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We provide a systematic study of hybrid neutron star equations of state (EOS) consisting of a relativistic
density functional for the hadronic phase and a covariant nonlocal Nambu–Jona-Lasinio (nlNJL) model
to describe the color superconducting quark matter phase. Changing the values of the two free parameters,
the dimensionless vector and diquark coupling strengths ηV and ηD results in a set of EOS with varying
stiffness and deconfinement onset. The favorable parameters are obtained from a systematic Bayesian
analysis for which the multimessenger constraint on the neutron star radius at 14M⊙ and the combined
mass-radius constraint for PSR J0740þ 6620 from NICER experiment are used as the constraints.
Additionally, the transition from hadronic matter to deconfined quark matter is constrained to occur above
nuclear saturation density. Hybrid stars modeled with these favorable parameters are compatible with the
NICER results for the radius of the highest known mass neutron star, PSR J0740þ 6620. Three new
observations interesting for neutron star phenomenology are reported: (i) we show that the constant sound
speed (CSS) EOS provides an excellent fit to that of the nlNJL model which implies the squared speed of
sound at high densities to be about 0.5 for the optimized parameters; (ii) we give a simple functional form
for the mapping between the parameter spaces of these two models valid for the whole range of relevant
chemical potentials and (iii) we observe that the special point property of hybrid EOS based on CSS quark
matter generalizes to a set of lines consisting of special points when two EOS parameters are varied instead
of one. A lower limit for the maximum mass of hybrid stars as a function of the vector coupling strength is
obtained.
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I. INTRODUCTION

The last few years have been a brilliant time for
astrophysics with various observations made on compact
stars in isolation and in binaries yielding their mass, radius,
and tidal deformability [1–6]. These observations provide
important data constraining the equation of state (EOS) of
dense matter, the joining element between astrophysics,
nuclear and particle physics. In particular, the most recent
results of NICER for the radius of the most massive
observed pulsar, PSR J0740þ 6620 [1,2], introduce a
challenge for hadronic matter EOSs which have to result
in a maximum neutron star (NS) mass above 2M⊙ and a
relatively large radius above 12 km at this high mass. At the
same time, the EOS should be soft enough around 1.4M⊙

to fulfill the tidal deformability constraint from the binary
neutron star merger GW170817. This challenge can be
faced by constructing a phase transition from hadronic
matter to deconfined quark matter that occurs below
1.4M⊙. Although a transition to quark matter softens the
EOS, the quark EOS should be rather stiff to fulfill the
observational constraints. Recent investigations of neutron
star (NS) properties support the idea that deconfined quark
matter builds the cores not only of the heaviest known
NS [7], but even of all NS in the presently observed mass
range [8]. In order to draw such conclusions, the equation
of state for the quark matter phase in NS is needed.
The best candidates to provide a reliable quarkmatter EOS

under NS conditions are effective models that share key
features with low-energy QCD, such as dynamical chiral
symmetry breaking and the resulting low-energy theorems as
the Gell-Mann–Oakes–Renner and Goldberger-Treiman*Guest scientist.
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relations. The most popular chiral effective model that
reasonably fulfills these requirements is the Nambu–Jona-
Lasinio (NJL) model [9,10], that was developed in order to
understand the generation of a mass gap for fermions
(nucleons) in analogy to the energy gap in the BCS model
of electronic superconductivity, based on local four-fermion
interactions. With the introduction of quarks as the funda-
mental fermionic degrees of freedom of strongly interacting
matter, the model has been reformulated on that level of
description, see [11–17] for early reviews and [18] for the
NJL model analysis of dense quark matter.
The local NJL-type models have a major caveat:

the absence of confinement. A local four-fermion cou-
pling is incompatible with the strong coupling at large
distances that is phenomenologically established by
hadron spectroscopy and lattice QCD simulations of
the free (potential) energy between static (heavy) color
charges that exhibits a funnel-shaped interquark potential.
One way to bring effective low-energy QCD models
closer to capturing also the confining nature of the strong
interaction at large distances is the generalization of the
local four-fermion coupling to a nonlocal four-point
function. A first step in this direction has been done with
so-called “bilocal QCD” models [19,20], which could
successfully address low-energy QCD and hadron phe-
nomenology on the basis of a nonperturbative model
gluon propagator [21] or a relativistic generalization of
confining potential models [22].
The next step towards the modern formulation of the

nonlocal chiral quark model (in the following denoted as
“nlNJL”) was to generalize the interaction model from
a two-point function to a four-point function, following
two schemes. The first one defines the nonlocal interac-
tion similar to the relativistic Smatrix with its dependence on
the kinematic Mandelstam variables and assumes separabil-
ity (a product ansatz) of pairwise relativemomenta [23]. This
scheme has later been denoted as the one-gluon exchange
(OGE)model. For themodel form factors the ansatz has been
made of instantaneous (energy-independent) functions that
depend on the relative three-momenta only. In this way, the
evaluation of thermodynamic properties of the model within
the imaginary time formalism became straightforward
because the Matsubara summations could still be performed
analytically as in the original NJL model which was
recovered for a step function as the form factor. Using
smooth functions as form factors of the nonlocality resulted
in a lowering of the pseudocritical temperature of the chiral
restoration, closer to the results from lattice QCD [23]. The
second scheme, denoted as instanton-liquid model (ILM),
was built using a simple product ansatz for the form factors
that were attached to each of the four fermion “legs” [24].
A comprehensive overview over the nonlocal chiral quark
models in this early era has been given by Ripka in his
book [25], where formal details and more references can
be found.

With the extension to rank-2 separable gluon propagator
models, and using form factors depending on the
4-momentum, a close correspondence to the Dyson-
Schwinger equation approach could be established [26].
The finite-temperature extension led to a dramatic reduc-
tion of the chiral restoration temperature [27] which
recently has been found in lattice QCD simulations as
T0
c ¼ 132þ3

