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Dipole-dipole scattering amplitude in the CGC approach
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In this paper we propose recurrence relations for the dipole densities in QCD, which allows us to find
these densities from the solution to the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation. We resolve these
relations in the diffusion approximation for the BFKL kernel. Based on this solution, we found the sum of
large Pomeron loops. This sum generates the scattering amplitude that decreases at large values of rapidity
Y. It turns out that such behavior of the scattering amplitudes is an artifact of diffusion approximation. This
approximation leads to the unitarization without saturation both in deep inelastic scattering and in dipole-

dipole interaction at high energies.
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I. INTRODUCTION

The main ideas of the color glass condensate/saturation
approach (see Ref. [1] for a review), including the satu-
ration of the dipole density and the new dimensional scale
(Q,), which increases with energy, have become the
common language for discussing the high energy scattering
in QCD. However, in spite of intensive work [2-36], we
have several problems that have not been solved. One of
the principle problems is summing Pomeron loops, which
without solving we cannot consider the dilute-dilute and
dense-dense parton densities collisions. As has been
recently shown [35,36], even the Balitsky-Kovchegov
(BK) equation that governs the dilute-dense parton density
scattering (deep inelastic scattering of electron with proton)
has to be modified due to contributions of Pomeron loops.

In this paper, we attempt to sum Pomeron loops for
dipole-dipole scattering amplitude at high energies. This
attempt is based on the experience with the simple, but
exactly solvable, two-dimensional models [10,37-51],
which we will discuss in the next section. From these
models, we learned that the scattering amplitude at high
energies is determined by the sum of large Pomeron loops.
Actually, the formalism for summing large Pomeron loops
in QCD has been developed [10,52-56]. In this paper, we
propose new recurrence relations for the parton densities in
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QCD, which allows us to find all parton densities from the
solution of the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
equation. We resolve these recurrence relations in the
diffusion approximation for the BFKL kernel and suggest
the explicit form for the scattering amplitude. We believe
that we have completed the approach that was started in
Refs. [55,56].

II. POMERON CALCULUS IN ZERO TRANSVERSE
DIMENSION: A RECAP

The simple toy model, the Pomeron calculus in zero
transverse dimension, is a respectable tool and a well-
known training ground for the interaction at high
energies [10,11,37-51]. Because of the simplicity of these
models, we are able to formulate and solve the Reggeon
field theory for the interacting Pomerons. This theory
satisfies both the s and ¢ channel unitarity constraints
and includes the emission of the dipoles as well as the
saturation effects in the corresponding parton cascades. The
simple toy model also gives examples of theories that have
the probabilistic interpretation for the scattering amplitude
in letter and spirit of the partonic approach.

In Ref. [10] the simple probabilistic formula for the S
matrix is suggested,

S(Y) =Y e PRRL(Yo) PRRH(Y = ¥,), (1)

n,m

where y is the scattering amplitude of two dipoles and
PBFKL(Y) is the probability distribution in the BFKL
cascade. For P,(Y) we have equations in the following
form for the zero transverse dimension:
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dPBFKL(y)

G —AnPBPRL(Y) + A(n

- DPIEY). (2)

with the solution

0= -t

where N(Y) is the first factorial moment or multiplicity of
dipoles: N(Y) = e”. Generally speaking, Eq. (1) does
depend on the reference frame (on the value of Y) and, as
has been discussed in Refs. [10,43,50,51], we need to
change Eq. (2) to obtain the Pomeron calculus that satisfies
both ¢ and s channel unitarity. However, at large values of
Y — Y, and Y, Eq. (1) leads to the scattering amplitude that
does not depend on the value of Y, [51]. Indeed,

o0

=>4

n,m k=0

Y) — Ze—mn}/PEFKL

)PBFKL Y — Y

[so]

DS (=rN(YON(Y = Yo))k! = (=

k=0 k=0

In Eq. (4) we used that (1) N(Y — Y()N(Yy) =N
following form:

M(Y) = KIN(Y)(N(Y) = 1)k!
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FIG. 1.

Summing large Pomeron loops. The wavy lines denote
the BFKL Pomeron exchanges in (a) and, in (b), the Pomeron in
the two-dimensional Pomeron calculus with Green’s function
Gp(Y) = exp (AY). The black circles stand for the triple Pom-
eron vertices in both figures, which are equal to A in (b), while the
white circles denote the amplitude y. In (a) we show the dipole-
dipole scattering amplitude in the Born approximation of per-
turbative QCD in the circles.

