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We derive a general formula for the replica partition function in the vacuum state for a large class
of interacting theories with fermions, with or without gauge fields, using the equal-time formulation on
the light front. The result is used to analyze the spatial entanglement of interacting Dirac fermions in
two-dimensional QCD. Particular attention is paid to the issues of infrared cutoff dependence and gauge
invariance. The Renyi entropy for a single interval is given by the rainbow dressed quark propagator to
orderOðNcÞ. The contributions to orderOð1Þ are shown to follow from the off-diagonal and off mass-shell
mesonic T-matrix, with no contribution to the central charge. The construction is then extended to mesonic
states on the light front and shown to probe the moments of the partonic PDFs for large light-front
separations. In the vacuum and for small and large intervals, the spatial entanglement entropy following
from the Renyi entropy is shown to be in agreement with the Ryu-Takayanagi geometrical entropy using a
soft-wall AdS3 model of two-dimensional QCD.
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I. INTRODUCTION

Quantum entanglement is paramount in quantum
mechanics. It follows from the fact that quantum states
are mostly superposition states and two acausally related
measurements can be correlated. A quantitative measure of
this correlation is given by the entanglement entropy, with a
number of applications in quantummany-body systems and
also quantum field theory [1–7].
The increase interest in entanglement, especially in

lower dimensional systems, is partly motivated by recent
developments in quantum information theory. Of particular
interest is the concept of entanglement entropy as a
measure of quantum information flow [8,9]. There is a
large effort currently underway for a better theoretical and

experimental understanding of entanglement in the nuclear
many-body problem [10], the prompt thermalization at the
RHIC [11–15], hadron tomography through DIS [15–17],
and parton-parton scattering at low-x [11,16,18–22].
Recently, we have shown how entanglement in longi-

tudinal parton-x, and also in rapidity space or ln 1
x, can be

used to gain more insights on the partonic PDFs (large-x)
and structure functions (small-x) using two-dimensional
QCD. Recall tha 2D QCD is solvable in the large number of
colors limit [23,24]. This allows for a quantitative under-
standing of the role played by the entanglement entropy for
single meson states or their stringy form by resummation
along a Regge trajectory. Remarkably, the entanglement
entropy carried by a 2D nucleus on the light front (LF)
shows a growth rate with rapidity at the current bound on
quantum information flow.
Spatial entanglement in interacting theories, and espe-

cially gauge theories, is challenging. The geometrical con-
struction proposed by Ryu-Takayanagi [25] in the context
of a holographic dual gauge theory at large Nc and strong
gauge coupling in this sense is rather remarkable. In
interacting gauge theories with fermions, the dual descrip-
tions are only approximate, and using them to analyze the
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entanglement geometrically is interesting especially if
large Nc arguments can be used for comparison.
Entanglement in two-dimensional QCD is intricate, as it

involves interacting fermions with a dynamical gauge field.
To address it, we use the replica construction in real time,
by duplicating Minkowski space-time n times and then
gluing the duplicates together using pertinent twists of the
replicated fermion fields. This procedure makes the ensu-
ing Renyi entropy, and its limiting entanglement entropy,
gauge dependent in any dimension. This notwithstanding,
both entropies can be evaluated by gauge fixing both in the
continuum or on the lattice. For two-dimensional QCD,
we will show that in the regular cutoff gauge, the large Nc
results are found to be in agreement with a soft-wall
holographic construction, for very small or very large
intervals. For completeness, we note that a replica analysis
of two-dimensional QCD was suggested in [26], using
different arguments.
The paper is organized as follows: In Sec. II, we briefly

review the replica construction of the Renyi entropy and its
relation to the entanglement entropy. We will also recall the
form of the monodromy matrix that allows for the gluing of
the fermionic replicas. In particular, we will derive a new
equal-time representation of the replica partition function.
In Sec. III, we discuss the subtleties related to the gauge
symmetry following from the gluing of the fermions, and
why gauge fixing is required across the gluing cut. We will
analyze the replica partition function, both in perturbation
theory and in the large Nc limit of 2D QCD, in the light-
front gauge. In Sec. IV, we extend our replica construction
to the spatial entanglement in partonic as well as hadronic
states on the light front. For the latter, the entanglement is
controlled by the moments of the partonic PDFs in 2D
QCD. We suggest that these moments can be extracted
from the Renyi entropy for spacelike intervals in a fast
moving hadron in 4D QCD using current lattice QCD
simulations. In Sec. V, The leading results of the entangle-
ment entropy both for small and large intervals are shown
to be compatible with the Ryu-Takayanagi entropy, using a
soft-wall gravity dual to 2D QCD. Our conclusions are
given in Sec. VI.

II. REPLICA PARTITION FUNCTION
AND RENYI ENTROPY

Let ρ be the density of a pure state defined in a Hilbert
space composed of two complementary regions I and its
complementary Ī. For simplicity, we first focus on spatial
regions. The projected or reduced density matrix in Ī
obtained by tracing over I is [5,7]

ρI ¼ TrĪρ: ð1Þ

Although ρ carries zero von Neumann entropy, ρI does not,

S ¼ −TrIðρI log ρIÞ ð2Þ

which is a measure of the quantum entanglement between
I and Ī in ρ. To evaluate (2) one uses the Replica trick
introduced in [2,3] through the Renyi entropy Sn

Sn ¼
1

1 − n
ln trρnI ≡ 1

1 − n
lnZn: ð3Þ

If Zn is analytic in n in a neighborhood of n ¼ 1 with the
Taylor-expanded form,

lnZn ¼ ðn − 1ÞZð1Þ þ ðn − 1Þ2Zð2Þ þ � � � ; ð4Þ

then the Shannon entropy or the entanglement entropy can
be simply identified as

S ¼ lim
n→1

Sn ¼ −Zð1Þ ¼ −lim
n→1

∂

∂n
lnZn: ð5Þ

We now show how to derive the replica partition function
using the equal time formulation, valid for any interacting
fermionic theory in any dimension.

A. Fermionic monodromy

Using the transfer matrix, one can show [2–4,7] that Zn
for integer value of n can be rewritten as an Euclidean path
integral with fields living in a replica space, more specifi-
cally, a path integral with n identical copies of the original
Euclidean space glued together along the single spatial
cut corresponding to the region I with twisted fermionic
boundary conditions.
For a fermionic theory one has for i ¼ 1;…n replicated

fermions ψ i, each living in its own manifold; this patching
corresponds to twisting the fermions in going from one
patch to the other [5,7]

½T n�

0
BBBBB@

ψ1

ψ2

..

.

ψn

1
CCCCCA

¼

0
BBBBB@

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. . .

. ..
.

1

ð−1Þnþ1 0 0 � � � 0

1
CCCCCA

0
BBBBB@

ψ1

ψ2

..

.

ψn

1
CCCCCA
:

ð6Þ

The eigenvalues of the monodromy T n are the n roots
of unity ei2πk=n with k ¼ − n−1

2
;…;þ n−1

2
. This amounts to

n-multivalued fermions in a single-cut space I ¼ ½a1; a2�,
with each species ψk picking a phase ei2πk=n in circling the
left edge (a1) of the cut clockwise, and e−i2πk=n in circling
the right edge (a2) of the cut counterclockwise.

