
Resonance Xð3960Þ as a hidden charm-strange scalar tetraquark

S. S. Agaev,1 K. Azizi ,2,3,* and H. Sundu4,5
1Institute for Physical Problems, Baku State University, Az-1148 Baku, Azerbaijan

2Department of Physics, University of Tehran, North Karegar Avenue, Tehran 14395-547, Iran
3Department of Physics, Doğuş University, Dudullu-Ümraniye, 34775 Istanbul, Turkey

4Department of Physics, Kocaeli University, 41380 Izmit, Turkey
5Department of Physics Engineering, Istanbul Medeniyet University, 34700 Istanbul, Turkey

(Received 20 December 2022; accepted 16 February 2023; published 13 March 2023)

We investigate features of the hidden charm-strange scalar tetraquark cc̄ss̄ by calculating its spectral
parameters and width, and we compare the obtained results with the mass and width of the resonance
Xð3960Þ discovered recently in the LHCb experiment. We model the tetraquark as a diquark-antidiquark
state X ¼ ½cs�½c̄s̄� with spin-parities JPC ¼ 0þþ. The mass and current coupling of X are calculated using
the QCD two-point sum rules by taking into account various vacuum condensates up to dimension 10. The
width of the tetraquark X is estimated via the decay channels X → Dþ

s D−
s and X → ηcη

ð0Þ. The partial
widths of these processes are expressed in terms of couplings G, g1, and g2, which describe the strong
interactions of particles at the vertices XDþ

s D−
s , Xηcη0, and Xηcη, respectively. Numerical values of G, g1,

and g2 are evaluated by employing the three-point sum rule method. Comparing the results m ¼
ð3976� 85Þ MeV and ΓX ¼ ð42.2� 12.0Þ MeV obtained for parameters of the tetraquark X and
experimental data of the LHCb Collaboration, we conclude that the resonance Xð3960Þ can be considered
as a candidate to a scalar diquark-antidiquark state.

DOI: 10.1103/PhysRevD.107.054017

I. INTRODUCTION

Recently, the LHCb Collaboration reported the obser-
vation of a new threshold peaking structure Xð3960Þ in the
Dþ

s D−
s invariant mass distribution in the Bþ → Dþ

s D−
s Kþ

decay [1]. Performed analysis demonstrated that it is a
scalar resonance JPC ¼ 0þþ with mass and width

mexp ¼ 3956� 5� 10 MeV;

Γexp ¼ 43� 13� 8 MeV: ð1Þ
The collaboration also found an additional structure around
4140 MeV with spin-parities 0þþ. The resonance Xð3960Þ
was interpreted by LHCb as a four-quark state with the
content cc̄ss̄, whereas the structure 4140 MeV may be
either a new resonance or a J=ψϕ ↔ Dþ

s D−
s coupled-

channel effect.
Four-quark exotic mesons composed of quarks cc̄ss̄

with different quantum numbers are not something new for
either experimental or theoretical physicists. In fact,

resonances with the quark content cc̄ss̄ were fixed by
LHCb in the J=ψϕ invariant mass distribution in the
process Bþ → J=ψϕKþ [2]. The discovered states
Xð4140Þ and Xð4274Þ are axial-vector particles with
JPC ¼ 1þþ, whereas the spin-parities of Xð4500Þ and
Xð4700Þ are JPC ¼ 0þþ. It should be noted that the
resonances Xð4140Þ and Xð4274Þ were previously seen
by the CDF Collaboration [3] in the decays B� →
J=ψϕK� and confirmed later by CMS [4] and D0 experi-
ments [5]. The scalar structures Xð4500Þ and Xð4700Þ
were fixed by the LHCb Collaboration for the first time.
In experiments, numerous exotic vector mesons built of

cc̄ss̄ quarks were observed as well. Thus, the state Yð4660Þ
was found for the first time by the Belle Collaboration in
the process eþe− → γISRψð2SÞπþπ− as one of two resonant
structures in the ψð2SÞπþπ− invariant mass distribution.
Because Yð4660Þ was produced in the eþe− annihilation,
its quantum numbers are JPC ¼ 1−−. The structure Xð4630Þ
was discovered by LHCb in the J=ψϕ invariant mass
distribution of the decay Bþ → J=ψϕKþ [6].
Theoretical studies of four-quark states cc̄ss̄ also have a

rich history. The charmoniumlike exotic mesons with a ss̄
component were investigated by means of different methods
in numerous publications (see, as examples, Refs. [7–11]).
Comprehensive analyses of some hidden-charm diquark-
antidiquark systems ½cs�½c̄s̄� were carried out in our articles
as well. Thus, the axial-vector resonances Xð4140Þ and
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Xð4274Þ were investigated in Ref. [12], in which we treated
them as diquark-antidiquark states built of scalar and axial-
vector components belonging to triplet and sextet repre-
sentations of the SUcð3Þ color group, respectively. We not
only calculated their masses and current couplings (or pole
residues), but also evaluated full widths of these tetraquarks.
Predictions for parameters of the color-triplet diquark-
antidiquark state allowed us to interpret it as the resonance
Xð4140Þ. Contrary to this, the full width of the tetraquark
with color sextet ingredients is considerably wider than that
of the resonance Xð4274Þ. Therefore, to explain the internal
organization of Xð4274Þ, alternative models should be
examined, though existence of a new axial-vector resonance
with the massm ≈ 4274 MeV and full width Γ ≈ 200 MeV
cannot be excluded.
The vector resonance Yð4660Þ was studied as a diquark-

antidiquark vector state ½cs�½c̄s̄� with JPC ¼ 1−− in our
work [13]. Results obtained there for the mass and full
width of this structure made it possible to interpret the
resonance Yð4660Þ as the diquark-antidiquark exotic meson.
The detailed analysis ofXð4630Þwas performed in Ref. [14]
by assuming that it is a vector tetraquark ½cs�½c̄s̄� with spin-
parities JPC ¼ 1−þ. Here, a nice agreement was obtained
between the LHCb data for parameters of the resonance
Xð4630Þ and theoretical predictions of the diquark-antidi-
quark model. There are numerous articles devoted to
experimental studies and theoretical analysis of hidden
charm-strange four-quark mesons in the literature: A rela-
tively full list of such publications can be found in
Refs. [1,12–14].
The first announcement made in Ref. [15] about

the discovery of the resonance Xð3960Þ triggered
extreme interest in this state. In papers that appeared
afterwards [16–22], authors addressed different aspects of
its internal organization, production mechanisms, and rates,
placing Xð3960Þ into various four-quark multiplets. The
coupled-channel explanation of Xð3960Þ was suggested in
Ref. [16], where it emerges as an enhancement in theDþ

s D−
s

mass distribution via interaction of the DþD− and Dþ
s D−

s
coupled channels. In Ref. [18], the authors assigned
Xð3960Þ the hadronic molecule Dþ

s D−
s and performed

studies in the context of the sum rule method. The resonance
Xð3960Þ was explained also as near the Dþ

s D−
s threshold

enhancement due to the contribution of the conventional
P-wave charmonium χc0ð2PÞ [21].
In the present article, we explore the tetraquark X ¼

½cs�½c̄s̄� with spin-parities JPC ¼ 0þþ and compute its
parameters. The mass and current coupling of X are
evaluated using the QCD two-point sum rule method.
Its full width is estimated using the decay channels X →
Dþ

s D−
s and X → ηcη

ð0Þ. Partial widths of these processes are
expressed through strong couplings G, g1, and g2 of
particles at the vertices XDþ

s D−
s , Xηcη0, and Xηcη, respec-

tively. To calculate G, g1, and g2, we employ technical tools
of the three-point sum rule approach. Results found for

parameters of the state X are confronted with the LHCb data
to verify the diquark-antidiquark model for Xð3960Þ.
This paper is organized in the following way: In Sec. II,

we compute the mass and current coupling of the tetraquark
X by means of the QCD two-point sum rule method. The
decay X → Dþ

s D−
s is studied in Sec. III, where we calculate

the couplingG and partial width of this process. The strong
couplings g1 and g2 and partial widths of the decays X →
ηcη

0 and X → ηcη, as well as the full width of X, are found
in Sec. IV. Section V is reserved for our concluding notes.