. <Zn P,(Y,) ) <m2>

c(Yo)

eﬂv OEi(- (Y)J/)
yN(Y) )

kky

(Y), and (2) the factorial moments of the distribution of Eq. (3) has the

N(Y)>1

X7 ci(Y) = KINK(Y). (5)

One can see that S(Y), being a function of N(Y'), does not depend on the reference frame. It turns out that this S matrix at
large Y — Y, and Y, coincides with the one calculated in the unitarity toy model [10,50,51] theory, which is independent of

a reference frame at any value of Y.

It is easy to see that the S matrix of Eq. (1) sums the large BFKL Pomeron loops shown in Fig. 1. Indeed, the contribution
of large Pomeron loops can be written in the following form [9,52,54-56]:

sr) = 32T v v, () 0

n!

=2

)"n!(Gp(Y = Yo)Gp(Y0))"

where M, are the factorial moments that we replace by
M, (Y) = nIN"(Y) at large Y for distribution of Eq. (3). In
Eq. (6), N(Y) = N(Y — Yy)N(Y,). The advantage of this
derivation is that it can be easily generalized to the QCD
case, which is the main goal of this paper.

The factorial moments will play an essential role in our
approach. Bearing this in mind, we wish to write the
equation for them in the simple BFKL cascade of Eq. (2).

(=7)"n!(N(Y = Yo)N(¥,))"

n

IEi(~ i)

T N (©)

The solution of Eq. (3) is easy to obtain introducing the
generating function

Z(Y.u) = P,(Y)u". (7)

One can see that
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10Z(Y,u)
Pul ):ﬁ ou” ’
: u=0
0Z(Y,u)
M,,(Y):zn:(n(n—1)...(n—k+1))Pn(Y): |,
(8)
From Eq. (2), the equation for Z takes the form
0Z(Y,u) 0Z(Y, u)

Taking n derivatives from Eq. (9) and substituting u# = 1,
we obtain the following equation for M, (Y):
oM ,(Y)
oY

= AnM,(Y)+ An(n—1)M,_(Y). (10)

Equation (10) has a more elegant form for p,(Y) =

M, (Y)/n!,

opa(Y)
oY

— Anp,(¥) + A(n = Dp, 1 (Y). (1)

For sum of the large Pomeron loops, we have the following
formula, using p,(Y):

S(Y) =Y (=r)"nlpu(Y = Yo)pu(Yo).  (12)
n
Equation (12) has been generalized to the QCD case in
Refs. [52,54] and we will use it in our approach.
Equation (9) for the generating function Z can be
rewritten as the nonlinear equation for Z in the form

0Z(Y, u)

= 21 -

Z(Y,u)). (13)
Bearing in mind that p,(Y) = %62(;2;‘“) l,—1,» we can obtain
the equation for p, differentiating Eq. (13) and putting
u=1,

P =+ . (1)

Subtracting this equation from Eq. (11), we obtain the
following recurrence relation for p,,:

an k

The solution to Eq. (15) has the form

pa(Y) = p1(Y)(pr(¥) = )" (16)

Summarizing what we have obtained in this section for
the simple models of Reggeon field theory, we conclude
that (i) the scattering amplitude at high energies can be

( pn _(n_l)pn—l(Y)' (15)

calculated from Eq. (12) using the parton densities p,,(Y);
(ii) these parton densities satisfy the two evolution equa-
tions of Egs. (11) and (14); and (iii) these two equations
lead to the recurrence relation for p, [see Eq. (15)]. The
main goal of this paper is to generalize these ingredients to
the case of QCD and obtain the QCD scattering amplitude
at high energies.

III. SUMMING LARGE POMERON
LOOPS IN QCD

As it has been mentioned, our main goal is to sum large
Pomeron loops in QCD to obtain the scattering amplitude.
Our approach includes two stages. First, we need to general-
ize Eq. (12) to the case of QCD. Actually, this problem has
been solved in Refs. [1,9-11,52,54] and we are going to
discuss it here. Second, we need to get the evolution
equations for the parton densities and find their solutions.
This problem has been partly solved in Ref. [54], but in this
section we will find the second evolution equation and
suggest the recurrence relations for p,. Finally, we need to
find the solution for the parton densities and this topic is the
main one of this section.

