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We investigate features of the hidden charm-strange scalar tetraquark cc¢ss by calculating its spectral
parameters and width, and we compare the obtained results with the mass and width of the resonance
X(3960) discovered recently in the LHCb experiment. We model the tetraquark as a diquark-antidiquark
state X = [cs][¢5] with spin-parities J*© = 0**. The mass and current coupling of X are calculated using
the QCD two-point sum rules by taking into account various vacuum condensates up to dimension 10. The
width of the tetraquark X is estimated via the decay channels X — D D; and X — 5.4"). The partial
widths of these processes are expressed in terms of couplings G, g;, and g,, which describe the strong
interactions of particles at the vertices XD Dy, Xn.n', and Xn.n, respectively. Numerical values of G, g,
and ¢, are evaluated by employing the three-point sum rule method. Comparing the results m =
(3976 +85) MeV and 'y = (42.2 £ 12.0) MeV obtained for parameters of the tetraquark X and
experimental data of the LHCb Collaboration, we conclude that the resonance X(3960) can be considered

as a candidate to a scalar diquark-antidiquark state.

DOI: 10.1103/PhysRevD.107.054017

I. INTRODUCTION

Recently, the LHCb Collaboration reported the obser-
vation of a new threshold peaking structure X(3960) in the
D} Dy invariant mass distribution in the Bt - DI D; K™
decay [1]. Performed analysis demonstrated that it is a
scalar resonance JP¢ = 0** with mass and width

Mexp = 3956 £ 5 + 10 MeV,
Teyp =43+ 13+ 8 MeV. (1)

The collaboration also found an additional structure around
4140 MeV with spin-parities 0" . The resonance X(3960)
was interpreted by LHCDb as a four-quark state with the
content ccss, whereas the structure 4140 MeV may be
either a new resonance or a J/w¢ < DI D5 coupled-
channel effect.

Four-quark exotic mesons composed of quarks ccss
with different quantum numbers are not something new for
either experimental or theoretical physicists. In fact,
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resonances with the quark content ccss were fixed by
LHCb in the J/w¢ invariant mass distribution in the
process BT — J/w@pK*' [2]. The discovered states
X(4140) and X(4274) are axial-vector particles with
JPC =17, whereas the spin-parities of X(4500) and
X(4700) are JP€ =0"*. It should be noted that the
resonances X(4140) and X (4274) were previously seen
by the CDF Collaboration [3] in the decays B* —
J/w@K* and confirmed later by CMS [4] and DO experi-
ments [5]. The scalar structures X(4500) and X(4700)
were fixed by the LHCb Collaboration for the first time.

In experiments, numerous exotic vector mesons built of
ccss quarks were observed as well. Thus, the state Y (4660)
was found for the first time by the Belle Collaboration in
the process e™e™ — ygry (2S)2 7™ as one of two resonant
structures in the w(2S)z"z~ invariant mass distribution.
Because Y (4660) was produced in the e*e™ annihilation,
its quantum numbers are J°¢ = 17, The structure X (4630)
was discovered by LHCD in the J/w¢ invariant mass
distribution of the decay BT — J/w¢K™ [6].

Theoretical studies of four-quark states cc¢ss also have a
rich history. The charmoniumlike exotic mesons with a ss
component were investigated by means of different methods
in numerous publications (see, as examples, Refs. [7-11]).
Comprehensive analyses of some hidden-charm diquark-
antidiquark systems [cs][c5] were carried out in our articles
as well. Thus, the axial-vector resonances X(4140) and
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X (4274) were investigated in Ref. [12], in which we treated
them as diquark-antidiquark states built of scalar and axial-
vector components belonging to triplet and sextet repre-
sentations of the SU.(3) color group, respectively. We not
only calculated their masses and current couplings (or pole
residues), but also evaluated full widths of these tetraquarks.
Predictions for parameters of the color-triplet diquark-
antidiquark state allowed us to interpret it as the resonance
X (4140). Contrary to this, the full width of the tetraquark
with color sextet ingredients is considerably wider than that
of the resonance X(4274). Therefore, to explain the internal
organization of X(4274), alternative models should be
examined, though existence of a new axial-vector resonance
with the mass m ~ 4274 MeV and full width I" = 200 MeV
cannot be excluded.

The vector resonance Y (4660) was studied as a diquark-
antidiquark vector state [cs][¢5] with JP¢ =17~ in our
work [13]. Results obtained there for the mass and full
width of this structure made it possible to interpret the
resonance Y (4660) as the diquark-antidiquark exotic meson.
The detailed analysis of X (4630) was performed in Ref. [14]
by assuming that it is a vector tetraquark [cs][¢5] with spin-
parities J'C = 1", Here, a nice agreement was obtained
between the LHCb data for parameters of the resonance
X(4630) and theoretical predictions of the diquark-antidi-
quark model. There are numerous articles devoted to
experimental studies and theoretical analysis of hidden
charm-strange four-quark mesons in the literature: A rela-
tively full list of such publications can be found in
Refs. [1,12-14].

The first announcement made in Ref. [15] about
the discovery of the resonance X(3960) triggered
extreme interest in this state. In papers that appeared
afterwards [16-22], authors addressed different aspects of
its internal organization, production mechanisms, and rates,
placing X(3960) into various four-quark multiplets. The
coupled-channel explanation of X(3960) was suggested in
Ref. [16], where it emerges as an enhancement in the D} Dy
mass distribution via interaction of the D™D~ and D Dy
coupled channels. In Ref. [18], the authors assigned
X(3960) the hadronic molecule DDy and performed
studies in the context of the sum rule method. The resonance
X(3960) was explained also as near the D Dy threshold
enhancement due to the contribution of the conventional
P-wave charmonium y.o(2P) [21].

In the present article, we explore the tetraquark X =
[cs][es] with spin-parities JPC¢ = 0** and compute its
parameters. The mass and current coupling of X are
evaluated using the QCD two-point sum rule method.
Its full width is estimated using the decay channels X —
D D; and X — n,n"). Partial widths of these processes are
expressed through strong couplings G, ¢;, and g, of
particles at the vertices XD¥ D7, Xn,.1', and Xn,1, respec-
tively. To calculate G, ¢, and g,, we employ technical tools
of the three-point sum rule approach. Results found for

parameters of the state X are confronted with the LHCb data
to verify the diquark-antidiquark model for X(3960).
This paper is organized in the following way: In Sec. II,
we compute the mass and current coupling of the tetraquark
X by means of the QCD two-point sum rule method. The
decay X — D] Dy is studied in Sec. III, where we calculate
the coupling G and partial width of this process. The strong
couplings g; and g, and partial widths of the decays X —
n.n and X — 5.1, as well as the full width of X, are found
in Sec. I'V. Section V is reserved for our concluding notes.