B. Equal-time representation of Zn

In a Hamiltonian formulation of the replica in
Minkowski signature, the gluing conditions are the new

LIU, NOWAK, and ZAHED PHYS. REV. D 107, 054010 (2023)

054010-2



and key elements to add to the original field theory. We first
consider the case of only fermionic theories with a single
spatial cut, and the gluing conditions for the fermions
given in (6). To construct the replica partition function for
the vaccum of interacting fermions, we start from the
generic off-diagonal matrix element of the vacuum density
matrix jΩihΩj

hψ0− jΩihΩj − ψ0þi ¼ hΩjψ0þihψ0− jΩi; ð7Þ

where jψ0�i refers to two generic fermionic coherent states
(their precise relation to the single space-time cut and
labeling will be detailed below). Here jΩi refers to the
lowest energy state, prepared using the long time evolution,
with the full fermionic Hamiltonian Hðψ†;ψÞ

jΩi ¼ e−iH½ψ†;ψ �T
2
ð1−i0Þjψ−∞i; ð8Þ

starting from an arbitrary asymptotic coherent state jψ−∞i,
whose explicit form is not needed. The additional minus
sign in (7) is due to the Grassmannian nature of the states,
when moving hψ0− jΩi from left to right. Also, it is
important that the density matrix jΩihΩj is bosonic,
namely, when expanded as polynomials in the
Grassmannians, the order of each term must be even.
With this in mind, and to proceed to a path integral, we

use the decomposition

e−iHT=2 ¼ e−iHϵe−iHϵe−iHϵ…e−iHϵ

and insert the completeness relation between any of the two
evolution operators

1 ¼
Z

dψ̄ tdψ te−ψ̄ tψ t jψ tihψ tj: ð9Þ

As a result, the matrix element in (7) can be cast in a
standard path-integral form

hΩjψ0þihψ0− jΩi ¼
Z Y

t

dψ̄ tdψ te
P

−ψ̄ tðψ t−ψ t−1Þ−iϵH½ψ̄ t;ψ t−1�;

ð10Þ

with no −ψ̄0þψ0− term in the exponent. Equation (10) is a
path-integral representation of the density matrix in real
time for a single fermion species. To represent the trace, we
need the completeness relation and the trace formula

TrA ¼
Z

dψ̄dψe−ψ̄ψ h−ψ jAjψi; ð11Þ

in terms of which we have

TrρnI ¼
Z Yn−2

k¼0

dψ̄k;0−dψk;0−e
−
P

n−1
k¼0

P
x
ψ̄k;0− ðxÞψk;0− ðxÞ;

×
Yn−1
k¼0

hΩj − ψk−1;0−ðx ∈ IÞ;ψk;0−ðx ∉ IÞi

× hψk;0−ðx ∈ IÞ;ψk;0−ðx ∉ IÞjΩi; ð12Þ

where in the last equation one has made explicit the
dependence on x and ψ0−1;0− ¼ −ψn−1;0− . The above can
then be represented as a path integral in the replica space-
time with n replica fermions species and with the gluing
boundary condition across the boundary I as indicated
explicitly as in the equation above.
More specifically, the nth trace can be written as a

path integral with i ¼ 0; 1; ::n − 1 copies of the fermion
fields ψ i;tðxÞ. Here i refers to the replica index, t to the time
slice and x to the spatial coordination of the Grassmannian.
The twisting across the cut amounts to ψ i;0þðx ∈ IÞ ¼
−ψ i−1;0−ðx ∈ IÞ for i ¼ 1; 2;…n − 1 and ψ−1;0þðx ∈ IÞ ¼
−ψn−1;0−ðx ∈ IÞ, as illustrated in Fig. 1. Outside the cut, we
have ψ i;0þðx ∉ IÞ ¼ ψ i;0−ðx ∉ IÞ. Now, using the charge
conservation of the Hamiltonian, one can flip all the
Grassmannians for old i ¼ 2k − 1,

hΩj − ψ2k−2;0−ðx ∈ IÞ;ψ2k−1ðx ∉ IÞihψ2k−1;0−ðx ∈ IÞ;ψ2k−1;0−ðx ∉ IÞjΩi
≡ hΩjψ2k−2;0−ðx ∈ IÞ;−ψ2k−1ðx ∉ IÞih−ψ2k−1;0−ðx ∈ IÞ;−ψ2k−1;0−ðx ∉ IÞjΩi; ð13Þ

and redefine for odd i (including n − 1 if n is even)

ψ2k−1;0−ðxÞ → −ψ2k−1;0−ðxÞ: ð14Þ

Clearly, after these transformations, one has the alternative
boundary condition ψ iþ1;0þðx ∈ IÞ ¼ ψ i;0−ðx ∈ IÞ for i ¼
0; 1; 2;…n − 2 and ψ1;0þðx ∈ IÞ ¼ ð−1Þnþ1ψn−1;0−ðx ∈ IÞ,
and for x ∉ I one needs no sign change. In terms of the

independent variables ψ i;0−ðxÞ, one has in the exponential
for fermions along the cut or x ∈ I,

X
i

ψ̄ i;1ðx ∈ IÞψ i−1;0−ðx ∈ IÞ

−
X
i

ψ̄ i;0−ðx ∈ IÞðψ i;0−ðx ∈ IÞ − ψ i;−1ðx ∈ IÞÞ ð15Þ
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where ψ−1;0−ðx ∈ IÞ ¼ ð−1Þnþ1ψn−1;0−ðx ∈ IÞ according to
the boundary condition, in addition to the Hamiltonian term

− iϵ
X
i;x

H
h
ψ̄ i;1ðxÞ;ψ i−1;0−ðx ∈ IÞ;ψ i;0−ðx ∉ IÞ

i

− iϵ
X
i

H
h
ψ̄ i;0−ðxÞ;ψ i;−1ðxÞ

i
: ð16Þ

This finishes the derivation of the replica partition function
in real time, with the twisted boundary conditions across
the cut I, as illustrated in Fig. 1 for n ¼ 3. Each strip in
Minkowski space-time is cut at the initial times t ¼ 0�,
which is shown in dashed lines, with the fermionic field
assignments ψ i;0�ðx ∈ IÞ.
To proceed further, we switch to the fermionic fields

labeled by k that diagonalize the monodromy (6) for the
original replica fields labeled by i

ψk;tðxÞ ¼
1ffiffiffi
n

p
Xn−1
i¼0

e−i
2πk
n iψ i;tðxÞ; ð17Þ

ψ†
k;tðxÞ ¼

1ffiffiffi
n

p
Xn−1
i¼0

ei
2πk
n iψ†

i;tðxÞ; ð18Þ

at every space-time point, in terms of which the partition
function reads

Z Y
k;x

dψ̄k;0−ðxÞdψk;0−ðxÞe−
P

k;x
ψ̄k;0− ðxÞψk;0− ðxÞhψ∞je−iH½ψ̄k;0− ;ψk;0− �T=2jψk;0−ðx ∈ IÞe2πik

n ;ψk;0−ðx ∉ IÞi

× hψk;0−ðxÞje−iH½ψ̄k;0− ;ψk;0− �T=2jψ−∞i: ð19Þ

Here

H½ψ̄k;0− ;ψk;0− � ¼
X
i

H½ψ̄ i;0− ;ψ i;0− � ð20Þ

refers to the Hamiltonian for n identical copies of the
original Hamiltonian, written in the new variables ψk,
which is seen to satisfy the identity

jψk;0−ðx;∈ IÞe2πik
n ;ψk;0−ðx ∉ IÞi

¼ ei
2πk
n

P
k

P
x∈I

ψ†
k;0− ðxÞψk;0− ðxÞjψk;0−ðxÞi: ð21Þ

Equation (19) reduces to the expectation value

hΩnj exp
�
i
X
k

2πk
n

Z
x∈I

dxψ†
k;0−ðxÞψk;0−ðxÞ

�
jΩni; ð22Þ

I refers to the cut, and jΩni is simply a tensor product of n
identical vacua of the original theory, one for each replica

copy labeled by i. Note that the exponential is the equal-
time charge density in k-space, conjugate to the replica i
space

Z
x∈I

dxψ†
k;0−ðxÞψk;0−ðxÞ≡

Z
x∈I

dxj0;kðxÞ: ð23Þ

From here on, the argument x is short for the equal-time
argument ð0−; xÞ unless specified otherwise. In terms of the
original replica fields labeled by i, (22) reads

Zn ¼ hΩnj exp
�
i
X
i;j

X
k

2πk
n2

ei
2πk
n ði−jÞ

×
Z
x∈I

dxψ†
i ðxÞψ jðxÞ

�
jΩni: ð24Þ

Equation (24) is the replica partition function or the n trace
of the reduced density matrix. It is an expectation value of
equal-time operators in a replica theory with n copies.

