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Transition GPDs and exclusive electroproduction of 7 — A(1232) final states
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We investigate exclusive electroproduction of 7~ AT within the handbag approach in which the helicity
amplitudes factorize into generalized parton distributions (GPDs) and hard partonic subprocesses. We
define the p — A transversity GPDs while the helicity nonflip GPDs are taken from the literature. For the
numerical estimates of observables we utilize large-N . results in order to relate a few of the p — A GPDs to
the proton-proton ones and neglect all other GPDs. In the calculation of the twist-2 and twist-3 subprocess
amplitudes we take into account quark transverse momenta in combination with Sudakov suppressions.
The partial cross sections for y*p — z~ A" are predicted in the large-N limit.
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I. INTRODUCTION

In the last 25 years hard exclusive reactions have found
much interest. The theoretical description of such proc-
esses, the handbag approach, is based on factorization of
the process amplitudes into hard partonic subprocesses
and soft hadronic matrix elements, parametrized as
generalized parton distributions (GPDs). This factoriza-
tion property has been shown to hold rigorously to
leading-twist accuracy in the generalized Bjorken regime
of large photon virtuality, Q?, and large invariant mass of
the hadrons in the final state, W, but fixed Bjorken-x, xp,
and small Mandelstam-r [1-3]. However, there is no
theoretical estimate of the strength of subasymptotic
power corrections. In so far, the validity of the asymptotic
leading-twist result in a given range of Q> and W is to
be regarded as an assumption. The strength of power
corrections have to be extracted from the analysis of
relevant data. Still the handbag approach, with occasional
power corrections, has been successfully applied to
electroproduction of vector (e.g., p°, ¢, w) and pseudo-
scalar (e.g., m,17,n") mesons, see the reviews [4,5] and
references therein. These processes require the diagonal
proton-proton GPDs. Octet-octet transition GPDs occur
for instance in kaon electroproduction. SU(3) flavor
symmetry relates these GPDs to the p — p ones provided
that symmetry breaking effects are ignored [6]. This, for
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instance, allows an analysis of the sparse kaon data (see [7]
and references therein) within the handbag approach [8]. The
situation for the octet-decuplet GPDs is more complicated.
Only in the large-N - limit these GPDs—or at least some of
them—can be related to the p — p ones [4,9].

Since in the near future data on the exclusive zA
channels will come from the Jefferson Lab we think it
timely to analyze such processes. First, still preliminary
data, namely the beam spin asymmetry for 7~ AT (1232),
have already been shown on conferences [10]. Here in
this article we are going to analyze the process y*p —
#~ATT(1232) in full analogy to y*N — zN’ [11,12].
It however turned out for the latter process that the naive
asymptotic leading-twist result is not readily applicable
in the range of kinematics accessible to these experi-
ments. In fact, large power corrections are required to the
asymptotically dominant amplitudes for longitudinally
polarized photons. There are also strong contributions
from transversally polarized photons although they are
asymptotically suppressed by 1/Q? in the cross sections.
In some cases, as for instance for z° electroproduction
[13], the contributions from transversely polarized pho-
tons are even dominant. In [11,12], see also the review
[14], a generalization of the handbag approach has been
developed which allows us to model such power correc-
tions. The decisive point is to retain the quark transverse
momenta in the subprocess and to apply Sudakov sup-
pressions. Implicitly, this way the transverse size of
the meson is taken into account. The contribution

"The role of quark transverse momenta and the transverse size
of the meson has also been discussed in [15] in the case of light
vector-meson production at HERA kinematics.
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from transversely polarized photons are modeled by a
combination of transversity GPDs and a twist-3 pion wave
function. This twist-3 contribution is large in the case of
pions since it is proportional to a mass parameter, i,
which is not the usual mass of the pion. It is rather
enhanced by the chiral condensate

m;

(1)

e = g

by means of the divergence of the axial vector current.”
The masses m, and m, are the current-quark masses of the
pion’s valence quarks. The mass parameter is large, about
2 GeV at the initial scale yg =2 GeV. As in [11,12,17]
the contribution from the pion pole is treated as a one-
bose-exchange term which is much larger than its leading-
twist approximation.

The plan of the paper is the following: After some
kinematical preliminaries (Sec. II) we calculate the matrix
elements, A2, for the helicity nonflip p — A GPDs and the
v p — n~ A*T helicity amplitudes (Sec. III). In the next
section we define the transversity GPDs and calculate
likewise the A* and the helicity amplitudes for them.
Section V is devoted to a study of the contribution from the
pion pole and, in Sec. VI, we discuss the GPDs in the large-
Nc limit. In Sec. VII the parametrization of the GPDs and
the calculation of the subprocess amplitudes is presented.
Our predictions for the y* p — x~ A™™ partial cross sections
are shown and discussed in Sec. VIIIL. Finally, in Sec. IX,
we give a summary.

II. KINEMATICAL PRELIMINARIES

We are interested in the hard exclusive process

r*(g:m)p(p,v) = a= (¢’ ))AT(p', V), (2)

where the labels in the parenthesis denote the momenta of
the particles and their light-cone helicities. In light-cone
components the momenta are defined as
[ m? 4+ A%/4 A

= 1 P+ ) e [ _J_ ) 0 )
e Ty

[ M?*+ A2 /4 A}

‘= (1-&Pt o ——E - ==0],
L

—0*+A%/4 A
p(l+ept’ 277

g = |n(1+&)P",

(3)

*Twist-3 effects may also be generated by twist-3 GPDs in
combination with a twist-2 meson wave function [16]. However,
for these GPDs there is no similar enhancement known. There-
fore, such contributions are expected to be small and neglected
here.

where m and M denote the mass of the proton and the
A(1232), respectively. The mass of the pion is neglected
except in the pion pole term, see below. The negative of 7
equals the Bjorken variable, xpz, up to corrections of
order m?/Q? and A% /Q?. It is convenient to introduce
an average baryon momentum, P, and a momentum
transfer, A:

