q2 ≥ Q2

0.
All the attempts to construct conditions which exactly

satisfy the new sum rules were rather unsuccessful
until now; see, e.g., Refs. [11,16,29] with an exception
of the analysis [26] for valence quarks only. Also in a
pure gluonic case, the double gluon distribution Dgg was

proposed in Ref. [38] which obeys the momentum sum rule
relating Dgg and the single gluon distribution Dg. This was
achieved due to a particular form of Dg, used in global fits
to hard scattering data as an initial condition for the
DGLAP evolution equations. The parameters of Dg fully
determined the parameters of the initial Dgg such that the
momentum sum rule is fulfilled.
In most practical applications of DPDFs it is usually

assumed that for small parton momentum fractions, x1,
x2 ≪ 1, the DPDFs factorize into a product of single PDFs,
e.g., Dggðx1; x2; Q2Þ ≈Dgðx1; Q2ÞDgðx2; Q2Þ. However,
the example of the initial condition for Dgg from [38]
shows that the small x factorization can be strongly violated
at the initial scale Q2

0 ¼ 1 GeV2 but is restored after the
evolution to a sufficiently large Q2.
Therefore, it is a main goal of this paper to elucidate the

issue of the small x factorization in the framework of the
QCD evolution equations for DPDFs. In particular, we will
show that the momentum sum rule, which in principle
must be imposed on the initial distributions for the QCD
evolution equations, is a necessary condition for the small x
factorization, i.e., without the momentum sum rule the
small x factorization is violated. This result has important
phenomenological consequences for the current prescrip-
tions for the initial conditions for DPDFs which use the
information on the single PDFs. Such parton distributions
usually fulfill the momentum sum rule only approximately
and must be used with some care in precise studies based
on the QCD evolution equations.
It should be mentioned that the issue of the small x

factorization is studied here for the DPDFs with transverse
momentum q ¼ 0, when the momentum sum rule is valid.
However, there are strong indications that for q ≠ 0 there is

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 054020 (2023)

2470-0010=2023=107(5)=054020(13) 054020-1 Published by the American Physical Society

https://orcid.org/0000-0001-5779-1876
https://orcid.org/0000-0002-0676-3178
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.054020&domain=pdf&date_stamp=2023-03-13
https://doi.org/10.1103/PhysRevD.107.054020
https://doi.org/10.1103/PhysRevD.107.054020
https://doi.org/10.1103/PhysRevD.107.054020
https://doi.org/10.1103/PhysRevD.107.054020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


no factorization at all due to correlations between partons
in the impact parameter space with the variable b being
Fourier conjugate to q [27,42,56]. Nevertheless, our studies
are important since the form of the DPDFs at q ¼ 0 is
essential for the generalization to the q ≠ 0 case.
The paper is organized as follows. In Sec. II we present

main information about the DPDFs, their QCD evolution
equations, and sum rules. In Sec. III we restrict ourselves to
the pure gluon case with the double gluon distribution Dgg

for a detailed numerical analysis presented in the next
sections. In Sec. IV, based on a simple ansatz for the single
and double gluon distributions, we present two numerical
examples showing that the small x factorization of Dgg is
conserved or restored in the QCD evolution. In Sec. V we
illustrate on numerical examples that the momentum sum
rule is a necessary condition for the latter conclusions. In
Sec. VI we provide an analytical insight to these results,
using the Mellin moment representation. Finally, in
Sec. VII we present the current situation concerning the
relation between the double and single parton distributions,
including also quarks into the considerations. In
Appendix A the proof of the momentum sum rule con-
servation by the evolution equations is presented, while in
Appendix B the asymptotic solution to the evolution
equations is discussed in the Mellin moment space.

II. EVOLUTION EQUATIONS AND SUM RULES

The double parton distributions D̄f1f2ðx1; x2;bÞ have
probabilistic interpretation of the number density of pairs of
partons with longitudinal momentum fractions x1 and x2
(for which 0 < x1 þ x2 ≤ 1) at a relative transverse vector
b [15,20]. Parton flavors (including gluon) are denoted by
f1 and f2. In this paper, we are interested in the double
parton distributions integrated over b, which are equal to
the Fourier transform,

Df1f2ðx1; x2;qÞ ¼
Z

d2beiq·bD̄f1f2ðx1; x2;bÞ; ð1Þ

taken at q ¼ 0,

Df1f2ðx1; x2;q ¼ 0Þ ¼
Z

d2bD̄f1f2ðx1; x2;bÞ: ð2Þ

For the physical meaning of the transverse momentum q,
see [20]. The DPDFs (2) obey QCD evolution equations
with respect to two hard scales, Q2

1 and Q2
2, which are also

present due to renormalization. We consider the DPDFs
with equal hard scales, Q2

1 ¼ Q2
2 ≡Q2, i.e.,

Df1f2ðx1; x2; Q2Þ≡Df1f2ðx1; x2;q ¼ 0; Q2; Q2Þ: ð3Þ

Introducing the evolution parameter

t ¼ tðQ2Þ ¼
Z

Q2

Q2
0

αsðμ2Þ
2π

dμ2

μ2
¼ 6

33 − 2nf
ln
lnðQ2=Λ2

QCDÞ
lnðQ2

0=Λ2
QCDÞ

;