FIG. 1. Replica Minkowski space-time for n ¼ 3. The boun-
daries for the time evolution at t ¼ �∞ð1 − i0Þ are denoted by
horizontal solid lines, and the cuts at t ¼ 0� are denoted by the
double dashed lines, in the middle of each replica strip. The fields
at the cut for different replica copies are glued following the
dotted lines. For a thermal theory with inverse temperature β, the
imaginary time version of the Euclidean space-time follows a
similar construction with �∞ð1 − i0Þ → � β

2
and periodic (or

antiperiodic) boundary conditions at the solid boundaries for each
replica strip.
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For a free fermion theory, (22) reduces to the result
established in [5], based on the interpretation of the replica
boundary conditions as background magnetic fields with
fluxes 2πk

n . Indeed, analytically continuing (22) to Euclidean
signature and using the 2D bosonization relation
ψ†
kγ

μψk ¼ 1ffiffi
π

p ϵμν∂νϕk, we have

i
X
k

2πk
n

Z
x∈I

dxψ†
k;0−ðxÞψk;0−ðxÞ

≡ i
X
k

ffiffiffiffiffiffi
4π

p
k

n

h
ϕkða2Þ − ϕkða1Þ

i

≡ −i
X
k

Z
d2xAk

μðxÞψ̄kðxÞγμψkðxÞ; ð25Þ

with the replica magnetic fields

ϵμν∂
μAk;νðxÞ ¼ 2πk

n
½δ2ðx − a1Þ − δ2ðx − a2Þ�;

in agreement with [5]. However, our result (24) is more
general, as it applies to generic interacting fermionic
systems in Minkowski signature, including 4-Fermi or
gauge interactions.
In sum, we derived an equal time representation for the

replica partition function Zn ¼ eðn−1ÞSn for any free or
interacting two-dimensional fermionic theory, along an
equal-time spacelike cut. It readily generalizes to any
dimensions Dþ 1 for any D-dimensional spacelike region
I. For free fermions, the above can also be derived using
bosonization [27], but here we have shown that the same
applies to any fermionic theory, with or without inter-
actions. Equations (22)–(24) are the main results of this
section.

III. TWO-DIMENSIONAL QCD

Now we proceed to show how the preceding result can
be exploited in two-dimensional QCD, paying particular
attention to issues of gauge invariance. We present a
perturbative analysis of the entanglement entropy for small
spatial cuts, followed by a large Nc analysis whatever the
size of the cut.

A. Gauge symmetry

Each of the replicated n copies of two-dimensional QCD
has local gauge invariance in the corresponding space-time
and requires gauge fixing across each of the replicated cuts.
More specifically, additional gauge links connecting i to
iþ 1 copies in space-time need to be specified. Indeed, the
exponent in (24)

Z
x∈I

dxψ†
i ðxÞψ jðxÞ

while local in x space is off-diagonal in replica i space.
While gluing the replicated space-times, the gauge trans-
formation from one edge in the i patch, say at time 0−, has
to be adjusted so to match the gauge transformation from
the other edge in the iþ 1 patch at time 0þ. This means
fixing the gauge along the cut. In two dimensions we may
choose a gauge, e.g. the axial gauge or temporal gauge,
where the only physical degrees of freedom are fermions,
and then apply the above construction solely to the
fermions. The two approaches are not necessarily equiv-
alent. The former in terms of the gauge fields is explicitly
gauge dependent, while the latter in terms of solely the
fermionic fields is implicitly gauge dependent through the
inverted gauge propagator. The elimination procedure of
the gauge fields, does not work in higher dimensions.
Finally, because of local gauge symmetry, replica partition
functions lack, in general, an interpretation as the trace over
a reduced density matrix in a Hilbert space viewed as a
tensor product.
This notwithstanding, we may use (24) in either

Minkowski or Euclidean signature as a definition of Zn,
and proceed to evaluate it either perturbatively or non-
perturbatively using the planar approximation (alternatively
a lattice evaluation). In all cases, gauge fixing is required.
Below, we show that while Zn and the ensuing Renyi
entropy Sn are in general gauge dependent, the leading
contributions at small and large cuts are gauge independent.
The same results will be shown to follow from a gauge
invariant holographic construction.

B. Perturbative analysis: Spatial vs LF

The representation of the fermion replica partition
function as an equal-time correlation function allows
generalization to any cut along the direction nμ in a
manifestly invariant manner

Znðxμ ¼ LnμÞ

¼ hΩnjT exp

�X
k

i
2πk
n

Z
L

0

dsnμϵμνjνkðsnμÞ
�
jΩni; ð26Þ

where ϵμνjνkðxÞ is the vector current operator for the fermion
ψk. This representation is manifestly Lorentz invariant.
Therefore, the partition function ZnðxÞ depends only on
the Lorentz invariant length

ffiffiffiffiffiffiffiffi
−x2

p
of the separation, not the

direction. Furthermore, assuming that jνkðxÞ satisfies the
standard local commutation relations, one can show that
the ZnðxÞ should have the same analyticity properties, in
particular the domain of analyticity, and the iϵ prescription
as a two-point function of local scalar fields.

1. Spacelike interval

The representation as a correlation function allows a
perturbative expansion using standard Feynman rules. For a
free fermion, this reproduces the well-known result for the
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entanglement entropy of a spacelike interval ½0; L�. Indeed,
if one considers lnZn, then only the connected diagrams
will contribute

lnZnðLÞ

¼
X

connected diagrams with insertions of
Z

dxψ†ψ :

ð27Þ

For a free fermion, this means loops with arbitrary numbers
of ψ̄kγ

0ψk insertions. However, due to the absence of
anomalies for any fermion loop with more than three
fermion propagators, an application of the vector and axial
Ward identities shows that all loops (with more than three
insertions) vanish. The only nonvanishing diagram is the
vacuum polarization diagram shown in Fig. 2 at the origin
of the 2D axial anomaly. A direct calculation leads to the
standard central charge Nc

3
.