P=2(p+p). A=p'-p (4)

N[ =

The skewness is defined by the ratio of light cone plus
components of A and P

A+
= 5)
and is related to Bjorken-x by
XB
= . 6
R (©)

This relation strictly holds for Q> — co but we neglect
here the corrections of order 1/Q% Mandelstam ¢ is
given by

Al

r=A2=f———_,
0 1_52

(7)

where 7, is the minimal value of ¢ implied by the positivity
of A7

0= —rog 1+ 0 - ) +2607). (8)

For convenience we will frequently use in the following a
variable ¢ defined by

{=1-1g=~-0}/(1-&). (9)
For later use we also define the two quantities

ko= (1+ M= (1-Em. (10)

III. THE HELICITY NONFLIP p - A
TRANSITION GPDs

We will make use of the helicity nonflip p — A GPDs
defined by Belitsky and Radyushkin [4]. There are four
even-parity transition GPDs,’

’In [4] A is defined as p — p’ and P as p + p'.

054009-2



TRANSITION GPDs AND EXCLUSIVE ELECTROPRODUCTION ...

PHYS. REV. D 107, 054009 (2023)

1

2 2

T opt

! / G s (A4 (f )i =2/ 27 d (/D)1 p (o)), o

1 APt — AFpd
BT s

+A6

P A A
FEG 80 4G 60 ) + 5 3G ran(po) ()

and four odd-parity ones,

1

2 2w

:F

DG t>) G (£ 1) +

where the vector n is
n=10,1,0,]. (13)

In comparison with the diagonal proton-proton GPDs, see
for example [18], an extra y5 is introduced in order to match
the parity of the A(1232). The A(1232) is considered as a
stable particle. Therefore, one can apply time-reversal
invariance to show that the p — A transition GPDs are
real-valued functions [5]. In the definitions (11) and (12)
u(—z/2) and d(z/2) denote quark field operators of a
specified flavor and we work in the light-cone gauge
AT = 0. The GPDs also depend on the factorization scale
which, for convenience, is suppressed in (11), (12), and in
the following. The us(p’, /) in the above relations denotes
a Rarita-Schwinger spinor for the A(1232). It satisfies the
Dirac equation and is subject to the subsidiary conditions
pu(p' V) =0,  yu'(p'V)=0.  (14)
The Rarita-Schwinger spinors can, for instance, be found in
[19]. The lowest moments of the GPDs G4, G,, and G5 are
related to the proton-A transition form factors, see [4].
Isospin symmetry relates the p — AT GPDs to those of
other A(1232) states [4]

u \/§ uu— u
G, = _TGPNdd = —V3G%4,. (15)
al\) a'(V)

pr)—" /é TT—aAw)

FIG. 1. The matrix element representing a proton-A GPD.

3 [ S e AT =220y A D

1 _ An# — AFpd o
ua(P"V'){T <7ﬂG1(x’ 1)

ATA®

Gulx. . r)}u<p,u>, (12)

m2

|
As a special exception we have indicated the flavor content
of the GPDs in this relation. Thus, for instance, GZiH is a

GPD for which an d quark is emitted from the proton and u
one reabsorbed forming the A™*. The relations (15) hold
for all eight helicity nonflip GPDs as well as for the
transversity GPDs that will be defined below. SU(3)
flavor symmetry also relates the p — A GPDs to other
octet-decuplet transition GPDs.

We are interested in matrix elements for emitted and
reabsorbed partons with definite light-cone helicity.
According to Diehl [18] this can be achieved by consid-
ering the following combinations of quark field operators:

Oy =—u(=z/2)y (1 £75)d(z/2), (16)

B —

where, in the region of £ < x < 1, the corresponding matrix
elements (see Fig. 1),

dz= , pr.-
AL = /2—6)‘})+Z (AT (V)| Oullp(p. )0z, 0

(17)

describe the emission and reabsorption of on-shell quarks
with helicity 4. In other regions of x one has, if necessary, to
reinterpret an outgoing (incoming) quark with helicity 4 as
incoming (outgoing) quark with helicity —A.

Using the definitions (11) and (12) one can readily work
out the4 matrix elements for the kinematics described in
Sec. II':

“These results hold in any frame provided that p and p’ lie in
the 1-3 plane except for the fact that any v —7' is to be multiplied
by sign(P*A' — A*P") [18].
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2
+(1=8)(1 = &)m?*(k_G3 £ x,G3) +

- (1=8) (k- + 51+ M) = (1+29)(1
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E( 4+ E)(1 = EVMH(Gy £ Gy) = E(1 &) + k) (kG £ K@)},
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~3(Go £ G)[(1 = &)1 + g1

—(1=5H(1=&)m
+(1+29)(1 = &)*m?

—lt+ —

—&(1 = &)mM|

{—zw _EMm(Gy £ Gy) + (1= (1 - (G, F Gy)

8P + M1 483~ ] ~ g M(1 + ) (x_Go £, G)
2(Gy + Gy) + Gsl(1 = £)7 +4E(1 + &M

(G GE((1 = )7+ kky) 1 (1 + OM(k_Gy + K+G4>}. (18)

Explicit helicities of photons, nucleons, and quarks are
labeled by their signs, whereas the helicities of the A(1232)
are denoted by +3 and +1.