−6 MeV in the chiral limit [28]. When coupling
the nonlocal chiral quark dynamics to a gluon background
field within the Polyakov-loop extension of the model
(see [29] for the details in case of the local NJL model,
where besides adding gluonic degrees of freedom at finite
temperatures confinement is mimicked), acceptable values
and systematics for the pseudocritical temperature of QCD
could be obtained [30,31] and thermodynamic instabilities
associated with complex-conjugated mass poles could be
largely cured [32].
Another advantage of using covariant form factors in the

nlNJL model is that the momentum dependence of the
quark mass as well as the wave function renormalization
factor of the quark propagator can be described in accor-
dance with lattice QCD simulations [33]. Since the non-
perturbative low-energy interaction of the nlNJL model can
be calibrated using lattice QCD simulations, one has a
serious basis to extend studies of thermodynamic properties
from the temperature axis into the whole phase diagram
including high baryochemical potentials where no lattice
QCD simulations are available because of the severe sign
problem. Using the nlNJL model with realistic form
factors, the position of the critical end point in the phase
diagram has been obtained for temperatures below
130 MeV [34,35], a prediction that can be investigated
in the upcoming heavy-ion collision experiments with
collision energies

ffiffiffiffiffiffiffiffi
sNN

p ∼ 3–6 GeV, e.g., at the NICA
facility of JINR Dubna, or in the fixed-target experiment at
RHIC; see Fig. 14 of Ref. [36]. A recent detailed review on
nlNJL models and their applications to studies of matter
under extreme conditions is given in [37].
In the present work we want to study the EOS of quark

matter in NSs at vanishing temperature. A first application
of the covariant nlNJL model has been given in [38], where
a simple Gaussian form factor was used and only the scalar-
pseudoscalar meson interaction channel has been included.
It could be shown that such a model with two quark flavors
is equivalent to a thermodynamic bag model with a bag
pressure B ¼ 81.3 MeV=fm3. The strange quark flavor
appeared sequentially at a higher density and rendered the
corresponding neutron star unstable against gravitational
collapse for masses above 1.62M⊙. In order to describe
stars with masses above 2M⊙ as required by recent neutron
star observations [5], one has to include a repulsive vector
meson interaction channel.1 In hybrid star models the

1We note that in the local limit, such a model has been
introduced as the “vBag model” [39].
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transition to such a quark matter phase occurs only at rather
high densities, close to the maximummass of the sequence.
As it is known from studies using the local NJL model, the
simultaneous addition of a scalar diquark interaction
channel leads to the effect of diquark condensation (color
superconductivity) which pushes the onset of quark decon-
finement to lower densities and results in quark matter
cores for neutron stars with typical masses of ∼1.4M⊙
[40,41]. The situation is similar for the covariant nlNJL
model where increasing the diquark coupling results in a
lowering of the onset density for the chiral restoration
transition [42]. Correspondingly, a phenomenologically
satisfactory situation occurs for the hybrid neutron star
EOS when a repulsive vector and diquark interaction
channel are included to the covariant nlNJL model [43]
since it develops an early deconfinement transition to a stiff
color superconducting quark matter phase.
Consequently, in this study we will use the covariant

nlNJL model in the OGE scheme that is parametrized with
the dimensionless vector and diquark coupling strengths
(ηV and ηD), given as ratios of the vector and diquark
couplings, GV and GD, to the scalar coupling constant GS,
respectively. The values of these input parameters, how-
ever, are not known from first principles. In Ref. [44] a
similar analysis is performed in the frame of the instanta-
neous nlNJL interaction model with three-dimensional
(3D) form factor in the momentum space, to study a family
of hybrid EOS for compact stars.
We will perform the Bayesian analyses based on the

observational constraints of NS to investigate the most
likely values for these two parameters which results in the
most likely EOS. From the Bayesian analysis in [8], it is
concluded the phase transition onset most likely occurs in
the center of neutron stars with masses around 1M⊙ which
is in agreement with the observed compactness [45].
Therefore, we use a special parametrization of the gener-
alized relativistic density functional (GRDF) model that is
called DD2p00 ([46], without excluded volume) and
DD2p40 ([46,47], with excluded volume) with baryon-
meson couplings that depend on the total baryon density of
the system. It is a stiff hadronic matter EOS which supports
having a phase transition onset at low densities. It is worth
mentioning that the Bayesian analysis of multimessenger
M − R data with interpolated hybrid EOS has been also
investigated recently in [48] when the hadronic EOS has
been fixed to be APR [49]. In the present work, we
investigate the opted parameters of the nlNJL model via
a Bayesian analysis based on a Maxwell construction for
the phase transition from a DD2 model to a nlNJL one. It is
worth mentioning that compared to APR EOS, DD2 has
been extended to include hyperons and fulfills the maxi-
mum mass constraint of NS [50].
While the original version of the nlNJL model is

formulated with constant, density-independent coefficients,
in Refs. [51,52] density-dependent coefficients have been

introduced in such a way that the results of a recent
relativistic density-functional approach to quark matter
[53] could be reproduced. The applicability of both
versions of the nlNJL model in constructing the phase
transition from hypernuclear matter to deconfined quark
matter has also been investigated [54,55].
The microscopic approach on the basis of the nlNJL

model has the advantage that it allows us to determine the
ranges of the parameters (ηV and ηD) in the Lagrangian of
an effective low-energy QCD model using the spectrum of
observable NS properties. For details, see Ref. [56]. This
strategy, however, involves time-consuming numerical
routines for solving the self-consistent nonlocal mean field
equations together with an extrapolation procedure at high
densities. For this reason, we explore the possibility to
mimic the nlNJL results with a simpler approach, the
constant-sound-speed (CSS) EOS model [57,58].
The CSS approach is widely used in the literature, in

particular, for the classification [57] and systematics
[59,60] of hybrid neutron stars. Among the applications
of the CSS model is also the investigation of the third and
fourth families of compact stars for which stable branches
have been verified as well [61–63]. The work of Ref. [58]
demonstrates the possibility for NJL model-based
approaches to color-superconducting cold quark matter
to be well approximated by CSS parametrization. It was
shown that the EOS for quark matter developed for the
nonlocal separable NJL model with form factors depending
on the three-momentum in [64,65] can be well fitted with
the CSS model, see also [44].
It is worth mentioning that the CSS extrapolation

becomes necessary for nlNJL models of certain values
of ηV and ηD parameters due to the limitation of its
covariant form factor realization [42] to chemical potentials
up to ∼1600 MeV. However, we would like to map the
nlNJL EOS to the CSS EOS for the whole range of
chemical potentials in the quark matter phase, and not
only for μB > 1600 MeV, as it was previously done [56].
This mapping would enable a replacement of the compli-
cated quark matter EOS by a simple model that gives the
EOS of quark matter not only in the two-flavor color-
superconducting (2SC) phase but also at higher densities
for the color-flavor-locked (CFL) phase.
Moreover, another significant aspect of employing the