More specifically, the vacuum polarization diagram in
Fig. 2 contributes as

lnZnjbubble ¼
Nc

2

X
k

�
2πk
n

�
2
Z

d2p
ð2πÞ2Π

00ðpÞ

×
2 − 2 cospzL

ðpzÞ2 : ð28Þ

For a massive fermion one has the well-known vacuum
polarization in 2D

Π00ðpÞ ¼ ðpzÞ2
π

Z
1

0

dx
1

p2 þ m2

xð1−xÞ
; ð29Þ

with the result

lnZnjbubble ¼ −
ðn2 − 1ÞNc

12n

Z
1

0

dx
Z

∞

−∞
dpz 1 − cospzLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ m2

xð1−xÞ
q :

ð30Þ

The first term diverges in the UV. Using the UV regulator

1 − cospzL → cospza − cospzL;

the result is

lnZnjbubble ¼ −
ðn2 − 1ÞNc

6n

Z
1

0

dx

�
K0

�
maffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp
�

− K0

�
mLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

��
; ð31Þ

with the Renyi entropy (3) in the form

Sn ¼
ðnþ 1ÞNc

6n

Z
1

0

dx

�
K0

�
maffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp
�

− K0

�
mLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

��
→

Nc

3
ln

�
L
a

�
: ð32Þ

The rightmost result follows in the massless limit (m → 0)
for n ¼ 1. The L-dependent central charge is

cnðLÞ ¼ L
dSn
dL

¼ ðnþ 1ÞNc

6n

Z
1

0

dx
mLK1

�
mLffiffiffiffiffiffiffiffiffiffi
xð1−xÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp ;

ð33Þ

which is seen to decay exponentially as Nce−2mL at large L.
The Renyi entropy (32) at large L is dominated by the
constant UV contribution

ðnþ 1ÞNc

6n

�Z
1

0

dxK0

�
maffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp
�
þOðe−2mLÞ

�

→
ðnþ 1ÞNc

6n

�
ln

�
C
ma

�
þOðe−2mLÞ

�
: ð34Þ

Since the interaction is superrenormalizable (valid also
for 2D QED), any diagram with interactions vertices will be
less singular than the vacuum polarization diagram. In other
words, they are UV free and contribute Oðg2nL2nÞ at short
distances. The dominant contribution at small L is therefore

SðLÞ ¼ Nc

3
ln
L
a
þOðg2L2Þ: ð35Þ

On the other hand, we expect exponential decay with L at
large L, for massive fermions.
Finally, we note that for two disjoint intervals, the above

formalism allows the calculation of the so-called mutual
information,

FIG. 2. The vacuum polarization contribution to ln Zn in
Eq. (19). The crossed dots denote insertions of the operatorR
dxψ†ψ . For massless free fermions, it is the only nonvanishing

diagram and contributes to the known c ¼ Nc
3
. For a super-

renormalizable theory, this is the only diagram that contains a UV
divergence.
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lnZnðL1 ∪ L2Þ − lnZnðL1Þ − lnZnðL2Þ ¼
X

connected diagrams with both insertions inL1 andL2: ð36Þ

Since the distance between L1 and L2 is nonzero, the
diagrams have a natural UV cutoff and will be convergent.
Moreover, at large separation d between L1 and L2, the
mutual information decays exponentially as e−2md in
massive theories. This applies even to superrenormalizable
theories (Gross-Neveu) after coupling constant renormal-
ization. However, for 2D QCD in axial gauge, the mutual
information is clearly gauge dependent as well, and suffers
from the same shortcomings observed for the entanglement
entropy as well.

2. Lightlike interval

For lightlike intervals, the analysis proceeds similarly.
For that, consider the light-front spatial direction x− with a
fixed interval ½0; L−�. In the light-cone gauge, the LF time
evolution can be represented as a path integral, for which
we need to evaluate

	
exp

�X
ij

X
k

i
2πk
n

ei
2πk
n ði−jÞ

×
Z

L−

0

dx−ψ†
i ð0; x−Þψ jð0; x−Þ

�

int
: ð37Þ

But since the equal LF time field is equivalent to a free
field, the above is the same as the noninteracting theory. All
the vacuum diagrams with a typical contribution shown in
Fig. 3, vanish due to the fact that Hintj0ifree ¼ 0.
For a free fermion on the LF, a rerun of the preceding

arguments yields

lnZnjbubble ¼
Nc

2

X
k

�
2πk
n

�
2
Z

d2p
ð2πÞ2 Π

þþðpÞ

×
2 − 2 cospþL−

ðpþÞ2 ; ð38Þ

with the polarization function for the good fermion

ΠþþðpÞ ¼ ðpþÞ2
π

Z
1

0

dx
1

p2 þ m2

xð1−xÞ
: ð39Þ

The integral in p− can be carried explicitly, with the result

lnZn ¼ −
ðn2 − 1ÞNc

12n

Z
1

0

dx
Z

∞

0

dpþ 1 − cospþL−

pþ :

ð40Þ

After introducing the UV cutoff a− as before, we have

SnðL−Þ → ðnþ 1ÞNc

12n
ln
L−

a−
→

Nc

6
ln
L−

a−
; ð41Þ

with the rightmost result following from the n → 1 limit.
Note that the coefficient in (41) is half the coefficient
in (32). This is due to the fact that for the spacelike interval,
the left- and right-handed fermions contribute equally.
On the LF, only the good component or the left-handed
fermion, contributes to the entanglement entropy. This is
manifest in the integration support of the integrals in (30)
and (40).
The central charge for spacelike or lightlike intervals can

also be calculated directly using methods in many-body
physics [28]. In this case, the spatial entanglement of a free
fermion can be tied to the Fermi sea. More specifically and
in the rest frame, the standard half-filling Fermi sea state
(the ground state for the XX model), with all the modes
− π

2a < k < π
2a filled, has a central charge c ¼ 1

3
. In contrast

and on the LF, the ground state follows by filling the
negative frequencies − π

a < k < 0 only. The central charge
is c ¼ 1

6
. Indeed, following the arguments presented in [28],

the functionmðkÞ related to the characteristic function χðkÞ
of the occupied state reads

mðkÞ ¼ 2χðkÞ − 1 ¼ e−iπeiArgðkÞ; ð42Þ

with a discontinuity number n ¼ 1, hence a central charge
c ¼ n

6
¼ 1

6
. In the rest frame, the Fermi sea is symmetric

around k ¼ 0 with both left- and right-moving fermionic
excitations at the edges. In the light front, this symmetry is
broken with only right-moving fermionic excitations at
the edge.

C. Summing planar contributions with replicas:
Counting n− 1

In the large Nc limit, the leading contribution is again
dominated by a single planar fermion loop with possible
insertions of the charge operators. We are only interested in

FIG. 3. A typical vacuum insertion in 2D QCD that vanishes in
LF perturbation theory.
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the leading n − 1 contributions that lead to the entangle-
ment entropy. Here we present a power-counting argument
that eliminates most of the diagrams.
Notice that the insertions of the

R
dxψ†ψ operators in

each of the fermion propagators have the generic structure

Gi;jðp; p0Þ ¼ δijG0ðp; p0Þ þ
X∞
m¼1

Gmðp; p0ÞAm
ij; ð43Þ

where p and p0 denotes the incoming and outgoing
momenta, and

An
ij ¼

Xn−12
k¼−n−1

2

e−i
2πk
n ði−jÞ

�
k
n

�
n

ð44Þ

is an ij matrix in replica space, with eigenvalues ðknÞn. For
any diagram, the n dependence follows from the trace over
matrices formed by A, depending on the locations and
numbers of the insertions.
Now consider the generic replica-color structure shown

in Fig. 4. Inside a single fermion loop there is a ladder
formed by N instantaneous gluons. Let us now make
insertions on the fermion propagators. The number of
powers of A on each rung is labeled by ðni; miÞ where
i ¼ 0; 1; 2.:N. Let us show that there exits only a single i in
which one of the ðni; miÞ can be nonvanishing. Indeed, one
can go from the left side by summing over i1 and obtain

An1þm1

ii ∝
Xn−12

k¼−n−1
2

kn1þm1

nn1þm1
; ð45Þ

which is independent of i, and is always proportional to
(n − 1) as long as n1 þm1 ≠ 0. Therefore, if n1 þm1 ≠ 0,
no other insertions are allowed. Otherwise one obtains δi1i2
and goes to ðn2; m2Þ. Continuing in this way the assertion is
confirmed.
Given the rules above, it is not hard to find the diagrams

that are leading in n − 1. Indeed, a generic planar diagram
can be obtained from Fig. 4 by inserting rainbowlike 1PI
diagrams, on each of the fermion propagators. If the
operator insertions are outside such rainbows, then the
replica-color structure remains the same, and the above
argument applies. Specifically, for the i ring with the
insertion numbers ðni; miÞ possibly nonzero, one may
add rainbows between the insertions, without changing
the counting in n − 1. Moreover, if the insertions are inside
such rainbows, then by moving the legs of the gluons along
the contour, one can view the gluons inside the rainbow, as
forming a ladder. The other gluons that used to be a ladder
become rainbows. In this way we are again reduced to the
previous case.