At leading-twist accuracy only longitudinally polarized
photons contribute to the center-of-mass helicity ampli-
tudes for the process y*p — n~AT*. The amplitudes
read [9]

M%D = ‘30/ deHOAO/I um (19)

The matrix elements A 1/,(1 21 appear in the isovector combi-

nation, i.e., any GPD contributes in the flavor combination

GV =Gr -G (20)
!
w2 ey V —t/ 1
Mosor = 75 m> 1—¢
W 80 t/ 1+§ 1 ~
MG 04 e\ 1=¢ 5 (G

Parity symmetry leads to the following relation for the
y*q — n~q subprocess amplitudes

HJT

0= —p—4

— _(_1) —AH’HH

X (21)

With its help we can write M{'7 ~ as
! . NG A(3
Mgfo» =@ /_1 dxHE o [AU’SL3+ - AI/(—y)_]' (22)

Inspection of (18) reveals that only the odd-parity GPDs
contribute to pion production. Explicitly, the helicity
amplitudes read
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() 1 1

w2 _
MOI,OJr - \/6sz(1 _ 52)

2

e { (- @l - + 2000, 161

LA+ o1 — @M + (61— 2m2 + &1 + OB - OM2 + (1 - &) ), (G

+ (1= 221 = &mPr. (GY)) — E[(1 = &) (k. + (1 + M) + K_K1]<fo’>},

Mth — 6_0 v _tl 1
0-1,0+ \/Eszl _ 52

{—<1 _ Eym{2eM + (1 - Em)(EY)

— S0 = )7+ £ = P2 + (1 + OMx, + (1 +E)(3 - M (GF)

—(1=8(1 = E)m2(G) + (1 =) +xx, + (1 + 5>MK+1<GSB’>}, (23)
[
e [ e w ) at=ep2)io e 2)
- 1 _ -
@) = [ a6, @4 xp(p)oeo
=is(p'. V) ysu(p,v). (26)

Parity symmetry for the y*p — 7~ A™" helicity ampli-
tudes leads to the relation

MO—D’—M—L/ = (_ 1 )”_U+I/M0u’/w (25)

The generalization of these results to mesons in the final
state other than the pion is straightforward.

IV. THE TRANSVERSITY p -A GPDs

For the definition of the eight transversity GPDs we have
to consider the tensor matrix element

Here, I'’*/ is a matrix in the Dirac space being antisym-
metric in the Lorentz label + and the transverse one
Jj(=1,2). The matrix y5 occurs as a consequence of the
spin and the parity of the A(1232). At disposal for the
construction of I" are the momenta P, A, and n as well as y*
and ¢* taking into account the conditions (14). The
antisymmetric tensor can also be constructed directly with
the Rarita-Schwinger spinor. A possible set of transversity
GPDs is then

! / 9 sprs (A (!, 1) 0(~2/2)ic d (2 D) PPt oo

2) 2n
= %5‘5(1?/’ V) [Gn %61'0“ + Grzpﬁw
+Gr3p’ % + Gmﬁ% + Grs(n’y) = y°n/) 4 Grg M] rsu(p.v)
+ % [Gn(ﬁ*(p’, )y = (p',V)r") + Grg A ,; T y/)N} ysu(p,v). (27)

As the helicity nonflip GPDs the transversity ones are real-valued functions of x, £, and ¢. Any other antisymmetric tensor
can be expressed as a linear combination of the eight tensors appearing in (27). This can be shown with the help of the Dirac

equation and the generalized Gordon identities

is(p)ic™ (p' F p)yu(p) = (M £ m)as(p')y*u(p) — us(p')(p' £ p)*u(p),
its(p")ic (p' £ p)grsu(p) = (M £ m)is(p")yysu(p) = as(p') (' F p)rsu(p). (28)

Obviously, the set of GPDs is not unique.
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The matrix elements

dz~ -
M= [ o e IO b))

- H=0,2,-0- (29)

where

La(=2/2) (0" F io™)d(2/2) (30)

O pr—
F+ :F4

describe, in the region £ < x < 1, the emission of an on-shell quark with helicity A and the reabsorption of an on-shell quark
with helicity —A [18]. Explicitly these matrix elements read

1 1+§t
8=\ | St (14.9(Gr - Gro) |,

1 1
AR 4o :F 4_—5{ 2 [ Gry + (1 =¢)(Grs +GT4):| +4(1-8)Gr —4—— ¢ K GTS}

1+&m
1 V=7 4 Gry— G
A= VG t{ 41+ 8Gr +(1+8)— GT2+2’:1;L§TISTT4_4§GT8}’
1 —t 3/2
Ab,  =- F( m)3 (148G,
A LVl L e K2k, + (1= 81 (k_ <1+:>M>
Al = e m 1-¢ { 4(1-¢&)Gr + 0+ Gry
(-8
o +m(M = (GT3_GT4)+2K_+<£GT3_GT4
—2(1—@[(1—52)&@5“1—5) =G+ GTS]}
\ VAT 1 (e (80 M4 8) o t (=
AL, = “ave m 1+5{ (1= &m’M Gra (Gr3 + Gy
_ _ 4+ 2EM
+2<1—:)(1—¢2>%GT5—2<1+5>[<1—«:)Kﬁcm—zm—f)%aw%em}},
1 1 1— 2\ 4/ . /
A% :4\/_ﬂ{_4( §ZM+K = Gr +m§—M[K—(K++(1 +&M) + (1 = E)/|Grs
+ £ Kk, + (1 =81
L, Gr4>+2K+(K(1Ki 52)(m2M> EN
1— ! 1 - + 28 M
_475 <K+GT5+(1—52);_mGT6+(1—§)mGT7>—2( 5)};1:; X Grs},
V1=81 (k_(kp+ (1 +EM)+ (1 =)
Al o=~ NG mz{K ey ((1_5)2);7)11‘/[( ) GT2+GT3+GT4—2(1—f)ZGrs—ZZGTs}- (31)

I

Notice that the set of GPDs Gy;, defined in (27), is  the twist-3 y*p — z~AT" amplitudes are given by the

linearly independent: the determinant of the 8 x 8 matrix ~ convolutions of quark-helicity-flip subprocess amplitudes

that relates the GPDs to the matrix elements, A2, is nonzero which are of twist-3 nature, with the matrix elements A%
for ¢ # 0. 1

The matrix elements, A2, are suitable for the calculation of MM — ¢ / dx AA +HE 32

amplitudes for any meson-A(1232) final state. In particular O/ = 70 iAo B (32)

V—Aua
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Only transversally polarized photons contribute to the twist-3
amplitudes.
It can be checked that

AR, = (AL (33)

As we already mentioned the analogous property of the
helicity amplitudes [see (25)] holds as a consequence of
parity invariance. Inspection of (18) and (31) furthermore
reveals that for #/ — 0 the matrix elements behave as

A8~ (34)

Also this property of the matrix elements is shared by the
center-of-mass helicity amplitudes [20].