A. BFKL parton cascade: Evaluation equations
and recurrence relations for the parton densities

The simple Eq. (2) has been generalized to the QCD case
in Refs. [1,9,54] and has the following form:

(Yral;{rul’} ch )P (Y. b {ri.b;})

Y.r,b; {r b,ri+r,b,}),

VAR L

where P,(Y,r,b;{r;,b;}) is the probability to have n
dipoles of size r;, at impact parameter b; and at rapidity Y.
b;, in Eq. (17) is equal to b;, =b; +1r, =b, —ir;
Equation (17) is a typical cascade equation in which the
first term describes the reduction of the probability to find n
dipoles, due to the possibility that one of n dipoles can decay
into two dipoles of arbitrary sizes, while the second term
describes the growth due to the splitting of (n — 1) dipoles
into n dipoles. We introduce the generating functional [9]

Z(Y.r.b;[u;]) = i/Pn(Y’r»b;{ribi})
=

X Hu(r,-b,»)dgriaabi, (17)
i=1
where u(r;b;) = u; is an arbitrary function. The initial and

boundary conditions for Eq. (17) take the following form for
the functional Z:
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Z(Y =0,r,b;[u;]) = u(r,b), (18a)
Z(Y,r, [u;=1]) = 1. (18b)

Multiplying both parts of Eq. (17) by [[, u(r;b;) and integrating over r; and b;, we obtain the following linear
functional equation [54]:

()Z(Y,r,b;[ui})_/ ) b B , 1., VI 8Z
—ay = drK(r,r=rr) —u(r,b) +u r,b+2(r r)|lulr—r.b 5T 5u(r D)’ (19a)
K(r —’l)—%riz' ()—/dzf’K(’ —r'lr) (19b)
r.r—rir =) wg(r) = r,r—rir).

The n-dipole densities p,(r;, by, ..., r,, b,) are defined as follows [54]:

14 6
Pu(r1, by 1y, by Y = Yy) :;HEZ(Y_ Yoi [u]) =i (20)
Hisp Ol

Taking nth functional derivatives from Eq. (19a) and substituting u; = 1, we obtain for p, [54]

an “b d2/ 2
w,_z% rip,({ri, bi}) +ZZ/ r 2p,,( Aobi—1)2..)

2ﬂr (ri—r)

2”—

rag T2 anl r).bin...). (21)
Introducing
Pl b; {ri,bi}) H J({ri bi}). (22)
we reduce Eq. (21) to the following form:

op,({r;.b d2r _ _ _

Pullribid) Z [ S Kr =P (b)) by = (1= ) /2) 4 2yl = by =/2) = (b))
n—1

+aSan—1(“'<ri+rn>’bin"')‘ (23)

i=1
Equation (19a) can be rewritten as the nonlinear equation for Z [9,54],

()Z(Y;—Yb /erKr’r—r’|r)( Z(¥,r.b; [u ])—|—Z<r’,b+%(r—r’);[ui]>z<r—r’,b—%r’;[uj)). (24)

Using the definition of Eq. (20) and differentiating Eq. (24) [see Eq. (20)], we obtain a new equation for p,:

9pu(r.b: {r;.b;})

7 —&S/dzr’K(r’,r—r’|r)

<{ (a0 —é(r—r»;{ri,b,-}) Fpa(r=r b =308 ) =i r0))

+ag nip,, . <r bt ( _r {r,»,b,»})pk (r —Pb- %r’; {r,»,b,»}) } (25)

k=1

'"The analogous equation for the factorial moments of multiplicity distribution has been derived in Refs. [57,58].
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For p,,, it has the same form. This equation together with Eq. (23) leads to the recurrence relation for p,,, which has the form
1 1
[ @rxwn=rin] (o (#0 =505} ) 4o (r=rb =7 b)) =l b))

n—1 1 1 n d2r/

+kZPn—k<"/,b +2(r—"/;{"ivbi}>l)k<"—"/,b—2"'2{%,”1’})} = ;/ o K(r.ri—rr;)

X A{pn(r {rj,b;}. ¥ by = (r; =r)/2) + p,(r.{rj.b;}.ri = b; =1 /2) = p,(r. {ri,b;})}

48 s v 1) i), (26)
i—1

One can see that just from the general form of Eq. (23) the leading energy behavior stems from the inhomogeneous term
of this equation and we expect that p, & > i~ p,_iPr.

B. Main formula

The scattering amplitude shown in Fig. 1(a) can be written in the following way [54-56]:

2,
A(Y.r.R:b) =Y (=1)"*'n! / Hd”’ L b / by (11, 1. by — b} = 8b)p(Y — Yo {ri.b;})p(Yo. {F1}).
ri
(27)

where y%4 is the scattering amplitude of two dipoles in the Born approximation of perturbative QCD. Considering
Y — Y, > land Y, > 1, one can see that the typical In b? ~ /Y = Y, and In b? ~ /Y, are large, while in y54, 5b; ~ r, 7.
Hence, we can neglect the contribution of 3b; in p. Therefore, in Eq. (27) enters [ d*8b;y®A(ry, r\,b; — b}, = &b;), which can
be written as [9]

(1) = [ @b 1ol == ) = 4 [ 51 = dol1r)) (1 = Jo(ir)). 28)

In Eq. 27), b, =b —b/,.