II. MASS AND CURRENT COUPLING
OF THE TETRAQUARK X

In this section, we consider the scalar diquark-antidiquark
state X = [cs][c5] and extract its spectroscopic parameters
from the two-point sum rule analysis [23,24]. It is known
that the sum rule method operates with correlation functions
and interpolating currents of the particles under investiga-
tion. There are different ways to construct a scalar tetraquark
and corresponding current using a diquark and an anti-
diquark with different spin-parities [25]. Thus, one may
construct such a state using the pseudoscalar ¢’ Cs or vector
¢’ Cy,yss diquarks and corresponding antidiquarks, where
C is the charge-conjugation operator. However, we assume
that X is built of a scalar diquark ¢’ Cyss and antidiquark
CysCsT: The reason is that the scalar diquark (antidiquark)
configuration is the most attractive and stable two-quark
system [26].

The structures ec’Cyss and &cysCs’ are the color
antitriplet and triplet states of the color SU.(3) group,
respectively. Then the interpolating current for the tetra-
quark X has the form

J(x) = €€[c} (x)Crsse(x)][e, (x)rsCsi ()], (2)

where €& = €€ and a, b, ¢, m, and n are color indices.
This current belongs to the [3.],., ® [3.].; representation of
the color group and corresponds to the scalar state with
quantum numbers J*¢ = 07", The current J(x) describes
the ground-state scalar particle with lowest mass and
required spin-parities.

The mass m and coupling f of the tetraquark X can be
determined from analysis of the correlation function I1(p),

N(p) =i / e O T{ITO0).  (3)

To derive the required sum rules, one has to express I1(p)
using the spectroscopic parameters of the tetraquark X. For
these purposes, we insert into the correlation function IT(p)
a complete set of states with quantum numbers 0™ and
perform integration over x in Eq. (3). As a result, we get

(0l71X(p)(X(p)|7|0)
m? — p?

HPhys(p) _ 4+ (4)
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The obtained expression forms a hadronic representation of
I1(p) and is the phenomenological (physical) side of the
sum rule. Here, the contribution coming from the ground-
state particle X is written down explicitly, whereas con-
tributions of higher resonances and continuum states are
denoted by the ellipses.

The function IT™*(p) can be further simplified by
employing the matrix element

Ol1X(p)) = fm. (5)

It is easy to find that, in terms of the parameters m and f,
the function TT'"$(p) takes the following form:

242
sz"'"" (6)

s (p) =
m-—=p

The TIP™s(p) function has a simple Lorentz structure
proportional to I, and the relevant invariant amplitude
[1Phys(p?) is given by the rhs of Eq. (6).

To determine the QCD side of the sum rules [TPE(p), we
use the interpolating current J(x) in Eq. (3) and contract the
heavy and light quark fields. After simple manipulations,
we obtain

I°PE(p) = i/d4xeip"eée’é’Tr [J@S"C’hl(x)
xyssgf%xﬂTr[ySSz’”(—stszfm(—x)}, 7)

where S.(x) and S(x) are the c- and s-quark propagators,
respectively. Explicit expressions of these propagators are
presented in the Appendix (see also Ref. [27]). In Eq. (7),
we have also used the notation

Se(s)(x) = €S, (x)C. (8)

The correlation function TT°PE(p) should be computed in
the operator product expansion (OPE) with some accuracy.
[T°PE(p) also has a trivial structure ~I and is characterized
by an amplitude TT°PF(p?). Having equated the invariant
amplitudes TTP™5(p?) and T1°PE(p?), one gets the master
QCD sum rule equality. Afterwards, one needs to suppress
contributions of higher resonances and continuum states by
applying the Borel transformation. The assumption about
quark-hadron duality allows one to subtract these sup-
pressed terms from the obtained expression. After these
operations, the sum rule equality starts to depend on the
Borel M? and continuum threshold s, parameters.

The Borel transformation of ITP"W$(p2) is a simple
function, whereas for TIPE(p?) we get a complicated
formula

50

dspOPE(s)e=/M* L TI(M?), (9)

(M2, s50) = /

4M?

where M = m_ + my. In numerical computations, we set
m? = 0, but we include in our analysis terms proportional
to m,. The two-point spectral density pOPE(s) is calculated
as an imaginary part of the correlation function. The
second term, I1(M?), includes nonperturbative contribu-
tions extracted directly from IT°FE(p). The correlator
[1(M?, sy) is computed by taking into account nonpertur-
bative terms up to dimension 10. Explicit expression of
(M2, s,) is written down in the Appendix.

The sum rules for m and f are expressed via the invariant
amplitude TI(M?, s,),

H(Mz,SO) ’
and
emz/Mz
2= o (M2, s,), (11)

where IT'(M?, sy) = dUII(M?, s0)/d(—1/M?).

To carry out the numerical computations in accordance
with Egs. (10) and (11), we have to fix values of different
vacuum condensates. The reason is that the sum rules for
m? and f? through T1(M?,s,) depend on the vacuum
expectation values of quark, gluon, and mixed operators.
The vacuum condensates that enter into the sum rules
[Egs. (10) and (11)] are universal quantities obtained from
analysis of various hadronic processes [23,24,28-30]:

(Gq) =—(0.2440.01)3GeV3, (55)=(0.840.1)(gq).
(59,6Gs)=m2(5s), m2=(0.8+0.1)GeV?,

a 2
&7

(3G =(0.57+0.29) GeV®,
m.=(127+0.02)GeV, m;=93"1"MeV. (12)

(0.01240.004) GeV*,

It is seen that the vacuum condensate of the strange quark
differs from (0|gq|0) [28]. The mixed condensates
(q9,6Gq) and (5¢9,06Gs) are expressed in terms of the
corresponding quark condensates and the parameter mj3.
The numerical value of the latter was extracted from the
analysis of baryonic resonances in Ref. [29]. For the gluon
condensate (g°G?), we use the estimate given in Ref. [30].
This list also contains the masses of ¢ and s quarks in the
MS scheme from Ref. [31].