For t — 0 the subprocess helicity amplitudes behave
as [20]5

Hopua ~ V=174, (35)

This property of helicity amplitudes is a consequence of
angular momentum conservation. Strictly speaking it
reflects the conservation of the three-component of the
|

M w3

) 1+§t_’ K_, 3)
03-++ 4\/§ 1_§m2

spin in the collinear situation at ¢ = 0. In the generalized
Bjorken regime, where —f <« Q2, the dominant contribu-
tion comes from subprocess amplitudes evaluated at r = 0.
Hence, these subprocess amplitudes must be helicity non-
flip ones implying

== (36)

Evidently, in this case (34) provides the correct ¢ depend-
ence of the helicity amplitudes for # — 0 [20]

Moy ~ V=175, (37)
Since from (35) it follows that for t - 0

HG_y = —H{,__ o const,
Hoor =My ot (38)
the amplitudes (32) simplify—one of the two terms in this

relation is zero. The y*p — 7~ AT helicity amplitudes for
transversally polarized photons read

= (68 + 1+ (6 - (68|

1 ! _ _
My == S e (S 6 + (- a6 + (6 + 41 - i6f) -4 5= 6.
= / GOy _ g®
My == 2o a1+ (G + (1 + ) (0 + 2580 = Om) ],
_4\3/2
My =S o6
s _ € V= 1 G Kk (1 =) ko + (1 +OM) 3y, kko+ (1 =) )
My, =50t a6 + SOEST (o) + =L (6
— (G) + "2 (G = (G = (1= &)1 = )7 (GFH) = (1 - &1 (G = (1 - f)"ﬁwc%},
M, = YT (2 0=l 0O g, e (1=E
=+ " 4/6 m (1-&)m*M 12 (1+&)mM
_ _+2EM
(G + (G50 + 201 - 6P (65 -2 -9 (57 (68 - 257460 ) -2 =52 16y .
1 Ky + (1 =E)7 "r_(ky (A +EM)+ (1 =87
Mg, = e { e ey ¢ G AR E 6p)

1+ (G - (GF)

Sens . . .
Since the quarks are considered as massless particles #, for the subprocess is zero.
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2 (k ok, +(1=8)7)
(1-&)m*M
t/

—4(1-9 (G 201 -1 - &) 5 —

-a(1-ep o -2 2 Lo e

(E(GR) = (GE))

(G

M mM
ws €0 17 e (ke +(1+M)+ (1 - SLE
Mot = NV mz{ M (Gr)

=BG +(GE) 21 =€) 52(1 - G + G},
where

3 ! - 3
<G(Ti)> = /_ | dXH0—++G(Ti)-

V. THE PION-POLE CONTRIBUTION

The pion-pole contribution, treated as a one-boson exchange term (see Fig. 2), reads

Aé

pole _ Qzn -
MOL/’/AU =€ f— m72r M(s(p/, I/) Eu(p? l/)(q - 2q/)p€p(/’l)’

where

Qzn = \/EgﬂA++pFﬂAﬂ(t)Fﬂ(Q2)'

(41)

(42)

As usual a possible ¢ dependence of the pion form factor, F,, is ignored (remember —¢ < Q? in the generalized Bjorken
regime). The coupling of the pion to the proton and the A** is described by a coupling constant, g, ++,, and a t-dependent

form factor, F,,,. Explicitly, the pole contribution to the y*p — z~A*" amplitudes reads

/
le €y Qzn VI Ky
MBS — 20 0
030+ V2t—-m2 m 1§

€ QzA ! 1+§
Mpole :_0 ° i
0=30+ \/Et—m,zzmQ 1-¢&
pole €0 Qza 1+§t/
Moser = F 5 0z \[T=em™

ey 0u (—1)?

pole )
Moy =+ 2i—m m (1+8).
e _ _ €0 Qna 0 (1= (ks + (1 +OM) + ki3
010+ \/61— m]2[ mM (1 _ 52)3/2 ’
pole _& OzA /_,i(l—éz)l/—FKjr(K_—l—(l—Ff)M)
M°‘10+_\/6t—m,2[ M -2 ;
e €0 Qma Y ' (1= (k, + (1 +EM) + k k%
O T3t —m2 mM 1-& ’
Mpole 4 €0 Qma ! (1= +x (ko + (1 + M)
ot 2V/3t—mamM -2 :
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Taking into account the pion form factor which is hidden in
0.a [see (42)], with its 1/Q” behavior the pion-pole
contribution to the longitudinal amplitudes behaves as
1/Q asymptotically whereas the transverse ones drop as
1/Q?. Thus, in this respect, the pion-pole contribution to
the y*p — n~ AT amplitudes behaves as that one to the
y*n — z~ p amplitudes. There are corrections to the ampli-
tudes given in (43) suppressed by 1/Q? that are extremely
complicated. They can be neglected even for the longi-
tudinal amplitudes since they are still suppressed by 1/Q
compared to the transverse amplitudes.