CSS EOS at high densities is the appearance of the special
point on the mass-radius (M − R) diagram of the hybrid
stars. An analytical study has been performed employing a
CSS EOS that explains the existence of a very small region
on the M − R plot of hybrid stars where all of the lines
representing the sequences of models with different con-
stant values of the bag pressure intersect [66].
The main idea of this work is to provide a systematic

study on the parameters of the nlNJL model that vary in the
range 0.10 < ηV < 0.20 and 0.70 < ηD < 0.80 based on
Bayesian analyses which are performed with respect to the
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modern mass and radius constraints of NS. We find the
most probable parameters of the quark matter model in
hybrid EOS using a Maxwell construction, which is very
well compatible with the observed constraints and in
particular, with the most recent results of NICER for the
radius of NS.
Moreover, a simple functional form is found in this work

that enables a mapping between the two parameter spaces,
the nlNJL model parameters ηV and ηD and the parameters
of the CSS model: the slope parameter A, the squared speed
of sound c2s and the bag pressure B. With the simplified
description of the quark phase in hybrid NS, its EOS would
become easier to handle and would at the same time have
strong microphysical justification. Following the fact that
the nlNJL EOS appears to isomorph to a CSS parametri-
zation for the high-density phase, we show that the special
point properties discussed in [66] generalize to a set of lines
consisting of special points, when two parameters (ηV and
ηD) are changed instead of one parameter (bag pressure).
The structure of the present paper is as follows: in Sec. II

we introduce the formulations of both nlNJL and CSS
models and their parameters. The results for mass, radius,
and tidal deformability of the obtained hybrid stars are
shown in Sec. III. The results of the Bayesian analysis with
the astrophysical inputs for these analysis are presented in
Sec. IV. Finally, we provide the conclusion of this study in
Sec. V. The functional dependence between the two
parameter sets of the CSS and nlNJL models is found
and the parameter mapping between the two models is
discussed in Appendix A. We present our analysis on
special points in the mass-radius diagram in Appendix B.
Moreover, in Appendix C, a phenomenological EOS is
introduced to be investigated how well nlNJL EOS is fit to
it compared to CSS parametrization.

II. EQUATION OF STATE MODELS FOR THE
QUARK MATTER PHASE OF A NEUTRON STAR

A. Generalized nlNJLmodel with ηV and ηD parameters

For the microphysical description of the quark matter
phase we consider a chiral quark model that includes
nonlocal separable interactions and can be considered as
a nonlocal extension of the NJL model. We employ the
two-flavor SUð2Þf model, developed in Refs. [23,42,43],
which is described by the Lagrangian

L ¼ ψ̄ð−i=∂þmcÞψ −
GS

2
jfSj

f
S −

GD

2
½jaD�†jaD þ GV

2
jμVj

μ
V;

ð1Þ

with the nonlocal generalizations of the quark currents

jfSðxÞ ¼
Z

d4zgðzÞψ̄
�
xþ z

2

�
Γfψ

�
x −

z
2

�
; ð2Þ

jaDðxÞ ¼
Z

d4zgðzÞψ̄C

�
xþ z

2

�
iγ5τ2λaψ

�
x −

z
2

�
; ð3Þ

jμVðxÞ ¼
Z

d4zgðzÞψ̄
�
xþ z

2

�
iγμψ

�
x −

z
2

�
; ð4Þ

in the scalar meson, scalar diquark, and vector meson
channels, respectively. The grand canonical partition func-
tion of the quark matter system,

Z ¼
Z

Dψ̄Dψ exp

�
−
Z

β

0

dτ
Z

d3x½L − μψ̄γ0ψ �
�
; ð5Þ

after bosonization by the Hubbard-Stratonovich transfor-
mation, can be evaluated in the mean field approximation
(MFA) with the result for the thermodynamical potential

ΩMFA ¼ −T lnZMFA ð6Þ

¼ σ̄2

2G
þ Δ̄2

2H
−

ω̄2

2GV

−
1

2

Z
d4p
ð2πÞ4 ln det ½S

−1ðσ̄; Δ̄; ω̄; μfcÞ�; ð7Þ

see Refs. [42,43] for details.
The inclusion of the scalar diquark channel together with

the repulsive vector interaction channel, plays an important
role in the phenomenology of hybrid EOS of compact stars.
The diquark condensate gives rise to color supercon-

ductivity (2SC) and is responsible for lowering the onset of
the phase transition from the phase with broken chiral
symmetry to the 2SC phase. The vector interaction induces
a stiffening behavior in the EOS, which is essential to reach
compact star masses above 2M⊙. Systematic investigation
of hybrid NS properties reveals [41,56] that phenomeno-
logical constraints from mass and radius measurements are
optimally fulfilled when an increase in the diquark coupling
is accompanied by a simultaneous increase in the vector
coupling.
The model includes three input parameters: mc (current

quark mass), p0 (effective momentum scale), and GS
(coupling constant). They are determined to reproduce
the pion mass and decay constant as well as the chiral
condensate in the vacuum, at vanishing temperature and
densities. The two remaining coupling constants GS and
GV are driving the terms that, after bosonization, give rise
to the color superconducting gap and the vector meson
mean field. The dimensionless ratios ηD ¼ GD=GS and
ηV ¼ GV=GS are free parameters. From a Fierz rearrange-
ment of the OGE interactions one obtains ηD ¼ 3=4 and
ηV ¼ 1=2 that could serve as an orientation for the values of
these parameters in the vacuum. There is no precise
derivation of effective couplings from QCD, as we consider
here the strongly nonperturbative low-energy regime.

M. SHAHRBAF et al. PHYS. REV. D 107, 054011 (2023)

054011-4



Moreover, one has to expect that these couplings could be
subject to a medium dependence. However, ηD values
larger than η�D ¼ ð3=2Þm=ðm −mcÞ may lead to color
symmetry breaking in the vacuum [67] (where m stands
for the dressed mass and mc for the current quark mass).
In the present work we consider a window of values for

ηD and ηV that was also explored in previous works
Refs. [41,48,51].
The mean field values σ̄, Δ̄, and ω̄ are obtained from the

coupled equations

∂ΩMFA

∂σ̄
¼ 0;

∂ΩMFA

∂Δ̄
¼ 0;

∂ΩMFA

∂ω̄
¼ 0: ð8Þ

As we intend to describe the behavior of quark matter in the
cores of NSs, we have to take into account the presence of
leptons (electrons and muons) which we include into the
thermodynamic potential as free relativistic Fermi gases. In
addition, we have to consider that the stellar matter satisfies
the following conditions: equilibrium under weak inter-
actions (chemical equilibrium) as well as color and electric
charge neutrality. As a consequence, it can be seen that the
six different chemical potentials μfc (depending on the two
quark flavors u and d and quark colors r, g, and b) in
Eq. (7) are not independent from each other and can be
written in terms of three independent quantities: the
baryonic chemical potential μ, the electron chemical
potential μe, and a color chemical potential μ8.
Basically, for each value of μ we solve self-consistently
the gap equations (8), complemented with the conditions
for β equilibrium and electric charge and color charge
neutrality (details of the calculation can be found in the
Appendix of Ref. [43]).
In the present work, we consider a Gaussian form factor

gðpÞ ¼ expð−p2=p2
0Þ in Euclidean 4-momentum space.

The fixed input parameters of the quark model considered
here are mc ¼ 5.4869 MeV, p0 ¼ 782.16 MeV, and
GSp2

0 ¼ 19.804.