Predictions for m and f extracted from the sum rules
depend also on the Borel and continuum subtraction
parameters M? and s,. In general, physical quantities
should not contain residual effects connected with the
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choice of M?. But in a real situation, m and f bear imprints
of operations fulfilled to isolate contribution of the ground-
state particle to sum rules. A way to solve this problem is by
using some prescriptions to minimize the unwanted effects.
To this end, in the sum rule analysis, the choice of a
working window for the Borel parameter M? is restricted
by the dominance of the pole contribution (PC) and
convergence of OPE. To quantify these constraints, it is
convenient to introduce the expressions

~ TI(M?, )
PC—ﬁap;% (13)
and
ROy = M 50) (14)

H(Mz, So)

The first of them is a measure of the pole contribution and is
necessary to find the higher border of the M? region. In
Eq. (14), TIP™N (M2, 5) indicates the last three terms in the
OPE of I1(M?, 5,)): i.e., DimN = Dim(8 + 9 + 10). We use
R(M?) to estimate the convergence of OPE and fix a lower
limit of M?.

In working regions of M? and s,, the perturbative
contribution to the correlation function TI(M?, sy) has to
be larger than those due to nonperturbative terms. Besides,
the window for M? should generate stable predictions for
the extracted physical quantities. The performed analysis
demonstrates that the windows for M? and s, which satisfy
these constraints, are

M? € [3,4] GeV?, so € [21,22] GeVZ.  (15)
Indeed, in the regions given by Eq. (15), the pole
contribution varies on average within the interval

0.80 > PC > 0.49. (16)

In Fig. 1, the PC is drawn as a function of the Borel
parameter at various values of s;. It is seen that except for a
small domain M? > 2.8 GeV? at s, = 21 GeV?, the domi-
nance of the pole contribution—i.e., the constraint
PC > 0.5—is fulfilled for all values of the parameters
M? and s,,.

In Fig. 2, we demonstrate the dependence on M? of the
perturbative and different nonperturbative contributions to
[I(M?,s0). Tt is evident that the perturbative term is
considerably larger than the nonperturbative contributions,
and it constitutes 80% of TI(M?, s) at M> = 3 GeV?2. This
figure confirms also the convergence of the OPE, which
implies that the contributions of the nonperturbative terms
reduce by increasing the dimensions of the corresponding
operators. The Dim3 term numerically exceeds the

1,0 [ T T T T T T T T T T T T T T T T
0.8 ]
0.6} ~-~1._:_-_:_~_~:_~ -2 ]
o L Ny, - ~-_-- .
o [ '=-~...~
04 50=22.0 GeV? 1
o mme— 50=21.5 GeV? 1
0.2 ]
[ ——— 80:21 .0 GeV2 |
o-o L n n n 1 n n 1 n n 1 n n n 1 n n n
3.0 3.2 3.4 3.6 3.8 4.0
M?(GeV?)
FIG. 1. Pole contribution as a function of the Borel parameter

M? at various s, values. The horizontal black line limits a region
PC = 0.5. The red triangle fixes the point where the mass m of
the tetraquark X has effectively been extracted.

contributions of other nonperturbative operators, whereas
the Dim9 and Dim10 terms are very small and not shown
in the plot. The quantity R(M?) at M?> = 3 GeV? is less
than 0.01, which proves numerically the convergence of
the OPE and correctness of the lower value of M?.

The residual dependences of the mass m of the tetraquark
X on the Borel and continuum subtraction parameters M?
and s, are shown in Fig. 3. It is seen that the window for
M?, where parameters of X are extracted, leads to approx-
imately stable predictions for m. At the same time, one
observes some variations of m against the Borel parameter
M?. This effect allows us to estimate the uncertainties of the
sum rule predictions. Variation of the continuum threshold
parameter s, is another source of the theoretical ambigu-
ities. The region for s, has to meet the constraints coming
from the dominance of PC and convergence of the OPE.
The parameter /s, also bears information on the mass m*

1_0 T T T T T T T T T T T T T T T T
= 051 R
9
o
s
= 0.0 —_— —
> e e = 2= i = = 2 #
£
8 o5 ]
: —e— Pert Dim3 —+— Dim4 -« Dim5
—+— Dim6 -=— Dim7 —=— Dim8
_1-0 1 1 1 1
3.0 3.2 3.4 3.6 3.8 4.0

M (GeV?)

FIG. 2. Different contributions to IT1(M?2, sy) normalized to 1 as
functions of the Borel parameter M>. All lines in this figure have
been calculated at sy = 21.5 GeV?.
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5.0 : , , ,
45¢f 3
405
> f ]
O 35¢ —  5y=22.0 GeV? 3
Egof e $0=21.5 GeV? ]
05 -------------- S0=21.0 GeV?2
20 L ! ! ! ! |
3.0 3.2 3.4 3.6 3.8 4.0
M2 (GeV?)
FIG. 3.
(right).

of the first radial excitation of the tetraquark X, and it
should obey /sy < m™.

The results for the mass m and coupling f are evaluated
as the mean values of these quantities calculated in the
working regions [Eq. (15)]:

m = (3976 + 85) MeV,
f=1(73+0.8) x 1073 GeV*. (17)

The mass and coupling written down in Eq. (17) effectively
correspond to the sum rule predictions at M?> = 3.4 GeV?
and sy = 21.5 GeV?, shown in Fig. 1 by the red triangle.
This point is located approximately at the middle of the
working regions, where the pole contribution is PC ~ 0.64.
This fact, and other details discussed above, guarantees the
ground-state nature of X and credibility of the final results.
An estimate for the mass of the excited tetraquark m* >
(m + 650) MeV stemming from Egs. (15) and (17) is also
reasonable for the double-heavy tetraquarks.

III. DECAY X — D;D;

The spectroscopic parameters of the tetraquark X form a
basis to determine its kinematically allowed decay chan-
nels. Because X(3960) was observed in the D} Dy invari-
ant mass distribution, we treat the decay X — D Dj as a
dominant mode of X. The two-meson threshold for this
process ~3937 MeV is below the mass of X. Other decay
channels that should be considered in this paper are X —
n and X — n.n. The kinematical limits for realization of
these processes do not exceed ~3941 MeV, which is less
than m as well. It is easy to see also that decays of the scalar
tetraquark with spin-parities J*¢ = 0** to two pseudosca-
lar mesons with JP¢ = 0=+ preserves the spin and quantum
numbers P and C of the initial state X.