The amplitudes satisfy the familiar symmetry relation for
pion (unnatural parity) exchange

Mpole

It
0/ Fuv = _Mgsjiv‘ (44)

This is the same relation as for y*p — zN because both
processes possess the same upper vertex. The relation (44)
follows from the dynamics and forces the following
amplitudes

pole pole pole
MO— I++° M03—+ ’ M0—3++ (45)

to vanish by a factor of ¢ faster to zero for ¥ — 0 then is
forced by angular momentum conservation, see (37).

For longitudinally polarized photons the pion-pole con-
tribution (41) can be cast into the form

ole €y _ A5A+ QrA 2m
MEo, = pr B 5= up) [ 2o - e(0) 7|
(46)

If one is interested in the leading-twist contribution that
dominates for Q> — oo, than the comparison with (12) and
(23) reveals that the pion-pole contributes to the GPD G,
asymptotically. The term in brackets is its convolution with
the leading-twist subprocess amplitude

OFF™(Q*) [ ey €y
fﬂ<]‘/T>7[ x—&+ie x+§_i€’

where f, = 0.131 GeV is the pion decay constant, (1/7),
denotes the 1/7 moment of the leading-twist pion distri-
bution amplitude, @, and e, is the charge of the flavor-a
quark in units of the positron charge, e,. Finally, F5™ is the
leading-twist, leading-order result for the electromagnetic
form factor of the pion [21-23]. This result for the
convolution can be achieved if in analogy to the case of
y*p = mtn [24,25] the GPD is

T 2

0+0+ — (47)

~pole > =~
GE = G4pole - Ggpole = ®(|x| < é:)

® <)C + g) mfﬂ gﬂANFﬂAN(t>
"\ 2 Ve t-mp

(48)

The difference between the leading-twist contribution
from the pion pole and its full contribution (41) is the
replacement of F5™™ by the full form factor as extracted from
the data on the longitudinal y*p — z"n cross section [26].
Since F™ is substantially smaller than its experimental
value a leading-twist analysis of pion electroproduction
within the handbag approach evidently fails. In [11] the
pion-pole term is, therefore, treated as an one-bose-exchange
contribution in the analysis of exclusive z* data [27] and
reasonable agreement with experiment is obtained, see also
[28]. We are going to apply the same procedure to the process
of interest here, y*p — 2~ AT,

In the evaluation of observables for y*p — 7z~ ATT we
will use the following parametrization of the form factors
[11,12]

1 A2 — m?
F,= , Fopp = M,
1 4+2.0 GeV2Q? P Alz\, -t

(49)

with Ay = 0.44 GeV. For the zA™* p coupling constant
we take the value [29]

gﬂA++p = 148 (50)

VI. GPDs IN THE LARGE-N, LIMIT

As we have seen there are 12 GPDs contributing to the
exclusive electroproduction of z~A*". All of them are
unknown functions and, at present, there are no relevant
data to fix them. In order to be able to make predictions, or
better estimates, we therefore take recourse to a theoretical
approach, namely the large-N limit in which the p — A
GPDs are related to the proton-proton ones [4,9]. In this
limit the nucleon and the A(1232) are different rotational
excitations of the same classical object, the chiral soliton,
and they are degenerated in mass. This leads to relations
between the matrix elements of the quark-field operators,
(16) or (30), in the isovector combination [4]

V2|0 py) = (A1, [0 py). (51)

The arrows denote spin states. From (51) relations between
the p — A" GPDs and the proton-proton ones follow.
Subsequently, isospin symmetry (15) links the p — A™
GPDs to the p — A*™ ones. Since the baryon mass, M, is
large, of order N, one has to make a nonrelativistic
reduction of the Dirac bilinears appearing in (12) and
(27). This can be done consistently in a Breit frame, see
Fig. 3. In this frame there is no energy transfer but only a
momentum transfer, As. For the p — p GPDs we use those
defined in [18]. The matrix elements in (51) are then
calculated in the Breit frame and expanded in powers of
A;/M . The coefficients of the various powers of Az /M
for the two matrix elements are equated which provides the
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w*(q)% (=4

FIG. 2. The pion-pole contribution.

desired relations between the proton-proton GPDs and the
p — AT ones. In combination with the isospin relation (15)
one obtains for the odd-parity p — A™" GPDs with this
method [4,9]

Q
hadC)
£

Il

Q
A
=

|

(E" — E7), (52)

where, for each GPD, only the leading contribution in N is
taken into account. It can be shown that [30]

H'-H'~N%.,  E"-E?~N¢. (53)

The respective opposite flavor combinations are suppressed
The corresponding application of this method to the
matrix elements of the operator (30) leads to the relation

G 3G = Jmy-nd) (59
between the p — AT and the p — p GPDs for the leading
term of the A;/M. expansion. The higher-order terms
relate even more complicated combinations of p — A GPDs
to either the p — p transversity GPD E; or E; which are
unknown as yet and usually neglected in applications of the
handbag approach [11,12,31]. The GPDs H; and E; =
2H; + E; do not contribute to the matrix elements

(p ¢|(’)$l| py) evaluated in the Breit frame. This is in
accordance with the large-N result, that the isovector

~Ay/2
p/
—Aj
A AAAATAAVAVAYAY
|
As/2
FIG. 3. The Breit frame.

combinations of these GPDs are suppressed compared to
the sum of the corresponding u- and d-quark GPDs [30].
Hence, the large-N ¢ results for the transversity GPDs are of
no help without additional assumptions. In the following
we are going to probe two assumptions: all p — A trans-
versity GPDs are zero except of either Gy5 or Gy7 and
apply (54) to the nonzero one.

VII. THE SUBPROCESS AMPLITUDES
AND THE p —p GPDs

Due to the large-N - results (52) and (54) and because the
processes y*p — 7~ AT" and y*n — 77 p have the same
hard subprocesses, namely y*d — 7z~ u, the convolutions
(24) and (40) are the same as those of the p — p GPDs H®),

E®), and H (T3 ) up to numerical prefactors. The calculation
of the latter has been performed in previous work
[11,12,32] within the generalized handbag approach and
is described in great detail therein.® Therefore, only the
basics facts will be sketched in this section.