II. MASS AND CURRENT COUPLING
OF THE TETRAQUARK X

In this section, we consider the scalar diquark-antidiquark
state X ¼ ½cs�½c̄s̄� and extract its spectroscopic parameters
from the two-point sum rule analysis [23,24]. It is known
that the sum rule method operates with correlation functions
and interpolating currents of the particles under investiga-
tion. There are different ways to construct a scalar tetraquark
and corresponding current using a diquark and an anti-
diquark with different spin-parities [25]. Thus, one may
construct such a state using the pseudoscalar cTCs or vector
cTCγμγ5s diquarks and corresponding antidiquarks, where
C is the charge-conjugation operator. However, we assume
that X is built of a scalar diquark cTCγ5s and antidiquark
c̄γ5Cs̄T : The reason is that the scalar diquark (antidiquark)
configuration is the most attractive and stable two-quark
system [26].
The structures ϵcTCγ5s and ϵ̃c̄γ5Cs̄T are the color

antitriplet and triplet states of the color SUcð3Þ group,
respectively. Then the interpolating current for the tetra-
quark X has the form

JðxÞ ¼ ϵϵ̃½cTbðxÞCγ5scðxÞ�½c̄mðxÞγ5Cs̄TnðxÞ�; ð2Þ

where ϵϵ̃ ¼ ϵabcϵamn and a, b, c,m, and n are color indices.
This current belongs to the ½3̄c�cs ⊗ ½3c�c̄s̄ representation of
the color group and corresponds to the scalar state with
quantum numbers JPC ¼ 0þþ. The current JðxÞ describes
the ground-state scalar particle with lowest mass and
required spin-parities.
The mass m and coupling f of the tetraquark X can be

determined from analysis of the correlation function ΠðpÞ,

ΠðpÞ ¼ i
Z

d4xeipxh0jT fJðxÞJ†ð0Þgj0i: ð3Þ

To derive the required sum rules, one has to express ΠðpÞ
using the spectroscopic parameters of the tetraquark X. For
these purposes, we insert into the correlation functionΠðpÞ
a complete set of states with quantum numbers 0þþ and
perform integration over x in Eq. (3). As a result, we get

ΠPhysðpÞ ¼ h0jJjXðpihXðpÞjJ†j0i
m2 − p2

þ � � � : ð4Þ
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The obtained expression forms a hadronic representation of
ΠðpÞ and is the phenomenological (physical) side of the
sum rule. Here, the contribution coming from the ground-
state particle X is written down explicitly, whereas con-
tributions of higher resonances and continuum states are
denoted by the ellipses.
The function ΠPhysðpÞ can be further simplified by

employing the matrix element

h0jJjXðpÞi ¼ fm: ð5Þ

It is easy to find that, in terms of the parameters m and f,
the function ΠPhysðpÞ takes the following form:

ΠPhysðpÞ ¼ m2f2

m2 − p2
þ � � � : ð6Þ

The ΠPhysðpÞ function has a simple Lorentz structure
proportional to I, and the relevant invariant amplitude
ΠPhysðp2Þ is given by the rhs of Eq. (6).
To determine the QCD side of the sum rulesΠOPEðpÞ, we

use the interpolating current JðxÞ in Eq. (3) and contract the
heavy and light quark fields. After simple manipulations,
we obtain

ΠOPEðpÞ ¼ i
Z

d4xeipxϵϵ̃ϵ0ϵ̃0Tr
�
γ5S̃

bb0
c ðxÞ

×γ5Scc
0

s ðxÞ
�
Tr

�
γ5S̃

n0n
s ð−xÞγ5Sm0m

c ð−xÞ
�
; ð7Þ

where ScðxÞ and SsðxÞ are the c- and s-quark propagators,
respectively. Explicit expressions of these propagators are
presented in the Appendix (see also Ref. [27]). In Eq. (7),
we have also used the notation

S̃cðsÞðxÞ ¼ CSTcðsÞðxÞC: ð8Þ

The correlation function ΠOPEðpÞ should be computed in
the operator product expansion (OPE) with some accuracy.
ΠOPEðpÞ also has a trivial structure ∼I and is characterized
by an amplitude ΠOPEðp2Þ. Having equated the invariant
amplitudes ΠPhysðp2Þ and ΠOPEðp2Þ, one gets the master
QCD sum rule equality. Afterwards, one needs to suppress
contributions of higher resonances and continuum states by
applying the Borel transformation. The assumption about
quark-hadron duality allows one to subtract these sup-
pressed terms from the obtained expression. After these
operations, the sum rule equality starts to depend on the
Borel M2 and continuum threshold s0 parameters.
The Borel transformation of ΠPhysðp2Þ is a simple

function, whereas for ΠOPEðp2Þ we get a complicated
formula

ΠðM2; s0Þ ¼
Z

s0

4M2

dsρOPEðsÞe−s=M2 þ ΠðM2Þ; ð9Þ

where M ¼ mc þms. In numerical computations, we set
m2

s ¼ 0, but we include in our analysis terms proportional
to ms. The two-point spectral density ρOPEðsÞ is calculated
as an imaginary part of the correlation function. The
second term, ΠðM2Þ, includes nonperturbative contribu-
tions extracted directly from ΠOPEðpÞ. The correlator
ΠðM2; s0Þ is computed by taking into account nonpertur-
bative terms up to dimension 10. Explicit expression of
ΠðM2; s0Þ is written down in the Appendix.
The sum rules form and f are expressed via the invariant

amplitude ΠðM2; s0Þ,

m2 ¼ Π0ðM2; s0Þ
ΠðM2; s0Þ

; ð10Þ

and

f2 ¼ em
2=M2

m2
ΠðM2; s0Þ; ð11Þ

where Π0ðM2; s0Þ ¼ dΠðM2; s0Þ=dð−1=M2Þ.
To carry out the numerical computations in accordance

with Eqs. (10) and (11), we have to fix values of different
vacuum condensates. The reason is that the sum rules for
m2 and f2 through ΠðM2; s0Þ depend on the vacuum
expectation values of quark, gluon, and mixed operators.
The vacuum condensates that enter into the sum rules
[Eqs. (10) and (11)] are universal quantities obtained from
analysis of various hadronic processes [23,24,28–30]:

hq̄qi¼−ð0.24�0.01Þ3GeV3; hs̄si¼ð0.8�0.1Þhq̄qi;
hs̄gsσGsi¼m2

0hs̄si; m2
0¼ð0.8�0.1ÞGeV2;

hαsG
2

π
i¼ð0.012�0.004ÞGeV4;

hg3sG3i¼ð0.57�0.29ÞGeV6;

mc¼ð1.27�0.02ÞGeV; ms¼93þ11
−5 MeV: ð12Þ

It is seen that the vacuum condensate of the strange quark
differs from h0jq̄qj0i [28]. The mixed condensates
hq̄gsσGqi and hs̄gsσGsi are expressed in terms of the
corresponding quark condensates and the parameter m2

