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I present a general method for determining the massive cusp anomalous dimension in QCD to a very
high degree of accuracy using its asymptotic behavior at small and large quark velocities. I show that the
method works exceedingly well at two and three loops where exact results are already known. I then
present a calculation of the massive cusp anomalous dimension using its asymptotics at four loops, and I
provide a detailed study of the results for different values of the number of flavors and for separate color
structures. The method can be further extended and applied to higher numbers of loops.
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I. INTRODUCTION

The cusp anomalous dimension [1–25] controls the
infrared behavior of perturbative QCD scattering ampli-
tudes. It is the simplest soft anomalous dimension in QCD
and an essential ingredient of all calculations of soft
anomalous dimensions for processes with more compli-
cated color structures; see, e.g., Refs. [26–30], and see
Ref. [31] for a review.
Wilson or eikonal lines describe the radiation of soft

gluons by partons (i.e., quarks or gluons). The partons are
represented by ordered exponentials in which the path is a
straight line in the direction of the parton four-velocity v as

Wðλ2; λ1; xÞ ¼ P exp
�
−ig

Z
λ2

λ1

dλ v · Aðλvþ xÞ
�
; ð1:1Þ

where P is an operator that orders group products in the
same sense as ordering in the integration variable λ, and A is
the gauge field in the appropriate representation of the
gauge group. The pattern of soft radiation is determined by
the charge currents a long time before the scattering event
and after it, which underlies the concept of factorization in
QCD hard-scattering cross sections.
The cusp angle θ between two eikonal lines with

four-velocities v1 and v2 is defined by the relation
θ ¼ cosh−1ðv1 · v2=

ffiffiffiffiffiffiffiffiffi
v21v

2
2

p
Þ. In simple processes such as

eþe− → tt̄, we have two eikonal lines meeting at a color
singlet vertex. This vertex is associated with ultraviolet

divergences which are dealt with by renormalization. The
anomalous dimension in the corresponding renormalization
group equation is the cusp anomalous dimension, Γcusp, and
it is the same for all color singlets.
While the case of Γcusp with massless eikonal lines

essentially involves only color coefficients and con-
stants [32–35] and is known fully through four loops,
the massive case has a complicated structure in terms of
(harmonic) polylogarithms involving the masses of the
eikonal lines [12,13,16–18] and is only known fully
through three loops, with some terms as well as limits
for small and large cusp angles known at four loops (see
Ref. [25] for a recent review).
We consider eikonal lines representing massive quarks

that have the same mass m and momentum pμ
i ¼

ð ffiffiffi
s

p
=2Þvμi , with i ¼ 1, 2 and s ¼ ðp1 þ p2Þ2—i.e., the

case of production of a heavy quark-antiquark pair. Then,
we have v1 · v2 ¼ 1þ β2 and v21 ¼ v22 ¼ 1 − β2, where

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=s

p
is the quark speed. Then, the cusp angle

is θ ¼ ln½ð1þ βÞ=ð1 − βÞ�, and in reverse we have
β ¼ tanhðθ=2Þ. Clearly, the range of β is from 0 (at absolute
threshold with s ¼ 4m2) to 1 (the massless case with
m ¼ 0), and the corresponding range for θ is from zero
to infinity.
The perturbative series for the cusp anomalous dimen-

sion in QCD is written as

Γcusp ¼
X∞
n¼1

�
αs
π

�
n
ΓðnÞ; ð1:2Þ

where αs is the strong coupling. Beyond one loop, the
expressions involve the number of light-quark flavors, nf.
We will show how to determine ΓðnÞ to a superb precision
from its asymptotic behavior at large and small β. The two-
loop and three-loop cases provide a stringent test of the
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method for all physical choices (and beyond) for nf, and
the method allows precise predictions at four loops. It is
important to note that while we will derive results using the
speed β, the results are not limited to the case of eikonal
lines representing two quarks with the same mass. Once the
method is used and the results are then reexpressed in terms
of θ, those results are valid for a given θ even when it
reflects cases with two different masses for the two
eikonal lines.
In Sec. II, we briefly review results for the cusp

anomalous dimension at one, two, and three loops. In
Sec. III, we discuss the small-β expansions of the cusp
anomalous dimension through four loops. In Sec. IV,
we discuss the large-β behavior of Γcusp. In Sec. V, we
introduce expressions that use the asymptotic behavior at
small and large β, and that numerically describe the cusp
anomalous dimension exceedingly well for the full β range
at two and three loops, and we make a corresponding
prediction at four loops. We study in detail the numerical
aspects of the expressions through four loops for nf ¼ 3,
nf ¼ 4, and nf ¼ 5, and we make brief comments for other
nf values. We also study separate color structures and
discuss various extensions of the method. We conclude in
Sec. VI. Appendix A assembles known expressions for the
lightlike cusp anomalous dimension where color factors
and various other constants are also defined, while
Appendix B shows the detailed expression for the three-
loop massive cusp anomalous dimension.