C. Solutions for g,(Y {r;b;})
1. p_l(Y,r,rl,bl)

From Eq. (23) for p;, we have the linear equation

/

op1(Y;ry,b)
G50

d?
= —wg(r))p1(Y;r,b) + 2/ 27: K ,r—rr)p,(Y,r,b). (29)

The physical meaning of p; is clear from Eq. (20): it is the mean number of dipoles with size r| in the partonic wave function of
the projectile or target. It is proven in Ref. [3] that the eigenfunction of the BFKL equation has the following form:

2.2

Prrbi) = <<b1 T —%(r—n))zy = <b_) =< (30)

for any kernel that satisfies the conformal symmetry. In Eq. (30),  is the size of the initial dipole at Y = 0, while ry is the size of
the dipole with rapidity Y. As has been discussed in the previous section, the typical b; in p,, in Eq. (27) is large. Hence, we can
use the variable ¢ from Eq. (30).

For the kernel of the leading-order BFKL equation [see Eq. (19b)], the eigenvalues take the form

w(as,y) = asy(y) = asQy (1) —y(y) —w(l —7)) 4 Dag + 14£(3)ag <7 - %) 2, (31)
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where y/(z) is the Euler psi function y(z) = dInT(z)/dz,
as = N.ag/n, where N, is the number of colors. The
general solution to Eq. (29) takes the form

€+ico €+ico

dy dw 1
5 (Y:r.b) = oY+yE f .
pl( s ) / i / 27[iw—w(6{5,}/)e ¢N’L(y)

e—ioco e—ioco
e+ico J
7/ _
= [ shesesiririg, ). (32)
€—ioco
Function ¢;,(y) has been found from the initial conditions
at Y =0 [3] (see also Refs. [4,9]): ¢;, = iv/x, where
Y= % + iv. For large Y we can estimate the integral over y
using the steepest descent method. The equation for the
saddle point has the form

dw(ag,y)

gy Vo TE=0 (33)

The solution to Eq. (33) gives ysp = 5 — % Y>> )
Plugging Eq. (33) in Eq. (32) and using ¢;, = ivsp/7,
we obtain

2 2
P (Yirr,b) = W&ABF”Y—“%#

2 T b}
= —IN| ——=
(DY)32 by \r*ri

’.2 V2
()
X exp ABFKLY - 4DY] s (34)

where d.a. denotes diffusion approximation for the BFKL
kernel in the vicinity of y = % [see Eq. (19b)], which has
been used in deriving Eq. (34). It is instructive to note that
for p,(Y; r1, b), Eq. (25) has the same form as Eq. (23) and
the same solution as Eq. (34). We will use below p,, in the
momentum representation, viz.

P p Ya ) b; i bl
,bn(Y»kTyb; Y, {ri’bi}) — / d2re—zk»,~rpn( r 2{7' }) '
r
(35)
It turns out that in the vicinity of y; = % we can obtain the

momentum representation of p, (and vice versa) using the
simple substitute r; 2 k%/2 [see Ref. [59] formula 6.561
(14)]. Hence,

G[p:(Y, kT? ry, b) = ﬁ?d(Y, kT’ ry, b)
2 Agpe V=i g1
= it e, (o)

. 412 . _ . .
with & = ln(ﬁ). In conclusion, we see that p; is described

by the exchange of the BFKL Pomeron, which in diffusion
approximation has the form of Eq. (36).

2. ﬁz(Y,rvrlvblvr%bZ)

For p,(Y,r;ry, by,ry, b,), Eq. (26) can be rewritten as
follows:

d*r _ _ _
/ K(r',ry =rlr){po(Y.rir' by,ry, by) + po(Y.riry =1, by,1y, by) = po(Y,r5ry, b1y, by) }

2

d*r _ _ _
+/ K(r',ry = |r){p(Y,riry, by, ¥ by) + pa(Y.riry by 1y =7 by) — po(Y, 150y, by 15, by) }

2w
+p1(Y,rsr +12,b)

d*r 1 1
_/ 2rK(r/,r—r/|r){([)2<Y,r',b—E(r—r/);rl,bl,rz,b2> +p2<Y,r—r/,b—Er/;rl,bl,rz,b2>
/3

—ﬁz(Y,r,b;rl,bl,rz,b2)> —|—ﬁ1(Y,r’,b;r1,b1)ﬁ1(Y,r—l",b;rz,bz)}. (37)

In Eq. (20) we neglect the shifts in the impact parameters due to the sizes of dipoles, since in Eq. (27) all b; are much
larger then r;.