ð4Þ

where αsðμ2Þ is the running strong coupling constant in the
leading order (LO) approximation, the evolution equations
read as [2,3,10,12,14,17]

∂

∂t
Df1f2ðx1; x2; tÞ

¼
X
f0

�Z
1−x2

x1

du
u
Pf1f0

�
x1
u

�
Df0f2ðu; x2; tÞ

þ
Z

1−x1

x2

du
u
Pf2f0

�
x2
u

�
Df1f0 ðx1; u; tÞ

þ 1

x1 þ x2
Pf0→f1f2

�
x1

x1 þ x2

�
Df0 ðx1 þ x2; tÞ

�
: ð5Þ

Here, the functions P on the rhs are the LO Altarelli-Parisi
splitting functions (with virtual corrections included), and
the summation is performed over quark/antiquark flavors
and gluon. The third, splitting term on the rhs corresponds
to the splitting of one parton into two daughter partons,
described by the LO Altarelli-Parisi splitting function for
the real emission, Pf0→f1f2 ¼ PR

f0f1
. It also contains the

single PDFs; thus Eq. (5) has to be solved together with the
ordinary DGLAP equations:

∂

∂t
Dfðx; tÞ ¼

X
f0

Z
1

x

du
u
Pff0

�
x
u

�
Df0 ðu; tÞ: ð6Þ

To formulate the next-to-leading order (NLO) evolution
equations for the DPDFs, the two-loop splitting functions
Pf0→f1f2 were calculated in [54,59]. The NLO formulation,
however, is beyond the scope of this paper.
The DPDFs for q ¼ 0 obey sum rules which can be

derived starting from the definition of DPDFs based on the
light-cone nucleon wave function [79]. What is most
important, these sum rules are consistent with the evolution
equations, which means that once the sum rules are
assumed at the initial scale t ¼ 0, they are conserved
during the QCD evolution to any t [12,15,16]. These are
the momentum sum rule,

X
f1

Z
1−x2

0

dx1x1Df1f2ðx1; x2; tÞ ¼ ð1 − x2ÞDf2ðx2; tÞ; ð7Þ

and the valence quark number sum rule,

Z
1−x2

0

dx1fDqif2ðx1; x2; tÞ −Dq̄if2ðx1; x2; tÞg

¼ ðNqi − δqif2 þ δq̄if2ÞDf2ðx2; tÞ; ð8Þ
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where qi ¼ u, d, s and Nu ¼ 2, Nd ¼ 1, Ns ¼ 0 are the
corresponding valence quark numbers. Their form can be
readily understood from the probability theory, treating the
ratios of the double to single distributions as conditional
probabilities; see [12] for details. Analogous sum rules also
hold with respect to the second parton momentum x2. To
ensure this property, the parton exchange symmetry must
be imposed on the initial conditions, which is kept by the
evolution to any t,

Df1f2ðx1; x2; 0Þ ¼ Df2f1ðx2; x1; 0Þ: ð9Þ

Relations (7) and (8) should be considered together with the
momentum sum rule for single PDFs,

X
f

Z
1

0

dxxDfðx; tÞ ¼ 1; ð10Þ

and the valence quark number sum rule,

Z
1

0

dxfDqiðx; tÞ −Dq̄iðx; tÞg ¼ Nqi; ð11Þ

which are also conserved by the DGLAP evolution equa-
tions. In Appendix A we present the proof of the con-
servation of the momentum sum rule (7) by the evolution
equations (5) and (6), in which the presence of the splitting
term in Eq. (5) plays the crucial role.

III. PURE GLUONIC CASE

In the following, we shall consider only the gluonic case
for the purposes of simplicity of the presentation. In this
case, we only deal with the double gluon distribution Dgg

and the single gluon distribution Dg, which obey the
evolution equations (5) reduced to the gluon sector,

∂

∂t
Dggðx1; x2; tÞ ¼

Z
1−x2

x1

du
u
Pgg

�
x1
u

�
Dggðu; x2; tÞ

þ
Z

1−x1

x2

du
u
Pgg

�
x2
u

�
Dggðx1; u; tÞ

þ 1

x1 þ x2
PR
gg

�
x1

x1 þ x2

�
Dgðx1 þ x2; tÞ;

ð12Þ

and

∂

∂t
Dgðx; tÞ ¼

Z
1

x

dz
z
Pgg

�
x
z

�
Dgðz; tÞ: ð13Þ

The momentum sum rules (7) and (10), conserved by the
above evolution equations, take the form

Z
1−x2

0

dx1x1Dggðx1; x2; tÞ ¼ ð1 − x2ÞDgðx2; tÞ; ð14Þ

and

Z
1

0

dxxDgðx; tÞ ¼ 1: ð15Þ

With the normalization to 1 in the last condition, we assume
that gluons carry all the proton longitudinal momentum.
The momentum sum rules should be valid for any t,
including t ¼ 0 where the initial conditions for the evolu-
tion equations (12) and (13) are specified. As in the general
case, we assume the gluon exchange symmetry for the
initial conditions to ensure the momentum sum rule (14)
with respect to the second momentum fraction,

