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We investigate the double-charm and hidden-charm hexaquarks as molecules in the framework of the
one-boson-exchange potential model. The multichannel coupling and S −D wave mixing are taken into
account carefully. We adopt the complex scaling method to investigate the possible quasibound states,
whose widths are from the three-body decay channel ΛcΛcπ or ΛcΛ̄cπ. For the double-charm system of
IðJPÞ ¼ 1ð1þÞ, we obtain a quasibound state, whose width is 0.50 MeV if the binding energy is
−14.27 MeV, and the S-wave ΛcΣc and ΛcΣ�

c components give the dominant contributions. For the 1ð0þÞ
double-charm hexaquark system, we do not find a pole. We find more poles in the hidden-charm hexaquark
system. We obtain one pole as a quasibound state in the IGðJPCÞ ¼ 1þð0−−Þ system, which only has one

channel ðΛcΣ̄c þ ΣcΛ̄cÞ=
ffiffiffi
2

p
. Its width is 1.72 MeV with a binding energy of −5.37 MeV, but we do not

find a pole for the scalar 1−ð0−þÞ system. For the vector 1−ð1−þÞ system, we find a quasibound state. Its
energies, widths, and constituents are very similar to those of the 1ð1þÞ double-charm case. In the vector
1þð1−−Þ system, we get two poles—a quasibound state and a resonance. The quasibound state has a width
of 0.38 MeV with a binding energy of −16.79 MeV. For the resonance, its width is 4.06 MeV with an
energy of 60.78 MeV relative to the ΛcΣ̄c threshold, and its partial width from the two-body decay channel

ðΛcΣ̄c − ΣcΛ̄cÞ=
ffiffiffi
2

p
is apparently larger than the partial width from the three-body decay channel ΛcΛ̄cπ.

In particular, the 1þð0−−Þ and 1−ð1−þÞ hidden-charm hexaquark molecular states are very interesting.
These isovector mesons have exotic JPC quantum numbers which are not accessible to the conventional qq̄
mesons.

DOI: 10.1103/PhysRevD.107.054018

I. INTRODUCTION

In the study of the hadronicmolecular states, the dibaryon
always plays an important role. Thewell-known deuteron is
the only experimentally confirmed baryon-baryon bound
statewithout charm quarks.Moreover, theWASA-at-COSY
Collaboration repeatedly observed the dibaryon resonance
d�ð2380Þ [1–5]. It is natural to extend the investigation from
the deuteron to the strange dibaryon. Jaffe suggested the
famous H-dibaryon composed of the ΛΛ pair [6], which
was also studied in a series of works [7–19]. In addition,
the dibaryon with one heavy quark (qqqqqQ) was also
investigated in Refs. [20–22].

In 2017, the LHCb Collaboration discovered a double-
charm baryon in the Λþ

c K−πþπ− mass spectrum Ξþþ
cc [23],

which is also the first observed double-heavy hadron. This
discovery encouraged the research on the double-heavy
hadrons, especially the double-charm tetraquarks [24–33].
After four years, the LHCb Collaboration reported the
observation of the first double-heavy exotic hadron Tþ

cc
[34,35]. After the rapid succession of the double-charm
hadron discovery, it is necessary to implement a further
investigation. We will focus on the double-charm deuteron-
like hexaquarks in this work.
In the molecule picture, the double-charm dibaryon

could be easier to form a bound state due to the larger
reduced mass. And in fact, the double-heavy hexaquark
(qqqqQQ) systems have been discussed in various
approaches [36–53], including the chiral constituent quark
model [36,37], the quark delocalization color screening
model [38,39], the chromomagnetic model [40], the QCD
sum rules [41], the chiral effective field theory [42,43], and
the one-boson-exchange (OBE) model [44–50]. For the
ΛcΣc molecule system, the authors of Ref. [46] found a
bound state with the number IðJPÞ ¼ 1ð1þÞ. However, it
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was not confirmed in Ref. [39]. The hidden-heavy hex-
aquark ðqqQq̄ q̄ Q̄Þ may have similar behaviors, and the
relevant investigations can be found in Refs. [54–60].
In this work, we investigate the double-charm dibaryon

and hidden-charm baryonium systems containing the

ΛcΣ
ð�Þ
c and ΛcΣ̄

ð�Þ
c channels in the molecule picture. As

pointed out in our previous works [61,62], the cross
diagram DD� ↔ D�D of the one-pion exchange will
provide a complex potential, which is from the three-body
decay effect. This behavior could also occur in the process

ΛcΣ
ð�Þ
c ↔ Σð�Þ

c Λc. To study the possible three-body effect,
we will retain the imaginary contribution from the one-pion
exchange (OPE) potential.
We use the OBE model to deal with the molecule state

system. In order to explore the existence of the resonance,
we will adopt the complex scaling method (CSM) [63,64],
which is a powerful method that can handle the bound state
and resonance in a consistent way. In addition, the S −D
wave mixing and coupled-channel effect will be considered
in this work. For both the double-charm and hidden-charm
hexaquarks, the dominant contributions of the widths arise
from the open-charm decay processes. The possible hid-
den-charm decay contributions for the hidden-charm hex-
aquark systems are negligible.
This paper is organized as follows. In Sec. II, we

introduce our framework explicitly. In Sec. III, we present
the effective Lagrangians and potentials. In Sec. IV,
we solve the complex scaled Schrödinger equation and
give the results of the double-charm dibaryon and hidden-
charm baryonium. The last section, Sec. V, is a brief
summary.

II. FRAMEWORK

In previous works [61,62], we studied the double-charm
tetraquark with the CSMmethod. TheDD� system is found
to be special since the zeroth component of the transferred
momentum of the exchanged pion is larger than the pion
mass. This feature will provide the OPE potential with an
imaginary part. If one could get a pole in this system, one

may get an energy with an imaginary part which is
explained as its half-width. Therefore, we will pay more
attention to the systems containing this type of interaction.
One could see similar interactions in several systems, such
as ΛcΣc ↔ ΣcΛc, ΛcΣ̄c ↔ ΣcΛ̄c, ΛcD� ↔ ΣcD and
ΛcD̄� ↔ ΣcD̄. In this work, we consider the former two
cases: the double-charm and hidden-charm hexaquark
molecule system.
To find the possible bound and resonant states, we take

into account the coupled-channel effect. The explicit
systems and channels can be seen in Table I. However,
we do not consider the isoscalar system with channels
ΛcΛc, ΣcΣc, and Σ�

cΣ�
c (or ΛcΛ̄c, ΣcΣ̄c, and Σ�

cΣ̄�
c) in this

work. Unlike the other two isovector systems, this system
does not have the special cross diagram and could not
contribute an imaginary part to the OPE potential. We will
study these systems in subsequent work. For the isovector
cases, we will not take into account channels ΣcΣ�

c and
Σ�
cΣ�

c (or ΣcΣ̄�
c and Σ�

cΣ̄�
c) due to the same reason. In this

work, we only consider the channels with 1S0 (J ¼ 0), 3S1
(J ¼ 1), and 3D1 (J ¼ 1).
The masses of the charmed baryon and exchanged

light mesons are shown in Table II. We take the isospin
mean masses to deal with the isospin conservation
process.