The simplest solution to Eq. (20) we obtain in diffusion approximation for the BFKL kernel [see Eq. (31)]. In this
approximation

a2y _ _ _
/ o K(r'ry =r|r){p2(Y.rir . by.1y. by) + pa(Y. 750y, by 1y =7 by) = pr(Y.riry, by, 1, by) }
02
= (ABFKL + Da—§2>/_72(Y, riry, by.ry, by) = LYpy (Y r;r, by, 1o, by)
l
for all r; and r in Eq. (20).
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We resolve the recurrence relation of Eq. (20) by neglecting all contributions of the order of %

them by Agpgr. [see Eq. (33)]. Indeed, in this case

in kernels K, replacing

as

p(Y,rr, by, 1y, by) = {/JZF'K("’J‘—"/|")ﬁ1(Y,r’,b;rl,bl)ﬂl(Y,r—i",b;"z,bz) -p(Y,riry +"2,b)}~ (38)

ABFKL

Equation (38) can be rewritten in more economic form going to the momentum representation [see Eq. (35)],

_ a _ _
pz(Y7kT;r1ab17r27b2) = A 5 {Pl(Y,krvb;"hbl)m(Yva,b;"z’bz) —P1(Y7kT;r1 +"27b)}’ (39)

BFKL

which leads to the following estimates in the diffusion approximation:

PaY.E.8) = ( G >{ﬁi"a‘(Y;§’1)ﬁ?‘3'(Y;f’z) (Vi E))

ABFKL

Y>1 a B _ a

—>( s )p‘f‘a'(Y;cf’l)p?'a'(Y;cf’z)—( 5 )GP<Y;¢1>GP<Y;5;>, (40)
ABF‘KL ABFKL

where & is defined in Eq. (36). &/, is the same as &; where r; is replaced by |r; + ry|. For large values of Y, Eq. (40) has a very
simple meaning shown in Fig. 2: it stems from the simple “fan” diagram after integration over Y’. Note that in momentum
representation the triple Pomeron vertex is equal to asg.

3' ﬁ3(Y’r’rl’blvr25b2’r37b2)
From Eq. (26) we have the following equation for p3(Y, kr, ry, by, ry, by, 13, bs):

1 1
/d2r’K(r/,r—r’|r){ <ﬁ3 (Y,r’,b —E(r—r’);rl,bl,rz,b2,r3,b3> + p3 <Y,r—r’,b —Er’;rl,bl,rz,bz,r3,b3>

_ﬁ3(Y’r’b;r1’b1’r27b2)> +ﬁ1(Y,rJ,b;r1,b1)ﬁz(Y,r—r’,b;rz,bz,r3,b3)

d2/
+,b2(Y,r',b;r1,b1,r3,b3)ﬁ1(Y,r—r',b;rz,bz)} :/ 2r
T

X A{p3(Y,kriv' ,by,ry, by, 13, b3) + p3(Y kpsry =7 by, 1y, by 13, b3) — p3 (Y. kp, 7y, by, 1y, by, 13, b3)}
+/a,227:/K("',"2—'J|’2)

xA{p3(Y,riry, by, v by,r3,b3) + p3(Y,riry byry =7 by, 13, b3) — o (Y, 1571, by, 1y, by, 15, b3) }
+/6§:K("/"‘3—"'|"3)

X Ap3(Y.rir |, by, 1y, by, ¥, b3) + p3(Y.,rir by, 1y, by, r3 =1 b3) — po(Y, 131y, by 1y, by 13, b3) }
+ {2 (Y. +713,.b1,12,b3) + Py (Y. 1371, by, 1y + 13, D7)} (41)

K(r'.ry—r|r)

Replacing [ @*FK(r',r—r|r){...} = Appxrp3(Y.r;r1,b1,r2,b,,13,b3), we obtain that

L (&
p3(Y,rr,by,ry, by, 13, b3) :—{A/dzr’l((r’,r—rﬂr) (42)
2 | AprkL

X A{pa(Y. ¥ ,biry,by,1r3,by)py (Y. r =7 b;ry. b))
+ﬁl(y9r/vb;rlvbl)ﬁ2(yvr_r/vb;rZ’b23r3vb3)}
—{p(Y.riry +1r3.b1.12, b)) + o (Y. 17y, by 1y + 13, by) } ). (43)
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This equation has a simplified form in the momentum representation [see Eq. (35)]

pS(YakT;rlvblvr2’b27r3’b3)

1 —
:E (A KL) {p2(Y kT7b r17b19r37b2)p1(Y kTvb r2’b2)

+p1(Y.kp,biry,by)py (Y. ky,biry, by 13, by) —

(P2(Y. kpsry 415, b1,15, D)

+p2(Y’kT;r]ab]ar2+r37b2))}' (44)

For the toy model in which p,, do not depend on the dipole sizes, Eq. (44) leads to p;

= p1(py — 1)?, if we assume that

Agpxr, = 5. One can see that the calculations started to be cumbersome, but for our approach the most important
conclusion is that the main contribution, which is proportional to e3*s«. ¥ has a very simple form,

as

p3(Y.kriry,by.ry,by,13,b5) = (A
BFKL

2
) p1(Y kg biry b)py (Y. ky.biry, by)py (Y, r,birs, by) + O(e*Pom Y}

ag

() Pt i) = (g0 ) Golr: )Gl G138

We see again that at large Y p; is described by the fan
diagram of the same type as in Fig. 2, but with three
Pomerons, in which two integrations of the positions of
two triple Pomeron vertices lead to factor (1/Aggki)?,
while @2 appears due to the value of the triple Pomeron
vertex equal to ag and we have two vertices in these
diagrams.