Dggðx1; x2; 0Þ ¼ Dggðx2; x1; 0Þ: ð16Þ

The conservation of the momentum sum rules by the
evolution equations means that the single gluon distribution
obtained from (14),

Dgðx2; tÞ ¼
1

1 − x2

Z
1−x2

0

dx1x1Dggðx1; x2; tÞ; ð17Þ

obeys Eq. (13) for any t, including t ¼ 0. This imposes a
strong constraint on the double gluon distribution alone
which results from the momentum sum rule (15),

Z
1

0

dx2

Z
1−x2

0

dx1
x1x2
1 − x2

Dggðx1; x2; tÞ ¼ 1: ð18Þ

In the next section, we will consider a simple ansatz for
the initial gluon distributions which satisfies the momen-
tum sum rules (14) and (15), which will allow for detailed
studies of the relation between the momentum sum rule and
the small x factorization of Dggðx1; x2; tÞ.

IV. A SIMPLE EXAMPLE

A general construction for the initial conditions for the
single and double gluon distributions which obey the sum
rules was proposed in [38]. This framework is based on
sums over Dirichlet distributions, where relations between
the powers and the normalizations can be found to ensure
that the sum rules for double and single distributions are
simultaneously satisfied. In the simple example below we
shall follow the construction of Ref. [38] for the simple case
of the distributions having one term in the sum.
Let us consider the single gluon distribution of the form

Dgðx; 0Þ ¼ Agxαgð1 − xÞβg ; ð19Þ

where the normalization constant is determined from the
momentum sum rule (15)
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Ag

Z
1

0

dxxαgþ1ð1 − xÞβg ¼ 1: ð20Þ

Using the well-known formula relating the Euler beta
function to the gamma functions,

Z
1

0

dxxαð1 − xÞβ ¼ Γðαþ 1ÞΓðβ þ 1Þ
Γðαþ β þ 2Þ ; ð21Þ

we obtain

Ag ¼
Γðαg þ βg þ 3Þ

Γðαg þ 2ÞΓðβg þ 1Þ : ð22Þ

It can be shown [38] that the double gluon distribution
which obeys the momentum sum rule (14) with Dg of the
form (19) is given by

Dggðx1; x2; 0Þ ¼ Aggðx1x2Þαgð1 − x1 − x2Þβg−αg−1; ð23Þ

where the normalization constant

Agg ¼
Γðβg þ 2Þ

Γðαg þ 2ÞΓðβg − αgÞ
Ag: ð24Þ

This is a remarkable result since the parameters of the
double distribution Dgg are completely determined by
the parameters of the single distribution Dg through the
momentum sum rule (14). Note also, that the powers
governing the small x1;2 behavior are the same in
Eqs. (19) and (23).
For αg ¼ −1 we have Agg ¼ A2

g, and the double gluon
distribution factorizes for x1, x2 ≪ 1,

Dggðx1; x2; 0Þ ≈ A2
gðx1x2Þαg ≈Dgðx1; 0ÞDgðx2; 0Þ: ð25Þ
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FIG. 1. In the upper plots: x1x2Dggðx1; x2Þ as a function of x1 at the initial scale Q2 ¼ 1 GeV2 (left panels) and final scale Q2 ¼
100 GeV2 (right panels), and fixed x2 ¼ 10−2 for model (23) (solid lines), Gaunt model (27) (dashed lines), and fully factorized ansatz
(28) (dash-dotted lines). The parameters in (23) are αg ¼ −1 and βg ¼ 2.5. In the bottom plots: the corresponding ratios (26). Both the
momentum sum rule (14) and the small x factorization (25) hold true for our model.
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We illustrate this case in Fig. 1 choosing αg ¼ −1 and βg ¼
2.5 in Eq. (19) for the single gluon distribution defined at
the initial scale Q2

0 ¼ 1 GeV2. The choice of αg ¼ −1
corresponds to a “flat” initial distribution xDgðx; 0Þ at small
values of x. The corresponding initial double gluon dis-
tribution was computed from Eq. (23). In the two upper
plots we show the distribution x1x2Dggðx1; x2; tÞ at the
initial scale and final scale equal to Q2 ¼ 100 GeV2 (solid
lines). Both plots are presented in the way appropriate for
the studies of the small x limit of the double gluon
distributions. Namely, we plot them as functions of x1
for fixed x2 ¼ 10−2 to study the limit x1 → 0. The two
bottom plots show the ratio

Ratio ¼ Dggðx1; x2; tÞ
Dgðx1; tÞDgðx2; tÞ

; ð26Þ

at the corresponding values of Q2 [related to t by Eq. (4)].
We see that both before and after the evolution, the small x

factorization holds for the double gluon distribution to a
good approximation up to x1 ¼ 10−1.
We also show the results obtained for the Gaunt-Stirling

(GS) prescription [12] for the initial condition (dashed
lines),

Dggðx1; x2; 0Þ ¼ Dgðx1; 0ÞDgðx2; 0Þ
ð1 − x1 − x2Þ2

ð1 − x1Þ2ð1 − x2Þ2
;

ð27Þ

as well as for the fully factorized ansatz (dash-dotted lines)