B. Constant speed of sound formulation

The CSS EOS at zero temperature can be written in the
form [57,59]

PðμÞ ¼ A

�
μ

μx

�
1þβ

− B; ð9Þ

where μx ¼ 1 GeV defines the scale for chemical potential,
A is a slope parameter in the units of the pressure, B is the
bag pressure, and β ¼ 1=c2s is a parameter related to the
squared speed of sound c2s ¼ dP=dε. The pressure as a
function of the chemical potential is a thermodynamical
potential from which other EOS can be obtained by
derivation. For instance, the baryon density reads

nBðμÞ ¼
dPðμÞ
dμ

¼ A
1þ β

μx

�
μ

μx

�
β

; ð10Þ

and the energy density is given by

εðμÞ ¼ μ
dPðμÞ
dμ

− PðμÞ ¼ Aβ

�
μ

μx

�
1þβ

þ B: ð11Þ

Using the definition of the pressure (9), the energy density
(11) can be rewritten as

εðPÞ ¼ βPþ ð1þ βÞB; ð12Þ

which directly reveals that the squared sound speed is
c2s ¼ 1=β ¼ const, since β ¼ const.
The speed of sound determines the stiffness of the EOS,

which has to be large enough to allow for the maximum
neutron star mass to fulfill the observational lower bound of
2.01M⊙ from the Shapiro-delay based mass measurement
on PSR J0740þ 6620 [5] (a recent upgrade of the former
mass measurement [68]) at the 1σ level. The prefactor A
changes the slope of the PðμÞ curve and has thus also an
effect on the stiffness of the EOS: lowering the value of A
increases the stiffness. The effective (negative) bag pressure
B realizes quark confinement at low densities in quark
matter EOS because it makes sure that any small but
positive pressure of a hadronic phase would be preferable
this region. The parameters A, B, and c2s are free parameters
which define the behaviour of the quark matter EOS.
It is worth mentioning that for a large class of quark

matter models, including the standard NJL model [69,70]
or its nonlocal generalization with instantaneous, three-
momentum dependent form factors [71], it was observed
that the sound speed appears largely density-independent
[58]. For the covariant nlNJL model such an observation
has not yet been made. Therefore, in the present work it is
for the first time considered how well the covariant nlNJL
model in the 2SC phase can be approximated by the quark
matter EOS with constant speed of sound, given by Eq. (9).
The CSS parametrization has been used recently for

describing the hybrid stars in [72,73]. It has been phe-
nomenologically shown that PSR J0740þ 6620 could be
described very well as a hybrid star with quark core in [72].
In that work the value of c2s was chosen to be 1=3, 2=3, or
3=3 and it was apparent that a value between 2=3 and 3=3
(for instance, c2s ¼ 1=2) could best describe the radius for
hybrid star in agreement with the recent NICER results.
In [73], they have shown that a 2.6M⊙ NS would require
c2s ≥ 0.55–0.6 in the inner core, and a c2s ≈ 0.45–0.6 would
potentially be compatible with the NICER results for the
radius of NS which also imply a high value of maximum
mass. Not only in the core of high mass pulsars, but also
for a very light NS like the central compact object in
the supernova remnant HESS J1731-347 with a mass
M ¼ 0.77þ0.20

−0.17M⊙ and radius R ¼ 10.4þ0.86
−0.78 km recently
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reported by [74], because of the untypically small values of
mass and radius, the composition is likely to be super-
conducting quark matter rather than just ordinary nucleonic
matter. Therefore, the hypothesis of forming color super-
conducting quark matter already in the cores of NS at
subsolar masses is supported from a phenomenological
point of view. We will discuss this aspect further in the next
section.
It would be a fantastic finding that the EOS of a nonlocal

chiral quark model as one of the most advanced micro-
scopic models for color superconducting quark matter, with
the favorable parameters found by a Bayesian analysis, can
be described with high accuracy by the simple constant
sound speed EOS that is widely used in the phenomenology
of compact stars with quark matter cores. While in many
phenomenological models the squared sound speed is
assumed to be 1=3 (conformal limit) or 1 (causal limit),
we find in a systematic way that a value close to 1=2
describes color superconducting quark matter. This result is
in agreement with [44], where a 3D form factor is
considered. Furthermore, varying the two parameters of
the nlNJL model enables us to perform an investigation
on the trains of special point in the M − R diagram of
hybrid stars.
In order to test our hypothesis, we perform a fit of the

nlNJL EOS to the CSS one for the relevant range of the
nlNJL parameters ðηV; ηDÞ including a χ2 analysis in
Appendix C. In that Appendix, we also provide a set of
equations for mapping the nlNJL parameters to the ones
defining the CSS model.

III. RESULTS AND DISCUSSION

In order to obtain realistic EOS models for hybrid
neutron stars with quark matter cores, one has to add a
hadronic phase and construct the hadron-to-quark matter
phase transition. For the hadronic phase, we have chosen
the relativistic density functional EOS “DD2p40,” which
captures the quark substructure effect of quark Pauli
blocking among nucleons [75] by a modified excluded
nucleon volume procedure [47]; see the black dashed line
in Fig. 1. For the phase transition construction we have
chosen a standard Maxwell construction, where the critical
pressure Pc and the critical chemical potential μc of the
first-order transition are obtained from the crossing of
hadronic and quark matter lines in the P − μ diagram, see
Fig. 1. In that figure, the vertical dashed lines indicate the
chemical potential at nuclear saturation density (n0) and at
2n0. Applying a saturation density constraint, one would
abandon all quark matter EOS for which the crossing with
the hadronic EOS occurs to the left of the line labeled
by “nB ¼ n0.”
In Fig. 2, we show the resulting hybrid EOS in the plane

pressure versus energy density PðεÞ for the whole domain
of parameters which exhibit jumps in the energy density at
the corresponding critical pressure that are characteristic for

first-order phase transitions. In this figure, different values
of ηV are shown with different colors while different line
styles correspond to different values of ηD.
In Fig. 3 we show the squared sound speed c2s ¼ dP=dε

as a function of the baryon density in units of the saturation
density n0 ¼ 0.15 fm−3, which vanishes in the region of the
(energy) density jump because of the vanishing gradient of
the pressure. One clearly identifies the CSS quark matter
phases in this figure with values of the squared sound speed
in the range 0.45 < c2s < 0.54 for the whole domain of
parameters; see Table I.
The sequences of NS configurations that belong to each

EOS are obtained as solutions of the Tolman-Oppenheimer-
Volkoff equations [76,77] and presented in the M − R

FIG. 1. The pressure as a function of baryonic chemical
potential for the Maxwell construction of hybrid stars over the
whole range of ηV and ηD. Different colors correspond to different
values of ηV while different line styles correspond to different
values of ηD. The vertical dashed lines indicate the chemical
potential at which the hadronic phase model (DD2p40) gives
nuclear saturation density (n0) and 2n0, respectively.