0.
The numerical value of the latter was extracted from the
analysis of baryonic resonances in Ref. [29]. For the gluon
condensate hg3G3i, we use the estimate given in Ref. [30].
This list also contains the masses of c and s quarks in the
MS scheme from Ref. [31].
Predictions for m and f extracted from the sum rules

depend also on the Borel and continuum subtraction
parameters M2 and s0. In general, physical quantities
should not contain residual effects connected with the
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choice ofM2. But in a real situation, m and f bear imprints
of operations fulfilled to isolate contribution of the ground-
state particle to sum rules. Away to solve this problem is by
using some prescriptions to minimize the unwanted effects.
To this end, in the sum rule analysis, the choice of a
working window for the Borel parameter M2 is restricted
by the dominance of the pole contribution (PC) and
convergence of OPE. To quantify these constraints, it is
convenient to introduce the expressions

PC ¼ ΠðM2; s0Þ
ΠðM2;∞Þ ð13Þ

and

RðM2Þ ¼ ΠDimNðM2; s0Þ
ΠðM2; s0Þ

: ð14Þ

The first of them is a measure of the pole contribution and is
necessary to find the higher border of the M2 region. In
Eq. (14), ΠDimNðM2; s0Þ indicates the last three terms in the
OPE ofΠðM2; s0Þ: i.e., DimN ¼ Dimð8þ 9þ 10Þ. We use
RðM2Þ to estimate the convergence of OPE and fix a lower
limit of M2.
In working regions of M2 and s0, the perturbative

contribution to the correlation function ΠðM2; s0Þ has to
be larger than those due to nonperturbative terms. Besides,
the window for M2 should generate stable predictions for
the extracted physical quantities. The performed analysis
demonstrates that the windows forM2 and s0, which satisfy
these constraints, are

M2 ∈ ½3; 4� GeV2; s0 ∈ ½21; 22� GeV2: ð15Þ

Indeed, in the regions given by Eq. (15), the pole
contribution varies on average within the interval

0.80 ≥ PC ≥ 0.49: ð16Þ

In Fig. 1, the PC is drawn as a function of the Borel
parameter at various values of s0. It is seen that except for a
small domainM2 > 2.8 GeV2 at s0 ¼ 21 GeV2, the domi-
nance of the pole contribution—i.e., the constraint
PC ≥ 0.5—is fulfilled for all values of the parameters
M2 and s0.
In Fig. 2, we demonstrate the dependence on M2 of the

perturbative and different nonperturbative contributions to
ΠðM2; s0Þ. It is evident that the perturbative term is
considerably larger than the nonperturbative contributions,
and it constitutes 80% of ΠðM2; s0Þ atM2 ¼ 3 GeV2. This
figure confirms also the convergence of the OPE, which
implies that the contributions of the nonperturbative terms
reduce by increasing the dimensions of the corresponding
operators. The Dim3 term numerically exceeds the

contributions of other nonperturbative operators, whereas
the Dim9 and Dim10 terms are very small and not shown
in the plot. The quantity RðM2Þ at M2 ¼ 3 GeV2 is less
than 0.01, which proves numerically the convergence of
the OPE and correctness of the lower value of M2.
The residual dependences of the massm of the tetraquark

X on the Borel and continuum subtraction parameters M2

and s0 are shown in Fig. 3. It is seen that the window for
M2, where parameters of X are extracted, leads to approx-
imately stable predictions for m. At the same time, one
observes some variations of m against the Borel parameter
M2. This effect allows us to estimate the uncertainties of the
sum rule predictions. Variation of the continuum threshold
parameter s0 is another source of the theoretical ambigu-
ities. The region for s0 has to meet the constraints coming
from the dominance of PC and convergence of the OPE.
The parameter

ffiffiffiffiffi
s0

p
also bears information on the mass m�

FIG. 1. Pole contribution as a function of the Borel parameter
M2 at various s0 values. The horizontal black line limits a region
PC ¼ 0.5. The red triangle fixes the point where the mass m of
the tetraquark X has effectively been extracted.

FIG. 2. Different contributions to ΠðM2; s0Þ normalized to 1 as
functions of the Borel parameter M2. All lines in this figure have
been calculated at s0 ¼ 21.5 GeV2.
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of the first radial excitation of the tetraquark X, and it
should obey

ffiffiffiffiffi
s0

p ≤ m�.
The results for the mass m and coupling f are evaluated

as the mean values of these quantities calculated in the
working regions [Eq. (15)]:

m ¼ ð3976� 85Þ MeV;

f ¼ ð7.3� 0.8Þ × 10−3 GeV4: ð17Þ

The mass and coupling written down in Eq. (17) effectively
correspond to the sum rule predictions at M2 ¼ 3.4 GeV2

and s0 ¼ 21.5 GeV2, shown in Fig. 1 by the red triangle.
This point is located approximately at the middle of the
working regions, where the pole contribution is PC ≈ 0.64.
This fact, and other details discussed above, guarantees the
ground-state nature of X and credibility of the final results.
An estimate for the mass of the excited tetraquark m� ≥
ðmþ 650Þ MeV stemming from Eqs. (15) and (17) is also
reasonable for the double-heavy tetraquarks.

III. DECAY X → D+
s D −

s

The spectroscopic parameters of the tetraquark X form a
basis to determine its kinematically allowed decay chan-
nels. Because Xð3960Þ was observed in the Dþ

s D−
s invari-

ant mass distribution, we treat the decay X → Dþ
s D−

s as a
dominant mode of X. The two-meson threshold for this
process ≈3937 MeV is below the mass of X. Other decay
channels that should be considered in this paper are X →
ηcη

0 and X → ηcη. The kinematical limits for realization of
these processes do not exceed ≈3941 MeV, which is less
thanm as well. It is easy to see also that decays of the scalar
tetraquark with spin-parities JPC ¼ 0þþ to two pseudosca-
lar mesons with JPC ¼ 0−þ preserves the spin and quantum
numbers P and C of the initial state X.
The partial width of the decay X → Dþ

s D−
s is determined

by a coupling G that describes the strong interaction at the
vertex XDþ

s D−
s . Apart from G, it depends also on the

masses and decay constants of the initial and final particles.

The mass and coupling of X have been calculated in the
present article, whereas physical parameters of the mesons
Dþ

s and D−
s are known from other sources. Therefore, the

only physical quantity to be found here is the strong
coupling G.
To evaluate G, we use the QCD three-point sum rule

method and start our analysis from the correlation function

Πðp; p0Þ ¼ i2
Z

d4xd4yeiðp0y−pxÞh0jT fJDþ
s ðyÞ

× JD
−
s ð0ÞJ†ðxÞgj0i; ð18Þ

where JðxÞ, JD
þ
s ðyÞ, and JD

−
s ð0Þ are the interpolating

currents for the tetraquark X and the pseudoscalar mesons
Dþ

s and D−
s , respectively. The four-momenta of X and Dþ

s
are denoted by p and p0, whereas the momentum of the
mesonD−

s is equal to q ¼ p − p0. The current JðxÞ is given
by Eq. (2), whereas for the mesons, we use the following
currents:

JD
þ
s ðxÞ ¼ s̄jðxÞiγ5cjðxÞ;

JD
−
s ðxÞ ¼ c̄iðxÞiγ5siðxÞ; ð19Þ

with i and j being the color indices.
To continue our study of the strong coupling G, we

follow usual recipes of the sum rule method and compute
the correlation function Πðp; p0Þ. To this end, we employ
the physical parameters of the tetraquark and mesons
participating in this process. The correlator Πðp; p0Þ found
this way constitutes the phenomenological sideΠPhysðp; p0Þ
of the sum rule. It is not difficult to see that

ΠPhysðp; p0Þ ¼ h0jJDþ
s jDþ

s ðp0Þih0jJD−
s jD−

s ðqÞi
ðp2 −m2Þðp02 −m2

Ds
Þ

×
hD−

s ðqÞDþ
s ðp0ÞjXðpÞihXðpÞjJ†j0i
ðq2 −m2

Ds
Þ þ � � � ;