II. MASSIVE CUSP ANOMALOUS DIMENSION
IN QCD AT ONE, TWO, AND THREE LOOPS

We begin with a brief overview of results for the massive
Γcusp in QCD through three loops.

A. One loop

The QCD cusp anomalous dimension at one loop [1] is
given by

Γð1Þ ¼ CFðθ coth θ − 1Þ: ð2:1Þ

This result can be straightforwardly reexpressed in terms
of the quark speed β. Noting that coth θ ¼ ð1þ β2Þ=ð2βÞ,
we define

Lβ ¼
ð1þ β2Þ

2β
ln

�
1 − β

1þ β

�
: ð2:2Þ

Then, the one-loop cusp anomalous dimension written as a
function of β is given by

Γð1Þ ¼ −CFðLβ þ 1Þ: ð2:3Þ

B. Two loops

Calculations of the QCD cusp anomalous dimension at
two loops have a long history. Results for the relevant two-
loop diagrams were presented in Ref. [3] in terms of
unevaluated double and triple integrals. The two-loop cusp
anomalous dimension was calculated in terms of three
unevaluated single integrals in Refs. [5–7], with nf terms
added in Refs. [8,9]. The result was further refined into one
with a single unevaluated integral in Ref. [11]. All these
results were given in terms of the cusp angle, θ.
An independent calculation directly in terms of the quark

velocity β was presented in Ref. [12]. This calculation
provided the first fully analytical result for the two-loop
massive cusp anomalous dimension in QCD without any
unevaluated integrals. The cusp anomalous dimension at
two loops written as a function of β is given by [12–14]

Γð2Þ ¼ K2Γð1Þ þ CFCA

�
1

2
þ ζ2

2
þ 1

2
ln2

�
1 − β

1þ β

�

þ ð1þ β2Þ
4β

�
ζ2 ln

�
1 − β

1þ β

�
− ln2

�
1 − β

1þ β

�
þ 1

3
ln3

�
1 − β

1þ β

�
− Li2

�
4β

ð1þ βÞ2
��

þ ð1þ β2Þ2
8β2

�
−ζ3 − ζ2 ln

�
1 − β

1þ β

�
−
1

3
ln3

�
1 − β

1þ β

�
− ln

�
1 − β

1þ β

�
Li2

�ð1 − βÞ2
ð1þ βÞ2

�
þ Li3

�ð1 − βÞ2
ð1þ βÞ2

���
; ð2:4Þ

where K2 [32] is given in Eq. (A2) of Appendix A.
Furthermore, it was first shown in Ref. [12] that one can

construct an excellent approximation to the complete two-
loop result for the cusp anomalous dimension, Eq. (2.4), by
using its asymptotic behavior at small and large β. We note
that the method uses the results for Γcusp in terms of β, and it
would not work as well if one used expressions directly in

terms of θ due to the infinite range of the cusp angle, as we
will explain in Sec. V, although obviously one can later
reexpress both the exact and the approximate results in
terms of θ.
The result of Eq. (2.4) for the two-loop cusp anomalous

dimension was also rewritten in Ref. [12] in terms of θ and
is given by
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Γð2Þ ¼K2Γð1ÞþCFCA

�
1

2
þζ2

2
þθ2

2

−
1

2
cothθ

�
ζ2θþθ2þθ3

3
þLi2ð1−e−2θÞ

�

þ1

2
coth2θ

�
−ζ3þζ2θþ

θ3

3
þθLi2ðe−2θÞþLi3ðe−2θÞ

��
:

ð2:5Þ

C. Three loops

The QCD cusp anomalous dimension at three loops was
calculated in Refs. [16,17]. The result was expressed in
terms of a number of harmonic polylogarithms of up to
weight 5. The result from Refs. [16,17] was later reex-
pressed in terms of regular polylogarithms and single
integrals of them in Ref. [18], and written as

Γð3Þ ¼ K3Γð1Þ þ 2K2ðΓð2Þ − K2Γð1ÞÞ þ Cð3Þ; ð2:6Þ

whereK3 [33] is given in Eq. (A3) of Appendix A, and Cð3Þ
has a long expression which can be found in Eq. (2.13)
of Ref. [18].
The cusp anomalous dimension at three loops,

Eq. (2.6), can also be written as a function of β. We have
Cð3Þ ¼ CFC2

AC
0ð3Þ with C0ð3Þ given explicitly in Eq. (62) of

Ref. [31]. We also provide C0ð3Þ in a somewhat improved
form in Appendix B.
Furthermore, it was first shown in Ref. [18] that one can

construct an excellent approximation to the complete three-
loop result for the cusp anomalous dimension by using its
asymptotic behavior at small and large β, analogously to
the two-loop case of Ref. [12]. Again, we note that the
method uses the results for Γcusp written in terms of β, and it
would not work as well if one used expressions directly in
terms of θ.