FIG. 2. The pressure as a function of energy density for the
Maxwell construction of hybrid stars over the whole range of ηV
and ηD. Colors and line styles correspond to variations of ηV and
ηD, respectively, as in Fig. 1.
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diagram of Fig. 4. We show the hybrid solutions for the
Maxwell construction together with the one for the purely
hadronic model DD2p40. The ηV and ηD parameters were
considered running over the whole range selected for the
present study. We note that an interesting phenomenon
becomes apparent in Fig. 4: The sets ofM − R curves for a
fixed value of ηV (shown with the same color) and varying
ηD get collimated in focal points, the so-called “special
points (SP),” that form a “train” with coordinates
ðRSP;MSPÞ, well described by a straight line in the
M − R diagram. This line plays an important role for
NS phenomenology since each special point is closely
related to the maximum mass Mmax of a given hybrid EOS
by the relation

Mmax ¼ MSP þ δjM�
onset −Monsetjκ; ð13Þ

which slightly differs from an earlier version of such a
relation found in [59,78]. Here δ is a small, positive
parameter depending on the class of quark matter EOS,
κ ¼ 2 and Monset is the mass of the NS for which the onset
of deconfinement occurs in its center. This relation (13)
states that there exists a special onset massM�

onset for which
the train of SPs coincides with the line of maximum masses
that are obtained for hybrid star EOS upon variation of free
parameters. It was found first in [79] and then confirmed in
[80] where the maximum mass configurations were inde-
pendently confirmed by checking that the fundamental

FIG. 3. The squared speed of sound for the Maxwell con-
struction of the hybrid EOS over the whole range of ηV and ηD
parameters encoded by different line colors and styles, respec-
tively, as in Fig. 2.

TABLE I. The values of A, B, and c2s calculated from the CSS
fit to the nlNJL model defined by the values of ηD and ηV .

ηD ηV A [MeV=fm3] c2s [c2] B [MeV=fm3] χ2

0.70 0.15 91.484 0.488 87.209 0.039
0.71 0.12 91.053 0.456 83.425 0.022
0.71 0.14 91.649 0.476 85.815 0.032
0.71 0.16 92.963 0.502 89.021 0.047
0.71 0.18 94.481 0.532 92.214 0.075
0.72 0.13 92.132 0.467 84.592 0.026
0.72 0.15 92.954 0.490 87.209 0.038
0.72 0.17 94.366 0.517 90.408 0.058
0.73 0.12 92.612 0.457 83.280 0.021
0.73 0.14 93.190 0.478 85.658 0.031
0.73 0.16 94.170 0.503 88.385 0.048
0.73 0.18 96.211 0.535 92.290 0.073
0.74 0.11 93.236 0.449 82.095 0.017
0.74 0.13 93.563 0.468 84.217 0.026
0.74 0.15 94.410 0.491 86.884 0.039
0.74 0.17 95.780 0.519 90.011 0.061
0.75 0.12 94.000 0.461 82.899 0.044
0.75 0.14 94.875 0.481 85.614 0.031
0.75 0.16 95.894 0.506 88.391 0.056
0.75 0.18 97.934 0.538 92.249 0.078
0.76 0.13 95.235 0.470 84.101 0.027
0.76 0.15 96.153 0.494 86.873 0.039
0.76 0.17 97.660 0.522 90.172 0.063
0.77 0.12 95.556 0.461 82.437 0.021
0.77 0.14 96.433 0.483 85.287 0.032
0.77 0.16 97.770 0.509 88.512 0.074
0.77 0.18 99.685 0.541 92.155 0.085
0.78 0.15 97.485 0.495 86.179 0.042
0.78 0.17 99.340 0.525 90.034 0.065
0.79 0.12 97.604 0.464 82.718 0.020
0.79 0.14 97.912 0.484 84.755 0.033
0.79 0.16 99.216 0.511 87.929 0.053
0.79 0.18 100.878 0.541 91.415 0.084
0.80 0.17 101.116 0.528 89.766 0.070

FIG. 4. Mass-radius relations for the Maxwell construction of
the hybrid EOS over the whole range of ηV and ηD. Their
encoding with different line colors and styles is the same as in
Fig. 2. For a comparison, the 1σ mass-radius constraints from the
NICER analysis of observations of the massive pulsar PSR
J0740þ 6620 [5] are indicated as blue [1] and green [2] regions.
Additionally, the green bar marks the radius constraint for a 1.4
solar mass neutron star from the joint analysis of the gravita-
tional-wave signal GW170817 with its electromagnetic counter-
parts at 90% confidence [3]. The new mass-radius constraint for
the strangely light neutron star HESS J1731-347 [74] is shown as
a data point with error bars for the case when extra priors are
taken into account in that reference.
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frequency of radial oscillations vanishes. This special mass
is characteristic for the class of hybrid EOS and amounts to
0.75M⊙ for the hybrid EOS considered in the present work
[79], where the hadronic phase is described by the DD2p40
model and the quark matter phase by the covariant nlNJL
model. More details on SPs are given in Appendix A.
Together with the lines of theoretical NS sequences, each

of which correspond to a hybrid EOS characterized by a
parameter pair (ηV , ηD), we show recent observational
constraints for NS radii at different mass regions. For the
high-mass region at 2M⊙, the results of two NICER teams
for the radius of PSR J0740þ 6620 are indicated as blue
[1] and green [2] areas; for the typical binary radio pulsar
mass region of 1.4M⊙, the combined multimessenger
analysis of Ref. [3] is shown as a green bar, and for the
low-mass region we show the recent result of a mass and
radius determination on the neutron star HESS J1731-347
reported in [74]. Since the status of this measurement is yet
not well accepted in the community, we give this result only
for orientation, but do not include it into our Bayesian
analysis. One could argue that the small radius for this very
light object could be indicative for a color superconducting
quark matter interior since only for the strongest diquark
coupling parameters there is a sufficiently early onset of
deconfinement and softening of the EOS, which provides
some overlap with the mass-radius range of this object.
Finally, in Fig. 5 we show the tidal deformability as a

function of M=M⊙ including the Λ1.4 constraint from the
low-spin prior analysis from GW170817 [4].

IV. BAYESIAN ANALYSIS

For the Bayesian analysis we have applied two con-
straints from neutron star observations. The first one is the

mass-radius constraint from PSR J0740þ 6620, the neu-
tron star component of a binary system with a white dwarf
companion. Its gravitational mass has been measured with
the relativistic Shapiro time delay effect based on data from
the 100-m Green Bank Telescope and the Canadian
Hydrogen Intensity Mapping Experiment telescope and
it is 2.08þ0.07

−0.07M⊙ (68.3% credibility) [5,68]. Its radius has
been estimated with fits of rotating hot spot patterns to data
from the Neutron Star Interior Composition Explorer

FIG. 5. Dimensionless tidal deformability Λ as a function of the
star mass for the Maxwell construction of hybrid EOS over the
whole range of ηV and ηD. The description of different line colors
and different line styles are the same as Fig. 2. The black circle
with vertical error bars shows the Λ1.4 constraint at 1σ from the
low-spin prior analysis of GW170817 [4].