The main idea of the generalized handbag approach is to
keep the quark transverse momentum, k |, in the subprocess
while the emission and reabsorption of the partons from the
baryons are still treated collinear to the baryon momenta.
The subprocess amplitudes (at ¢ = 0) read

Hoy 0= /d7d2b‘i’,,’_,y,1(f, —b,,up)f’gwi(x, E7,0% b, ug)

X as(ug)exp[=S(z,b, Q% up, ug] (55)

in the impact parameter space; b is canonically conjugated
to the quark transverse momenta. The Sudakov factor, S,
has been calculated by Botts and Sterman [33] in next-to-
leading-log approximation using resummation techniques
and having recourse to the renormalization group. It takes
into account the gluon radiation resulting from the sepa-
ration of color charges, which is a consequence of the quark
transverse momenta. The properties of the Sudakov factor
force the following choice of the factorization scale:
up = 1/b. The renormalization scale is taken to be the
largest mass scale appearing in the subprocess, i.e., up =
max(zQ, (1 — 7)Q, 1/b) (z is the momentum fraction of the
quark entering the meson). The strong coupling constant,
ay, is evaluated from four flavors and Agcp = 0.181 GeV.
The inclusion of the quark transverse momenta and the
Sudakov factor has two advantages—first the magnitude of
the subprocess amplitudes are somewhat reduced as com-
pared to a collinear calculation which leads to a better
agreement with experiment (see, e.g., [12]) and, second, the

SFor the process y*n — n~ p the n — p transition GPDs occur
that, by flavor symmetry [6,25], are related to the isovector
combination of the proton-proton GPDs K49, , = K“ — K for

any GPD K = H,E. H, ....
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infrared singularity occurring in a collinear calculation of
the twist-3 subprocess amplitude is regularized.

For the twist-2 and twist-3 hard scattering amplitudes,
F”, evaluated to lowest order of perturbative QCD, we refer
the reader to Refs. [11,32]. The last object to be explained is

A

W, y;. It represents the Fourier transform of a soft pion
light-cone wave function. For twist 2 one has /' = 1 and the
distribution amplitude associated to ‘i‘, 1s the familiar twist-
2 one. On the other hand, for twist-3 one has I’ = —1 and a
twist-3 wave function is required. The wave functions are
parametrized as Gaussians in k| [11]:

2
VR \/J;”TC“—;Q,(T) exp [~a2k2 / (7)),
167372
W, =T Bk exp —adk2], 56
-+ \/mfﬂaP Lexp[ ap J_] ( )

where 7 = 1 — 7. For the twist-2 and twist-3 transverse size
parameters of the pion we take the values (see [12])

a, = 0.859 GeV~!, ap =18 GevV~l. (57)
For the familiar leading-twist pion distribution amplitude,
@,, we simply take the asymptotic form 677. The distri-
bution amplitude associated with the twist-3 wave function,
W, . .,is ®p = 1 as is fixed by the equation of motion if the
three-body twist-3 distribution amplitude is assumed to be
zero [34]. This ansatz for the twist-3 wave function makes it
clear that the corresponding subprocess amplitude is
calculated in the Wandzura-Wilczek approximation.7

For the numerical studies to be presented below, a value
of 2.0 GeV is used for y, at the initial scale uy = 2 GeV.
Since the current-quark masses decrease with increasing
scale u, is scale dependent. The respective anomalous
dimension is 4/, = 12/25 for four flavors.

We will make use of the p — p GPDs determined in
[11,12,32]. The idea is to parametrize the zero-skewness
GPDs. Their products with suitable weight functions are
considered as double distributions from which the full,
skewness-dependent GPDs can be calculated [36]. The
zero-skewness GPDs for flavor a are parametrized as

K¢(x,&E=0,1) = K¢(x,E =1t =0)exp[(b? — & In(x))1].

(58)

The forward limits, &, ¢ — 0, of the GPDs H and Hy are
given by the polarized and transversity parton densities,
respectively. In order to respect the Soffer bound the
transversity density is parametrized as

"In [35] we have calculated the full twist-3 subprocess
amplitude, i.e., its two-body as well as its three-body contribu-
tion. The application of this result to hard exclusive electro-
production of mesons is in progress.

TABLE 1. Regge parameters and normalizations of the valence-
quark p — p GPDs, quoted at the initial scale ug =2 GeV.
Lacking parameters indicate that the corresponding parameters
are part of the parton densities.

GPD  a(0)  [GeVY  b[GeV2 N N¢
i .. 0.45 0.59 e
Enp. 0.48 0.45 0.9 14.0 4.0
Hy . 0.45 0.3 1.1 -03
8 = Niy Vx(1 = x)[g"(x) + Ag®(x)]. (59)

The unpolarized and polarized parton densities are taken
from [37,38], respectively. For the nonpole part of E the
forward limit is not accessible in deep inelastic lepton-
nucleon scattering and, hence, unknown. Therefore, it is
parametrized like the PDFs

ErPi(x, & =1t =0) = Nx %O (1 —x)%  (60)

with the additional parameters to be adjusted to the elec-
troproduction data. The parameters of the zero-skewness
GPDs, compiled in Table I, are taken from [12]. The powers
p¢ are set to the following values

Ew: pr=pi=s. (61)

A flavor-symmetric sea is assumed for all GPDs (i.e.,

K" = K9). Splitting any GPD into valance and sea quark
GPDs

K* = K% + K* (62)

one sees that only valance-quark GPDs contribute to the
isovector combination (20):

K" — K¢ = K" — K, (63)

In this case the convolutions (29) and (40) are integrated
from —& to 1.