III. SMALL-β EXPANSION OF Γcusp
THROUGH FOUR LOOPS

For small θ, we can expand the cusp anomalous
dimension around θ ¼ 0 [5–7,9,12,13,16–18,24] as

ΓðnÞ ¼ ΓðnÞ
θ2

þ ΓðnÞ
θ4

þOðθ6Þ: ð3:1Þ

Expansions at one and two loops were given in
Refs. [5–7,9,12,13], and at three loops in Refs. [16–18].
The small-θ expansion at four loops was recently derived
in Ref. [24].
We note that for small θ, we have θ ¼ 2βþ

ð2=3Þβ3 þOðβ5Þ, and thus θ2 ¼ 4β2 þ ð8=3Þβ4 þOðβ6Þ,
so the small-θ expansion formulas can easily be rewritten in
terms of β [12,18]. Equivalently, we have β ¼ θ=2−
θ3=24þOðθ5Þ, and thus, β2 ¼ θ2=4 − θ4=24þOðθ6Þ.

For small β, we can expand the cusp anomalous
dimension around β ¼ 0 [12,13,18] as

ΓðnÞ ¼ ΓðnÞ
β2

þ ΓðnÞ
β4

þOðβ6Þ; ð3:2Þ

and we find at one loop

Γð1Þ
β2

¼ 4

3
CFβ

2; ð3:3Þ

Γð1Þ
β4

¼ 8

15
CFβ

4; ð3:4Þ

and at two loops

Γð2Þ
β2

¼ β2
�
CFCA

�
94

27
−
4

3
ζ2

�
−
20

27
CFnfTF

�
; ð3:5Þ

Γð2Þ
β4

¼ β4
�
CFCA

�
64

45
−

8

15
ζ2

�
−

8

27
CFnfTF

�
: ð3:6Þ

We note that if we define Γð1Þ
β2;4

¼ Γð1Þ
β2

þ Γð1Þ
β4

and Γð2Þ
β2;4

¼
Γð2Þ
β2

þ Γð2Þ
β4
, we have the relation

Γð2Þ
β2;4

¼ K2Γ
ð1Þ
β2;4

þ β2CFCA

�
1 −

2

3
ζ2

�

þ β4CFCA

�
58

135
−

4

15
ζ2

�
: ð3:7Þ

At three loops, we have

Γð3Þ
β2

¼ β2
�
CFC2

A

�
473

72
−
170

27
ζ2 þ

5

18
ζ3 þ 5ζ4

�

þ CFCAnfTF

�
−
389

162
þ 40

27
ζ2 −

14

9
ζ3

�

þ C2
FnfTF

�
−
55

36
þ 4

3
ζ3

�
−

4

81
CFn2fT

2
F

�
; ð3:8Þ

Γð3Þ
β4

¼ β4
�
CFC2

A

�
88351

24300
−
20

9
ζ2 −

251

225
ζ3 þ 2ζ4

�

þ CFCAnfTF

�
−
1207

1215
þ 16

27
ζ2 −

28

45
ζ3

�

þ C2
FnfTF

�
−
11

18
þ 8

15
ζ3

�
−

8

405
CFn2fT

2
F

�
: ð3:9Þ

Using the small-θ expansion given in Ref. [24], we
can derive the small-β expansion at four loops, which is
given by
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Γð4Þ
β2