A. A brief discussion on the CSM

We first briefly introduce the CSM before investigating
the analyticity of the OPE potentials. Aguilar, Balslev, and
Combes proposed this method in the 1970s [63,64], and the
corresponding conclusion is known as the ABC theorem. In
this powerful method, the resonances can be solved in the
same way as the bound states. The transformation of the
radial coordinate r and its conjugate momentum k in
the CSM is defined by

UðθÞr ¼ reiθ; UðθÞk ¼ ke−iθ: ð1Þ

Then, the radial Schrödinger equation is transformed as

TABLE I. The channels of the double- and hidden-charm hexaquark systems. We adopt the following shorthand notations for

simplicity: ½ΛcΣ̄
ð�Þ
c � ¼ 1ffiffi

2
p ðΛcΣ̄

ð�Þ
c − Σð�Þ

c Λ̄cÞ and fΛcΣ̄
ð�Þ
c g ¼ 1ffiffi

2
p ðΛcΣ̄

ð�Þ
c þ Σð�Þ

c Λ̄cÞ.

IGðJPCÞ 1 2 3 4 5 6

cc 0ð0þÞ ΛcΛcð1S0Þ ΣcΣcð1S0Þ Σ�
cΣ�

cð1S0Þ
1ð0þÞ ΛcΣcð1S0Þ
1ð1þÞ ΛcΣcð3S1Þ ΛcΣcð3D1Þ ΛcΣ�

cð3S1Þ ΛcΣ�
cð3D1Þ ΣcΣcð3S1Þ ΣcΣcð3D1Þ

cc̄ 0þð0−þÞ ΛcΛ̄cð1S0Þ ΣcΣ̄cð1S0Þ Σ�
cΣ̄�

cð1S0Þ
1þð0−−Þ fΛcΣ̄cgð1S0Þ
1−ð0−þÞ ½ΛcΣ̄c�ð1S0Þ ΣcΣ̄cð1S0Þ
1þð1−−Þ ½ΛcΣ̄c�ð3S1Þ ½ΛcΣ̄c�ð3D1Þ fΛcΣ̄�

cgð3S1Þ fΛcΣ̄�
cgð3D1Þ ΣcΣ̄cð3S1Þ ΣcΣ̄cð3D1Þ

1−ð1−þÞ fΛcΣ̄cgð3S1Þ fΛcΣ̄cgð3D1Þ ½ΛcΣ̄�
c�ð3S1Þ ½ΛcΣ̄�

c�ð3D1Þ
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�
1

2m

�
−

d2

dr2
þ lðlþ 1Þ

r2

�
e−2iθ þ VðreiθÞ

�
ψθ
l ðrÞ

¼ EðθÞψθ
l ðrÞ: ð2Þ

After the complex scaling operation, the resonance pole
will cross the branch cut into the first Riemann sheet if the
rotation angle θ is large enough, as shown in Fig. 1. In this
way, the wave functions of the resonances become square
integrable, just like the normalizable bound states. The
details can be seen in Refs. [66,67].
In previous work [61], we adopted the Gaussian

expansion method (GEM) [68] to solve the tetraquark
system, and our results agreed with the experimental data
very well. However, when dealing with resonances, the
GEM may not be applicable to some extreme situations.
For example, if there is a pole located on the second
Riemann sheet corresponding to one of the channels, we
need to make a complex scaling to move this pole to the
first Riemann sheet. And when this pole is too close to or
below the threshold, the rotation angle θ ≳ π=4, which is
out of the limit of the Gaussian basis, so we adopt another
function as the basis sets—the Laguerre functions of the
form

ϕnlðλrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!
ð2lþ 2þ nÞ!

s
ðλrÞlþ1e−λr=2L2lþ2

n ðλrÞ; ð3Þ

where λ is an adjustable parameter for the different size
state. The radial wave function can be expanded as

ψθ
l ðrÞ ¼

XN
n

cnðθÞϕnlðλrÞ; ð4Þ

where cnðθÞ is the rotation angle θ-dependent coefficient.
These basis sets have some good characteristics: (1) We
can get all the resonances located on the second Riemann
sheets since the angle region becomes 0 < θ < π=2.
(2) The basis functions are orthonormal. (3) One can
evaluate all the Hamiltonian matrix elements with simple
analytical formulas in the OBE potential case. (4) These
basis sets can allow the wave function to have the
oscillating behavior of trigonometric function in a infinite
range so that one can get the partial width of the
corresponding resonance with the golden rule [69,70].
One can find the concrete application in Ref. [71].

B. Analyticity of the OPE potentials
for the ΛcΣ

ð�Þ
c system

When considering the process ΛcΣc → ΣcΛc, one can
get potentials as follows:

Vπ ∝
1

2f2π

ðσ · qÞðσ · qÞ
q2 −m2

π
; ð5Þ

where σ is the Pauli matrix. q is the transferred momentum
of the pion, and q0 is its zeroth component. The denom-
inator above gives q2 −m2

π ¼ −ðq2 −m2
effÞ, where the

shorthand meff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 −m2

π

p
and q0 ≈mΣc

−mΛc
> mπ .

Obviously, the poles are located on the real transferred
momentum axis. When making a Fourier transformation,
we adopt the Feynman prescription to make the contour
integral, and the OPE potential is proportional to
1=ðp2 −m2

eff − iϵÞ. It is obvious that the complex scaling
operation will not change the analyticity of the OPE
potential. Compared with the DD� system, we have an
additional channel ΛcΣ�

c that could provide a similar
potential. The processes ΛcΣ�

c → Σ�
cΛc and ΛcΣc →

Σ�
cΛc could contribute an imaginary part too. To discuss

this type of process, we have a careful discussion on q0
herein. Since mΣc

−mΛc
and mπ are comparable, the

effective mass meff ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mπðmΣc

−mΛc
−mπÞ

p
is small.

Therefore, the small bound energy could also affect meff .

To deal with q0 in the ΛcΣ
ð�Þ
c → Σð�Þ

c Λc process, we denote
the total energy as E and assume the Λc to be on shell.

Then, q0 ¼ E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Λc
þ p2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Λc
þ p02

q
, as illustrated

in Fig. 2(a).
FIG. 1. The eigenvalue distribution of the complex scaled
Schrödinger equation for two-body systems.