ð20Þ

FIG. 3. Mass m of the tetraquark X as a function of the Borel M2 (left), and as a function of the continuum threshold s0 parameters
(right).
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where mDs
is the mass of the mesons D�

s . To derive
Eq. (20), we isolate the contribution of the ground-state
particles from those due to higher resonances and con-
tinuum states. In Eq. (20), the ground-state term is presented
explicitly, whereas the dots stand for the other contributions.
The function ΠPhysðp; p0Þ can be modified by employing

the matrix elements of the mesons D�
s

h0jJD�
s jD�

s i ¼
m2

Ds
fDs

mc þms
; ð21Þ

with fDs
being their decay constants. The vertex XDþ

s D−
s is

modeled as

hD−
s ðqÞDþ

s ðp0ÞjXðpÞi ¼ Gðq2Þp · p0: ð22Þ

Using these matrix elements, one can easily find a new
expression for ΠPhysðp; p0Þ:

ΠPhysðp; p0Þ ¼ Gðq2Þ m4
Ds
f2Ds

fm

ðmc þmsÞ2ðp2 −m2Þ
×

1

ðp02 −m2
Ds
Þðq2 −m2

Ds
Þ

×
m2 þm2

Ds
− q2

2
þ � � � : ð23Þ

The double Borel transformation of the correlation function
ΠPhysðp; p0Þ over variables p2 and p02 is given by the
formula

BΠPhysðp; p0Þ ¼ Gðq2Þ m4
Ds
f2Ds

fm

ðmc þmsÞ2ðq2 −m2
Ds
Þ e

−m2=M2
1

× e−m
2
Ds
=M2

2

m2 þm2
Ds

− q2

2
þ � � � : ð24Þ

The correlator ΠPhysðp; p0Þ and its Borel transformation
have a simple Lorentz structure which is proportional
to I. As a result, the relevant invariant amplitude
ΠPhysðp2; p02; q2Þ is determined by the whole expression
written down in Eq. (23).
To derive the QCD side of the three-point sum rule, we

express Πðp; p0Þ in terms of the quark propagators, and get

ΠOPEðp; p0Þ ¼
Z

d4xd4yeiðp0y−pxÞϵϵ̃

× Tr

�
γ5S̃

ib
c ðy − xÞγ5S̃nis ðx − yÞγ5Smj

c ðxÞ

×γ5S
jc
s ð−xÞ

�
: ð25Þ

The correlator ΠOPEðp; p0Þ is computed by taking into
account the nonperturbative contributions up to dimension 6.

This function contains the same trivial Lorentz structure as
ΠPhysðp; p0Þ. Having denoted by ΠOPEðp2; p02; q2Þ the
corresponding invariant amplitude, equated the double
Borel transformations BΠOPEðp2; p02; q2Þ and BΠPhys

ðp2; p02; q2Þ, and performed continuum subtraction, we find
the sum rule for the strong coupling Gðq2Þ.
The amplitude ΠOPEðp2; p02; q2Þ after the Borel trans-

formation and continuum subtraction procedures can be
expressed using the spectral density ρðs; s0; q2Þ, which is
proportional to a relevant imaginary part of ΠOPEðp; p0Þ:

ΠðM2; s0; q2Þ ¼
Z

s0

4M2

ds
Z

s0
0

M2

ds0ρðs; s0; q2Þ

× e−s=M
2
1e−s

0=M2
2 : ð26Þ

The Borel and continuum threshold parameters are denoted
in Eq. (26) by M2 ¼ ðM2

1;M
2
2Þ and s0 ¼ ðs0; s00Þ, respec-

tively. Then, the sum rule for Gðq2Þ reads

Gðq2Þ ¼ 2ðmc þmsÞ2
m4

Ds
f2Ds

fm

q2 −m2
Ds

m2 þm2
Ds

− q2

× em
2=M2

1em
2
Ds
=M2

2ΠðM2; s0; q2Þ: ð27Þ

The coupling Gðq2Þ is also a function of the Borel and
continuum threshold parameters, which, for the sake of
simplicity, are not shown in Eq. (27). In what follows, we
introduce a variable Q2 ¼ −q2 and label the obtained
function GðQ2Þ.
Equation (27) contains the spectroscopic parameters of

the tetraquark X, and the masses and decay constants of the
mesonsD�

s . These parameters are input information for our
numerical computations: Their values are collected in
Table I, which also contains parameters of the mesons
ηc, η0, and η appearing at the final stages of the other
processes. For the masses of the mesons and decay constant
fDs

, we use information from Ref. [31]. As the decay
constant of the meson ηc, we employ the sum rule’s
prediction from Ref. [32].
For numerical calculations of GðQ2Þ, one has to fix

working windows for the Borel and continuum subtraction
parameters M2 and s0. The constraints imposed on

TABLE I. Masses and decay constants of the mesonsD�
s , ηc, η0,

and η which are employed in numerical calculations.

Quantity Value (in MeV units)

mDs
1969.0� 1.4

mηc 2983.9� 0.4
mη0 957.78� 0.06
mη 547.862� 0.017
fDs

249.9� 0.5
fηc 320� 40
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M2 and s0 are usual for sum rule calculations: They have
been discussed and explained in Sec. II. The regions forM2

1

and s0, that correspond to the X channel, are chosen as in
Eq. (15). The parameters ðM2

2; s
0
0Þ for the Dþ

s meson
channel are varied within the limits

M2
2 ∈ ½2.5; 3.5� GeV2; s00 ∈ ½5; 6� GeV2: ð28Þ

The windows in Eq. (28) are well correlated with the Dþ
s

meson’s mass. In fact,
ffiffiffiffiffi
s00

p
≈ ðmDs

þ 0.35Þ GeV is a
typical choice for mesons with experimentally measured
masses. The Borel parameter M2 is also comparable with
the mass of the Dþ

s meson. The regions in Eq. (28) are
numerically very close to the ones given in our article
(Ref. [33]) for theD�þ channel in the decayMþ

cc → D0D�þ.
Nevertheless, a decisive factor in the choice of ðM2

2; s
0
0Þ is

fulfillment of the sum rule constraints.
Thus, we calculate GðQ2Þ at fixed Q2 ¼ 1–5 GeV2 and

depict the obtained results in Fig. 4. Let us emphasize that
the constraints imposed on the parametersM2 and s0 by the
sum rule analysis are satisfied at each Q2. For instance, in
Fig. 5, the coupling GðQ2Þ is plotted as a function of the
parametersM2

1 andM
2
2 atQ

2 ¼ 3 GeV2 in the middle of the
s0 and s00 regions. Variations of Gð3 GeV2Þ while changing
M2

1 andM
2
2 in explored regions stay within acceptable limits

and do not exceed �25% of the central value. Numerically,
we find

Gð3 GeV2Þ ¼ ð2.53� 0.62Þ GeV−1: ð29Þ

The partial width of the process X → Dþ
s D−

s should be
calculated in terms of the strong coupling Gð−m2

Ds
Þ, which

is defined at the mass shell q2 ¼ m2
Ds

of the mesonD−
s . But

the region Q2 < 0 is not accessible for the sum rule
analysis. To solve this problem, it is convenient to introduce
a fit function G1ðQ2Þ, which for the momenta Q2 > 0 is

consistent with predictions of the sum rule computations,
but can be extrapolated to the region Q2 < 0. For these
purposes, we apply the function GiðQ2Þ, i ¼ 0; 1; 2:

GiðQ2Þ ¼ G0
i exp

�
c1i

Q2

m2
þ c2i

�
Q2

m2

�
2
�
; ð30Þ

where G0
i , c

1
i , and c

2
i are parameters, which will be extracted

from fitting procedures. Numerical calculations demonstrate
that G0

0 ¼ 1.67 GeV−1, c10 ¼ 2.19, and c20 ¼ −1.59 gener-
ate a nice agreement with the sum rule’s data shown
in Fig. 4.
At the mass shell q2 ¼ m2