As is well known the GPDs evolve with the scale. Since
the factorization of the amplitudes into GPDs and a sub-
process is treated collinearly, the GPDs do not know about
the impact-parameter dependence in the subprocess—b is
integrated over. Hence, the subprocess factorization scale,
ur, does not apply to the GPDs, it refers to the factorization
of the soft meson wave function and the remaining hard
part of the subprocess. The scale of the GPDs is therefore
taken as the photon virtuality.

VIII. PREDICTIONS

The full y*p - z~ ATt amplitudes for longitudinally
polarized photons are

054009-11
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; 1
MO’/OV = Mé)t’z()v + Mgz’gy’ (64)

and for transversally polarized photons (u = £1)

MOD’W — M3 MPOIB (65)

o/ /u/ o/ v

For the twist-3 contributions we consider the two scenarios

3
I: G(T35):—§H(T3>, Gri =0, i#5,
1:  GY =3P, Gnp=0, i#7.  (66)

For scenario I the twist-3 amplitudes (39) simplify to
Iw3 e() \/7 v
Moty =
\/’
M2, = \/ (1 =&y,

MR, = \/}/ 1 +§ )s (67)

and all other twist-3 helicity amplitudes are zero. For
scenario II the nonzero twist-3 amplitudes are

My, =3 ‘fW —2(H),

3
2 H(T)>’

MM — \ ()>
M2 + =
3
M6W31++€o\/; 1—4_?( —5)%< )>- (68)

For both the scenarios the helicity nonflip amplitudes
dominate at small —z, M{" . for scenario I and
M3 for scenario IL

The electroproduction cross section for the z77 A final
state is defined by

do* QW2 —m?)
dW2dQ?dtdp 16n2E§m2Q2(1 —¢)
dGT
(7 ey
+\/2e(1 F &) cos p 2oLT (69)
dt

where ¢ is the azimuthal angle between the lepton and the
hadron plane, E; is the beam energy and ¢ is the ratio of
the longitudinal and transversal photon fluxes. If a value of
the latter quantity is needed we evaluate it for a beam
energy of 10.6 GeV and obtain ¢ = 0.77. The partial cross
sections read

103 ‘ \ \ : 103 ‘ ‘
dor/dt [~ dor/dt
[nb/GeV?] ‘\\ [nb/GeV?]
1071 1071
101 ] i 101 |
7r+7;."'
Q? = 2.48 GeV? Q? = 2.48 GeV?
xzp = 0.27 xp = 0.27
03 06 09 12 03 06 09 12
-t/ [GeVZ] —t'[GeVZ]

FIG. 4. The longitudinal (left) and the transverse (right) cross
sections of y*p — 7~ A™" versus —¢. The solid (dashed) lines
represent the predictions obtained for scenario I (II). For
comparison the dotted lines are the results for y*p — n'n
obtained with the same GPDs.

ﬁ = Zu’|M01/O+|2
dt 16z(W? —m2)\/A(W2, =02, m?)’
doy _ 3| 2
dt  32(W? —m?)\/A(W2, =02, m?)
dorr _ > ’Re[M();v ++M0u’—+]
dt 162(W? — m?)\/A(W?, —Q?, m?) ’
doyr -2 ZV’RG[M(*)U/M (Moy iy = Moy_1)] (70)
dt 3272(W2 — m2)\/AW2, —Q%. m?)

The Mandelstam function is defined by

W4+ 0* + m* + 2W2Q?
—2W2m? +20%*m?>. (71)

A(W2, —QZ, mZ) —

Equations (69) and (70) are in agreement with results
quoted in [39] but, by definition, the interference cross
sections have opposite signs here and in [39] and the
longitudinal-transverse cross section is larger by a factor
V2 in [39] than by us.

In Figs. 4 and 5 we display predictions for the partial
cross sections for the two scenarios and compare with the
corresponding y*p — nt'n cross sections. We show the
observables as functions of 7 and the reader should be
aware of the quite different values of 7, (for the kinematics
shown in the plots 7, is —0.323 GeV? and —0.088 GeV? for
the 7~ AT and the zn channel, respectively). Therefore,
at a given value of ¢/, the convolutions of a GPD for z~ A*™
and for zn are evaluated at different values of 7. This
partially compensates the prefactors in (52) and (54).

The longitudinal cross section for which the predictions
from the two scenarios fall together, is dominated by the
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250 == 60 —

," \‘\‘ dO'LT/dt ’:" \\\ dO'TT/dt
Y [nb/GeV?] K .. [nb/GeV?]
200f . 40/ 1
f Y Q* = 2.48 GeV? ! T~
\ xp = 0.27 !
20 1 .
150 7 I
0
100 . e
0T 40 ]
H Q? = 2.48 GeV?
mB = 0 27
-60 ‘
0. 3 06 09 1.2
—t'[GeV?]
FIG. 5. The longitudinal-transverse (left) and the transverse-

transverse (right) interference cross sections of y*p — z~ A1,
For other notations see Fig. 4.

pion-pole contribution. Since the zA™ p coupling constant
(50) is somewhat larger than the familiar pion-nucleon one

[19] and also the convolution of G%) is larger than that of

) [see (52)] it is clear that the z=A™" cross section is
larger than the 7z n one. For the other partial cross sections
there are substantial differences between the scenarios I and
II. One also sees that, at small —¢, the longitudinal cross
section is larger than the transverse one as is the case for the
#tn channel [11]. The interference cross sections are larger
for scenario II than for scenario 1. Note that for the z*n
channel the transversity GPD E; is taken into account but
its contribution is very small [12] since, in agreement with
large-N - results [30], E; for u and d quarks have the same
sign and about the same size. This is to be contrasted with
the 7° p channel to which E; contributes in the combination

len B — e, (72)