4. p,(Y,r{r.,b;}) at high energies

Having solutions for p, and p;, one can see that the
leading term of the solution to Eq. (26), which behaves as
exp (nAgggr Y) at high energies, has the form

e = (o) ot a0
o

~exp(nlAprkL Y)

We can check by the direct substitution in Eq. (26) that
P, 18 equal to

1 /ABFKL

) Gp( Y,E) Gp( Y52
O ) (0, ﬁ) (O, rz)

FIG. 2. The graphic form of Eq. (40). The wavy lines describe

the BFKL Pomerons. The shaded circle corresponds to the triple

Pomeron vertex. Factor 1/Agpg;. stems from integration over Y’
in the triple Pomeron diagram.

(45)

pr e = (5o ) {11t

*(Y;6:)
i=1

~exp (nAgpxr)

o (&) &) } 47)

~exp ((n—1)AppkL)

Accuracy of this solution is on the order of n(&/(4DY))?
and we will show below that the typical value of n does not
increase with Y.

IV. SCATTERING AMPLITUDE

A. The BFKL Pomeron exchange

From Eq. (27) the contribution of the single BFKL
Pomeron exchange to the scattering amplitude is equal to
the following expression [9]:

ABFKL(Yv kT’k/T’b)

d*ry d*v), _
- —41 /41dzb’lp(Y—YO,kT;rl,b—b’l)aBA(rl,r’l)
ry Iy
x p(Yo.ky:ry.by), (48)

where k. appears as the momentum variable corresponding
the R dependence of the scattering amplitude.

Equation (48) has been estimated (see Refs. [9,11]),
however, for completeness of presentation, we briefly
outline here the main points of these estimates. Plugging
Egs. (28) and (32) into Eq. (48), we can first integrate
over r; and 7/, obtaining the contribution o« />+2¥+2% with
Y, =1+ iv and y/, =1+ iv/. Integration over [ leads to
the pole 1/(v+¢/), for which the contribution leads to
the independence of the amplitude with the value of Y. The
integral over d?b/ has the form
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2 1

1
b’ — =
| 5 G

(49)

iv p2(+iv)

In Eq. (49), the main contributions stem from two kinematic regions: b} < b and |b — b’| < b. Finally, we obtain the result

of Ref. [9],

ABFKL(Y Ky K)3b) =

(DY) kpky b? 4

where & = ln(krii).

8 4 kpklb?
aSﬂ ln( T )exp (ABFKLY_

In? (b“‘klfk’%, ) ) 8nat}
(

_ &
Yy )~ (pyyrt Fexp (ABFKLY_— ’

4DY
(50)

B. Scattering amplitude from the main formula in the momentum representation

Plugging Eq. (50) into our master equation [see Eq. (27)], one can see that the scattering amplitude takes the

following form:

Ak Kpib) =3 (- nw( i

n=1 ABFKL

=2
where k = () ABL(Y k7. k1 b). One can see that at
BFKL

low energies (small values of Y) the scattering amplitude
reproduces the exchange of one BFKL Pomeron. At high
energies (at Y > 1), the amplitude approaches the constant
value (AE—FSKL) Since this amplitude is in the momentum
representation, the unitarity limit for it is § In k7§ In k7, but
not the unity.

The scattering amplitude of Eq. (51) does not generate a
correct behavior of the cross section, which increases as a
power of the energy, resulting from the powerlike behavior
of the scattering amplitude at large impact parameters.
From Eq. (51) one can see that the corrections at large
values of Y show the increase with the growth of b,
demonstrating that in the scattering amplitude we have
even more severe problems with the Froissart theorem [60]
than for the BK evolution [61-64].

. &
In all our estimates, we assume that Z{’ DT
Therefore, we need to estimate the typical values of n in

this sum. From Eq. (51), we can find the average value of n,

dInA(Y,r,R;b)
dIn ABFKL

_(#eVTOY g g O /(T
a K2 K K K ’
(52)

n—

) @ )y

= ABFKL(Y r R;b) for k < 1;

AZ
(S

: (51)
(S (1 +

_ln’ffcb‘) for k > 1,

72
where « = (ﬁ)ABFKL(Y, r,R;b) and p = Ajp /a3

One can see that 7 decreases at large values of Y.