Ds
, this function predicts

G≡ G0ð−m2
Ds
Þ ¼ ð8.9� 2.2Þ × 10−1 GeV−1: ð31Þ

The width of the process X → Dþ
s D−

s is determined by the
following formula:

Γ½X → Dþ
s D−

s � ¼ G2
m2

Ds
λ

8π

�
1þ λ2

m2
Ds

�
; ð32Þ

where λ ¼ λðm;mDs
; mDs

Þ and

λða; b; cÞ ¼ 1

2a
½a4 þ b4 þ c4−2ða2b2 þ a2c2 þ b2c2Þ�1=2:

ð33Þ

Employing the coupling from Eq. (31), it is easy to find the
partial width of the process X → Dþ

s D−
s :

Γ½X → Dþ
s D−

s � ¼ ð34.0� 11.9Þ MeV: ð34Þ

FIG. 4. The sum rule predictions and fit function for the strong
coupling GðQ2Þ. The point Q2 ¼ −m2

Ds
is shown by the red

diamond.

FIG. 5. The strong coupling G ¼ Gð3 GeV2Þ as a function
of the Borel parameters M2

1 and M2
2 at s0 ¼ 21.5 GeV2

and s00 ¼ 5.5 GeV2.
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IV. PROCESSES X → ηcη0 AND X → ηcη

The processes X → ηcη
0 and X → ηcη, in general, can be

studied by a manner described above. However, it is well
known that due to Uð1Þ anomaly, there is a mixing in the
system of η − η0 mesons [34]. This phenomenon leads to
some subtleties in the choice of the interpolating currents for
these particles. The η − η0 mixing can be described in the
framework of different approaches: The physical particles η
and η0 can be expressed using either the octet-singlet or
quark-flavor bases of the flavor SUfð3Þ group. It turns out
that mixing of the physical states, decay constants, and
higher twist distribution amplitudes in the η − η0 system
take simple forms in the quark-flavor basis jηqi ¼ ðūuþ
d̄dÞ= ffiffiffi

2
p

and jηsi ¼ s̄s [34–36]. Therefore, for our purposes
it is convenient to describe the mesons η and η0 in the quark-
flavor basis.
Then, the physical mesons η and η0 are expressed using

the basic states jηqi and jηsi:
�

η

η0

�
¼ UðφÞ

� jηqi
jηsi

�
; ð35Þ

where

UðφÞ ¼
�
cosφ − sinφ

sinφ cosφ

�
ð36Þ

is the mixing matrix in the jηqi − jηsi basis, with φ being a
mixing angle. This assumption on the state mixing implies
that the same pattern applies to relevant currents, decay
constants, and wave functions as well.
In this context, the interpolating currents for the mesons

η and η0 are given by the expressions

JηðxÞ ¼ − sinφs̄jðxÞiγ5sjðxÞ;
Jη

0 ðxÞ ¼ cosφs̄jðxÞiγ5sjðxÞ; ð37Þ
where j is the color index. Let us emphasize that in
Eq. (37), we write down only the s̄s component of the
currents, which contribute to the decays under analysis.
We begin our calculations from the decay X → ηcη

0. In
this case, one should explore the correlation function

Π̃ðp; p0Þ ¼ i2
Z

d4xd4yeiðp0y−pxÞh0jT fJηcðyÞ

× Jη
0 ð0ÞJ†ðxÞgj0i; ð38Þ

with JηcðyÞ being the interpolating current of the meson ηc:

JηcðxÞ ¼ c̄iðxÞiγ5ciðxÞ: ð39Þ

The ground-state contribution to the correlation function
Π̃ðp; p0Þ in terms of the involved particles’matrix elements
has the form

Π̃Physðp; p0Þ ¼ h0jJηc jηcðp0Þih0jJη0 jη0ðqÞi
ðp2 −m2Þðp02 −m2

ηcÞ

×
hη0ðqÞηcðp0ÞjXðpÞihXðpÞjJ†j0i

ðq2 −m2
η0 Þ

þ � � � ;

ð40Þ

where the dots indicate the effects of higher resonances
and continuum states. The function Π̃Physðp; p0Þ can be
simplified by invoking the matrix elements of the mesons
ηc and η0:

h0jJηc jηci ¼
m2

ηcfηc
2mc

;

2mshη0js̄iγ5sj0i ¼ hsη0 ; ð41Þ

wheremηc and fηc are the mass and decay constant of the ηc
meson. The twist-3 matrix element of the local operator
s̄iγ5s sandwiched between the meson η0 and vacuum states
is denoted by hsη0 [35]. The parameter hsη0 complies with the
mixing effect, and we get

hsη0 ¼ hs cosφ: ð42Þ

The parameter hs in Eq. (42) can be defined theoreti-
cally [35], but for our analysis it is enough to use
phenomenological values of hs and φ:

hs ¼ ð0.087� 0.006Þ GeV3;

φ ¼ 39.3°� 1.0°: ð43Þ

The vertex Xηcη0 is chosen in the following form:

hη0ðqÞηcðp0ÞjXðpÞi ¼ g1ðq2Þp · p0; ð44Þ

where g1 is the strong coupling corresponding to the vertex
Xηcη0. Using these matrix elements, one can obtain a new
expression for ΠPhysðp; p0Þ:

Π̃Physðp; p0Þ ¼ g1ðq2Þ
fmm2

ηcfηchs cos
2 φ

4mcmsðp2 −m2Þ
×

1

ðp02 −m2
ηcÞðq2 −m2

η0 Þ

×
m2 þm2

ηc − q2

2
þ � � � : ð45Þ

The QCD side of the sum rule for g1ðq2Þ is given by the
formula
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Π̃OPEðp; p0Þ ¼ − cosφ
Z

d4xd4yeiðp0y−pxÞϵϵ̃

× Tr½γ5Sibc ðy − xÞγ5S̃jcs ð−xÞγ5S̃njs ðxÞ
× γ5Smi

c ðx − yÞ�: ð46Þ

The sum rule for the coupling g1ðq2Þ is derived using Borel
transformations of invariant amplitudes Π̃Physðp2; p02; q2Þ
and Π̃OPEðp2; p02; q2Þ and reads

g1ðq2Þ ¼ −
8mcms

fmm2
ηcfηchs cosφ

q2 −m2
ηc

m2 þm2
ηc − q2

× em
2=M2

1em
2
ηc =M

2
2Π̃ðM2; s0; q2Þ: ð47Þ

Here, Π̃ðM2; s0; q2Þ is the Borel transformed and sub-
tracted amplitude Π̃OPEðp2; p02; q2Þ.
The coupling g1ðq2Þ is calculated using the following

Borel and continuum threshold parameters in the ηc
channel:

M2
2 ∈ ½3; 4� GeV2; s00 ∈ ½9.5; 10.5� GeV2; ð48Þ

whereas with M2
1 and s0 for the X channel, we employ

Eq. (15). The strong coupling g1 is defined at the mass shell
of the η0 meson. The fit function G1ðQ2Þ given by Eq. (30)
has the parameters G0

1 ¼ 0.26 GeV−1, c11 ¼ 4.72, and
c21 ¼ −3.52. Relevant computations yield

g1 ≡ G1ð−m2
η0 Þ ¼ ð1.9� 0.3Þ × 10−1 GeV−1: ð49Þ

The partial width of this decay can be found by means of
the formula Eq. (32), in which one should make the
substitutions G → g1, m2

Ds
→ m2

ηc , and λðm;mDs
; mDs

Þ →
λ̃ðm;mηc ; mη0 Þ. Then, for the process X → ηcη

0, we get

Γ½X → ηcη
0� ¼ ð3.0� 0.7Þ MeV: ð50Þ

Analysis of the decay X → ηcη can be performed in a
similar way. Omitting further details, let us write down
predictions obtained for key quantities. Thus, the strong
coupling g2 at the vertex Xηcη is determined by the equality

g2 ≡ jG2ð−m2
ηÞj ¼ ð1.4� 0.2Þ × 10−1 GeV−1; ð51Þ

where parameters of the fit function are G0
2 ¼

−0.15 GeV−1, c12 ¼ 5.76, and c22 ¼ −4.44. The partial
width of the decay X → ηcη is

Γ½X → ηcη� ¼ ð5.2� 1.1Þ MeV: ð52Þ

With this information in hand, it is not difficult to find the
full width of the scalar tetraquark X:

ΓX ¼ ð42.2� 12.0Þ MeV: ð53Þ

This estimate is in excellent agreement with the LHCb data.