Dggðx1; x2; 0Þ ¼ Dgðx1; 0ÞDgðx2; 0Þθð1 − x1 − x2Þ; ð28Þ

where the single gluon distribution (19) with the assumed
parameters was used. Both prescriptions give the approxi-
mate factorization after the evolution to Q2 ¼ 100 GeV2,
although the result for the fully factorized ansatz is slightly
worse. This agreement can be attributed to a rather weak
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FIG. 2. The same as in Fig. 1 but for αg ¼ −0.5 and βg ¼ 2.5 in (23). The momentum sum rule is valid, but the small x factorization is
violated by the initial conditions (solid line in the left bottom plot). After the evolution to largeQ2 ¼ 100 GeV2, the small x factorization
is to a good approximation restored (solid line on the right bottom plot).
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violation of the momentum sum rule by these distributions.
In particular, the integral (18) computed for the ansatz (27)
gives 1.04 while for the ansatz (28) we find 1.3 (instead of 1
as in our model).
For αg ≠ −1, the small x factorization of the initial

double gluon distribution (23) is no longer true,

Dggðx1; x2; 0Þ ≠ Dgðx1; 0ÞDgðx2; 0Þ; ð29Þ

but the momentum sum rule is still fulfilled. This means
that the momentum sum rule is neither necessary nor a
sufficient condition for the small x factorization of the
initial double gluon distribution. We illustrate this fact in
Fig. 2 with the initial double gluon distribution (23) with
the parameters αg ¼ −0.5 and βg ¼ 2.5 (solid line on the
left bottom plot). However, it is very interesting that the
small x factorization of Dggðx1; x2Þ is to a good approxi-
mation restored by the evolution to Q2 ¼ 100 GeV2 since
the ratio (26) is close to 1 (solid line on the right
bottom plot).
The same effect is also clearly visible in the analysis in

Ref. [38] with a realistic ansatz based on a particular form
of the single PDFs in the MSTW08 parametrization [80],

Dfðx; 0Þ ¼
X3
i¼1

Ai
fx

αifð1 − xÞβif ; ð30Þ

where f denotes quark/antiquark flavor or gluon. In the
pure gluonic case, the double gluon distribution is fully
determined by the parameters of the single gluon distri-
bution Dgðx; 0Þ, using the momentum sum rule (14),

Dggðx1; x2; 0Þ ¼
X3
i¼1

Ai
ggðx1x2Þαigð1 − x1 − x2Þβig−αig−1; ð31Þ

where Ai
gg is also given in terms of the parameters αig and

βig. The initial condition (31) strongly violates the small x
factorization at the scale Q2

0 ¼ 1 GeV2. However, after the
evolution to Q2 ¼ 100 GeV2 the small x factorization is
restored; see Fig. 1 in Ref. [38]. In the next section, we will
explore this phenomenon in more detail.

V. MOMENTUM SUM RULE VIOLATION

In order to understand the role of the momentum sum
rule conservation for the restoration of the small x factori-
zation, we consider the single gluon distribution (19) with
normalization (22),

Dgðx; 0Þ ¼ Agxαgð1 − xÞβg ; ð32Þ

while the double gluon distribution (23) with normali-
zation (24) is modified by changing the parameter
η ¼ βg − αg − 1, which controls the large x behavior, i.e.,

DðmÞ
gg ðx1; x2; 0Þ ¼ Aggðx1x2Þαgð1 − x1 − x2Þη ð33Þ

where η is now arbitrary. The single gluon distribution still
obeys the momentum sum rule (15) but relation (14) is
violated. Indeed, by computing the gluon distribution from
relation (17),

DðmÞ
g ðx2; 0Þ ¼

1

1 − x2

Z
1−x2

0

dx1x1D
ðmÞ
gg ðx1; x2; 0Þ; ð34Þ

we obtain

DðmÞ
g ðx; 0Þ ¼ Ag

Γðβg þ 2ÞΓðηþ 1Þ
Γðαg þ ηþ 3ÞΓðβg − αgÞ

xαgð1 − xÞαgþηþ1:

ð35Þ

Thus, only for η ¼ βg − αg − 1 we find DðmÞ
g ðx; 0Þ ¼

Dgðx; 0Þ and the momentum sum rule (14) is fulfilled.
For any other η, this rule is violated by the initial

distributions DðmÞ
gg ðx1; x2; 0Þ and Dgðx; 0Þ.