TABLE II. The masses of the charmed baryons and exchanged
light mesons in the OBE potential, which are taken from the
Particle Data Group [65].

Mesons Mass (MeV) Mesons Mass (MeV)

Λþ
c 2286.46 σ 600

Σþþ
c 2453.97 π� 139.57

Σþ
c 2452.65 π0 134.98

Σ0
c 2453.75 η 547.86

Σ�þþ
c 2518.41 ρ 775.26

Σ�þ
c 2517.4 ω 782.66

Σ�0
c 2518.48
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We will neglect the kinetic energy terms p2=2mΛc

and p02=2mΛc
of the charmed baryons due to the heavy

quark approximation. Then, we make an energy shift
E → Eþ 2mΛc

, and q0 gives q0 ¼ EþmΣc
−mΛc

. For
the process containing the ΣcΣc channel, we take q0 ¼ 0 in
the diagonal process ΣcΣc → ΣcΣc and q0 ¼ E in the

nondiagonal process ΛcΣ
ð�Þ
c → ΣcΣc. We illustrate the

latter one in Fig. 2(b). In this work, the latter one could
also provide an imaginary part when the energy is around
the threshold of ΣcΣc. In fact, we also use these assump-
tions in the process with other propagators. We list q0
values for different cases in Table III. To distinguish the

special q0 in the cross diagrams ΛcΣ
ð�Þ
c → Σð�Þ

c Λc from q0
in the direct diagrams ΛcΣ

ð�Þ
c → ΛcΣ

ð�Þ
c , we use the short-

hand “qC0 ” for the former cases when we give concrete
expressions of the potentials.

III. LAGRANGIANS AND POTENTIALS

The effective Lagrangians are built under the heavy
quark symmetry and SU(3)-flavor symmetry. The concrete
expressions of the OBE Lagrangians read as

LB ¼ LB3̄
þ LS þ Lint; ð6Þ

LB3̄
¼ 1

2
hB̄3̄ðiv ·DÞB3̄iþ iβBhB̄3̄v

μðΓμ−VμÞB3̄i
þ lBhB̄3̄σB3̄i;

LS ¼−hS̄αðiv ·D−ΔBÞSαiþ
3

2
g1ðivkÞϵμνλκhS̄μAνSλi

þ iβShS̄μvαðΓα−VαÞSμiþ λShS̄μFμνSνiþ lShS̄μσSμi;
Lint ¼ g4hS̄μAμB3̄iþ iλIϵμνλκvμhS̄νFλκB3̄iþH:c:

Sμ and B3̄ are the heavy sextet and antitriplet baryon
superfield defined as

Sμ ¼ B�
μ −

1ffiffiffi
3

p ðγμ þ vμÞγ5B6: ð7Þ

These heavy baryon fields are

B3̄ ¼

0
BBB@

0 ΛQ Ξþ1=2
Q

−ΛQ 0 Ξ−1=2
Q

Ξþ1=2
Q Ξ−1=2

Q 0

1
CCCA;

B6 ¼

0
BBB@

Σþ1
Q

1ffiffi
2

p Σ0
Q

1ffiffi
2

p Ξ0þ1=2
Q

1ffiffi
2

p Σ0
Q Σ−1

Q
1ffiffi
2

p Ξ0−1=2
Q

1ffiffi
2

p Ξ0þ1=2
Q

1ffiffi
2

p Ξ0−1=2
Q ΩQ

1
CCCA;

B�
6 ¼

0
BBB@

Σ�þ1
Q

1ffiffi
2

p Σ�0
Q

1ffiffi
2

p Ξ�0þ1=2
Q

1ffiffi
2

p Σ�0
Q Σ�−1

Q
1ffiffi
2

p Ξ�0−1=2
Q

1ffiffi
2

p Ξ�0þ1=2
Q

1ffiffi
2

p Ξ�0−1=2
Q Ω�

Q

1
CCCA: ð8Þ

The light meson parts are given below

FIG. 2. Three-body intermediate state diagram in the processes
(a) ΛcΣ

ð�Þ
c → Σð�Þ

c Λc and (b) ΛcΣ
ð�Þ
c → ΣcΣc. We assume the total

energy is E, and the baryons cut by the red dashed line are
on shell.

TABLE III. The q0 is the zeroth component of the transferred
momentum. E is the total energy relative to the threshold of ΛcΣc.

q0 ¼ EþmΣc
−mΛc

is from the cross diagramΛcΣ
ð�Þ
c → Σð�Þ

c Λc,

and q0 from the direct diagram ΛcΣ
ð�Þ
c → ΛcΣ

ð�Þ
c is equal to 0.

The cases not listed all give q0 ¼ 0.

Process ΛcΣ
ð�Þ
c → Σð�Þ

c Λc ΛcΣ
ð�Þ
c → ΣcΣc

q0 EþmΣc
−mΛc

E

Process ΛcΣ̄
ð�Þ
c → Σð�Þ

c Λ̄c ΛcΣ̄
ð�Þ
c → ΣcΣ̄c

q0 EþmΣc
−mΛc

E
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A¼ i
2
½ξ†ð∂μξÞ þ ð∂μξÞξ†�; Γμ ¼

1

2
½ξ†ð∂μξÞ− ð∂μξÞξ†�;

Fμν ¼ ∂μVν − ∂νVμ þ ½Vμ;Vν�; ξ¼ exp

�
iM
fπ

�
; ð9Þ

M ¼

0
BBB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 − 2ffiffi
6

p η

1
CCCA;

Vμ ¼ i
gVffiffiffi
2

p

0
BBB@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ K�þ

ρ− − ρ0ffiffi
2

p þ ηffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCA: ð10Þ

For the pion decay constant, we use fπ ¼ 132MeV.
With gqσ ¼ 3.65 and gqA ¼ 0.75 [72] in the quark model, one

obtain lB ¼ −gqσ , lS ¼ −2lB, g1 ¼ 4
3
gqA, g3 ¼

ffiffi
3

p
2
g1 and

g5 ¼ − 3
2
g1. As for the other coupling constants, we adopt

the values in Ref. [21]:

g2 ¼ −0.598; g4 ¼ 0.999;

βBgV ¼ −6.0; βSgV ¼ −2βSgV
λSgV ¼ 19.2GeV−1; λIgV ¼ −λSgV=

ffiffiffi
8

p
: ð11Þ

To get the effective potentials, we add a monopole form
factor at each vertex

FiðqÞ ¼
Λ2
i −m2

i

Λ2
i − q2

; ð12Þ

where i stands for one of the propagators (π, η, σ, ρ, and ω),
q2 ¼ q20 − q2, and Λi and mi are the cutoff parameter and
the mass of the corresponding propagator, respectively.
After the Fourier transformation