The partial width of the decay X — D7 Dy is determined
by a coupling G that describes the strong interaction at the
vertex XD} Dy. Apart from G, it depends also on the
masses and decay constants of the initial and final particles.

5.0 , , ' '

45f ]
40
2
O 35} ————— M?=4.0 GeV? ]
T R — M?=3.5 GeV2 ]

.............. M?=3.0 GeV?
25F ]
2.0 : : , ‘
21.0 21.2 21.4 21.6 21.8 22.0
so(GeV?)

Mass m of the tetraquark X as a function of the Borel M? (left), and as a function of the continuum threshold s, parameters

The mass and coupling of X have been calculated in the
present article, whereas physical parameters of the mesons
D} and Dj are known from other sources. Therefore, the
only physical quantity to be found here is the strong
coupling G.

To evaluate G, we use the QCD three-point sum rule
method and start our analysis from the correlation function

(p,p') = i? / d4xd4ygi(P’y—px) <0|T{JDX+ D)
x JP+(0)J7(x) }|0), (18)

where J(x), JP* (y), and JP*(0) are the interpolating
currents for the tetraquark X and the pseudoscalar mesons
Dy and D7, respectively. The four-momenta of X and D}
are denoted by p and p’, whereas the momentum of the
meson Dj is equal to ¢ = p — p’. The current J(x) is given
by Eq. (2), whereas for the mesons, we use the following
currents:

JD?(X) = Ej(x)iJ/st(x),
JPs (x) = ¢;(x)iyss;(x), (19)

with 7 and j being the color indices.

To continue our study of the strong coupling G, we
follow usual recipes of the sum rule method and compute
the correlation function I1(p, p’). To this end, we employ
the physical parameters of the tetraquark and mesons
participating in this process. The correlator I1(p, p’) found
this way constitutes the phenomenological side IT™"(p, p’)
of the sum rule. It is not difficult to see that

s, ) — (O IDE () 01177 D ()

(p* =m?)(p”* —mp)
. (D5 (@)D{ (P))IX(p))(X(p)IIT]0) N
(q* —mp) ’

s

(20)
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where mp is the mass of the mesons D¥. To derive
Eq. (20), we isolate the contribution of the ground-state
particles from those due to higher resonances and con-
tinuum states. In Eq. (20), the ground-state term is presented
explicitly, whereas the dots stand for the other contributions.

The function IT?™S(p, p’) can be modified by employing
the matrix elements of the mesons DY

m%)Sf D,

(0177 D) = ,
m. + mg

(21)
with f, being their decay constants. The vertex XD Dy is
modeled as

(D5 (q)D5 (P")IX(p)) = G(g*)p - p'. (22)

Using these matrix elements, one can easily find a new
expression for TIPS (p, p'):

mp b, Sm
(me + my)*(p* = m?)
1

(p? =mp )(q* = mp)

m?> +m3 — q*
X+q+...' (23)

™ (p. p') = G(g?)

X

The double Borel transformation of the correlation function
0Phys(p, p’) over variables p? and p’ is given by the
formula

mp, [, fm
(mc + ms)z(q2 - szv)

2 )
iy /i ™MD, —

2

BHPhyS(p, p) = G(qZ) oM}

X e +-. (24)
The correlator TTP™*(p, p’) and its Borel transformation
have a simple Lorentz structure which is proportional
to I. As a result, the relevant invariant amplitude
1Phys (p2, p2, ¢?) is determined by the whole expression
written down in Eq. (23).

To derive the QCD side of the three-point sum rule, we
express I1(p, p’) in terms of the quark propagators, and get

HOPE(p,p/) _ /d4xd4yei(p’y—px)€é
X Tr [ysszb (v = x)rs80 (x = )5S (x)
wrsst(-x)| 5)

The correlator TT°PE(p, p’) is computed by taking into
account the nonperturbative contributions up to dimension 6.

This function contains the same trivial Lorentz structure as
1P (p, p’). Having denoted by TIOE(p2, p”2 ¢?) the
corresponding invariant amplitude, equated the double
Borel transformations BII°PE(p?, p2,¢*) and BITPWS
(p*, p”. ¢*), and performed continuum subtraction, we find
the sum rule for the strong coupling G(g?).

The amplitude TI°PE(p?, p, ¢*) after the Borel trans-
formation and continuum subtraction procedures can be
expressed using the spectral density p(s,s’, g*), which is
proportional to a relevant imaginary part of II°°E(p, p'):

(M2, 59, ¢) = /‘0 ds / "ds'p(s. 5. q?)
4M? M?
X e~5/Mi g=5'/M3 (26)
The Borel and continuum threshold parameters are denoted

in Eq. (26) by M? = (M3, M3) and sy = (o, 5(), respec-
tively. Then, the sum rule for G(g?) reads

2(m, +my)?  ¢* - mZDA.

T 2 2 2 2
le‘fDl‘fm m°+mp —q

x e /Mo (M2 8. 7). (27)

G(q*) =

The coupling G(g?) is also a function of the Borel and
continuum threshold parameters, which, for the sake of
simplicity, are not shown in Eq. (27). In what follows, we
introduce a variable Q> = —¢g? and label the obtained
function G(Q?).

Equation (27) contains the spectroscopic parameters of
the tetraquark X, and the masses and decay constants of the
mesons DY . These parameters are input information for our
numerical computations: Their values are collected in
Table I, which also contains parameters of the mesons
n., 1, and 5 appearing at the final stages of the other
processes. For the masses of the mesons and decay constant
fp,» we use information from Ref. [31]. As the decay
constant of the meson 7., we employ the sum rule’s
prediction from Ref. [32].

For numerical calculations of G(Q?), one has to fix
working windows for the Borel and continuum subtraction
parameters M? and s,. The constraints imposed on

TABLEI. Masses and decay constants of the mesons D, 77.., 17,
and x# which are employed in numerical calculations.

Quantity Value (in MeV units)
mp, 1969.0 + 1.4

m,, 2983.9+0.4

My 957.78 + 0.06

m, 547.862 £+ 0.017
S, 2499 +£0.5

. 320 +40
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3.0
25} o QCD sum rules
[ ——  Fit Function
— 20F
\T F
> :
© qo0f
0.5}
00y
Q*(GeV?)