We illustrate this situation in Fig. 3 for the choice of the
parameters αg ¼ −1, βg ¼ 2.5, and η ¼ 5. Since βg − αg −
1 ¼ 2.5 ≠ 5 we deal with the momentum sum rule viola-
tion. Nevertheless, the small x factorization holds at the
initial scale, which is shown on the left bottom plot in Fig. 3
by the solid line, being close to 1 for x1 < 10−2. However,
the factorization is strongly violated after the evolution to
Q2 ¼ 100 GeV2 (solid line on the right bottom plot) in the
same range of x1,

DðmÞ
gg ðx1; x2; tÞ

Dgðx1; tÞDgðx2; tÞ
≈ 0.6 − 0.7: ð36Þ

This can be attributed to the mismatch between the

single gluon distributions, Dgðx; tÞ and DðmÞ
g ðx; tÞ. We

numerically checked that if DðmÞ
g ðx; tÞ is substituted

in the ratio (36), after the additional rescaling of

DðmÞ
gg ðx1; x2; 0Þ such that the momentum sum rule (15) is

fulfilled by DðmÞ
g ðx; 0Þ, we find factorization at the scale

Q2 ¼ 100 GeV2. The reason for the additional rescaling
will become clear from the analytical insight presented in
the next section.
To summarize the presented example, the violation of

the momentum sum rule (14) by the initial conditions
leads to a mismatch between the single and double gluon
distributions, which is manifested in the violation of the
small x factorization even at high scales. On the other
hand, when the momentum sum rules (14) and (15) are
fulfilled, then the approximate restoration of the small x
factorization is observed after the evolution to high
scales.
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VI. MELLIN MOMENT FORMULATION

In order to give an analytical insight into the relation
between the momentum sum rule and small x factorization,
let us introduce the Mellin moments for a single gluon
distribution,

D̃gðn; tÞ ¼
Z

1

0

dxxn−1Dgðx; tÞ; ð37Þ

and for a double gluon distribution,

D̃ggðn1; n2; tÞ

¼
Z

1

0

dx1

Z
1

0

dx2x
n1−1
1 xn2−12 θð1 − x1 − x2ÞDggðx1; x2; tÞ:

ð38Þ

The momentum sum rule (14) in terms of the Mellin
moments is given by

D̃ggðn1; 2; tÞ ¼ D̃gðn1; tÞ − D̃gðn1 þ 1; tÞ; ð39Þ

while the momentum sum (15) reads as

D̃gð2; tÞ ¼ 1: ð40Þ

It was shown in [33] that the solution to the evolu-
tion equations (12) and (13) in the Mellin moment space
reads as

D̃ggðn1; n2; tÞ ¼ eγðn1Þtþγðn2ÞtD̃ggðn1; n2; 0Þ

þ
Z

t

0

dt0eγðn1Þðt−t0Þþγðn2Þðt−t0Þγ̃ðn1; n2Þ

× D̃gðn1 þ n2 − 1; t0Þ; ð41Þ

where the gluonic anomalous dimension equals
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FIG. 3. The same as in Fig. 1 but for η ¼ 5 in the initial condition (33) (solid lines). The momentum sum rule is no longer valid, but the
small x factorization holds true (solid line on the left bottom plot), while it is violated after the evolution (solid line on the right
bottom plot).
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γðnÞ ¼
Z

1

0

dxxn−1PggðxÞ; ð42Þ

while

γ̃ðn1; n2Þ ¼
Z

1

0

dxxn1−1ð1 − xÞn2−1PR
ggðxÞ: ð43Þ

In Appendix B we show that in the small x limit, when
x1 → 0 and x2 ¼ fixed and small (e.g., x2 ¼ 10−2 as in the
presented analysis), the solution for t → ∞ is given in
terms of the Mellin moments by

D̃ggðn1; n2; tÞ ≃ eγðn1Þtþγðn2ÞtðD̃ggðn1; n2; 0Þ
þ D̃gðn1 þ n2 − 1; 0ÞÞ ð44Þ

where ðn1 − 1Þ → 0 and ðn2 − 1Þ is finite.
This needs to be compared with the numerically found

result which gives us approximate factorization at low x:

D̃ggðn1; n2; tÞ ≃ eγðn1Þtþγðn2ÞtD̃gðn1; 0ÞD̃gðn2; 0Þ: ð45Þ

So the small x factorization holds if we have

D̃ggðn1; n2; 0Þ þ D̃gðn1 þ n2 − 1; 0Þ ¼ D̃gðn1; 0ÞD̃gðn2; 0Þ:
ð46Þ

For n2 ¼ 2 we find the following relation:

D̃ggðn1; 2; 0Þ þ D̃gðn1 þ 1; 0Þ ¼ D̃gðn1; 0ÞD̃gð2; 0Þ: ð47Þ

Assuming the momentum sum rule for the single gluon
distribution, Dgð2; 0Þ ¼ 1, we obtain

D̃ggðn1; 2; 0Þ ¼ D̃gðn1; 0Þ − D̃gðn1 þ 1; 0Þ; ð48Þ
which is the momentum sum rule (39) to be satisfied by the
initial condition. This is a necessary condition for the small
x factorization at sufficiently large t. Note that to arrive at
this conclusion, the momentum sum rule (40) has to be
fulfilled, which explains the numerical observation pre-
sented in the previous section.