ViðrÞ ¼
1

ð2πÞ3
Z

dq3e−iq·rVðqÞF2
i ðqÞ; ð13Þ

we can get the coordinate space potentials

VΛcΣc→ΛcΣc ¼ −
g22
f2π

½Sðσ1; σ2ÞY3ðΛπ; qC0 ; mπ; rÞ þ Tðσ1; σ2ÞH3ðΛπ; qC0 ; mπ; rÞ�ϵ†3 · ϵ2 −
1

2
ðβBβSg2VÞY0ðΛω; q0; mω; rÞ

−
1

3
ðλIgVÞ2½2Sðσ1; σ2ÞY3ðΛρ; qC0 ; mρ; rÞ − Tðσ1; σ2ÞH3ðΛρ; qC0 ; mρ; rÞ�ϵ†3 · ϵ2 þ 2lBlSY0ðΛσ; q0; mσ; rÞ;

VΛcΣ�
c→ΛcΣ�

c ¼ −
g24
f2π

½SðS†t3; St2ÞY3ðΛπ; qC0 ; mπ; rÞ þ TðS†t3; St2ÞH3ðΛπ; qC0 ; mπ; rÞ�ϵ†3 · ϵ2 þ
1

2
ðβBβSg2VÞY0ðΛω; q0; mω; rÞ

þ 2ðλIgVÞ2½2SðS†t3; St2ÞY3ðΛρ; qC0 ; mρ; rÞ − TðS†t3; St2ÞH3ðΛρ; qC0 ; mρ; rÞ�ϵ†3 · ϵ2 þ 2lBlSY0ðΛσ; q0; mσ; rÞ;

VΣcΣc→ΣcΣc ¼ g21
2f2π

½Sðσ1; σ2ÞY3ðΛπ; q0; mπ; rÞ þ Tðσ1; σ2ÞH3ðΛπ; q0; mπ; rÞ�I1 · I2 − l2SY0ðΛσ; q0; mσ; rÞ

þ 1

3

g21
2f2π

½Sðσ1; σ2ÞY3ðΛη; q0; mη; rÞ þ Tðσ1; σ2ÞH3ðΛη; q0; mη; rÞ� þ
1

2
ðgSgVÞ2Y0ðΛρ; q0; mρ; rÞI1 · I2

−
1

3
ðλSgVÞ2½2Sðσ1; σ2ÞY3ðΛρ; q0; mρ; rÞ − Tðσ1; σ2ÞH3ðΛρ; q0; mρ; rÞ�I1 · I2

þ 1

2
ðβSgVÞ2Y0ðΛω; q0; mω; rÞ −

1

3
ðλSgVÞ2½2Sðσ1; σ2ÞY3ðΛω; q0; mω; rÞ − Tðσ1; σ2ÞH3ðΛω; q0; mω; rÞ�; ð14Þ

VΛcΣc→ΛcΣ�
c ¼ −

g2g4
f2π

½SðS†t3; σ2ÞY3ðΛπ; qC0 ; mπ; rÞ þ TðS†t3; σ2ÞH3ðΛπ; qC0 ; mπ; rÞ�ϵ†3 · ϵ2

þ 2ffiffiffi
3

p ðλIgVÞ2½2SðS†t3; σ2ÞY3ðΛρ; qC0 ; mρ; rÞ − TðS†t3; σ2ÞH3ðΛρ; qC0 ; mρ; rÞ�ϵ†3 · ϵ2;

VΛcΣc→ΣcΣc ¼ g1g2ffiffiffi
2

p
f2π

½Sðσ1; σ2ÞY3ðΛπ; q0; mπ; rÞ þ Tðσ1; σ2ÞH3ðΛπ; q0; mπ; rÞ�ϵ†3 · I2

þ 2

3
ffiffiffi
6

p ðλIλSg2VÞ½2Sðσ1; σ2ÞY3ðΛρ; q0; mρ; rÞ − Tðσ†1; σ2ÞH3ðΛρ; q0; mρ; rÞ�ϵ†3 · I2;
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VΛcΣ�
c→ΣcΣc ¼ g2g3ffiffiffi

2
p

f2π
½Sðσ1; St2ÞY3ðΛπ; q0; mπ; rÞ þ Tðσ1; St2ÞH3ðΛπ; q0; mπ; rÞ�ϵ†3 · I2

−
1

3
ffiffiffi
2

p ðλIλSg2VÞ½2Sðσ1; St2ÞY3ðΛρ; q0; mρ; rÞ − Tðσ1; St2ÞH3ðΛρ; q0; mρ; rÞ�ϵ†3 · I2: ð15Þ

We added a factor −1 for the cross-diagram potentials,
which contain qC0 . The factor is from the fermion’s position
exchange and equal to ð−1Þs−s1−s2þlþi−i1−i2þ1, where
s; s1; s2; l; i; i1; i2 are spin, orbit, and isospin numbers. ϵ
and I are the isospin polarization vector and isospin
operator, respectively, and the isospin-dependent matrix
elements are given in Table IV. St and σ are the spin
transition operator and Pauli operator, respectively. The
spin-dependent operators have Sða; bÞ ¼ a · b and
Tða; bÞ ¼ 3ða · rÞðb · rÞ=r2 − a · b, whose matrix elements
are given in Table V. The Y3, H3 functions and relevant Y,
H functions are defined as

YðxÞ ¼ e−x

x
; HðxÞ ¼

�
1þ 3

x
þ 3

x2

�
YðxÞ;

Y0ðΛ; q0; m; rÞ ¼ u
4π

�
YðurÞ − χ

u
YðχrÞ − β2

2χu
e−χr

�
;

Y3ðΛ; q0; m; rÞ ¼ u3

12π

�
YðurÞ − χ

u
YðχrÞ − β2χ

2u3
e−χr

�
;

H3ðΛ; q0; m; rÞ ¼ u3

12π

�
HðurÞ −

�
χ

u

�
3

HðχrÞ

−
β2

2χu
χ2

u2
YðχrÞ − β2

2χu
χ2

u2
e−χr

�
; ð16Þ

where

u ¼ Sign½Reðeiθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q20

q
Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q20

q
;

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 −m2

p
; χ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − q20

q
: ð17Þ

IV. NUMERICAL RESULTS

A. The OPE potential results for the double-charm
hexaquark system

We first introduce the OPE potentials to study the
double-charm hexaquark system. For the 1ð0þÞ system,
we do not get a bound or resonant state with a reasonable
cutoff Λπ . However, we find a quasibound state in the
1ð1þÞ case, and the results are shown in row “Adopt” of
Table VI. One could find this pole has an imaginary part
corresponding to −iΓ=2. We give a brief explanation of the
measure hψ̃ ijψ ii herein. hψ̃ ijψ ii ¼ eiθ