D. Order OðNcÞ contribution
The diagrams that are leading have the topological

structure shown in Fig. 5. In the upper diagram, at least
one of T and T 0 is nontrivial. If one of T and T 0 is trivial,
then the first diagram reduces to the lower one. However,
notice that in these cases the T and T 0 themselves can be
viewed as forming rainbows; therefore, the above diagrams
are really equivalent to the following: arbitrary number of
operators inserted in a fermion loop with arbitrary number
equal or grater than 1 of rainbows inserted along the
fermion propagators between them. When combined with
the diagram without any rainbow insertions, the fermion
propagator between the operator insertions resums to the
dressed one.

FIG. 4. A generic replica-color structure of a planar diagram
that contributes to OðNcÞ. The upper diagram follows by
inserting the replica fluxes ðni; miÞ in the lower diagram, in
each of the lines between the gluonic exchanges. The dotted
4-Fermi interactions labeled by the replica index i in the upper
diagram is short for the integrated gluon exchange from the lower
diagram in 2D.

FIG. 5. The single-loop contribution. The shaded boxes are the
planar two-to-two amplitudes and the insertions are located at the
shaded circles. Notice that between two insertions there can be
arbitrary number of rainbows.
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With this in mind, the leadingNc contribution to the entanglement entropy is actually equivalent to that of a free fermion,
but with a rainbow dressed propagator

SNc
¼ NcSðhψðx − yÞψ̄ð0ÞiRainbowÞ: ð46Þ

Here SðGRainbowðx − yÞÞ denotes the entanglement entropy for a free fermion, with a rainbow dressed propagator [29,30]

GRainbowððx − yÞÞ ¼
Z

d2p
ð2πÞ2 e

−ipðx−yÞ p
þγþ þ ðp− þ g2Nc

2πpþ − Ag2NcsignðpþÞÞγ− þm

p2 −m2 þ 1
π g

2Nc − Ag2Ncjpþj ð47Þ

with A a gauge parameter.
The fact that (46) through (47) depends on A means that,

in general, the entanglement entropy in a gauge theory is
inherently gauge dependent, even after the elimination of
the gauge degrees of freedom in 2D QCD as we discussed
earlier. We note that ’t Hooft originally identified A ¼ 1

ϵ−

with an infrared cutoff [23], for which its removal from (47)
will cause the contribution (46) to vanish. However, this
is a particular gauge choice. In the A ¼ 0 gauge (regular
cutoff prescription) [29], the rainbow resummation in (47)
is nonvanishing, with a renormalized squared mass
m̃2 ¼ m2 − g2Nc=π ≥ 0.
Since the gauge-dependent part of the self-energy does

not change the short distance behavior, the small L
behavior of the resummed entanglement entropy, in the
planar approximation, is still dominated by the vacuum
polarization diagram. It is gauge invariant (independent
of A), and is equal to Nc

3
ln L

a. This result is reminiscent of the
current-current two-point function which is given by the
free fermion loop and of order Nc [31], an illustration of
parton-hadron duality in 2D QCD. For m̃2 > 0, the
asymptotics of the central charge is seen to vanish as
Nce−2m̃L, with the Renyi entropy dominated by the con-
stant UV contribution (34) at large L, which is also gauge
independent. These results are unaffected by the Oð1Þ
contributions as we discuss below.
Finally, we note that the case m ¼ 0 is pathological with

m̃2 < 0 tachyonic. In this case, the left- and right-hand
fermions decouple, with the fermionic propagator for the
right-hand particle unchanged, while for the left particle it
changes to

GþðzÞ ¼ e−ig
2NcAjzjγ−signðzÞ

Z
∞

0

dkþ

4π
e−ik

þjzj−ig2Nc−i0
πkþ jzj:

ð48Þ

At long distance, (48) decays only polynomially as
1=z

3
2, and the ensuing entanglement will decay also

polynomially. On the other hand, since the right-hand
fermion remains free, it will contribute only Nc

6
ln L

a at long
distances.

E. Order Oð1Þ contribution
The Oð1Þ contributions in the planar approximation

resums the independent mesonic contributions to the
entanglement entropy. The meson spectrum contains a
would-be Goldstone mode that may shift the large distance
part of the central charge from Nc

3
to Nc

3
þ 1

3
. We now show

that this is not the case.
The Oð1Þ contribution is illustrated in Fig. 6. In

momentum space, it translates to

lnZnjdouble ¼ 2 ×
1

2

X
k

�
2πk
n

�
2
Z

d2k
ð2πÞ2 Π̃

00ðkÞ

×
2 − 2 cos kzL

ðkzÞ2 ; ð49Þ

with Π̃00ðkÞ given by

Π̃00ðkÞ ¼
Z

d2p
ð2πÞ2 trSðpÞγ

0Sðpþ kÞγ0SðpÞT̃ðpÞ; ð50Þ

FIG. 6. The first nonvanishing double-loop contribution to Zn.
The shaded box is the amputated two-body planar amplitude. The
crossed circles are the insertions of ψ†ψ .
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and

T̃aa0
αα0 ðpÞ ¼

Z
d2p̄
ð2πÞT

aa0;bb
αα0;ββ0 ðp; p̄ÞSβ0βðp̄Þ: ð51Þ

Note that only the forward but off-mass shell part of
the T matrix is needed. In light-cone gauge, T̃ follows
from Fig. 7.
To evaluate this, one first notices that the equal incom-

ing-outgoing time T matrix in LF gauge is simply given by

Tðrþ; r−; x; yÞ ¼ g2

ðrþÞ2
�

πr2

g2Nc
−
γ − 1

x
−
γ − 1

x̄

�
δðx − yÞ

−
g2

ðrþÞ2
�

πr2

g2Nc
−
γ − 1

x
−
γ − 1

x̄

�

×

�
πr2

g2Nc
−
γ − 1

y
−
γ − 1

ȳ

�
Gðx; y; r2Þ;

ð52Þ

with γ ¼ πm2=g2Nc. The incomingþ component momenta
for the quark and the antiquark are xrþ and x̄rþ and the
total incoming LF energy is r−. The mesonic Green’s
function Gðx; y; r2Þ can be written in terms of the ’t Hooft
LF wave functions ϕnðxÞ for mesons with squared masses
m2

n=g2Nc ∼ nπ (large n)