VII. GENERAL CASE

Let us consider the case with quarks governed by the
evolution equations and sum rules presented in Sec. II. The
momentum sum rules (7) and (10) lead to the following
consistency condition which should be satisfied by the
initial double parton distributions Df1;f2ðx1; x2; 0Þ:
X
f1;f2

Z
1

0

dx2

Z
1−x2

0

dx1
x1x2
1 − x2

Df1f2ðx1; x2; 0Þ ¼ 1; ð49Þ

where the summation over quark/antiquark flavors and
gluon is performed. The departure from 1 of the integral on

the lhs is the indication that the momentum sum rule (7) is
violated.
In Fig. 4 we analyze the small x factorization for the

double gluon distribution x1x2Dggðx1; x2; tÞ obtained from
the full evolution equations (5) with the initial conditions
given the GS ansatz (dashed lines)

Df1f2ðx1; x2; 0Þ ¼ Df1ðx1; 0ÞDf2ðx2; 0Þ

×
ð1 − x1 − x2Þ2

ð1 − x1Þ2þαðf1Þð1 − x2Þ2þαðf2Þ ð50Þ

where αðfÞ ¼ 0 for a sea quark and gluon and αðfÞ ¼ 0.5
for valence quark, and with the fully factorized (FF) ansatz
(dot-dashed lines)

Df1f2ðx1; x2; 0Þ ¼ Df1ðx1; 0ÞDf2ðx2; 0Þθð1 − x1 − x2Þ;
ð51Þ

where the single PDFs are given by the MSTW08 para-
metrization [80]. The main motivation for such initial
distributions is the use of single PDFs which are well
determined from global fits to data. This allows one to
constrain the DPDFs which presently cannot be experi-
mentally determined due to the scarcity of data on double
parton scattering. In both cases, condition (49) is only
approximately fulfilled with 1.06 and 1.30 on the rhs for the
GS and FF prescriptions, respectively, which means that the
momentum sum rule for the double parton distributions is
not exactly fulfilled. As a result, the small x factorization,
valid at the initial scale (bottom left plot), is only approxi-
mate at the scale Q2 ¼ 100 GeV2 (right bottom plot). We
see that the GS initial condition leads to a slightly better
factorization. For a more detailed analysis of this ansatz,
see Ref. [12].
The obvious drawback of the above initial conditions is

the sum rules violation, which in principle makes the QCD
evolution inconsistent. In Ref. [38] this problem was
addressed in the pure gluonic case by taking advantage
of a particular form of the single PDFs in the MSTW08
parametrization. In principle, the entire construction can be
repeated for the case with quarks, obtaining the double
parton distributions satisfying both the momentum and
valence quark number rules. However, such an extension
requires additional constraints imposed on the parameters
of the single PDFs, which unfortunately are not present in
realistic single PDFs obtained from fits to data. Therefore,
the GS proposal, which features factorization at small x, is
at the moment the best practical way to deal with the initial
conditions for the DPDFs evolution which incorporates the
knowledge about the single PDFs.
It should be emphasized at the end that the small x

factorization of the double parton distributions was dis-
cussed here only for the transverse momentum q ¼ 0 when
the sum rules are valid; see Section II. For q ≠ 0, there are
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indications that the factorization does not hold due to
correlations in the b space [18,25]. In particular, after the
Fourier transformation to the q space, the following ansatz
was proposed in [27] for x1, x2 < 0.1:

Df1f2ðx1; x2;q; 0Þ ¼ Df1ðx1; 0ÞDf2ðx2; 0Þ
× exp f−hf1f2ðx1; x2Þq2g; ð52Þ

where hf1f2ðx1; x2Þ is some function. Thus, for q ¼ 0 the
factorization (51) holds while for q ≠ 0 the factorization is
always violated due to the exponential factor. This obser-
vation, however, does not invalidate our studies presented
in this paper since the form of the double distributions at
q ¼ 0 is essential for the generalization to the case with
q ≠ 0. For more details we refer to [27,42,56].

VIII. SUMMARY

We analyzed the role of the momentum sum rule for the
small x factorization of the double distributions into a
product of single distributions in the pure gluonic case. In
general, the momentum sum rule can be treated as a
consistency condition for the QCD evolution equations
for single and double parton distributions. Therefore, it
must be also fulfilled by initial conditions for these
equations.
We found that when the momentum sum rule is not

fulfilled this can lead to strong violation of the small x
factorization at all scales. On the other hand, when the
momentum sum rule is imposed on the initial conditions,
the small x factorization is restored to a good approxima-
tion after the evolution to high scale. This was observed
even when there was no factorization at the initial scale.
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FIG. 4. In the upper plots: the double gluon distributions x1x2Dggðx1; x2Þ as a function of x1 atQ2 ¼ 1; 100 GeV2 and fixed x2 ¼ 10−2

for the fully factorized prescription (51) (dash-dotted lines) and the GS ansatz (50) (dashed lines) with the initial conditions given by the
MSTW08 PDFs. The corresponding ratios (26) are shown in the bottom plots. The evolution equations with quarks were used for the
results at Q2 ¼ 100 GeV2.
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We stress that for this to happen, the DPDF evolution
equations must include the splitting term. We also note that
the small x factorization observed at high scales is
approximate with accuracy of a few percent. This indicates
residual correlations even at smallest values of x and large
values of Q2.
We illustrated the impact of the momentum sum rule on

the issue of factorization on several numerical examples in
the pure gluonic case and provide an analytic understand-
ing of the obtained results using the Mellin moment space.
We also discussed the current status of the initial condition
specifications for the QCD evolution, which are motivated
by a good knowledge of the single PDFs. We conclude
that the Gaunt-Stirling prescription for the initial double
parton distributions leads to a phenomenologically accept-
able prescription for the small x behavior of the double
parton distributions for the transverse momentum q ¼ 0.
However, it should be kept in mind that the small x
factorization can be violated for q ≠ 0 due to correlations
in the b space.
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APPENDIX A: MOMENTUM SUM RULE
CONSERVATION