R∞
0 fψ iðreiθÞg2dr is

the amplitude corresponding to the ith channel. This
measure is similar to the definition of the probabilities
of bound states. However, one could find that its value
could be complex in Table VI and could not be regarded as
a probability. This behavior is from the normalization of the
resonance wave function [70,73]. However, the quasibound
state herein is special. When the bound energy
B:E: ≤ −ðmΣc

−mΛc
−mπÞ, the quasibound state turns

into a bound state, and the width from the three-body
decay effect vanishes. Then, hψ̃ ijψ ii turns into the prob-
ability of the ith channel. Hence, this measure could partly
reflect the constituents of this special quasibound state.
Furthermore,

ffiffiffiffiffiffiffiffi
hr2i

p
is the root-mean-square radius. Its real

part is interpreted as an expectation value, and the
imaginary part corresponds to a measure of the uncertainty
in observation [74].
To make a comparison, we also give the result under the

instantaneous approximation in row “q0 ¼ 0” of Table VI.

TABLE IV. The isospin-dependent (I ¼ 1) matrix elements of
the operators ϵ†3 · ϵ2, ϵ

†
3 · I2 and I1 · I2.

Δ ϵ†3 · ϵ2 ϵ†3 · I2 I1 · I2

hI ¼ 1jΔjI ¼ 1i 1 −
ffiffiffi
2

p
−1

TABLE V. The spin-dependent matrix elements.

Δ Sðσ†1; σ2Þ Tðσ†1; σ2Þ SðS†t3;St2Þ TðS†t3;St2Þ SðS†t3; σ2Þ TðS†t3; σ2Þ Sðσ1;St2Þ Tðσ1; St2Þ
h3S1jΔj3S1i 1 0 1

3
0 −2

ffiffi
2
3

q
0

2
ffiffi
2
3

q
0

h3D1jΔj3S1i 0 2
ffiffiffi
2

p
0 − 5

3
ffiffi
2

p 0 1ffiffi
3

p 0 − 1ffiffi
3

p

h3S1jΔj3D1i 0 2
ffiffiffi
2

p
0 − 5

3
ffiffi
2

p 0 1ffiffi
3

p 0 − 1ffiffi
3

p

h3D1jΔj3D1i 1 −2 1
3

5
6 −2

ffiffi
2
3

q
− 1ffiffi

6
p

2
ffiffi
2
3

q
1ffiffi
6

p

Δ Sðσ†1; σ2Þ
h1S0jΔj1S0i −3
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In this case, the imaginary part of the OPE potential from
the three-body decay effect disappears, and the pole
becomes a bound state. Considering the cases in row
“Adopt” with Λπ ¼ 1.0 and row “q0 ¼ 0” with
Λπ ¼ 1.05, we find their values are close to each other,
including the energy

ffiffiffiffiffiffiffiffi
hr2i

p
and hψ̃ ijψ ii. In fact, we find

this conclusion could extend to other similar systems. In
other words, the influence of the three-body decay is small.
Therefore, we will take

ffiffiffiffiffiffiffiffi
hr2i

p
and hψ̃ ijψ ii as the reference

measures when analyzing the size and constituents of the
pole state.
In our framework, the width of a quasibound state should

not be larger than the value of Σc and will decrease as the
binding energy becomes deeper. In fact, it does. Taking the
case Λπ ¼ 1.0 GeV as an example, we get a quasibound
state whose binding energy and width is −5.61 and
0.86 MeV, respectively, and its dominant constituents are
S-waveΛcΣc andΛcΣ�

c. In fact, the main channelΛcΣcð3S1Þ
contributes a repulsive potential, and ΛcΣ�

cð3S1Þ contributes
an attractive potential with an imaginary part. Considering
only the former channel, one could not get a bound
state. However, one could get a quasibound state when
adding the attractive potential of channel ΛcΣ�

c. Obviously,
the coupled-channel effects play an important role in this
system. To gain a deeper insight, we will add the other
medium- and short-range potentials in the following parts.

B. The OBE potential results for the double-charm
hexaquark system

In this part, we further employ the OBE potential to
include the short- and medium-range contribution. Before
making a calculation, we need to choose the cutoff for the
different vertex first. The same cutoff is usually used
for all the OBE potentials, like Λπ ¼ Λη ¼ Λσ ¼ Λρ ¼
Λω (common cutoff). Another possible choice can be found
in Refs. [75,76]. The authors adopted Λi ¼ mi þ αΛQCD

(scaled cutoff), where i corresponds to a propagator (π, η, σ,
ρ, ω), ΛQCD ¼ 220 MeV is the scale of QCD, and α is a

dimensionless parameter. However, these two choices
could both be invalid in this work.
As shown in Table VI, the cutoff in the OPE potential case

is close to 1 GeV, and when we add the other potentials from
the OBE interaction and adopt the common cutoff, the
reasonable value is around Λi ≈ 0.8 GeV. Then a problem
emerges. Since mρ=mω ≈ 0.78 GeV, their form factors
FiðqÞ ¼ ðΛ2

i −m2
i Þ=ðΛ2

i − q2Þ→ 0, and then the short-range
ρ, ω potentials go to 0. On the other hand, if we adopt the
scaled cutoff scheme, the ρ,ω potentials could bemuch larger
than the π potential. It may also be doubtful since the
OPE potential should play a more important role than
the one-vector-exchange potentials for the state very close
to the thresholds. To deal with this problem, we adopt a
compromise scheme assuming Λi ¼ mi½1þ αðΛQCD=miÞ2�.
Adopting the compromise scheme for the cutoff, we get

the results in the OBE potential case for the 1ð1þÞ system in
Table VII. We find a quasibound state, and its behavior is
just like the situation in the OPE potential case.
We take α ¼ 2.2 as an example and show the eigenvalue

distribution in the OBE potential case, as shown in Fig. 3.
Obviously, the quasibound state pole is located on the first
Riemann sheets (physical sheets) corresponding to the
ΛcΣc, ΛcΣ�

c, and ΣcΣc channels and the second
Riemann sheets (unphysical sheets) corresponding to the
ΛcΛcπ three-body channel. In Fig. 4, we choose θ ¼ 20°
and plot the real and imaginary parts of its wave function.
Obviously, the S-wave ΛcΣc and ΛcΣ�

c channels dominate
the state.