FIG. 4. The sum rule predictions and fit function for the strong
coupling G(Q?). The point Q> = —mj, is shown by the red
diamond.

M? and s, are usual for sum rule calculations: They have
been discussed and explained in Sec. II. The regions for M %
and s, that correspond to the X channel, are chosen as in
Eq. (15). The parameters (M3,s},) for the DJ meson
channel are varied within the limits

M3 € [2.5,3.5] GeV?, sp € [5,6] GeV2.  (28)
The windows in Eq. (28) are well correlated with the D}
meson’s mass. In fact, \/% ~ (mp +0.35) GeV is a
typical choice for mesons with experimentally measured
masses. The Borel parameter M, is also comparable with
the mass of the D7 meson. The regions in Eq. (28) are
numerically very close to the ones given in our article
(Ref. [33]) for the D** channel in the decay M. — D°D**.
Nevertheless, a decisive factor in the choice of (M3, s() is
fulfillment of the sum rule constraints.

Thus, we calculate G(Q?) at fixed Q> = 1-5 GeV? and
depict the obtained results in Fig. 4. Let us emphasize that
the constraints imposed on the parameters M? and s, by the
sum rule analysis are satisfied at each Q. For instance, in
Fig. 5, the coupling G(Q?) is plotted as a function of the
parameters M? and M3 at Q> = 3 GeV? in the middle of the
so and s{, regions. Variations of G(3 GeV?) while changing
M% and M % in explored regions stay within acceptable limits
and do not exceed +25% of the central value. Numerically,
we find

G(3 GeV?) = (2.53 £ 0.62) GeV~1. (29)

The partial width of the process X — D Dy should be
calculated in terms of the strong coupling G(—m, ), which
is defined at the mass shell g> = mj, of the meson D . But

the region Q% <0 is not accessible for the sum rule
analysis. To solve this problem, it is convenient to introduce
a fit function G,(Q?), which for the momenta Q> > 0 is

G(Gev) 2
0

3.5
M3(GeV?)

FIG. 5. The strong coupling G = G(3 GeV?) as a function
of the Borel parameters M? and M3 at sy =21.5 GeV?
and s{, = 5.5 GeV=.

consistent with predictions of the sum rule computations,
but can be extrapolated to the region Q% < 0. For these
purposes, we apply the function G;(Q?), i =0, 1,2:

2 2\ 2
6(0) = e [d &+ (%) ] o

where G?, ¢!, and ¢? are parameters, which will be extracted
from fitting procedures. Numerical calculations demonstrate
that G = 1.67 GeV~!, ¢} = 2.19, and ¢} = —1.59 gener-
ate a nice agreement with the sum rule’s data shown
in Fig. 4.

At the mass shell ¢g* = mj, , this function predicts

G=Gy(-mp ) =(89+22)x 107" Gev~'.  (31)

The width of the process X — D7 D7 is determined by the
following formula:

mi A 2

mip,
where A = A(m,mp_,mp ) and
1
Ma,b,c) = % [a* + b* + *=2(a®b? + a>c? + b*c?)]V2.
a

(33)

Employing the coupling from Eq. (31), it is easy to find the
partial width of the process X — D7 Dy

TX - D{D;] = (340 £ 11.9) MeV.  (34)
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IV. PROCESSES X — 5.5/ AND X — 5.1

The processes X — 5.1 and X — 7.7, in general, can be
studied by a manner described above. However, it is well
known that due to U(1) anomaly, there is a mixing in the
system of # —# mesons [34]. This phenomenon leads to
some subtleties in the choice of the interpolating currents for
these particles. The 1 — 5 mixing can be described in the
framework of different approaches: The physical particles #
and 7’ can be expressed using either the octet-singlet or
quark-flavor bases of the flavor SU/(3) group. It turns out
that mixing of the physical states, decay constants, and
higher twist distribution amplitudes in the # —#' system
take simple forms in the quark-flavor basis |17,) = (i@u +

dd)/+/2 and |5,) = 5s [34-36]. Therefore, for our purposes
it is convenient to describe the mesons 7 and #’ in the quark-
flavor basis.

Then, the physical mesons 7 and 7’ are expressed using
the basic states [17,) and |n,):

()-o()

v = (o

sin ¢

where

~sin (p> (36)

cos @

is the mixing matrix in the |n,) — |»,) basis, with ¢ being a
mixing angle. This assumption on the state mixing implies
that the same pattern applies to relevant currents, decay
constants, and wave functions as well.

In this context, the interpolating currents for the mesons
n and i’ are given by the expressions

J(x) = —sin@5;(x)iyss;(x),
J7 (x) = cos @5;(x)iyss;(x), (37)

where j is the color index. Let us emphasize that in
Eq. (37), we write down only the ss component of the
currents, which contribute to the decays under analysis.
We begin our calculations from the decay X — 7,.#. In
this case, one should explore the correlation function

f1(p. ') = [ diadiyel P90/ (770
x J7(0)J(x)}[0), (38)
with J<(y) being the interpolating current of the meson 7,.:
Jhe(x) = & (x)iysci(x). (39)

The ground-state contribution to the correlation function
T1(p, p') in terms of the involved particles’ matrix elements
has the form

P (p, ') = (017 [ (p)) 01" |1/ ()

(P> =m?)(p” —m3)
' (@)ne(p)IX (p)) (X(p)|7|0) L
(¢* —my) ’

(40)

where the dots indicate the effects of higher resonances
and continuum states. The function TT"™*(p, p’) can be
simplified by invoking the matrix elements of the mesons
n. and 7'

m2 f
0lJ%|n.) = e ’71:’
< | 17(,> 2mc
2, 0 [5iyss|0) = I (41)

where m, and f, are the mass and decay constant of the 7,
meson. The twist-3 matrix element of the local operator
Siyss sandwiched between the meson 7’ and vacuum states
is denoted by hf?, [35]. The parameter h;;, complies with the

mixing effect, and we get
hy, = hs cos g. (42)

The parameter i, in Eq. (42) can be defined theoreti-
cally [35], but for our analysis it is enough to use
phenomenological values of A, and ¢:

hy = (0.087 + 0.006) GeV?,
@ =39.3°+ 1.0°. (43)

The vertex Xn.n' is chosen in the following form:

' (@ne(pP)IX(p)) = g1(¢*)p - P, (44)

where g, is the strong coupling corresponding to the vertex
Xn.n'. Using these matrix elements, one can obtain a new
expression for TIPS (p, p'):

fmm3 f, hgcos® g
4mcms<p2 - mZ)
1
) 232 2
(P =my )(q” —my)
m* +my; —q* .
2

"™ (p, p') = 91(¢?)