We will prove that the momentum sum rule (7) is
conserved by the evolution equation (5) by showing that the
single PDFs obtained from Eq. (7),

Df2ðx2; tÞ ¼
1

1− x2

X
f1

Z
1−x2

0

dx1x1Df1f2ðx1; x2; tÞ; ðA1Þ

obey the DGLAP equation (13). For this purpose we write
the LO DGLAP equation in the most general form:

∂tDfðx; tÞ ¼
X
f0

Z
1

0

duPff0 ðx; uÞDf0 ðu; tÞ; ðA2Þ

where f indices denote quark/antiquark flavors and gluon.
The splitting kernel has the following general form:

Pff0 ðx; uÞ ¼ PR
ff0 ðx; uÞ − δðu − xÞδff0PV

f ðxÞ; ðA3Þ

where R and V denote the real and virtual emission kernels,
respectively. For the real emission kernel we have

PR
ff0 ðx; uÞ ¼

1

u
Pff0

�
x
u

�
θðu − xÞ; ðA4Þ

where Pff0 are the LO real emission Altarelli-Parisi
splitting functions. The virtual kernel is determined by
assuming that the momentum sum rule for single PDFs is
valid for any t,

X
f

Z
1

0

dxxDfðx; tÞ ¼ const; ðA5Þ

which holds true during the DGLAP evolution if

X
f

Z
1

0

dxxPff0 ðx; uÞ ¼ 0; ðA6Þ

for any f0 and u ∈ ½0; 1�. Substituting (A3) into the above
we find

uPV
f0 ðuÞ ¼

X
f

Z
1

0

dxxPR
ff0 ðx; uÞ: ðA7Þ

In the introduced notation, the evolution equation (5) for
DPDFs is given by

∂tDf1f2ðx1; x2; tÞ

¼
X
f0

Z
1−x2

0

duPf1f0 ðx1; uÞDf0f2ðu; x2; tÞ

þ
X
f0

Z
1−x1

0

duPf2f0 ðx2; uÞDf1f0 ðx1; u; tÞ

þ
X
f0
Pf0→f1f2ðx1; x2ÞDf0 ðx1 þ x2; tÞ ðA8Þ

where the splitting kernel in the third term reads as

Pf0→f1f2ðx1; x2Þ ¼ PR
f1f0

ðx1; x1 þ x2Þ ¼ PR
f2f0

ðx2; x1 þ x2Þ:
ðA9Þ

The upper integration limits in Eq. (A8) can be set to 1 from
the condition

Df1f2ðx1; x2; tÞ ¼ 0 for x1 þ x2 > 1: ðA10Þ

Under this condition the upper limit in Eq. (A1) can also be
set to 1. Thus, after differentiating this equation

∂tDf2ðx2; tÞ ¼
1

1 − x2

X
f1

Z
1

0

dx1x1∂tDf1f2ðx1; x2; tÞ

ðA11Þ

and using (A8) on the rhs, we obtain
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∂tDf2ðx2; tÞ

¼
X
f1

Z
1

0

dx1
x1

1− x2

�X
f0

Z
1

0

duPf1f0 ðx1;uÞDf0f2ðu;x2; tÞ

þ
X
f0

Z
1

0

duPf2f0 ðx2;uÞDf1f0 ðx1;u; tÞ

þ
X
f0
Pf0→f1f2ðx1; x2ÞDf0 ðx1þ x2; tÞ

�
: ðA12Þ

The first term on the rhs vanishes due to condition (A6).
Thus, we find after changing the summation and integration
order that

∂tDf2ðx2; tÞ

¼
X
f0

Z
1

0

du
1−x2

Pf2f0 ðx2;uÞ
�X

f1

Z
1

0

dx1x1Df1f0 ðx1;u; tÞ
�

þ
X
f0

Z
1

0

dx1
x1

1−x2
PR
f2f0

ðx2;x1þx2ÞDf0 ðx1þx2; tÞ

ðA13Þ

where we used (A9) in the last equation to write the second
term in Eq. (A13). The sum over f1 in this term disappears
since for a given ðf0; f2Þ there is only one f1 ¼ f1ðf0; f2Þ
in the sum. Applying (A1) in the first term and changing the
variable x1 → u ¼ x1 þ x2 in the second one, we obtain

∂tDf2ðx2; tÞ ¼
X
f0

Z
1

0

du
1 − u
1 − x2

Pf2f0 ðx2; uÞDf0 ðu; tÞ

þ
X
f0

Z
1þx2

x2

du
u − x2
1 − x2

PR
f2f0

ðx2; uÞDf0 ðu; tÞ:

ðA14Þ

Because of the property (A4) and Dfðx; tÞ ¼ 0 for x > 1,
the integration range in the second integral may be shifted
to [0, 1]. Therefore, after taking into account the form (A3)
of the kernel Pf2f0 ðx2; uÞ in the first integral, we find

∂tDf2ðx2; tÞ ¼
X
f0

Z
1

0

dufPR
f2f0

ðx2; uÞ

− δðu − x2Þδf2f0PV
f2f0

ðx2ÞgDf0 ðu; tÞ ðA15Þ

which is the DGLAP equation (A2). Notice the crucial role
of the splitting term in the evolution equation (A8) to arrive
at this conclusion.