C. The OBE potential results for the hidden-charm
hexaquark system

In this part, we discuss the molecule system of the
hidden-charm hexaquark with the OBE potential.
The relevant potentials are similar to those of the dou-
ble-charm cases, and they can be connected by making a
G parity transformation for the propagators. In other
words,

TABLE VI. Solutions for the double-charm hexaquark with IðJPÞ ¼ 1ð1þÞ in the OPE potential case with θ ¼ 20°. The energies are
given relative to the threshold of ΛcΣc.

ffiffiffiffiffiffiffiffi
hr2i

p
¼ ½e3iθ R∞

0 fψðreiθÞg2r2dr�1=2 is the root-mean-square (rms) radius. hψ̃ ijψ ii ¼
eiθ

R
∞
0 fψ iðreiθÞg2dr is the amplitude corresponding to the ith channel of ΛcΣcð3S1; 3D1Þ, ΛcΣ�

cð3S1; 3D1Þ, ΣcΣcð3S1; 3D1Þ. The data of
the row Adopt are the results we actually adopt, and q0 herein is from Table III. The data of row q0 ¼ 0 are from the instantaneous
approximation.

Λπ (GeV) 1.0 1.05 1.1

Adopt Energy (MeV) −5.61 − 0.43i −13.90 − 0.29i −25.57 − 0.04iffiffiffiffiffiffiffiffi
hr2i

p
(fm) 1.4 − 0.1i 0.9 0.7

hψ̃ ijψ ii × 100 ð70.7 − 1.4i=1.7=23.9
þ1.3i=0.9=2.5þ 0.1i=0.3Þ

ð59.0 − 0.4i=1.2=34.1
þ0.41.2=4.2=0.3Þ

ð50.8=0.8=40.8=1.4=6.0=0.3Þ

q0 ¼ 0 Energy (MeV) −0.54 −5.64 −16.51ffiffiffiffiffiffiffiffi
hr2i

p
(fm) 4.1 1.3 0.8

hψ̃ ijψ ii × 100 ð91.4=1.0=6.4=0.3=0.7=0.2Þ ð71.7=1.2=22.8=0.8=3.1=0.4Þ ð56.8=0.8=35.4=1.2=5.5=0.3Þ
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VAB ¼ ð−1ÞGiVAB̄; ð18Þ

where A, B are the charmed baryons, andGi is the G parity
of the i propagator, as shown in Table VIII.
Considering the multichannel coupling effect, we adopt

the channels in Table I for the systems 1þð0−−Þ, 1−ð0−þÞ,
1þð1−−Þ, and 1−ð1−þÞ. Compared with the double-charm
case, the number of the hidden-charm systems doubles for
the existence of the C or G parity number. For the 1−ð0−þÞ
case, we do not find a pole in a reasonable cutoff region.
For the positive G parity case 1þð0−−Þ, we find a quasi-
bound state, and the results are given in Table IX. This
system has only one channel, and one may find a clearer
width behavior than in the other coupled-channel systems.
When α ¼ 1.5, we find a quasibound state with the binding
energy of −5.37 MeV and the width of 1.72 MeV.
Obviously, the width is very close to the upper limit of
this pole—the width of Σc.
For the vector cases, both the 1þð1−−Þ and 1−ð1−þÞ

systems can form a quasibound state. We first discuss the
1−ð1−þÞ system. Similar to the double-charm case 1ð1þÞ,
the first diagonal S-wave OPE potential VfΛcΣ̄cg→fΛcΣ̄cg

π is
repulsive, and the third diagonal S-wave OPE potential

V ½ΛcΣ̄�
c�→½ΛcΣ̄�

c�
π is attractive. The numerical results of this pole

are given in Table X, and the main contributions are from

the S-wave channels fΛcΣ̄cg and ½ΛcΣ̄�
c�. In fact, this

quasibound state is very similar to the pole in the double-
charm case 1ð1þÞ. They have very similar results with the
same energy, including the widths, constituents, and sizes.
For example, taking α ¼ 2.03, we get the binding energy
of −4.21 MeV, the width of 0.56 MeV, the rms of
1.7 − 0.1i fm and hψ̃ ijψ ii×100¼ð83.8−1.3i=2.5=13.2þ
1.3i=0.5Þ, which are very similar to the results in Table VI
with α ¼ 2.0.
Then, we consider the 1þð1−−Þ case. Contrary to the

1−ð1−þÞ case, the first diagonal S-wave OPE potential

V ½ΛcΣ̄c�→½ΛcΣ̄c�
π is attractive, and the third diagonal S-wave

TABLE VII. Solutions for the double-charm hexaquark with IðJPÞ ¼ 1ð1þÞ in the OBE potential case with θ ¼ 20°. The energies are
given relative to the threshold of ΛcΣc.

ffiffiffiffiffiffiffiffi
hr2i

p
¼ ½e3iθ R∞

0 fψðreiθÞg2r2dr�1=2 is the rms radius. hψ̃ ijψ ii ¼ eiθ
R
∞
0 fψ iðreiθÞg2dr is the

amplitude corresponding to the ith channel of ΛcΣcð3S1; 3D1Þ, ΛcΣ�
cð3S1; 3D1Þ, ΣcΣcð3S1; 3D1Þ.

α 2.0 2.2 2.4

Energy (MeV) −3.98 − 0.31i −14.27 − 0.25i −31.06ffiffiffiffiffiffiffiffi
hr2i

p
(fm) 1.7 − 0.1i 1.0 0.7

hψ̃ ijψ ii × 100 ð81.6 − 1.5i=1.7=14.8
þ1.4i=0.5=1.2þ 0.1i=0.2Þ

ð66.5 − 0.4i=1.1=28.2
þ0.4i=0.8=3.1=0.2Þ

ð55.5=0.7=37.3=1.1=5.3=0.2Þ

FIG. 3. The eigenvalue distribution of the double-charm
hexaquark with IðJPÞ ¼ 1ð1þÞ. α ¼ 2.2 in the OBE potential
case. The red (green) points (square point) and lines correspond
to the situation with the complex rotation angle θ ¼ 10°ð20°Þ.