V. CONCLUDING NOTES

In this article, we have calculated spectral parameters of
the scalar tetraquark X in the framework of the QCD two-
point sum rule method. We evaluated also the full width of
X by taking into account its decay modes X → Dþ

s D−
s ,

X → ηcη
0, and X → ηcη. Our result for the mass m ¼

ð3976� 85Þ MeV of the tetraquark X overshoots the
corresponding LHCb datum, but it is compatible with
mexp, provided one takes into account the corresponding
theoretical and experimental errors. Our prediction for the
full width ΓX ¼ ð42.2� 12.0Þ MeV of X is in excellent
agreement with Γexp from Eq. (1).
In Ref. [1], the LHCb Collaboration assumed that the

resonance Xð3960Þ is composed of four cc̄ss̄ quarks. This
assumption relies on theoretical predictions of Ref. [10], in
which the authors used the QCD sum rule method and
different interpolating currents to find the mass spectra of
the diquark-antidiquark states qcq̄c̄ and scs̄c̄ with JPC ¼
0þþ and 2þþ. Some of the currents used there indeed led to
estimations which are comparable with mexp if one takes
into consideration the ambiguities of the analysis.
In the context of the sum rule approach, Xð3960Þ was

modeled as a Dþ
s D−

s molecule state [18], as well. In
accordance with this paper, the mass of such a hadronic
molecule is equal to ð3980� 100Þ MeV, being in agree-
ment with the LHCb data. It is worth noting that in
Refs. [10,18], the authors did not investigate quantitatively
the widths of the diquark-antidiquark or molecule states
considered there, which is crucial for drawing a conclusion
about the inner organization of Xð3960Þ.
The results for m and ΓX obtained in the present article

allow us to consider Xð3960Þ as a candidate to a scalar
diquark-antidiquark exotic meson. At the same time, a
molecule model for Xð3960Þ should be studied in a more
detailed form: There is a necessity to evaluate the full width
of a molecule state. Only after such comprehensive analysis
will it be possible to make a choice between the competing
models.

APPENDIX: THE PROPAGATORS SqðQÞðxÞ
AND THE INVARIANT AMPLITUDE ΠðM2; s0Þ
In the current article, for the light quark propagator

Sabq ðxÞ, we employ the following expression:
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Sabq ðxÞ ¼ iδab
=x

2π2x4
− δab

mq

4π2x2
− δab

hq̄qi
12

þ iδab
=xmqhq̄qi

48
− δab

x2

192
hq̄gsσGqi þ iδab

x2=xmq

1152
hq̄gsσGqi

− i
gsG

αβ
ab

32π2x2
½=xσαβ þ σαβ=x� − iδab

x2=xg2shq̄qi2
7776

− δab
x4hq̄qihg2sG2i

27648
þ � � � : ðA1Þ

For the heavy quark Q ¼ c, we use the propagator SabQ ðxÞ:

SabQ ðxÞ ¼ i
Z

d4k
ð2πÞ4 e

−ikx
�
δabð=kþmQÞ
k2 −m2

Q
−
gsG

αβ
ab

4

σαβð=kþmQÞ þ ð=kþmQÞσαβ
ðk2 −m2

QÞ2

þ g2sG2

12
δabmQ

k2 þmQ=k

ðk2 −m2
QÞ4

þ g3sG3

48
δab

ð=kþmQÞ
ðk2 −m2

QÞ6
½=kðk2 − 3m2

QÞ þ 2mQð2k2 −m2
QÞ�ð=kþmQÞ þ � � �

�
: ðA2Þ

Here, we have used the shorthand notations

Gαβ
ab ≡Gαβ

A λAab=2; G2 ¼ GA
αβG

αβ
A ; G3 ¼ fABCGA

αβG
BβδGCα

δ ; ðA3Þ

where Gαβ
A is the gluon field strength tensor, while λA and fABC are the Gell-Mann matrices and structure constants of the

color group SUcð3Þ, respectively. The indices A, B, C run in the range 1; 2;…8.
The invariant amplitudeΠðM2; s0Þ obtained after the Borel transformation and subtraction procedures is given by Eq. (9):

ΠðM2; s0Þ ¼
Z

s0

4M2

dsρOPEðsÞe−s=M2 þ ΠðM2Þ;

where the spectral density ρOPEðsÞ and the function ΠðM2Þ are determined by the expressions

ρOPEðsÞ ¼ ρpert:ðsÞ þ
X8
N¼3

ρDimNðsÞ; ΠðM2Þ ¼
X10
N¼6

ΠDimNðM2Þ; ðA4Þ

respectively. The components of ρOPEðsÞ and ΠðM2Þ are given by the formulas

ρDimNðsÞ ¼
Z

1

0

dα
Z

1−a

0

dβρDimNðs; α; βÞ; ρDimNðsÞ ¼
Z

1

0

dαρDimNðs; αÞ; ðA5Þ

and

ΠDimNðM2Þ ¼
Z

1

0

dα
Z

1−a

0

dβΠDimNðM2; α; βÞ; ΠDimNðM2Þ ¼
Z

1

0

dαΠDimNðM2; αÞ: ðA6Þ

In Eqs. (A5) and (A6), variables α and β are Feynman parameters.
The perturbative and nonperturbative components of the spectral density ρpert:ðs; α; βÞ and ρDim3ð4;5;6;7;8Þðs; α; βÞ have

the forms

ρpert:ðs; α; βÞ ¼ ΘðLÞL2

512π6ðβ − 1Þ4N4
1N2

f2ðβ − 1Þ2N3½−αβN3 þ 3mcmsðαþ βÞN2
1�

þ4ðβ − 1ÞN2
1L½−αβN3 þmcmsðαþ βÞN2

1� − αβN4
1L

2g; ðA7Þ

ρDim3ðs; α; βÞ ¼ −
hs̄siΘðLÞ

16π4ðβ − 1Þ2N6
1

fmsðβ − 1Þ2αβN2N2
3 þ ðβ − 1ÞN2

1½6msαβN2N3 þ 2m2
cmsN3

1

−mcsαβLðβ4 þ α2ðα − 1Þ2 þ β3ð3α − 2Þ þ αβð2 − 5αþ 3α2Þ þ β2ð1 − 5αþ 4α2ÞÞ�
−N4

1½−3msαβN2 þmcL2ðβ3 þ 2βαðα − 1Þ þ α2ðα − 1Þ þ β2ð2α − 1Þ�g; ðA8Þ
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ρDim4ðs;α; βÞ ¼ hαsG2=πiΘðLÞ
4608π4ðβ − 1Þ2N5