Therefore, our assumption ) 55 D 7 << 1 looks plausible.

One can also see that, at fixed b, the scattering amplitude
approaches the constant value of Agpk /@ as follows:

A(Y,ky,ky;b) = 1 — Const In(AB*XL(Y, r, R; b))/
ABFRL(Y Ky kpib) = 1 - C(€.Y)(eF Q3(Y)) 7, (53)

where the saturation momentum Q?(Y) = exp (2DY (1 +
Sep)) 7 =1 4 288 and function C is a smooth function
of £and Y.

It is instructive to note that at first sight such approach is
in contradiction both with the BK nonlinear evolution
equation [65] and with estimates for the scattering dipole-
dipole amplitude in Ref. [53]. However, we will show in the
next section that it is not the case, considering the solution
to the BK nonlinear equation in the diffusion approxima-
tion for the BFKL kernel.

C. Solution to BK equation with the diffusion kernel
at high energies

The surprising result is that the amplitude in the
momentum representation turns out to be constant at high
energies and it does not show the geometric scaling
behavior. In this section, we show that both these features
are the artifact of the simplified BFKL kernel that we have
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used. As have been discussed, we used the diffusion
approximation of Eq. (31) (aty — %) for the BFKL kernel.
The BK equation in the momentum representation (kz)
takes the following form:

ON(k, ,byY) _ 0 .
(aly)zas{)(<—a§> (ky,b;Y)— Nz(kpb;y)},
(54)
with & = In k% and
0 0*
asy < 05) BFKL 02 (55)

[see Eq. (31) at y — 1].

The asymptotic solution to Eq. (54) has a simple form:
NP (k) = A‘;—i‘“. Plugging in Eq. (54) N(k,,b;Y) =
N*YmP (k) — AN(k,,b;Y) and considering AN(k,,
b;Y) < 1, we obtain the following linear equation for
AN(k,,b;Y):

OAN (k. b;Y N
% = —Appx, AN (k| , byY)

2

0 -

Equation (56) has the same form as the linear BFKL
equation but with the negative intercept. Hence, the
solution to Eq. (56) can be obtain from Eq. (36),

|

A(Y, . R:B) = PR? / kpdley o (k) / Kk To(KR) A(Y, Ky s B).

4uye°5/

AN(k,,b;Y) = &t Y=

(DY)3/2 57)

Therefore, one can see that (i) the solution at high
energies does not show the geometric scaling behavior that
was predicted in Ref. [65], and (ii) at large Y it decreases as
exp(—ConstY) instead of exp(—Const¥?) [65]. Note that
we use the same procedure to Eq. (54) as was developed in
Ref. [65] to the general kernel of the BFKL equation. On
the other hand, applying the approach of Ref. [53] to the
scattering amplitude taking into account Eq. (57), we
obtain Eq. (51) for kx> 1.

Concluding, we state that the scattering amplitude of
Eq. (51) gives more microscopic insight in the structure of
the scattering amplitude and reproduces both approaches
of Refs. [52,65]. It is worth mentioning that Eq. (54),
being the Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP)
equation [66,67], shows the geometrical scaling behavior in
the preasymptotic region in the vicinity of the saturation
scale. Equation (57) also indicates that our assumption
£/Y <1 is not substantial for the main features of the
amplitude behavior.

D. Dipole-dipole scattering amplitude
at high energies

The dipole-dipole scattering amplitude takes the follow-
ing form:

We use the Mellin transform for J(k;r) (see formula 6.8.1 of Ref. [68]),

e+ico d}/
Jo(krr) :/ 5

—ico 27[[

Note that in Eq. (59) we take % >e> 1.

Introducing a new variable kpk, = ¢, we can rewrite Eq. (58) in the form

k e+ioco
A rit) =2 [ cacr [T gy

e—ioco

211
r(l-

Noting that A(Y,ky,k’;b) depends only on ¢, we can integrate Eq. (60) over k; and y’, which results in

(Yer)—r2R2/§dc:/

(58)
L2 'TGy)
(kTr) y@' (59)
; o+ — 271 (L
Ly) fetio dy (¢ N\ 27Ty .
27) /e—ioo 2—m<ER> WA(Y,kT,kT,b). (60)
l—Q(l _57 T T’

To take the integral over ¢, we simplify the expression for ABFKE(Y, ky k5 b) of Eq. (50) considering ysp = % and

reducing it to the following expression:
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16
87 4 k k’ b2 b4k2k’2)
BFKL /B — T
APTRN(Y ke K3 b) = (DY) ks 52 Il exp AprxLY 4DY
N
N(k 2/r;kf, - 2/R) = — 62
= ok, Nk = 2/ ik = 2/R) =7 (62

where we use Eq. (36). The new variable { = kzk.