X

(45)

The QCD side of the sum rule for g,(g?) is given by the
formula

054017-8



RESONANCE X(3960) AS A HIDDEN CHARM-STRANGE ...

PHYS. REV. D 107, 054017 (2023)

% (p, p') = —COS(p/d“xd“yei(ply_px)eé

X Tr[y5S£,b (y-— X)ngic(—x)VSS?j(x>
X 7582 (x = y)]. (46)

The sum rule for the coupling g, (¢?) is derived using Borel
transformations of invariant amplitudes TT"™s(p?, p”2, ¢?)
and TT°PE(p?, p?, ¢*) and reads

2
e

- 2 2 2 2
Smmg, f, hecospm”+my; —q

x e /M i IMEF(M2, 5. ¢2). (47)

2
8m.my q-—m

91(‘12) =

Here, [1(M?2,s,.q?) is the Borel transformed and sub-
tracted amplitude TT°7F(p?, p%, ¢?).

The coupling g,(¢?) is calculated using the following
Borel and continuum threshold parameters in the 7,
channel:

M2 € [3.4] GeV?, s, €1[9.5.10.5] GeV2,  (48)

whereas with M? and s, for the X channel, we employ
Eq. (15). The strong coupling g, is defined at the mass shell
of the 7' meson. The fit function G, (Q?) given by Eq. (30)
has the parameters GY =0.26 GeV~!, ¢l =4.72, and
¢? = —3.52. Relevant computations yield

g =G (-m}) = (1.9£03) x 107" GeV~'.  (49)

The partial width of this decay can be found by means of
the formula Eq. (32), in which one should make the
substitutions G — gy, m,zj — m3 , and A(m,mp_ mp ) >

A(m,m,_,m,). Then, for the process X — .1/, we get
T[X = 5.7] = (3.0£0.7) MeV. (50)

Analysis of the decay X — 5.7 can be performed in a
similar way. Omitting further details, let us write down
predictions obtained for key quantities. Thus, the strong
coupling g, at the vertex X7,.7 is determined by the equality

9 = |Go(—m2)| = (1.4 £ 0.2) x 107 GeV~!,  (51)

where parameters of the fit function are &) =
—0.15 GeV™!, ¢} =576, and ¢3 = —4.44. The partial
width of the decay X — 7. is

I'X - nn =(52+1.1) MeV. (52)

With this information in hand, it is not difficult to find the
full width of the scalar tetraquark X:

Ty = (42.2 4+ 12.0) MeV. (53)

This estimate is in excellent agreement with the LHCb data.

V. CONCLUDING NOTES

In this article, we have calculated spectral parameters of
the scalar tetraquark X in the framework of the QCD two-
point sum rule method. We evaluated also the full width of
X by taking into account its decay modes X — DI Dy,
X - ., and X — 5.n. Our result for the mass m =
(3976 £ 85) MeV of the tetraquark X overshoots the
corresponding LHCb datum, but it is compatible with
Meyp, provided one takes into account the corresponding
theoretical and experimental errors. Our prediction for the
full width I'y = (42.2 £+ 12.0) MeV of X is in excellent
agreement with ', from Eq. ().

In Ref. [1], the LHCb Collaboration assumed that the
resonance X (3960) is composed of four c¢ss quarks. This
assumption relies on theoretical predictions of Ref. [10], in
which the authors used the QCD sum rule method and
different interpolating currents to find the mass spectra of
the diquark-antidiquark states gcgc¢ and scs¢ with JP¢ =
0" and 27", Some of the currents used there indeed led to
estimations which are comparable with m.,, if one takes
into consideration the ambiguities of the analysis.

In the context of the sum rule approach, X(3960) was
modeled as a D] D; molecule state [18], as well. In
accordance with this paper, the mass of such a hadronic
molecule is equal to (3980 & 100) MeV, being in agree-
ment with the LHCb data. It is worth noting that in
Refs. [10,18], the authors did not investigate quantitatively
the widths of the diquark-antidiquark or molecule states
considered there, which is crucial for drawing a conclusion
about the inner organization of X(3960).

The results for m and 'y obtained in the present article
allow us to consider X(3960) as a candidate to a scalar
diquark-antidiquark exotic meson. At the same time, a
molecule model for X(3960) should be studied in a more
detailed form: There is a necessity to evaluate the full width
of a molecule state. Only after such comprehensive analysis
will it be possible to make a choice between the competing
models.

APPENDIX: THE PROPAGATORS S, (x)
AND THE INVARIANT AMPLITUDE II(M?,s,)

In the current article, for the light quark propagator
4 (x), we employ the following expression:
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@ . m, <C_]q> . qu<ZIQ> x? 29(
qu (x) = laub o ) 4 - 6ab 477.'2)(2 - 5ab 12 + lauh 48 5uh 192 <qu0GQ> + léah 1152 <qgs GQ>
af 24,275 \2 4 2
9:Go, x*£g5(qq) xqq)(g:G?)
i5 -5 - Al
T 2 Wou - 0upl = 18— b 648 T (A1)

For the heavy quark Q = ¢, we use the propagator S‘é” (x):

ab o d4k —ikx 5ab(k + mQ) gsGZg O-aﬁ(k + mQ) + (k + mQ)Gaﬂ
Sy(x) =i [ ——ze -

(2m)* K- sz 4 (k* — sz)2
7G? k> + mok 7aG3

(K +myg)
B
T CwMega —mh)* 48

(& = mb)°

5us wwtdm@+amd%ﬁw@ﬂw+m@+~}.<Am

Here, we have used the shorthand notations
Gh=Clih/2 G =GYGY. G = UCGlaTGE (a3)

where Gzﬂ is the gluon field strength tensor, while 24 and f42€ are the Gell-Mann matrices and structure constants of the
color group SU.(3), respectively. The indices A, B, C run in the range 1,2, ...8.
The invariant amplitude IT(M?, s,) obtained after the Borel transformation and subtraction procedures is given by Eq. (9):