(a)

(b)

FIG. 4. The wave functions uiðrÞ ði ¼ 1; 2; 3; 4; 5; 6Þ of the
double-charm hexaquark with the IðJPÞ ¼ 1ð1þÞ. The rotation
angle θ ¼ 20° and the parameter α ¼ 2.2 in the OBE potential
case. The two diagrams correspond to (a) the real part of uiðrÞ
and (b) the imaginary part of uiðrÞ.
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OPE potential VΛcΣ̄�
c→ΛcΣ̄�

c
π is repulsive. In other words, the

first channel can form a bound or quasibound state alone.
After considering the coupled-channel effect, we can obtain
the solutions, as shown in Table XI. Different from the

other cases, this system has two poles when α≳ 1.8.
The first one is close to the threshold of ΛcΣ̄c, and the
second to ΛcΣ̄�

c. These two poles are quite different.
To study their characters, we illustrate the energy

distribution with α ¼ 1.8 in Fig. 5. The first pole mainly
consists of the S-wave ½ΛcΣ̄c� with energy of
−16.79 − 0.19i MeV. It is located on the first Riemann
sheets (physical sheets) corresponding to the channels
½ΛcΣ̄c�, fΛcΣ̄�

cg and ΣcΣ̄c, and the second Riemann sheets
(unphysical sheets) corresponding to the three-body chan-
nel ΛcΛ̄cπ. The second pole mainly consists of the S-wave
fΛcΣ̄�

cg with the energy of 60.78 − 2.03i MeV relative to
the threshold of ½ΛcΣ̄c�. It is located on the first Riemann
sheets (physical sheets) corresponding to the channels
fΛcΣ̄�

cg and ΣcΣ̄c, and the second Riemann sheets (unphys-
ical sheets) corresponding to ½ΛcΣ̄c� and the ΛcΛ̄cπ three-
body channel. Obviously, the second pole is a Feshbach-
type resonance; if we turn off the ΛcΣ̄�

c channels, it
disappears. In addition, the width of the first pole is totally
from the three-body decay process. However, the width of
the second one may have additional sources.

TABLE VIII. G parity of the light mesons.

Meson π η σ ρ ω

G −1 1 1 1 −1

TABLE IX. Solutions for the hidden-charm hexaquark with
IGðJPCÞ ¼ 1þð0−−Þ in the OBE potential case with θ ¼ 20°. The
energies are given relative to the threshold of ΛcΣ̄c.

ffiffiffiffiffiffiffiffi
hr2i

p
¼

½e3iθ R∞
0 fψðreiθÞg2r2dr�1=2 is the rms radius.

α 1.5 1.8 2.1

Energy (MeV) −5.37 − 0.86i −13.29 − 0.46i −25.63 − 0.05iffiffiffiffiffiffiffiffi
hr2i

p
(fm) 1.7 1.2 0.9

TABLE X. Solutions for the hidden-charm hexaquark with IGðJPCÞ ¼ 1−ð1−þÞ in the OBE potential case with θ ¼ 20°. The energies
are given relative to the threshold of ΛcΣ̄c.

ffiffiffiffiffiffiffiffi
hr2i

p
¼ ½e3iθ R∞

0 fψðreiθÞg2r2dr�1=2 is the rms radius. hψ̃ ijψ ii ¼ eiθ
R
∞
0 fψ iðreiθÞg2dr is the

amplitude corresponding to the ith channel of fΛcΣ̄cgð3S1; 3D1Þ, ½ΛcΣ̄�
c�ð3S1; 3D1Þ.

α 2.1 2.3 2.5

Energy (MeV) −6.43 − 0.32i −15.33 − 0.23i −27.88 − 0.01iffiffiffiffiffiffiffiffi
hr2i

p
(fm) 1.5 1.0 0.8

hψ̃ ijψ ii × 100 ð80.0 − 1.1i=2.5=17.0þ 1.1i=0.6Þ ð69.7 − 0.4i=2.3=27.1þ 0.4i=0.9Þ ð61.2=2.2=35.4=1.2Þ

TABLE XI. Solutions for the hidden-charm hexaquark with IGðJPCÞ ¼ 1þð1−−Þ in the OBE potential case with θ ¼ 20°. The energies
are given relative to the threshold of ΛcΣ̄c.

ffiffiffiffiffiffiffiffi
hr2i

p
¼ ½e3iθ R∞

0 fψðreiθÞg2r2dr�1=2 is the rms radius. hψ̃ ijψ ii ¼ eiθ
R
∞
0 fψ iðreiθÞg2dr is the

amplitude corresponding to the ith channel of ½ΛcΣ̄c�ð3S1; 3D1Þ, fΛcΣ̄�
cgð3S1; 3D1Þ, ΣcΣ̄cð3S1; 3D1Þ. The data of row “2” are the results

we actually adopt, and q0 herein is from Table III. The data of row “2I” are from the instantaneous approximation with q0 ¼ 0.

Pole α 1.6 1.8 2.0

1 Energy (MeV) −7.21 − 0.42i −16.79 − 0.19i −32.86ffiffiffiffiffiffiffiffi
hr2i

p
(fm) 1.5 1.1 0.9

hψ̃ ijψ ii × 100 ð92.2 − 0.2i=3.4=2.1
þ0.2=0.=0.9=1.5Þ

ð88.1=4.3=2.3
þ0.1i=0.=2.5=2.8Þ

ð81.5=6.0=
1.4=0.=6.5=4.6Þ

2 Energy (MeV) 60.78 − 2.03i 41.38 − 2.66iffiffiffiffiffiffiffiffiffihr2ip
(fm) 1.8 − 0.3i 0.8

hψ̃ ijψ ii × 100 ð−0.4 − 0.4i= − 3.3
þ4.2i=82.7 − 10.4i=6.4þ 1.5i=14.3

þ4.7i=0.3þ 0.3iÞ

ð1.3þ 0.5i=5.5þ 11.9i=55.5
−10.3i=0.8 − 0.6i=36.2

−1.8i=0.6þ 0.2iÞ
2I Energy (MeV) 60.45 − 1.73i 43.57 − 2.02iffiffiffiffiffiffiffiffiffihr2ip

(fm) 1.6 − 0.3i 0.8
hψ̃ ijψ ii × 100 ð−0.2þ 0.4i= − 0.5

þ3.8i=85.6 − 6.1i=1.4 − 0.1i=13.6
þ1.9i=0.1þ 0.1iÞ

ð3.0þ 0.6i=4.5þ 7.2i=61.8
−8.7i=0.6 − 0.1i=30.0
þ1.0i=0.1þ 0.1iÞ
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To figure out this source, we take the instantaneous
approximation q0 ¼ 0. We also obtain two similar poles
that correspond to poles “1” and “2” in Table XI. The one
corresponding to pole 1 turns into a bound state, and we
have discussed this case in Sec. IVA. We will focus on the
other pole, whose numerical results are listed in row “2I” of
Table XI. Its energy becomes 60.45 − 1.73i MeV for the
α ¼ 1.8 case, whose real part is nearly unchanged com-
pared with the 2 pole with energy of 60.78 − 2.03i MeV.
However, its width changes and does not disappear like the
other quasibound state. As discussed in the Sec. IVA, the
width from the three-body decay will vanish under
the instantaneous approximation. Therefore, the width in
2I is totally from the two-body decay process, such as the
decay of the pole 2I → ½ΛcΣ̄c�. We infer from the change of
the width that the two-body decay plays a more important
role than the three-body decay in this resonance.
Finally, we also plot the wave functions of poles 1 and 2,

as shown in Fig. 6. We choose θ ¼ 20° and present the real
and imaginary parts of their wave functions. Obviously, the
S-wave ½ΛcΣ̄c� and fΛcΣ̄�

cg channels dominate the first
pole, and the S-wave fΛcΣ̄�

cg channel dominates the
second pole.