1

V2

which is large and provides an important contribution to the
7%p cross sections [12]. Particularly interesting is the
opposite sign of doyy for the z~ AT and the zn channels.
The dominant contribution to dopy comes from the
interference of a twist-3 helicity nonflip amplitude, being
proportional to the convolution (H7), and a pion-pole
contribution. The Q? and W dependencies of the z~A*+
partial cross sections is similar to those of the 7z~ p ones.
The uncertainties of our predictions are very large. First,
the large-N considerations do not really fix the trans-
versity GPDs, only a sum of G5 and Gp is related to the
proton-proton GPD Hy. This forces us to invent the two
scenarios by an additional assumption. Furthermore, the
quality of the large-N . results (52) is unknown since there
are as yet no #A(1232) cross section data available to check
this relation. Only the qualitative results on the relative
magnitudes of the u + d and u — d quark combinations of

p — p GPDs [30] are known to be in fair agreement with
phenomenology. We regard the differences between the
results for the two scenarios as an indication of the
uncertainties.

For most spin asymmetries the uncertainties are likely
even larger than for the cross sections because they also
depend on the imaginary part of products of helicity
amplitudes, i.e., on the rather small differences between
the phases of the amplitudes. Therefore, we refrain from
showing predictions for asymmetries, like the beam spin
asymmetry for which prelimimary data are already avail-
able [10]. An exception is the asymmetry A;; measured
with longitudinally polarized beam and target which,
like the transverse cross section, only depends on the
absolute values of the amplitudes for transversally polar-
ized photons:

App=Vi-¢ Z Moy i1 = Moy 7], (73)
where
o= [[Moyiil® + Moy_i|? +elMopor|?].  (74)
0 o/ ++ o/ —+ 0o/'0+

v

This asymmetry is obtained from a integral upon the
electroproduction cross section. There is a correction due
to the fact that the target polarization is defined with respect
to the lepton beam direction in experiment and not with
respect to the direction of the virtual photon, see [39]. For
the kinematics of interest in this work this correction is
small and neglected by us. Predictions of A;; for the two
scenarios are shown in Fig. 6 and compared to this
asymmetry for the z7n channel. The magnitudes of the
predictions evaluated from the two scenarios are close to

0.5 - - - -
0.4
0.3}/
02f <
0.1F} 1
0 . . . .
Q? = 2.48 GeV?
-0.1¢ xp = 0.27 1
0.2t 1
-0.3 ¢ 1
04 e - 1

0.5 b
03 06 09 12

—t'[GeV?]

FIG. 6. The asymmetry A;; for the z7A*™* and z*n channels.
For other notations see Fig. 4.
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that one for the 7z n channel. However, the predictions for
the two scenarios for 7~ AT+ have opposite signs. As an
inspection of (67) and (68) reveals this is understandable:
for scenario I the dominant helicity nonflip amplitude,
M 6”13] +» provides a positive contribution to A;;, [see (73)]
whereas for the second scenario the dominant amplitude,
Mg;i » gives a negative contribution to it. The pion pole is

unimportant for this asymmetry, most of its contributions

cancel (note that Mg;’,li L= —MEZ}L)-

IX. SUMMARY

We investigated exclusive electroproduction of 7~ A*+
in the generalized Bjorken regime within the handbag
approach. In addition to the known eight helicity nonflip
p—A GPDs [4] we defined a set of eight transversity
GPDs. For both sets of GPDs we calculated the p — A**
matrix elements, Aﬁ 1, and the helicity amplitudes,
Moy, for y*p — 27 AT, We also calculated the pion-
pole contribution to this process and showed that, to
leading-twist accuracy, the pion pole contributes to the
GPD G,.

In order to generate predictions for the zA™ partial
cross sections we had to take recourse to the large-N ¢ limit
where a few of the p — A GPDs are related to the diagonal
proton-proton ones. In the large N limit the odd-parity
helicity nonflip GPDs G5 and G, in the isovector combi-
nation are related to the corresponding combinations of A
and E, respectively [4,9]. For the transversity GPDs we
found rather complicated relations. Therefore, we only
utilized the relation between the sum G5 + Gy7/2 and the
p — p GPD H7 obtained from the leading-order term in the
A3 /M - expansion. We were forced to make the additional
assumption that either Gpy is zero (scenario I) or Grs
(scenario II). All other transversity GPDs are neglected.
Taking the parametrization of the p —p GPDs from
previous work [11,12] and evaluating the subprocess

amplitudes within the modified perturbative approach
which effectively takes into account the transverse size
of the meson, we are in the position to predict the partial
cross section for y*p — 7~ ATT,

A precise calculation of observables for exclusive
electroproduction of 7~ A" or for other #A(1232) chan-
nels is beyond feasibility at present. There are many
uncertainties: For instance due to the use of large-N.
results or due to the neglect of many of the p — A GPDs.
Other uncertainties, although of weaker importance, are the
parametrizations of the p — p GPDs or the exact treatment
of the twist-3 contribution, e.g., the neglect of possible
three-particle configurations of the meson state (see [35]).
With regard to all these uncertainties we consider our
investigation of exclusive electroproduction of z7A™* as a
rough estimate. The trends and magnitudes are probably
correct but not the details. This is also the reason why we
did not discuss asymmetries—with A;; as an exception.
Most of the asymmetries depend on the badly known
relative phases of the helicity amplitudes. With regard to
the experimental program of the Jefferson lab our study
seems to be timely. Its results are perhaps useful as a
starting point of a GPD analysis of data to come.

The extension of our study to other octet-decuplet
transitions is straightforward with the help of SU(3) flavor
symmetry [4,9]. Of course, this way also various octet-octet
transitions GPDs are related to the p — p ones [6]. Some of
these relations have already been used to evaluate the
electroproduction cross sections for KA and KX [8,12].
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