Gðx; y; r2Þ ¼
X
n

φnðxÞφnðyÞ
πr2

g2Nc
− πm2

n
g2Nc

: ð53Þ

Thus, T̃ can be calculated as

T̃ðp0Þ ¼
ðg2NcÞ2
πNc

X
n

Z
1

0

dx
Z

1

0

dy
Z

dp−
1

×
Z

pþ
0

0

dpþ
1

ð2πÞ2
φnðxÞφnðyÞ

ðpþ
0 − xpþ

1 Þ2ðpþ
0 − ypþ

1 Þ2

×
ðp0 − p1Þþ

ðp0 − p1Þ2 −m2 þ g2Nc
π

ðpþ
1 Þ2

ðp1Þ2 −m2
n

ð54Þ

in the gauge with A ¼ 0 (regular cutoff prescription).
The above integral is convergent at pþ

0 ¼ pþ
1 only if

φnðxÞ ∼ xβ near the edges with 0 < β < 1. The above
can be calculated as

pþ
0 T̃ðp0Þ≡ Σ̃ðp2

0Þ

¼ ðg2NcÞ2
π2Nc

X
n

Z
1

0

dxdydz
φnðxÞφnðyÞ

ð1 − xzÞ2ð1 − yzÞ2

×
z

p2
0 −

m2
n
z − m2−g2Nc

π
1−z þ i0

: ð55Þ

This is actually the order 1=Nc correction to the quark-self
energy. For an estimation, when m2 ¼ 0 there exists zero
mass solution to the ’t Hooft equation with mn ¼ 0; in this
case the contribution reads

Σðp2
0Þ ∼

ðg2NcÞ2
π2Nc

Z
1

0

dxdydz
φ0ðxÞφ0ðyÞ

ð1 − xzÞ2ð1 − yzÞ2

×
z

p2
0 þ

g2Nc
π

1−z þ i0
: ð56Þ

If one uses ϕ0 ¼ 1, the integral diverges logarithmically
near z ¼ 1. For small but finite m, the contribution is of
order

ffiffiffiffiffiffiffiffiffiffi
g2Nc

p
=m. When resummed into the fermion propa-

gator, we have

Sðp0Þ ¼
pþ
0

p2
0 −m2 þ g2Nc

π þ Σðp2
0Þ

ð57Þ

in the A ¼ 0 gauge (regular cutoff prescription). A rerun of
the preceding arguments yields a central charge Nc

3
, with no

additional 1
3
contribution from the would-be Golstone mode

at long distances.

IV. SPATIAL ENTANGLEMENT
IN EXCITED STATES

The present analysis can be generalized to any excited
state jNi. Using the pertinent interpolating fields to
create the excited meson or baryon states, (24) readily
generalizes to

ZNn
ðLÞ ¼ hNnjT exp

�X
k

i
2πk
n

Z
L

0

dsnμϵμνjνkðsnμÞ
�
jNni;

ð58Þ

where jNni is a tensor product of jNi, one for each replica
copy,

jNni ¼ ⊗
n−1

i¼0
jNii: ð59Þ

FIG. 7. The LF diagram for T̃ðpþ
0 ; p

−
0 Þ where pþ

0 is positive
(it is negative for the flipped antiquark line). The shaded box
represents the equal incoming-outgoing LF time T matrix, and the
dashed line represents the instantaneous gluon at equal LF time.
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Moreover, if we choose nμ to be along the LF− direction,
then (58) is reminiscent of LF parton distribution functions.

A. Free parton on the light front

For a free fermion state of longitudinal momentum Pþ or
jNi ¼ b†PþjΩi, the contributions for different k factorize,

lnZn ¼ ð1 − nÞSn þ
Xn−12

k¼−n−1
2

ln

�Z
Λ−=2

−Λ−=2

dxdy
2πΛ−

ie−iðx−yÞ

x − yþ i0

×

�ðx − λþ i0Þðy − i0Þ
ðy − λ − i0Þðxþ i0Þ

�k
n
�
: ð60Þ

Here R− is the box size along LF−, and Λ− ¼ PþR− and
λ ¼ PþL− the invariant lengths. In deriving (60), we used
the bosonized representation for the fermion field ψk ∼ eiϕk

in (58). In the large LF box limit with L−=R− ≪ 1, the
kernel in (60) can be reduced,

lnZn − ð1−nÞSn ¼−
4λ

Λ−

Xn−12
k¼−n−1

2

sin2
kπ
n

Z
1

0

dxdy
2π

�ð1− xÞy
ð1− yÞx

�k
n

×
sinλðx− yÞ

x− y
: ð61Þ

The details are in the Appendix. The entanglement entropy
follows by performing the n → 1 limit in (61), using the
formula [5]

lim
n→1

1

1 − n

Xn−12
k¼−n−1

2

sin2
kπ
n
z
k
n ∼ −lim

n→1

2π2ðn − 1Þ
4π2ðn − 1Þ2 þ ðz − 1Þ2

¼ −π2δðz − 1Þ; ð62Þ

with the result

S ¼ SðL−Þ þ 4π2λ

Λ−

Z
1

0

dxdy
2π

δðx − yÞyð1 − yÞ sin λðx − yÞ
x − y

¼ SðL−Þ þ πλ2

3Λ− : ð63Þ

SðL−Þ is the vacuum entanglement entropy discussed
earlier. For large LF− intervals with invariant length
λ ¼ PþL−, the entanglement entropy of a free fermion
on the LF is of order λ2

Λ−. For small intervals, it is dominated
by the Logarithmic contribution from the vacuum in SðL−Þ.
In particular, for a free fermionic parton with the least
longitudinal momentum Pþ ¼ 2π

R−, (63) simplifies to

S ¼ SðL−Þ þ 2π2

3

�
L−

R−

�
2

: ð64Þ

The additional contribution is the entanglement entropy for
a primary state in a free conformal field theory [32] with
h ¼ 1 and h̄ ¼ 0.

B. Free meson on the light front

Consider a bound meson state on the LF, with longi-
tudinal momentum Pþ,

jli¼B†
l;PþjΩi≡ 1

ðΛ−Þ12
Z

dλ1dλ2φlðλ1;λ2Þψ†ðλ1Þψðλ2ÞjΩi;

ð65Þ

with the coordinate space light-front wave function
(LFWF)

φlðλ1; λ2Þ ¼
1

ð2πÞ2
Z

1

0

dxe−iλ1x−iλ2ð1−xÞφlðxÞ ð66Þ

and the normalization
R
dxjφlðxÞj2 ¼ 1. In the replica states

constructed from (65), the replica partition function is

ZnðlÞ ¼ hΩj
Yn−1
j¼0

Bl;j exp

�X
k

i
2πk
n

Z
λ

0

dλ0ψ†
kðλ0Þψkðλ0Þ

�

×
Yn−1
j0¼0

B†
l;j0 jΩi: ð67Þ

The corresponding entanglement entropy to leading order in
1=Λ− is of the form (63). More specifically, it is proportional
to λ2, but dressed by the second moments of the quark/
antiquark PDFs

S ¼ SðL−Þ þ πλ2

3Λ− ðhx2qil þ hx2q̄ilÞ þO
�

1

Λ−2

�
; ð68Þ

where

hx2qil ¼
Z

1

0

dxx2jφlðxÞj2; hx2q̄il ¼
Z

1

0

dxx̄2jφlðxÞj2;

ð69Þ

are the second moments of the quark and antiquark PDFs.
The higher and even moments of the PDFs are suppressed by
further powers of 1=Λ− in the entanglement entropy (68).
For the meson state in the Schwinger model, each of the
second moments is 1

3
.