1N
2
2

fαβðβ − 1Þ2½−6mcmsðβ3 þ β2ðα − 1Þ þ β2αþ α2ðα − 1ÞÞ

× ð3N2N3 þ 2m2
cN1Þ þ N2N3ðαþ βÞð54N2N3 þm2

cðβ4 − β3 þ β2α2 þ α3ðα − 1ÞÞ=N1

þ smcN2
2ð11mcαβðα3 þ β3Þ þ 6msð2β5 − 73β3αðα − 1Þ þ 2α4ðα − 1Þ − β4ð2þ 37αÞ þ β2α

× ð−36þ 108α − 73α2Þ þ βα2ð−36þ 73α − 37α2ÞÞÞ� þ 12N2
1ðβ − 1ÞL½27N2

2N3αβðαþ βÞ=N1

þm2
cαβðα3 þ β3ÞN2 þmcmsð2β6 þ 2α4ðα − 1Þ2 − β5ð4þ 35αÞ þ β3αð−109þ 254α − 146α2Þ

þ β4ð2þ 108α − 110α2Þ þ βα2ð36 − 109αþ 108α2 − 35α3Þ − 2β2αð−18þ 90α − 127α2 þ 55α3ÞÞ�
þ 162L2αβN3

1N2ðβ2 þ αðα − 1Þ þ βð2α − 1ÞÞg; ðA9Þ

ρDim5ðs;α; βÞ ¼ hs̄gsσGsiαβN2ΘðLÞ
64π4ðβ − 1ÞN6

1

fðβ − 1Þ½13msαβN2N3 þ 4m2
cmsN3

1 − 6mcsαβðβ4

þ α2ðα − 1Þ2 þ β3ð3α − 2Þ þ βαð2 − 5αþ 3α2Þ þ β2ð1 − 5αþ 4α2ÞÞ� − 2N2
1L½−8msαβN2

þ 3mcðβ3 þ 2βαðα − 1Þ þ α2ðα − 1Þ þ β2ð2α − 1ÞÞ�g; ðA10Þ

ρDim6ðs;α; βÞ ¼ ΘðLÞ
829440π6ðβ − 1Þ2N5

1N
2
2

f3840g2shs̄si2π2ðβ − 1ÞαβN4
2½sðβ − 1ÞαβN2 þ N2

1L�

− 27hg3sG3im2
cβ

5ðβ − 1Þ2½2ðβ − 1ÞβαN2 − 2αð−5β3 þ β2ð10 − 3αÞ þ 2αðα − 1Þ2
þβð−5þ αþ 4α2ÞÞ�g; ðA11Þ

ρDim7
1 ðs;α; βÞ ¼ hαsG2=πihs̄siΘðLÞ

1152π2ðβ − 1ÞN4
1

f90msðβ − 1Þαβðαþ βÞN2
2 þ 18msðβ − 1ÞαβN2

× ½β2 þ αðα − 1Þ þ βð2α − 1Þ� þ 8mc½2β6 þ 2α4ðα − 1Þ2 − β5ð4þ 19αÞ þ β4ð2þ 56α − 37α2Þ
þ β3αð−55þ 91α − 37α2Þ þ β2αð18 − 72αþ 74α2 − 17α3Þ þ βα2ð18 − 37αþ 15α2 þ 4α3Þ�g; ðA12Þ

ρDim8ðs; α; βÞ ¼ −
hαsG2=πi2α2β2N2ΘðLÞ

512π2N4
1

: ðA13Þ

The function ρDim7
2 ðs; αÞ is determined by the expression

ρDim7
2 ðs; αÞ ¼ −

hαsG2=πihs̄simc

288π2
ΘðL̃Þ: ðA14Þ

Components of ΠðM2Þ are

ΠDim6ðM2; α; βÞ ¼ hg3sG3im3
cβ

4ðβ − 1Þ
92160M4π6N6

1N2

exp

�
−
m2

cðαþ βÞN1

M2αβN2

�
f−½2m5

cαβðβ − 1Þ2ðαþ βÞ2

þ 3mcM4αβN2
1�½3β3 þ βαðα − 2Þ − α2ðα − 1Þ þ β2ð2α − 3Þ� þ 6msM4N3

1½8β3 þ βαðα − 3Þ
þ α2ðα − 1Þ þ β2ð3α − 8Þ� þ 6m2

cmsM2ðβ − 1ÞN2
1½8β4 þ 2βα2ðα − 2Þ þ α3ðα − 1Þ

þ β2αð4α − 11Þ þ β3ð11α − 8Þ� þ 6m4
cmsðβ − 1Þ2½2β7 − α5ðα − 1Þ2 þ β6ð5α − 4Þ

þ β3α2ð2þ 11α − 14α2Þ þ β4αð5 − 4α − 7α2Þ þ βα4ð−4þ 9α − 5α2Þ þ 2β5ð1 − 5αþ α2Þ
− 4β2α3ð1 − 4αþ 3α2Þ� þ 3m3

cM2αβðβ − 1Þ½3β6 − βα4ðα − 1Þ − α4ðα − 1Þ2 þ β5ð8α − 6Þ
þ 2β2α2ð3 − 4αþ α2Þ þ β3αð8 − 17αþ 8α2Þ þ β4ð3 − 16αþ 11α2Þ�g; ðA15Þ
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ΠDim7ðM2;α;βÞ ¼ hαsG2=πihs̄sim2
c

576π2M4N7
1

exp

�
−
m2

cðαþ βÞN1

M2αβN2

�
f−2mcM2αβðβ− 1Þ½m2

cðαþ βÞðβ− 1Þ

þ M2N1�½2β6þ 2α4ðα−1Þ2þ β5ð5α− 4Þþ βα3ð4− 9αþ 5α2Þþα2β2ð4− 13αþ 9α2Þ
þ β4ð2− 9αþ 9α2Þþ β3αð4− 13αþ 10α2Þ�þms½2m4

cðβ−1Þ3αβðαþ βÞ3ðβ3− β2þ βαþα2ðα− 1ÞÞ
þm2

cM2ðβ− 1Þ2αβðαþ βÞ2ð7β5þ 3β4ð5α− 6Þþα2ðα− 1Þ2ð7α− 4Þþ β3ð15− 35αþ 23α2Þ
þ αβð−8þ 28α− 35α2þ 15α3Þþ β2ð−4þ 28α− 47α2þ 23α3ÞÞ−M4N2

1ð8β7þ 8α4ðα− 1Þ3
þ 3β6ð3α− 8Þþ β5ð24− 30αþ 17α2Þþ 3βα3ð−4þ 15α− 19α2þ 8α3Þþ 3β3αð−4þ 12α− 20α2þ 11α3Þ
þ β4ð−8þ 33α− 45α2þ 24α3Þþ β2α2ð−8þ 48α− 70α2þ 33α3ÞÞ�g; ðA16Þ

ΠDim8ðM2; α; βÞ ¼ −
hαsG2=πi2αβðβ − 1Þ
82944π2M6N8

1N2

exp

�
−
m2

cðαþ βÞN1

M2αβN2

�
f2m7

cðβ − 1Þ3α3β3ðαþ βÞ2

− 6m6
cmsðβ − 1Þ3α2β2ðαþ βÞ3N2 þ 81mcM6αβN3

1½β3 þ β2ðα − 1Þ þ βα2 þ α2ðα − 1Þ� þ 216msM6N3
1

× ½β5 þ β4ðα − 2Þ − β3ðα − 1Þ þ βα3ðα − 1Þ þ α3ðα − 1Þ2� þ 81m3
cM4ðβ − 1ÞαβN2

1½β4 þ α3ðα − 1Þ
þβ3ð2α − 1Þ þ β2αð2α − 1Þ þ βα2ð2α − 1Þ� þ 216m2

cmsM4ðβ − 1ÞN2
1½β6 þ 2β5ðα − 1Þ − β3αðα − 1Þ

þβ2α3ðα − 1Þ þ α4ðα − 1Þ2 þ β4ð1 − 3αþ α2Þ þ βα3ð1 − 3αþ 2α2Þ� þ 54m5
cM2ðβ − 1Þ2αβðαþ βÞ2