APPENDIX B: ASYMPTOTIC SOLUTION IN
MELLIN MOMENT SPACE

The solution to the evolution equation (12) for the double
gluon distribution in the Mellin space is given by [33]

D̃ggðn1; n2; tÞ ¼ eγðn1Þteγðn2ÞtD̃ggðn1; n2; 0Þ

þ
Z

t

0

dt0eγðn1Þðt−t0Þeγðn2Þðt−t0Þγ̃ðn1; n2Þ

× D̃gðn1 þ n2 − 1; t0Þ: ðB1Þ

The first term in the sum is the general solution to the
homogeneous equation (12) without the splitting term
while the second term is a particular solution to the
nonhomogeneous equation with the splitting term.
The homogeneous solution term in Eq. (B1) contains a

product of exponentials which generate two independent
DGLAP evolutions in the double gluon distribution since
the solution to the DGLAP equation reads as

D̃gðn; tÞ ¼ eγðnÞtDgðn; 0Þ: ðB2Þ

In the nonhomogeneous solution term in Eq. (B1), the
gluon splitting g → gg at “time” t0 is followed by two
independent DGLAP evolutions with the exponential
factors up to the final t. Since the splitting point t0 might
occur between 0 and t we need to integrate over the whole
range of such possibilities.
Let us concentrate on the nonhomogeneous solution in

Eq. (B1), denoted from now on by I. Using (B2), we obtain

I ¼
Z

t

0

dt0eγðn1Þðt−t0Þþγðn2Þðt−t0Þþγðn1þn2−1Þt0 γ̃ðn1; n2ÞD̃gðn1 þ n2 − 1; 0Þ

¼ eγðn1Þtþγðn2Þtγ̃ðn1; n2Þ
�

eðγðn1þn2−1Þ−γðn1Þ−γðn2ÞÞt − 1

γðn1 þ n2 − 1Þ − γðn1Þ − γðn2Þ
�
D̃gðn1 þ n2 − 1; 0Þ: ðB3Þ

We will make the approximations that reflect the small x limit, in which the factorization is observed in the numerical
analysis. To this aim, we observe that the splitting function in this limit becomes PggðzÞ ≃ 2CA=z, which leads to the
following approximation to the anomalous dimension:

γðnÞ ¼
Z

1

0

dzzn−1PggðzÞ ≃
Z

1

0

dzzn−1
2CA

z
¼ 2CA

n − 1
: ðB4Þ
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Thus, the small x limit corresponds to the limit of ðn − 1Þ → 0. For the double distribution we consider the small x limit
studied at the plots, x1 → 0 and x2 ¼ fixed and small, which corresponds in the Mellin moment space to the limit
ðn1 − 1Þ → 0 and ðn2 − 1Þ finite. In this limit, the function γ̃ given by Eq. (43) is given by

γ̃ðn1; n2Þ ≃ 2CA

Z
1

0

dxxn1−2ð1 − xÞn2−1 ¼ 2CA
Γðn1 − 1ÞΓðn2Þ
Γðn1 þ n2 − 1Þ ≃

2CA

n1 − 1
ðB5Þ

while for the expression in the denominator in Eq. (B3), we
obtain

γðn1 þ n2 − 1Þ − γðn1Þ − γðn2Þ ≃ −
2CA

n1 − 1
: ðB6Þ

So the nonhomogeneous solution (B3) reads as

I ≃ eγðn1Þtþγðn2Þt
�
1 − exp

�
−

2CA

n1 − 1
t

��
D̃gðn1 þ n2 − 1; 0Þ:

ðB7Þ

Here one needs to have Reðn1Þ > 1 which is required for
the inverse Mellin transform to make sense. Thus, for
sufficiently large t, when the exponent in the square
brackets can be neglected, we find

I ≃ eγðn1Þtþγðn2ÞtD̃gðn1 þ n2 − 1; 0Þ: ðB8Þ

Therefore, the full solution (B1) can be approximated by

D̃ggðn1; n2; tÞ ≃ eγðn1Þtþγðn2ÞtðD̃ggðn1; n2; 0Þ
þ D̃gðn1 þ n2 − 1; 0ÞÞ: ðB9Þ

This needs to be compared with the empirically found
result in the considered small x limit

D̃ggðn1; n2; tÞ ≃ eγðn1Þtþγðn2ÞtD̃gðn1; 0ÞD̃gðn2; 0Þ; ðB10Þ

which gives the following relation for the Mellin moments
of the initial condition to be satisfied for the small x
factorization to be valid at sufficiently large t,

D̃ggðn1; n2; 0Þ þ D̃gðn1 þ n2 − 1; 0Þ ¼ D̃gðn1; 0ÞD̃gðn2; 0Þ:
ðB11Þ
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