To derive (68), it is best to use a diagrammatic analysis of
(67) as illustrated in Fig. 8. The disconnected bubbles where
the meson operators contract among themselves exponen-
tiate and contribute to the vacuum state entanglement. So we
need to consider only the connected diagrams where the
combination ψ†

iψ i from the external state contracts with
ψ†
kψk from the vector operator in the exponent. We now note
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that each time a ψ†
iψ i from the external state contracts with

ψ†
kψk from the operator insertion, a suppression factor 1=Λ−

arises. Hence, the leading 1=Λ− contribution consists of
n − 1 pairs of external states contracted among themselves,
with the remaining pair contracted with ψ†

kψk from the
vector operator insertion.
For a replicated fermion in Fig. 8 (top), this contribution

is the trace over the i fields, which readily converts to the
sum over the k fields. This reproduces the second term
in (A2). The extra −1 corresponds to the subtraction of the
term with no insertions.
This observation extends to the replicated meson state as

well. The leading contribution is shown in Fig. 8 (bottom).
For a generic n, the operators can be inserted simultaneously
on the fermion/antifermion lines. To obtain the linear
contribution in n − 1, one needs the insertions exclusively
on either the fermion or the antifermion legs, but not both. In
this case one reproduces the above free fermion contribu-
tions, but weighted over the LFWF of the meson,

S − SðL−Þ ¼ 1

Λ−

Z
1

0

dxjφnðxÞj2ðFsingleðxλÞ þ Fsingleðx̄λÞÞ;

ð70Þ

where FsingleðλÞ ¼ λ2π
3

is the fermion contribution. This is
(68) and concludes our derivation. One should mention that
although the above derivation is for a free replicated meson

state, it can be extended to 2D QCD, using the large Nc
power-counting methods detailed above.
We note that for spacelike cuts, the replica partition

function (67) can be regarded as a meson-meson correlation
function, with replicated fermionic vector charge inser-
tions. In the limit where the meson sources are asymptoti-
cally separated, it is in general a function of the form
ZnðP · L;P · R;L2; R2Þ and can be probed on an Euclidean
lattice in the same spirit as the quasi-PDF approach in
[33,34] for parton densities. For say large Pz and fixed
spatial cut Lz < Rz ¼4

ffiffiffiffiffiffi
V4

p
, the second moment of the

quark PDF in a meson state can be read from the coefficient
of the Renyi entropy that scales like 1=PzRz.

C. Coherent meson state on the light front

In a general bosonic coherent state

jξi ¼ e−
jξ2 j
2
−ξB†

l jΩi

constructed using (65) with ξ complex valued, the replica
partition function is

ZnðξÞ ¼
Y
k

ZkðξÞ ¼
Y
k

e−jξ2jhΩj exp½−ξ�Bl�

× exp

�
i
2πk
n

Z
λ

0

dλ0ψ†ðλ0Þψðλ0Þ
�
exp½−ξB†

l �jΩi:

ð71Þ

For 2D QCD the reduction of (71) in terms of the LFWF
φlðxÞ is straightforward but tedious. This construction
maybe used to probe for many-body correlations.
Equation (71) simplifies considerably for 2D QED or the
Schwinger model. Indeed, for the latter Bl is nothing but the
bosonized field, and (71) can be reduced by bosonization to

lnZkðξÞ ¼ lnZk −
2ξk
n

ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffi
PþL−

p sin λ; ð72Þ

where Zk is the vacuum contribution. After summing over k,
all the k-dependent terms cancel out, with only the vacuum
contribution remaining. For the Schwinger model, the
bosonic coherent state has the same LF-spatial entanglement
as that of the vacuum.

V. HOLOGRAPHIC DUAL CONSTRUCTION

In this section, we will construct a soft wall holographic
dual to two-dimensional QCD, using the bottom-up
approach. Using the Ryu-Takayanagi proposal [25], we
will derive the entanglement entropy geometrically. Wewill
illustrate the derivation by recalling the construction for
two-dimensional CFT with an AdS3 gravity dual, and then
extend it to the nonconformal case of two-dimensional
QCD using soft-wall AdS3.

FIG. 8. The leading 1=Λ− contribution to the spatial entangle-
ment for n-replicated fermion (upper) and n-replicated meson
states (lower). The crossed circles denote the vector current
operator insertions. To leading order in 1=Λ−, n − 1 pairs of the
replicated external states contract with themselves, leaving only
one pair for the vector current insertion. To leading order in n − 1,
no additional insertion is needed.
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A. AdS3

Two-dimensional conformal theories map onto AdS3,
with a central charge c ¼ 3R=2G3, with R the radius of
AdS3, and G3 the bulk Newton gravitational constant. In
this regime, the entanglement entropy for the single spatial
cut L ¼ ja1 − a2j can be read in bulk using the Ryu-
Takayanagi proposal [25]

S ¼ γL
4G3

→
c
3
log

�
R
a
sin

�
πL
R

��
ð73Þ

with γL the length of the bulk AdS3 geodesic. In two
dimensions G3 ¼ gsls and R=G3 ¼ ðR=lsÞ=gs, with the
string length ls. The string coupling is gs ∼ 1=Nc, with the
1=Nc universal from the genus expansion. For conformal
fermions in the fundamental representation, we expect
R=ls ¼ # > 1 (below # is of order 1), with c ¼ Nc.
In Poincare coordinates with line element

ds2 ¼ R2

z2
ð−dt2 þ dx2 þ dz2Þ ð74Þ

the geodesic is a semicircle _x2 þ _z2 ¼ ðL=2Þ2,

ðxðsÞ; zðsÞÞ ¼ L
2
ðcos s; sin sÞ ð75Þ

sustained by the single-cut end-points �L=2 on the
Minkowski boundary at z ¼ a ≪ L (range 2a=L ≤ s ≤
π − 2a=L). The geometric entanglement entropy is the
length of the geodesic in Planck units

S ¼ 1

4G3

Z
π=2

2a=L
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gMN _xM _xN

q
¼ R

2G3

Z
π=2

2a=L

ds
sin s

¼ R
2G3

log

�
πL
a

�
: ð76Þ

B. Soft-wall AdS3

Assume now the geometry is controlled by a soft-wall
AdS3

ds2 ¼ e−κ
2z2

z2
ðdz2 þ dx2 − dt2Þ; ð77Þ

where κ2 ∝ g2Nc plays the role of the “string tension.” The
minimal surface is parametrized by

ðx; z; tÞ ¼ ðxðsÞ; zðsÞ; 0Þ; ð78Þ

where 0 ≤ s ≤ 1. The two-dimensional bulk action is

S ¼
Z

ds
e
−κ2z2

2

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þ _z2

p
; ð79Þ

for which the minimal surface can be chosen to satisfy

_xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þ _z2

p e−
κ2z2
2

z
¼ α; ð80Þ

_x2 þ _z2 ¼ β2; ð81Þ

which leads to

_z2 ¼ α2β2ðz2meκ2z2m − z2eκ
2z2Þ; ð82Þ

_x ¼ αβze
κ2

2 : ð83Þ

Here zm is the maximal value of z attained at s ¼ 1
2
, which

satisfies

L
2
¼

Z
1

0

ds_x ¼
Z

zm

0

dz
ze

κ2z2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2meκ
2z2m − z2eκ

2z2
q : ð84Þ

For small L (84) reproduces the circular solution in AdS3
discussed above. For large L, we define z̃m ¼ zmκ and
L̃ ¼ Lκ, so that