FIG. 6. Bayesian analysis using the mass-radius measurement
for PSR J0740þ 6620 and the radius constraint for a 1.4M⊙
mass neutron star for the class of hybrid EOS obtained within a
Maxwell construction between DD2p40 and nlNJL in the two-
dimensional EOS parameter plane, ηV and ηD without a constraint
on the onset density for quark deconfinement. On the lower panel,
a contour plot is derived from the upper panel and a line indicates
the 1σ region in the parameter space over which the integrated
probability reaches 68.3% of the total probability.
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(NICER) and X-ray Multi-Mirror (XMM-Newton) x-ray
observations that resulted in 13.7þ2.6

−1.5 km (68%) [2].
The second one is the radius constraint for a 1.4M⊙ mass

neutron star, which is 11.75þ0.86
−0.81 km at 90% confidence.

This was estimated within a joint analysis of the gravita-
tional-wave event GW170817 with its electromagnetic
counterparts AT2017gfo and GRB170817A, and the gravi-
tational-wave event GW190425, both originating from
neutron-star mergers [3].
Additionally, we have introduced a lower limit for the

density of deconfinement in neutron star matter as an
additional constraint. We have chosen the saturation den-
sity n0 as this lower limit. It was realized as a cumulative
normal distribution with width σ ¼ 0.1n0. In order to avoid
the onset of deconfinement to occur below the saturation
density n0 beyond the 5σ level, we chose the expectation
value of the distribution to be 1.5n0.

From Fig. 6, one could see that without enforcing the
onset of the transition to quark matter to occur after
saturation density, the probability of the parameters diago-
nally increases with decreasing both values of ηV and ηD.
But employing the onset density constraint has a remark-
able effect on the results of Bayesian analysis, see Fig. 7. In
both Figs. 6 and 7, the lower panels show a 2D projection of
the Lego plot, where the heights are color coded. The
contour line indicates the 1σ region in the 2D parameter
plane over which the integrated probability amounts to
68.3% of the total probability.
Making the onset density of the first-order phase

transition to occur after the saturation density is a physical
constraint since we do not expect deconfined quark matter
below saturation density of nuclear matter that is closely
related to the interior density of heavy atomic nuclei.
Employing this constraint results in a favorable parameter
range for the nlNJL model to be ηV ¼ 0.14–0.17 and

FIG. 7. Same as Fig. 6, but with the additional constraint that
the deconfinement transition can occur only for densities exceed-
ing the saturation density.

FIG. 8. Mass-radius diagram for the set of EOS used in the
Bayesian analysis. Highlighted in color are those hybrid NS
sequences that belong to the most favorable parameter pairs in the
ηD − ηV plane according to Fig. 6 (upper panel, without onset
density constraint) and Fig. 7 (lower panel, with onset density
constraint). For orientation, values of the central baryon density
are marked along the sequence of purely hadronic NS.
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ηD ¼ 0.70–0.73. These values of parameters are the best
compatible ones with the employed observational con-
straints in the Bayesian analysis of this work. We illustrate
the selective effect of the constraints on the mass-radius
diagram in Fig. 8, where we highlight those NS sequences
that belong to the most favorable parameter sets in the
posterior distribution of Fig. 6 (upper panel) and of Fig. 7
(lower panel). In this sense, we have “measured” the values
of the a priori unknown parameters ηV and ηD in the
effective low-energy QCD Lagrangian using neutron star
phenomenology. On both panels of Fig. 8, we have marked
along the mass-radius curve for hadronic configurations a
sequence of density values between 1.0n0 and 2.0n0 from
which we can read off the most probable value for the onset
density of the deconfinement transition in the range
1.18nonset=n0 < 1.35 for the case without onset density
constraint (upper panel) and 1.60nonset=n0 < 1.77 with it
(lower panel).

V. CONCLUSION

In this work, we have found the favorable values for the
vector meson coupling and the diquark coupling in the
microscopic nlNJL model by performing a Bayesian
analysis when a first-order phase transition from hadronic
matter described within DD2p40 to color superconducting
quark matter is constructed.
The correspondence between the covariant nlNJL model

and the CSS model EOS was considered. We have
performed a mapping between the parameters of these
two models in a decent range with a χ2 value that qualifies
an excellent fit. The finding of this equivalence allows us to
employ the simpler CSS approach instead of the covariant
nlNJL model when a hybrid star EOS with color super-
conducting quark matter shall be constructed. The func-
tional fit provided in this work allows us to interpret the
parameters of the CSS model that are favorable for
explaining NS phenomenology in terms of the unknown
coupling constants of the effective low-energy QCD
Lagrangian. Therefore, we could finally confirm that
the covariant nlNJL is well fitted to the CSS parametriza-
tion with high accuracy. While these microphysical
parameters (the diquark coupling and the vector meson
coupling) are in this work allowed to vary in the range of
0.7 < ηD < 0.8 and 0.11 < ηV < 0.18, respectively, it is
possible to extend the range of applicability of the CSS
parameter fit also beyond these ranges. Utilizing a
Bayesian analysis with neutron star phenomenology, we
could determine the most probable values for these a priori
unknown parameters of the model Lagrangian for non-
perturbative low-energy QCD.
The equivalence of this covariant nlNJL model to a CSS

model parametrization has an interesting consequence
which is discussed in greater detail in Appendix A. We
have shown that simultaneously changing the two param-
eters (ηV and ηD) and understanding this as changing the

three parameters of the CSS model (A, B, and c2s) results in
the appearance of trains of special points instead of one
special point that emerges when only B is changed. We
have shown that a simultaneous variation of vector and
diquark coupling by fixed steps δηV and δηD while keeping
the ratio of variation ξ ¼ δηV=δηD fixed defines the lines
(trains) along which the special points are located. We have
performed linear fits describing the position of the trains of
special points in the mass-radius diagram and showed that
they remain unchanged when varying the hadronic matter
EOS from DD2p40 to DD2p00. The line corresponding to
ξ ¼ 0 plays a special role for the phenomenology of
compact stars. This line parametrizes the train of special
points with the highest slope in theM − R diagram, a proxy
for the lower limit on the maximum mass of hybrid NS as a
function of ηV , i.e., when varying the stiffness of quark
matter. This is an important and original achievement of the
present study.
Our studies can be used not only in order to explore the

phase transition between hadronic matter and color super-
conducting quark matter in cold NS, but it can also be
extended to finite temperatures when it will be useful
in simulations of core collapse supernovae [81] and
neutron star mergers [82–84] involving quark matter
deconfinement.
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APPENDIX A: “TRAINS” OF SPECIAL POINTS

In Fig. 4 of the main text one can see clearly that M − R
curves corresponding to a fixed value of ηV but different
values of ηD get collimated in a narrow region close to the
maximum mass which has been dubbed “special point”
(SP) [66]. Incrementing the value of ηV , a new SP is
obtained, so that for our set of EOS a train of special points
in the M − R diagram emerges. For better visibility of the
effect, we have selected a subset of 9 values for ηV and
show a 3 × 3 matrix of panels with the corresponding
M − R diagrams in Fig. 9.
In Fig. 10 we provide a detailed inspection of the

location of the special points in the M − R diagram. We
find the following systematics which would hold for a
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simultaneous variation of the Lagrangian parameters of the
quark matter EOS:
(1) Varying ηV and ηD simultaneously while keeping the

ratio of variations fixed to ξ ¼ δηV=δηD defines a

line MðξÞðRÞ ¼ aξRþ bξ in the M − R diagram
along which special points are located.