V. SUMMARY

In this work, we use the complex scaling method to study
the double-charm and hidden-charm hexaquark states in the
molecule picture. In order to include the coupled-channel

effects, we consider the channels ΛcΣ
ð�Þ
c (or ΛcΣ̄

ð�Þ
c ) and

ΣcΣc (or ΣcΣ̄c). We also take into account the S −D wave
mixing effect in this deuteronlike dibaryon (hidden-charm
baryonium), as shown in Table I.
We adopt the effective Lagrangians constructed in terms

of the heavy quark symmetry and chiral symmetry.

FIG. 5. The eigenvalue distribution of the hidden-charm hex-
aquark with IðJPÞ ¼ 1þð1−−Þ. α ¼ 1.8 in the OBE potential case.
The red (green) points (square point) and lines correspond to the
situation with the complex rotation angle θ ¼ 10°ð20°Þ.

(a)

(b)

(c)

(d)

FIG. 6. The wave functions uiðrÞ ði ¼ 1; 2; 3; 4; 5; 6Þ of the
hidden-charm hexaquark with IðJPÞ ¼ 1þð1−−Þ. The rotation
angle θ ¼ 20° and the parameter α ¼ 1.8 in the OBE potential
case. The four diagrams correspond to (a) the real part of uiðrÞ for
the first pole, (b) the imaginary part of uiðrÞ for the first pole,
(c) the real part of uiðrÞ for the second pole, and (d) the imaginary
part of uiðrÞ for the second pole.
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To figure out the influence of the long-range pion exchange
in the formation of the bound states and resonances, we
adopt the OPE potential for the double-charm hexaquark
system. We also give the numerical results with the OBE
potential for the double-charm and hidden-charm hexa-
quark systems.
The OPE potentials of ΛcΣ

ð�Þ
c and the tetraquark DD�

systems are similar. They both have an imaginary part. This

imaginary part comes from the processes Σð�Þ
c → Λcπ

(D� → Dπ), which can be naturally understood in the
framework of the CSM. In the study of the double-charm
hexaquark system with the OPE potential, we find a
quasibound state in the 1ð1þÞ system, which mainly
consists of the S-wave ΛcΣc and ΛcΣ�

c. When taking
Λπ ¼ 1 GeV, the binding energy relative to ΛcΣc is
−5.6 MeV, and the width is 0.86 MeV. As explained in
Sec. IVA, this width is totally from the ΛcΛcπ three-body
decay process. For the system with 1ð0þÞ, we do not find a
bound state or resonance.
We also employ the OBE potential to include the

medium- and short-range interactions, and we get a similar
result compared with the OPE case—only one pole is
found. Its binding energy relative to ΛcΣc and the width is
−14.27 and 0.50 MeV, respectively, when taking
α ¼ 2.2. The S-wave ΛcΣc and ΛcΣ�

c are the dominant
constituents, and the D-wave constituents still provide
small contributions.
For the hidden-charm hexaquark systems, we find more

poles. In the 1−ð0−þÞ case, we do not find a pole in a
reasonable cutoff region. However, we find a quasibound
state in the 1þð0−−Þ case with a single channel. When
α ¼ 1.5, the binding energy is −5.37 MeV relative to the
ΛcΣ̄c threshold. Its width is 1.72 MeV, which is very close
to the width of Σc. In the vector cases, we find poles in both
the 1þð1−−Þ and 1−ð1−þÞ cases. For the 1−ð1−þÞ case, we
find a quasibound state, which behaves just like the
mentioned pole in the 1ð1þÞ double-charm hexaquark.
We get this pole in a similar region α ∈ ½2.0 ∼ 2.5�. For the
same energy or cutoff, their widths, sizes, and constituents
are close to each other too. For the 1þð1−−Þ case, we find
two poles—a pole close to the ΛcΣ̄c threshold and the other
close to the ΛcΣ̄�

c threshold. Taking α ¼ 1.8, the first pole
as a quasibound state has a binding energy of −16.79 MeV
and a width of 0.38 MeV, and the S-wave ½ΛcΣ̄c� plays
a dominant role. The second pole is a resonance, whose
energy relative to the ΛcΣ̄c threshold is 60.78−
2.03i MeV. Different from the above quasibound states
whose widths are totally from the three-body decay, its

width arises from two sources—the three-body decay and
the two-body decay. As shown in Table XI, its width does
not vanish when we get rid of the three-body decay effect,
and the contribution from the two-body decay is apparently
larger. We also plot the wave functions of these two poles;
see in Fig. 6.
In principle, the annihilation channels may also contrib-

ute to the decay widths of the hidden-charm hexaquark
states. The neglect of the annihilation is responsible for the
failure of the quasinuclear approach to the baryonium
which predicted several narrow NN̄ states that have not
been observed so far [77–79]. For the vector charmonium,
the suppression of the annihilation decays results from the
Zweig rule where the color-singlet cc̄ pair can only
annihilate into three gluons due to the charge parity
conservation. This is seemingly not the case for the cc̄
pair within a baryon-antibaryon wave function. In the
present work, we are mainly interested in the near-threshold
states which are either loosely bound states or resonances
with a relatively large radius around 1–2 fm. In other
words, the charmed baryon and antibaryon are well
separated from each other, while the annihilation of the
cc̄ pair occurs at very short distance, hence, is strongly
suppressed. Such a suppression is observed in the hidden-
charm pentaquark states Pc and tetraquark states Zc. For
example, the dominant decay modes of Zcð3900Þ are the
open-charm modes DD̄�, while the hidden-charm modes
J=ψπ, etc., are also important. None of the annihilation
channels has been observed up to now.
In summary, we find some quasibound states and

resonances in these systems. One could look for these
states through their strong decay patterns, such as ½ΛcΣ̄c�
and ΛcΛ̄cπ invariant mass distributions in the hidden-
charm baryonium and ΛcΛcπ invariant mass distribution in
the double-charm dibaryon. In particular, the 1þð0−−Þ and
1−ð1−þÞ hidden-charm hexaquark molecular states are
very interesting. These isovector mesons have exotic JPC

quantum numbers which are not accessible to the conven-
tional qq̄ mesons. Hopefully, this work can be helpful for
future experimental search of the hexaquark states at
facilities such as LHCb and Belle II.
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