Using the integral representation for the incomplete gamma function [see formula 8.353(3) in Ref. [59]] and Eq. (62),

we obtain

e+ico (]
A(Y,r,R;b) :,ursz/CdC/ —2]/ ¢
€—ioo Tl

e+ico
—ww [ e
€—ico 2mi

d—}/, (Rr)~"

[
=u

i 27iT2(1 —%y)( sm(ﬂy)

Closing the contour of integration over y on negative y,
we obtain the scattering amplitude as the sum of (rRN =
APFRL(y &))", where &, = In(Z). If we close the contour
on the singularities for positive y > 1, we have the
asymptotic series, which determines the behavior of the
scattering amplitude at high energies (at large values of Y).
One can see that the integrant has no singularities at y = 2
and the first pole appears at y = 3, which leads to

o In(APEL(Y. £)) /)

A rRB) =1 ey &)

(64)

where H = ABFKL/&S'
Therefore, we found that the scattering amplitude
decreases at large values of Y (at high energies).

V. CONCLUSIONS

In this paper, we have three results. First, we derive the
recurrence relations for dipole densities (p,) in QCD for
the BFKL parton cascade. These relations allow us to find
the dipole densities from the solution to the BFKL equation
for p;. Note, that Eq. (25) for the energy evolution of
the parton densities is also new. Second, using the dif-
fusion approximation for the BFKL kernel, we resolve
these recurrence relations and find the leading terms in
pp o ™Y (Tt is worth mentioning that these relations
are suited for the numerical estimate of the dipole densities,
opening a new way for the numerical simulation of the
scattering amplitudes using Eq. (27).

Third, for the first time, we sum analytically the large
Pomeron loops in QCD using these solutions. As a result of
this summation, we obtain the dipole-dipole scattering
amplitude. Surprisingly, it turns out that this amplitude
decreases at large values of Y. We believe that such a
behavior of the scattering amplitude follows from the

LAy e
Rt T
2Gy) [ T _
Fz(l—;/)/o et T NI}
)(rRN/ﬂ) (63)

|

simplified kernel of the BFKL equation in the diffusion
approximation, as has been demonstrated in Sec. IV C. The
physics origin of such behavior is that the diffusion BFKL
kernel does not lead to the saturation both in the BK
equation and in dipole-dipole amplitude. In other words,
the first attempt to sum analytically BFKL Pomeron loops
in QCD leads to the scattering amplitude that satisfies both
t and s channel unitarity without saturation. Hence, the sum
of Pomeron loops gives the typical contribution to the S
matrix at high energies, which turns out to be larger than the
rare fluctuations discussed in Ref. [53] and which will lead
to the main contribution to the scattering amplitude for
more realistic approximation for the BFKL kernel. The fact
that the diffusion approximation to the BFKL kernel is so
deficient turns out to be a great surprise to us, especially
because this approximation, which leads to the F-KPP
equation, has been widely used to describe the deep
inelastic scattering (see Ref. [1] for review). On the other
hand, such a result is not new for the Pomeron calculus (see
Ref. [69] and references therein). It should be emphasized
that shortcomings of the diffusion approximation force us
to look at numerical estimates of Refs. [10,11] with a grain
of salt, since the diffusion approximation was used in these
papers. We have to believe that these estimates have been
made in the preasymptotic region where the diffusion
approximation generates the geometric scaling behavior
of the scattering amplitude.

Certainly, summing the Pomeron loops for more a
realistic approximation for the BFKL kernel that leads to
the saturation will be our first problem to solve in the
future. We wish also to note that, even in the present form,
the sum of Pomeron loops can be useful in discussion of the
multiplicity distribution of the produced gluons.

We believe that our reader can take the following results
from this paper. First, it is the new evolution equation for
dipole densities [see Eq. (25) and the recurrence relation
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between them; see Eq. (26)]. They are derived for the
general BFKL kernel. The recurrence relations are well
suited for the numerical estimates of the scattering ampli-
tudes. Second, it is the solution of Eq. (47), which has been
found for the BFKL kernel in diffusion approximation.
However, one can use these solutions only in the vicinity of
the saturation scale, where they reproduce the geometric
scaling behavior [66,67]. The third is the unexpected result
that the diffusion approximation cannot describe the high
energy asymptotic behavior both for the BK equation and
for dipole-dipole scattering. The failure of the diffusion
approximation is surprising and instructive since most of

experts bear in mind the diffusion approximation when
discussing the BFKL Pomeron contribution.
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