(2) All these lines meet in one point denoted by “X”
with the coordinates ðMX;RXÞ ¼ ð1.8663M⊙;
11.112 kmÞ.

FIG. 9. Mass-radius relation for all hybrid stars obtained by a Maxwell construction. The value of ηV is taken to be fixed for each panel
while the value of ηD is varied.

FIG. 10. Mass-radius relation for all hybrid stars obtained by a
Maxwell construction. Lines connect special points with a fixed
slope ξ ¼ δηV=ðδηDÞ of simultaneous variation of the Lagrangian
parameters and meet in one point denoted as X.

FIG. 11. Dependence of the slope of the lines connecting
special points on the slope ξ ¼ δηV=ðδηDÞ of simultaneous
variation of the Lagrangian parameters.
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(3) The slope of the lines follows a linear relationship
aξ ¼ tanϕðξÞ ¼ α − βξ with α ¼ 0.47074 and
β ¼ 0.7252, see Fig. 11.

(4) The line of special points with largest slope corre-
sponds to ξ ¼ 0, i.e., where for each special point on
that line corresponds to a fixed ηV so that δηV ¼ 0.
This line is a lower limit approximation to the line of
maximal masses as a function of ηV , i.e., the stiffness
of quark matter EOS.

(5) We have repeated the analysis by replacing the
DD2p40 with the DD2p00 EOS. The result shown
in Fig. 12 demonstrates the independence of the
trains of special points from the hadronic EOS used
in constructing the hybrid EOS model.

APPENDIX B: PHENOMENOLOGICAL EOS

Besides the CSS model EOS, there is a phenomeno-
logical formulation of the EOS of quark matter in use which
has been introduced and motivated in Ref. [85]. In that
work, the quark matter EOS consists of the first three terms
of a series in even powers of the quark chemical potential

ΩQM ¼ −
a4
π2

μ4 −
Δ2

π2
μ2 þ Beff ; ðB1Þ

where a4, Δ, and Beff are coefficients independent of μ.
For a derivation of the EOS (B1) from a nonlocal NJL
model with instantaneous interaction in the three-flavor
case (CFL light phase), see [86]. In the two-flavor case
(2SC phase) considered here, the numerical coefficients
differ. We use the convention of Ref. [80], for alternative
ones see also [87].
The quartic coefficient a4 ¼ 1 − c is well defined for

an ideal massless gas for which c ¼ 0. Lowest order
perturbative QCD corrections of OðαsÞ for massless
quark matter lead to a reduction of a4, accounted for by,

e.g., c ¼ 2αs=π ¼ 0.3 so that a4 ¼ 0.7 [88]. Since neutron
stars “live” in the nonperturbative domain, it may be
admissible to employ even larger values of αs which lead
to a further reduction of a4 and a stiffening of the quark
matter EOS in the density domain of NS cores [89]. The
stiffening due to this perturbative correction does not
change the speed of sound for massless quarks, corre-
sponding to the conformal limit c2s ¼ 1=3.
The term quadratic in μ, which arises from an expansion

in the diquark pairing gap Δ and thus signals a color
superconducting phase, however, corresponds to an effec-
tive speed of sound exceeding the conformal limit. At large
densities, where the term ∝ μ4 in the EOS (B1) dominates,
the effective EOS (B1) approaches the conformal limit
[85,86,89].
We show in Fig. 16 that even for this simple parameter-

ization (B1) which we denote as “Alford fit,” the resulting
hybrid stars can have mass-radius relations very similar to
those of the CSS fit and thus fulfill the maximum mass
constraint [5].

APPENDIX C: MAPPING PROCEDURE

In order to obtain a functional relation between the
parameters of the two approaches, we considered 34 EOS
based on nlNJL model (for different values of ηD and ηV
parameters) to which we fit the CSS EOS (9) in order to
obtain the values of A, B, and β. In these EOS fits, the
parameter B is expressed through the values of A and β as

B ¼ A
�
μðP ¼ 0Þ

μx

�
1þβ

; ðC1Þ

FIG. 12. Same as Fig. 10 but for the softer hadronic EOS
DD2p00. The lines connection special points and the point X
where they all meet remain unchanged.
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FIG. 13. EOS of the original nlNJL model for the parameter set
ðηD; ηVÞ ¼ ð0.75; 0.14Þ compared to its fit by the phenomeno-
logical form (B1) (Alford fit, blue circles) with the parameters
a4 ¼ 0.332,Δ ¼ 265.943 andB1=4

eff ¼ 175.658 MeVaswell as the
fit by the CSS pressure of Eq. (9) (red squares) with the parameters
A ¼ 94.875 MeV=fm3, c2s ¼ 0.481, and B ¼ 85.614 MeV=fm3,
see Table I.
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with the value of chemical potential for which the pressure
is equal to zero, given by the nlNJL EOS.
One example of the CSS fit to the nlNJL EOS

(with ηD ¼ 0.75 and ηV ¼ 0.14) is given in Fig. 13.
For comparison, fitting the parameters of the phenom-
enological EOS (B1) that was introduced by Alford et al.
in [85] we obtain a4 ¼ 0.332, Δ ¼ 265.943 MeV, and
B1=4
eff ¼ 175.658 MeV. This Alford fit is also shown in

Fig. 13. It is worth mentioning that the value of
a4 ¼ 1 − 2αs=π ¼ 0.332, which is obtained by the fit,
entails that the OðαsÞ correction relative to the ideal gas
limit corresponds to a value of αs ¼ 0.521 which is at
tension with the application of perturbation theory to
OðαsÞ [88]. This can be seen as a hint to the non-
perturbative nature of the quark matter EOS in this domain
of low chemical potentials in the vicinity of the hadro-
nization transition. The fitted value of the diquark pairing
gap Δ ¼ 265.943 MeV is large, but in the range for strong
diquark couplings, see [42]. Similar values have been

obtained when the Alford fit (B1) has been applied to the
EOS of the instantaneous nonlocal NJL model [86] or to
that of the confining density functional approach [80].
In the inserted plot we further examine the low chemical

potential region where the most significant difference
between the two fits is found. The CSS follows the
nlNJL behavior more closely, as is seen also in the
mass-radius curves shown at the end of this Appendix.
For the remaining chemical potentials, the two fits present
the same quality in reproducing the nlNJL EOS. The for the
quality is the χ2 value, defined as