L̃
2
¼ z̃m

Z
1

0

dt
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ez̃
2
mð1−t2Þ − t2

p ≡ Fðz̃mÞ: ð85Þ

See Fig. 9 for a depiction of the function FðzÞ. For small
z̃m ≪ 1, Fðz̃mÞ ¼ z̃m and the circular solution follows.
However, a maximum develops for z̃m ∼ 1.4, so that
Fðz̃mÞ ≤ 0.72. The connected solutions only exist for small
L, at strong ’t Hooft coupling

L ≤
1.44
κ

∼
1.44ffiffiffiffiffiffiffiffiffiffi
g2Nc

p : ð86Þ

For large L the minimal surface cannot be smoothly
connected to the small L solution. A similar observation

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIG. 9. Fðz̃mÞ in (85) as a function of z̃m, with a maximum at
z̃m ∼ 1.4.
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was also made for D-branes in higher dimensions, where at
large L the solution was argued to be made of two disjoint
in-falling geodesics [35]. For the soft-wall model, this
disconnected geometry can be approximated by

S ≈ 2 ×
R
4G3

Z
zm

a

dz
z
¼ R

2G3

log

�
zm
a

�
: ð87Þ

The net entanglement entropy is a competition between the
circular (76) and disjoint (87) geometries,

ΔS ¼ SðκL ≪ 1Þ − SðκL ≫ 1Þ ¼ R
2G3

log

�
πL
zm

�

→
Nc

3
log

�
πL
zm

�
: ð88Þ

The Ryu-Takayanagi entropies for small (76) and large (87)
spatial cuts are in agreement with the perturbative Renyi
entropy (34), and its nonperturbative analog m → m̃ at
large Nc, respectively.
This interpolation between a connected surface for small

cuts and a disconnected surface for large cuts is similar to
the observation put forth in [35], for several holographic
constructions dual to 4D conformal and confining gauge
theories. However, the chief difference in our case stems
from the fact that 2D QCD at large Nc, confines at all
distance scales. The geometrical change we observed is not
related to a Hagedorn-like growth in the confined meson
spectrum as argued in 4D QCD in [35], as there is none in
2D, but is rather a reflection of parton-hadron duality for
small intervals in 2D QCD.

VI. CONCLUSIONS

We have shown how to extend the replica construction
to Minkowski space-time signature and use it to derive a
general formula for the replica partition function in the
vacuum state. Our result applies to a large class of
interacting theories with fermions with or without gauge
fields for any space-time cut and in arbitrary dimensions.
When analytically continued to Euclidean signature, our
result can be explicitly reduced to the standard result, using
bosonization.
In the presence of gauge interactions, spatial entangle-

ment as described by our replica partition function is in
general gauge dependent, a result of gluing fermionic fields
valued in different replica strips along the spatial cut.
However, the ensuing Renyi entropy for small or large cuts
can still exhibit gauge-independent contributions. We have
shown that this is the case in two-dimensional QCD.
For small spacelike cuts, the Renyi entropy was shown

to follow from the charge density correlation function,
which is fixed at a short distance by the 2D axial anomaly.
The central charge is Nc

3
and gauge independent. At large

distances, the perturbative arguments break down. Using
the planar expansion, we showed that the leading OðNcÞ
contribution is tied to the rainbow dressed quark propaga-
tor, which is explicitly gauge fixing dependent. However,
for large cuts, this contribution vanishes exponentially with
the distance L, leaving behind only the gauge-independent
UV constant contribution. The mesonicOð1Þ contributions
do not change this result.
Our results are not limited to the vacuum state. We have

shown that spatial entanglement on the light front can be
extended to any hadron state, with minimal changes to our
central result for the replica partition function. The result is
reminiscent of LF wave functions, which shows a direct
relationship between the Renyi entropy of an excited
hadron and its parton distribution on the light front.
Conversely and for spacelike intervals, the even moments
of the quark PDFs in a hadron state in 2D QCD can be
extracted from the Renyi entropy at large momentum. This
observation extends to 4D QCD both in the continuum and
on an Euclidean lattice.
Using a bottom-up soft-wall model for 2D QCD in

AdS3, we have shown that the Ryu-Takayanagi geometrical
entropy interpolates between the known conformal AdS3
result for a small spatial cut and a constant but UV sensitive
result for a large spatial cut. This result is in total agreement
with the Renyi entropy, following from our new replica
construction. Although 2D QCD at large Nc is not
conformal at all distance scales, the agreement with the
conformal AdS3 result for small intervals illustrates the
parton-hadron duality at work in theories with confinement.
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APPENDIX: DETAILS IN THE KERNEL
REDUCTION

In the large Λ− limit one can split the kernel (60) into

Z
Λ−=2

−Λ−=2

dxdy
2πΛ−

ie−iðx−yÞ

x − yþ i0
ðx − λþ i0Þðy − i0Þ
ðy − λ − i0Þðxþ i0ÞÞ

k
n

¼ 1þ 1

Λ−

Z
Λ−=2

−Λ−=2

dxdy
2π

ie−iðx−yÞ

x − yþ i0

×

��ðx − λþ i0Þðy − i0Þ
ðy − λ − i0Þðxþ i0Þ

�k
n

− 1

�
ðA1Þ

and
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lnZn ¼ ð1 − nÞSn þ
1

Λ−

Xn−12
k¼−n−1

2

Z
Λ−=2

−Λ−=2

dxdy
2π

ie−iðx−yÞ

x − yþ i0

��ðx − λþ i0Þðy − i0Þ
ðy − λ − i0Þðxþ i0Þ

�k
n

− 1

�
: ðA2Þ

The reduction of (A2) follows by noting that the bracket is of the form

FðzÞ ¼ lnðz − λÞ − ln z; ðA3Þ

with a branch cut along ½0; λ� with discontinuity 2πi. The ensuing integral follows by contour

Z
Λ−=2

−Λ−=2

dxdy
2π

ie−iðx−yÞ

x − yþ i0

��ðx − λþ i0Þðy − i0Þ
ðy − λ − i0Þðxþ i0Þ

�k
n

− 1

�

¼
Z

Λ−=2

−Λ−=2

dxdy
2π

ie−iðx−yÞ

x − yþ i0
e

k
nFðxþi0Þ−k

nFðy−i0Þ

¼
Z

Λ−=2

−Λ−=2

dxdy
2π

ie−iðx−yÞ

x − yþ i0

h
e

k
nFðx−i0Þ−k

nFðy−i0Þ þ δAðxÞe−k
nFðy−i0Þ

i

¼ Λ− þ
Z

Λ−=2

−Λ−=2

dxdy
2π

ie−iðx−yÞ

x − yþ i0
δAðxÞe−k

nFðy−i0Þ

¼ Λ− þ
Z

Λ−=2

−Λ−=2

dxdy
2π

ie−iðx−yÞ

x − yþ i0
δAðxÞδBðyÞ þ

Z
Λ−=2

−Λ−=2
dxδAðxÞe−k

nFðxþi0Þ; ðA4Þ

with

δAðxÞ ¼ e
k
nFðx−i0Þ − e

k
nFðxþi0Þ ¼ ðe−2πk

n i − 1Þek
nFðxþi0ÞθðxÞθðλ − xÞ; ðA5Þ

δBðyÞ ¼ e−
k
nFðyþi0Þ − e−

k
nFðy−i0Þ ¼ ð1 − e

2πk
n iÞe−k

nFðyþi0ÞθðyÞθðλ − yÞ: ðA6Þ

Using the relation assignment 1
x−yþi0 ¼ PV: 1

x−y − iπδðx − yÞ, we obtain (61).
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