(M2, 5) = / U dspOPE(s)e /M 4 TI(M?),
4M?

where the spectral density pOPF(s) and the function I1(M?) are determined by the expressions
8. 0
pOPE(s) = pPert () + ZPD]mN(S)1 H(Mz) — ZHDlmN(MZ), (A4)
N=3 N=6

respectively. The components of p©FE(s) and TI(M?) are given by the formulas

. 1 .
D1mN / da/ D1mN S a ﬁ) lemN(s) — / dalemN(S, (X), (AS)
0
and
. 1 l—a . X 1 .
HDlmN (MZ) — / da / dﬁHDlmN (MZ’ a, ﬂ) , HDIITLN (M2) — / daHDlmN (MZ’ a). (A6)
0 0 0

In Egs. (AS) and (A6), variables a and f are Feynman parameters. _
The perturbative and nonperturbative components of the spectral density pP* (s, a, ) and pP™3*+36.78) (s o B) have
the forms

O(L)L?
P50 ) = 5130 i (6= DN+ Smon -+ PN
4(p = NBL[=apNy + mom,(a+ BIN) — apNAL2), (A7)
(s, p) = ——SIOL) e s 1NN 1 (B — 1N 6m,aBN Ny + 2mim, N

167° (B — 1)°N
—mesafL(B* + a?(a—1)> + fFBa—2) + ap(2 — 5a + 3a*) + f*(1 — Sa + 4a?))]
—N{[=3myafiNy + m L*(B? + 2pa(a— 1) + a*(a — 1) + f*(2a — 1)]}, (A8)

054017-10



RESONANCE X(3960) AS A HIDDEN CHARM-STRANGE ... PHYS. REV. D 107, 054017 (2023)

(a,G*/m)O(L)

5,0 ) = e P = VPG 7+ Pla= 1)+ P+ = 1)
X (3N,N3 + 2mZNy) + NoN3(a + ) (54NN + me (B = 2 + f2a® + @ (a = 1)) /N,
+ sm N3(1Imeap(a® + f3) + 6m(2p° — 13 a(a — 1) + 2a*(a — 1) — p*(2 + 37a) + fPa
x (=36 + 108a — 73a?) + pa*(—36 + 73a — 37a%)))] + 12N3(B — 1)L[2TN3Nsap(a + B)/N,
+ m2ap(a® + )Ny + m.my(23° + 2a* (a — 1) = (4 + 35a) + fPa(—109 + 254a — 14602)
+ B*(2 + 108a — 110a?) + pa? (36 — 109a + 108a? — 35a°) — 2%a(—18 + 90a — 127a? + 55a°))]
+ 162L2appNiN, (f* + a(a — 1) + p(2a — 1))}, (A9)
. 59,0G N,O(L
PO (s.a. ) = <sggjﬂ4§>ﬁ“f le?( L5 D 13mapN N, + A N3 — 6m,sap(
+ a*(a—1)* + fBa—2) + pa(2 — 5a + 3a®) + (1 — 5a + 4a?))] — 2N L[-8m,apN,
+ 3m (B + 2a(a—1) + P(a—1) + f*2a - 1))]}, (A10)
pPme (s a, B) = o(L) {3840¢2(55)2x*(f — 1)apN3[s(B — 1)apN, + NL]
T 82944075 ( — 1)2NIN3 ’ 2 S
—2U@RGYm2B (B —1)2[2(8 = 1)paN, — 2a(=5p° + p*(10 = 3a) + 2a(a —1)?
+B(=5 + a+4a?))]}, (A11)
‘ sG?/m)(55)O(L
o (5.0 = BT 2’(>/§Sf>1) fva‘) {90m, (B = V)ap(a + AN + 18m, (5 = 1)apN
X [+ a(a—=1) +pRa—1)] +8m 2% + 2a*(a — 1)* = (4 + 19a) + p*(2 + 56a — 37a?)
+ a(=55+91a - 37a%) + p*a(18 — T2a + 742> — 17a%) + pa*(18 = 3Ta + 15a% +4a%)]},  (A12)
8 _ (a,G*/7)*a*f*N,O(L)
PP (s,a,p) = 51271'2]\"11 (A13)
The function p2™(s, a) is determined by the expression
. G?/m)(5s\m,. -
P (s, a) = _ &G /) {§s)me 2/8];>”<;S>m o(L). (Al4)
Components of T1(M?) are
HDimG(M2 a ﬂ) _ <g§G3>mgﬂ4(ﬂ - 1>CX |:_ m%(a +ﬂ)N1:| {—[2m5aﬂ(ﬁ _ 1)2(a+ﬂ)2
C T 92160M* O NSN, M2afiN, ¢
+3m M*apN3| 34 + pa(a —2) — a*(a — 1) + > (2a — 3)] + 6m;M* N3 [84° + pa(a — 3)
+a*(a— 1)+ f*(3a—8)] + 6mZm,M>(p — 1)N3[8f3* + 2pa*(a —2) + a*(a — 1)
+ fPalda —11) + B (11a = 8)] + 6mimy(f — 1)* 27 — &’ (a = 1)> + p5(5a — 4)
+ (2 + lla—14a%) + p*a(5 — da — 7a?) + fa* (=4 + 9a — 5%) + 2°(1 — Sa + a?)
— 48203 (1 — 4a + 30%)] + 3m3Map (B — 1)[38° — pa*(a— 1) — a*(a — 1)? + p*(8a — 6)
+282*(3 —da+ a?) + fPa(8 — 17a + 8a%) + p*(3 — 16a + 11a?)]}, (A15)
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. G?/x)(5s)m? 2
(0, ) = 0 L e | LB (= 1+ F) (= 1)

+ M2N[28° + 24 (a—1)> + B2 (Sa—4) + fa’ (4 — 9a + 50°) + a?f* (4 — 13a + 9a?)

+ (2= 9a+90%) + BPa(4 —13a+10a?)] +m2m* (B —1)3ap(a+ )3 (B = > + pa+?(a—1))
+m2M?(B—1)ap(a+p)* (16 +3p*(5Sa—6) + a*(a—1)*(Ta—4) + (15 - 35a + 23a?)