χ2 ¼
XN
i

ðPnlNJLðμiÞ − PfitðμiÞÞ2=σ2i ; ðC2Þ

where N is the number of points for the chemical potential
and σ is the standard deviation of the nlNJL model in
question defined as σ2 ¼ 1

N

P
N
i ðPnlNJL;i − PiÞ2, where Pi is
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FIG. 14. The change of CSS parameters (A, c2s , and B) with the increase of ηD for different values of ηV (from 0.12 to 0.18 in steps of
0.01) on the left panels, and with the increase of ηV for different values of ηD (from 0.71 to 0.78 in steps of 0.01) on the right panels.
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the mean value of the nlNJL model pressures,
P̄ ¼ 1

N

P
N
i Pi. The PnlNJLðμiÞ and PfitðμiÞ are the values

of pressure in nlNJL model and for the fit in each point of
chemical potential μi. The χ2 value for CSS fit is 0.031
while it is 0.038 for Alford’s fit.
From the CSS fit, the values of A and β parameters are

obtained, from which the B parameter and squared speed of
sound c2s are calculated. These values are given in Table I
together with the χ2 values for the 34 different nlNJL EOSs
giving the total of 34 data points. From these values the
functional form, between the nlNJL parameter space and
the CSS one, is to be found.
In order to find the functional dependence between the

two parameter spaces, we analyze the behavior of the CSS
model parameters for different values of ηD and ηV , as
given in Fig. 14.
The parameter A shows the strongest dependence on

both nlNJL model parameters, while c2s and B are almost
independent on ηD and linearly depending on ηV , respec-
tively. From these dependencies, the simplest functional
form between two parameter spaces can be assumed: the
variation of CSS parameters is linear with the change of ηD,
while it is quadratic with the change of ηV . Thus, we write
the following equations:

A ¼ a1ηD þ b1η2V þ c1; ðC3Þ

c2s ¼ a2ηD þ b2η2V þ c2; ðC4Þ

B ¼ a3ηD þ b3η2V þ c3; ðC5Þ

where the coefficients ai, bi, and ci (with i ¼ 1, 2, 3) are
obtained through a two-parameter (ηD, ηV) fitting pro-
cedure of each of the CSS parameters (A, B, c2s) and are
given in Table II.
To check the quality of our method, we choose one

original nlNJL EOS that was not included in the initial
fitting dataset (e.g., ηD ¼ 0.75 and ηV ¼ 0.15) and calcu-
late CSS EOS using Eq. (9) with the parameter values
obtained through Eqs. (C3)–(C5). The EOS comparison is
given in Fig. 15. It is worth noticing that the M − R curve
for our example EOS with the parameter set ðηD; ηVÞ ¼
ð0.75; 0.15Þ from the middle of the parameter range crosses
the revised mass value 2.08M⊙ for PSR J0740þ 6620 [5]
at the radius R ¼ 12.5 km, which accidentally is in the

middle of the overlap region 12.2 km < R < 13.7 km of
the 1σ NICER radius measurements from the two analysis
teams (Riley et al. and Miller et al.) that have recently been
reported [90].
We have performed the fitting procedure considering the

Alford parametrization as well. The results show that the
CSS parametrization works better for fitting the nlNJL
model. For comparison, the mass-radius (M − R) curves for
the hybrid stars constructed using nlNJL model and two
different versions of fitted EOS are shown in Fig. 16. For
the hadronic EOS we have employed the relativistic
density-functional (RDF) model based on the DD2

TABLE II. The values of ai, bi, and ci coefficients (i ¼ 1, 2, 3)
for the mapping between the (ηD, ηV ) and (A, c2s , B) parameter
spaces given by Eqs. (C3)–(C5).

i Parameter Unit ai bi ci

1 A MeV fm−3 80.66330 199.80900 30.57520
2 c2s c2 0.11205 4.31830 0.31244
3 B MeV fm−3 −10.42990 502.99800 83.46230
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FIG. 15. Comparison of the EOS for the original nlNJL for
ηD ¼ 0.75 and ηV ¼ 0.15 (black solid line) with its CSS
representation (magenta pluses) calculated from Eq. (9) where
the parameters A ¼ 95.568 MeV=fm3, c2s ¼ 0.494, and B ¼
86.957 MeV=fm3 are determined using the functions (C3)–
(C5) with the coefficients from Table II. The χ2 value of the
fit is 0.049.

FIG. 16. TheM − R sequences for hybrid star EOS obtained by
a Maxwell construction for a DD2p40 EOS with the original
nlNJL model with ηD ¼ 0.75, ηV ¼ 0.14, its CSS fit, the func-
tional mapping and the Alford fit (B1).
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parametrization [46] with excluded volume effects [47].
The DD2 model with excluded volume is mainly used in
the context of an early deconfinement onset with large
latent heat.
The results for the M − R curves sufficiently demon-

strate the applicability of the mapping that has been
performed. It is clear that the M − R curves for the CSS
fit and its functional version are sufficiently close for these
two parameterization to be considered equivalent.
Furthermore, their difference to the M − R curve for the
original nlNJL EOS amounts to maximally 200 m in radius.
This difference is well visible but still much smaller than
the design accuracy of observational radius measurements
from NICER, which even has not yet been reached by the
first NICER radius measurements. Therefore, our work
provides a sufficiently precise tool for NS phenomenology.
Moreover, the comparison with Alford fit shows that the
radius of the NS is really sensitive to the EOS. While both
fits are very close according to Fig. 13, the CSS

parameterization performs better in the M − R curve, in
particular close to the onset of the phase transition at low
densities. From our results, we can see that the Alford fit
may be useful close to the maximum mass.
We conclude that for the nlNJL EOS parameterization

within the ranges 0.7 < ηD < 0.8 and 0.11 < ηV < 0.18,
the CSS approach can mimic the behaviour of the nlNJL
EOS to high accuracy. The range of ηD values between 0.7
and 0.8 is covering the value for the Fierz transformation of
a one-gluon exchange interaction (ηD ¼ 3=4) and entails
that the quark matter is in the color superconducting phase.
The CSS parameters for the nlNJL EOSs with high values
of ηV > 0.18 are showing deviations from the general
behaviour fitted by Eqs. (C3)–(C5). But since for these
ηV values there is a causality violation at large chemical
potentials, the CSS form of the EOS fitted at low densities
can be used to extrapolate the EOS above a certain density.
A lower limit on the values of the ηV parameter is not
explored here.
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