× ½β5 þ 2β4ðα − 1Þ þ α3ðα − 1Þ þ βα2ð1 − 3αþ 2α2Þ þ β2αð1 − 4αþ 3α2Þ þ β3ð1 − 3αþ 3α2�
− 12m4

cmsM2ðβ − 1Þ2αβ½9β7 þ 9α4ðα − 1Þ3 þ 4βα3ðα − 1Þð13α − 9Þ þ β6ð52α − 27Þ þ β5ð27 − 140α

þ138α2Þ þ 3β2α2ð−18þ 79α − 107α2 þ 46α3Þ þ β3αð−36þ 237α − 416α2 þ 215α3Þ
þβ4ð−9þ 124α − 321α2 þ 215α3Þ�g: ðA17Þ

The terms Dim9 and Dim10 are exclusively of the type in Eq. (A6) and have the two components ΠDimN
1 ðM2; α; βÞ and

ΠDimN
2 ðM2; αÞ presented below:

ΠDim9
1 ðM2; α; βÞ ¼ mcðβ − 1Þ

17280π4M8N10
1

exp

�
−
m2

cðαþ βÞN1

M2αβN2

�
f5hαsG2=πihs̄gsσGsiM2π2N2

1N2

× ½2m5
cmsðβ − 1Þ3αβðαþ βÞ3ðβ3 − β2 þ βαþ α2ðα − 1ÞÞ þ 6M6N3

1ðβ5 − β4 þ α4ðα − 1ÞÞ
þ 6m2

cM4ðβ − 1ÞN2
1ðβ6 þ β5ðα − 1Þ − β4αþ βα4ðα − 1Þ þ α5ðα − 1ÞÞ − 3m4

cM2ðβ − 1Þ2αβ
× ð2β7 þ 2α5ðα − 1Þ2 þ β6ð7α − 4Þ þ βα4ð6 − 13αþ 7α2Þ þ 2β2α3ð4 − 11αþ 7α2Þ
þ β5ð2 − 13αþ 14α2Þ þ β3α2ð8 − 26αþ 19α2Þ þ β4αð6 − 22αþ 19α2ÞÞ�
þ3hg3sG3ihs̄sim3

cðβ − 1Þ2½mcM4N4
1ð6β6 þ 8β5αþ 3β4α2 þ 3β2α4 þ 8βα5 þ 6α6Þ

− 8msM4N4
1ð2β6 þ 3β4αðα − 1Þ þ 3β2α4 þ 3βα4ðα − 1Þ þ 2α5ðα − 1Þ þ β5ð3α − 2ÞÞ

−m4
cmsðβ − 1Þ2αβðαþ βÞ3ð3β7 þ 2β6ðα − 3Þ − β3α3ðα − 3Þ þ β2α4ðα − 1Þ þ 3α5ðα − 1Þ2

þβ5ð3 − αþ α2Þ − β4αð1þ αþ α2Þ þ βα4ð−1 − αþ 2α2ÞÞ −m2
cmsM2ðβ − 1ÞN2

1

× ð4β9 − 3βα7ðα − 1Þ þ 4α7ðα − 1Þ2 − β8ð8þ 3αÞ − 3β6α2ð7α − 8Þ þ β5α2ð−12þ 29α − 25α2Þ
þβ4α3ð−8þ 32α − 25α2Þ þ β3α4ð−8þ 29α − 21α2Þ þ β7ð4þ 3α − 15α2Þ − 3β2α5ð4 − 8αþ 5α2ÞÞ
þm3

cM2ðβ − 1ÞN2
1ð2β9 þ β5α3ð3 − 5αÞ þ β4α4ð2 − 5αÞ þ β3α5ð3 − 7αÞ þ 3βα7ðα − 1Þ

þ2α8ðα − 1Þ − 3β7αð1þ αÞ þ β8ð3α − 2Þ þ β6α2ð1 − 7αÞ þ β2α6ð1 − 3αÞÞ�g; ðA18Þ

ΠDim9
2 ðM2; αÞ ¼ hαsG2=πihs̄gsσGsimc

1152M4π2α4ðα − 1Þ2 exp
�
−

m2
c

M2αð1 − αÞ
�
½2m3

cmsðα − 1Þ

−9m2
cM2α2ðα − 1Þ þ 9M4α3ðα − 1Þ2 þ 4mcmsM2αð1 − α − 2α2 þ 3α3Þ�; ðA19Þ
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ΠDim10
1 ðM2; α; βÞ ¼ −

m3
cαβðβ − 1Þ3

3645 × 1011M10π4N11
1 N2

exp

�
−
m2

cðαþ βÞN1

M2αβN2

�
f320g2shs̄si2π2m3

cM4

× ðβ − 1Þðβ2 − βαþ α2Þ½β4 þ α2ðα − 1Þ2 þ β3ð3α − 2Þ þ βαð2 − 5αþ 3α2Þ þ β2ð1 − 5αþ 4α2Þ�3
þ 9hg3sG3iα2β2½12m3

cM4α2β2ðβ − 1ÞN3
1 þ 18msM6ðαþ βÞN5

1 −m7
cαβðβ − 1Þ3ðαþ βÞ2

× ð3β4 þ β3ðα − 3Þ þ βα2ðα − 1Þ þ 3α3ðα − 1Þ þ β2αð2α − 1ÞÞ − 6m2
cmsM4ðβ − 1ÞN3

1ð5β4
þ 22βα2ðα − 1Þ þ 5α3ðα − 1Þ þ 2β2αð19α − 11Þ þ β3ð22α − 5ÞÞ þ 3m6

cmsðβ − 1Þ3ðαþ βÞ2ð5β6
þ 3βα4ðα − 1Þ þ 5α4ðα − 1Þ2 þ β5ð3α − 10Þ − 2β3α2ð7α − 8Þ þ β4ð5 − 3α − 6α2Þ − 2α2β2

×ð5 − 8αþ 3α2ÞÞ þ 3m5
cM2αβðβ − 1Þ2ð3β7 þ β4αð5 − 4αÞ þ 4β2α4ðα − 1Þ þ 5βα4ðα − 1Þ2

þ 3α5ðα − 1Þ2 þ β6ð5α − 6Þ þ β5ð3 − 10αþ 4α2ÞÞ − 3m4
cmsM2ðβ − 1Þ2ð13β9 þ 13α6ðα − 1Þ3

þ β8ð20α − 39Þ þ βα5ðα − 1Þ2ð20α − 11Þ − β2α4ðα − 1Þ2ð45α − 73Þ þ β7ð39 − 51α − 45α2Þ
þ β4α2ð73 − 510αþ 808α2 − 371α3Þ þ β6ð−13þ 42αþ 163α2 − 211α3Þ
þ β3α3ð142 − 510αþ 579α2 − 211α3Þ − β5αð11þ 191α − 579α2 þ 371α3ÞÞ�g; ðA20Þ

and

ΠDim10
2 ðM2; αÞ ¼ hαsG2=πig2shs̄si2m3

cms

23328M4π2ðα − 1Þ3 exp

�
−

m2
c

M2αð1 − αÞ
�
: ðA21Þ

In the expressions above, ΘðxÞ is the Unit Step function. We have also used the following shorthand notations:

N1 ¼ β2 þ ðαþ βÞðα − 1Þ; N2 ¼ αþ β − 1; N3 ¼ sαβN2;

L≡ Lðs; α; βÞ ¼ ðβ − 1Þ½N3 −m2
cðαþ βÞN1�

N2
1

; L̃≡ L̃ðs; αÞ ¼ sαð1 − αÞ −m2
c: ðA22Þ
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