+ af(—8 +28a —35a° + 150%) + (=4 + 28a —47a* +23a3)) — M*N3 (8637 + 8a* (a— 1)?
+38°(3a—8) + (24 =30 + 1702) + 30> (=4 + 15— 192 + 8a°) + 3P a(—4 + 12a — 200> + 11a°)
+ (=8 +33a—450 +24a°) + fPa* (=8 + 48a— 70a* +33a°))] }, (A16)

: G?/m)*af(p - 1 : N
oS (02, ) = 2T 1) fﬁﬁé e [— e 1] 2l = 1P @+ PP

—6mémy (B —1)3a*f(a+ B)*N, + 81m MOapN3 [ + f*(a — 1) + pa* + a*(a — 1)] + 216m;M°N3}
x| +pHa—=2) = la—1)+pad(a—1) +a(a—1)2] + 81mIM* (B — 1)apN3[p* + &*(a— 1)
+A2a-1) + faa—1) + pa?(2a — 1)] + 216m2mM*(f — 1)N3[B° + 2 (a — 1) — fPa(a— 1)
+Ma(a—1) +a*(a—1)2 + (1 =3a+a?) + pa’(1 = 3a +2a%)] + 54m2M>(f — 1)*ap(a + B)?
X [ +2pa—1) +(a—1) + pa*(1 = 3a+20%) + p*a(l — d4a + 3a?) + f*(1 — 3a + 3a?]

— 2mim,M?* (B — 1)2ap9f7 + 9a*(a — 1)* + 4pa®(a — 1)(13a — 9) + B°(52a — 27) + (27 — 140a
+1380%) + 3% (=18 + 79a — 107a* + 46a°) + fPa(-36 + 237a — 4160 + 21503)

+44(=9 + 124a — 3212 + 215a°)]}. (A17)

The terms Dim9 and Dim10 are exclusively of the type in Eq. (A6) and have the two components H?imN(M 2 a,p) and
[1D'™N(M?2, ) presented below:

P (M2, a, ) = 17;1;;(5541_142131)\/}0 [_ mgﬁ/l((z;_ﬁ?;vl} {5(a,G?/7)(59,6Gs)M* 7> N3N,
X 2mim (B =17 ap(a+ p)* (B = p* + pa+ a*(a—1)) + 6MON (f° = p* + a*(a = 1))
+6mZM*(B—1)N(B° + Pa—1) = pra+ pat(a— 1)+ (a—1)) = 3miM>(p - 1)%ap
x (287 4+ 20 (a — 1)? + f°(Ta — 4) + pa*(6 — 13a + 7a?) + 2%a* (4 — 11a + Ta?)

+ A (2 - 13a+ 14a?) + (8 — 26a + 190%) + p*a(6 — 22a + 190%))]

+3(g3G*) (5s)ym3 (B — 1)*[m M*N1 (65 + 8 + 3p*a? + 3%a* + 8’ + 6a°)

—8m,M*N(2p° + 3fa(a— 1) + 3p%a* + 3pa (a— 1) + 20 (@ — 1) + f°(3a - 2))

— mtm,(p = 1V2ap(a+ PP (F + 2@ 3) - (a=3) + fa(a— 1) +3a%(@— 1)
+FB—a+a®) = pra(l + a+a*) + pat (-1 — a+20%)) — m2m;M?*(f — 1)N?

x (4f° =3pa’ (a — 1) +4a’ (a = 1)> = B3(8 4+ 3a) — 3°a*(Ta — 8) + fPa*(—12 + 29a — 25a°)

+ 44 (=8 + 32a — 250%) + ot (=8 + 29a — 21a?) + 7 (4 + 3a — 15a°) — 3p%a’ (4 — 8a + 5a?))
+miM? (B = 1)N7(2f° + (3 = 5a) + p*a* (2 — 5a) + fa’ (3 — Ta) + 3pa’ (a— 1)

+2ad(a—=1) =3fa(l + a) + B (B3a —2) + p0a?(1 — Ta) + fa’(1 - 3a))]}, (A18)
1 SGZ 5 N G c %
™ (M2, a) = <10152A{[7:7>r§sag451 _s>1")12 exp [— m} 2mimg(a—1)
—9m?M??(a— 1) + IM*a® (a — 1) + dm.mM?a(1 — a — 2a* + 3a%)], (A19)
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HDimlO M2’ , — _
VM ) = s O M N,

miap(p—1) {_ m2(a+ AN,
xp MzaﬂNz

] {32092 (5s)> 2> m3 M*

x(B=1)(p*=pa+a®)p*+a*(a=1)>+FBa—-2) + pa2 = 5a +3a*) + (1 = 5a + 4a*)]?
FGGNRR 2 MG~ VN + 18m, M5+ PN] = mlap(f — 1)) (a+ )’

x (3p*+ F(a=3) + pa*(a—1)+3a(a—1) + fPa2a — 1)) — 6m2m ,M*( — 1)N3 (5p*
+22p(a—1) + 50 (@ — 1) + 2p%a(19a — 11) + 2 (22a = 5)) + 3mém (B — 1) (a + B)*(55°
+3pat(a— 1) + 5a*(a = 1)> + f(3a — 10) — 2a*(Ta — 8) + p*(5 — 3a — 6a%) — 20> p

X (5 —8a+3a?)) + 3mM>af(B — 12367 + p*a(5 — 4a) + 4p%a* (a — 1) + 5pa* (a — 1)?
+3&(a—1)2 + pS(5a = 6) + (3 — 10a + 4a?)) = 3mim,M>*(B — 1)2(13° + 13a®(a — 1)?

+ 8(20a — 39) + pa’ (a — 1)?(20a — 11) — fPa*(a — 1)*(45a — 73) + f7(39 — 51a — 45a?)

+ B*a2(73 — 510a + 80802 — 371a%) + f5(=13 + 42a + 16302 — 211a%)

4 Pad(142 = 510a + 57902 — 211a°) — Fa(11 + 191a — 579 + 371a3))]}. (A20)
and
, G*/7) g2 (55)>m’m m?
HD1m10 MZ’ —_ <as s c'ts _ c ) A21
M) = M R (@ = 1) M2a(1—a) (A21)

In the expressions above, ®(x) is the Unit Step function. We have also used the following shorthand notations:

Ny =p+(a+p)(a=1), N,=a+p-1, N5 = sapiN,,
L=L(s,ap) = (b= 1)INs —Nr;z%(a FAN] , L=L(s,a)=sa(l —a)—m?. (A22)
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