¼ β2
�
CFC3

A

�
89011

7776
−
17953

972
ζ2 þ

1189

324
ζ3 þ

4841

144
ζ4 −

155

72
ζ5 −

175

12
ζ6 −

8

9
ζ2ζ3

�

þ C2
FCAnfTF

�
−
25943

3888
þ 55

18
ζ2 þ

170

27
ζ3 −

11

6
ζ4 þ

5

3
ζ5 −

8

3
ζ2ζ3

�

þ CFC2
AnfTF

�
−
48161

7776
þ 1846

243
ζ2 −

3611

324
ζ3 −

55

9
ζ4 þ

55

18
ζ5 þ

28

9
ζ2ζ3

�

þ C3
FnfTF

�
143

216
þ 37

18
ζ3 −

10

3
ζ5

�
þ C2

Fn
2
fT

2
F

�
299

486
−
40

27
ζ3 þ

2

3
ζ4

�

þ CFCAn2fT
2
F

�
1835

3888
−

76

243
ζ2 þ

140

81
ζ3 −

7

9
ζ4

�
þ CFn3fT

3
F

�
−

4

243
þ 8

81
ζ3

�

þ dabcdF dabcdF

Nc
nf

�
−
20

9
ζ2 −

50

3
ζ4 þ

32

3
ζ2ζ3

�
þ dabcdF dabcdA

Nc

�
−
2

9
ζ2 þ

80

3
ζ4 þ 14ζ6 −

68

3
ζ2ζ3

��
ð3:10Þ

and

Γð4Þ
β4

¼ β4
�
CFC3

A

�
42813919

4374000
−
286153

36450
ζ2 −

507971

60750
ζ3 þ

68987

5400
ζ4 þ

2351

540
ζ5 −

35

6
ζ6 þ

692

675
ζ2ζ3

�

þ C2
FCAnfTF

�
−
26603

9720
þ 11

9
ζ2 þ

116

45
ζ3 −

11

15
ζ4 þ

2

3
ζ5 −

16

15
ζ2ζ3

�

þ CFC2
AnfTF

�
−
17835961

4374000
þ 18821

6075
ζ2 −

16969

6750
ζ3 −

2164

675
ζ4 þ

181

135
ζ5 þ

776

675
ζ2ζ3

�

þ C3
FnfTF

�
143

540
þ 37

45
ζ3 −

4

3
ζ5

�
þ C2

Fn
2
fT

2
F

�
299

1215
−
16

27
ζ3 þ

4

15
ζ4

�

þ CFCAn2fT
2
F

�
17123

87480
−

152

1215
ζ2 þ

56

81
ζ3 −

14

45
ζ4

�
þ CFn3fT

3
F

�
−

8

1215
þ 16

405
ζ3

�

þ dabcdF dabcdF

Nc
nf

�
−

92

225
−
752

225
ζ2 þ

1136

225
ζ3 −

12

5
ζ4 −

64

9
ζ5 þ

1088

225
ζ2ζ3

�

þ dabcdF dabcdA

Nc

�
32

243
−
6892

1215
ζ2 þ

2264

405
ζ3 þ

56

45
ζ4 −

56

9
ζ5 þ

28

5
ζ6 þ

104

225
ζ2ζ3

��
: ð3:11Þ

IV. LARGE-β BEHAVIOR OF Γcusp

The massless limit, m → 0, of the cusp anomalous
dimension, which is the limit θ → ∞, is given in
Eq. (A1). Equivalently, this is the limit β → 1, and it
can be written as

lim
β→1

ΓðnÞ ¼ Kn lim
β→1

Γð1Þ þ Pn; ð4:1Þ

where Kn for n ¼ 1, 2, 3, 4 are given in Appendix A,
and the constants Pn at one, two, and three loops are
given, respectively, by P1 ¼ 0, P2 ¼ ð1=2ÞCFCAð1 − ζ3Þ,
and

P3 ¼ K2CFCAð1 − ζ3Þ

þ CFC2
A

�
−
1

2
þ 3

4
ζ2 −

ζ3
4
þ 9

8
ζ5 −

3

4
ζ2ζ3

�
: ð4:2Þ

The limit can also be rewritten as

lim
β→1

ΓðnÞ ¼ −CFKn lim
β→1

ln

�
1 − β

2

�
þ Rn

¼ −CFKn lim
m→0

ln
�
m2

s

�
þ Rn; ð4:3Þ

where the constants Rn are given by Rn ¼ Pn − CFKn.
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V. EXPRESSIONS FOR Γcusp THROUGH FOUR
LOOPS FROM ASYMPTOTICS

As first shown in Ref. [12] for the two-loop case, we can
construct simple expressions based on the asymptotics of
Γcusp that provide excellent approximations which are valid
for all values of β. At all orders, the cusp anomalous
dimension vanishes at β ¼ 0 and is infinite at β ¼ 1. The
expansion around β ¼ 0 gives very good approximations to
ΓðnÞ at small β. The expression in Eq. (4.1) gives the large-β
limit, which shows that in that limit the higher-loop results
are essentially proportional to the one-loop result. Thus, we
can derive an approximate expression from asymptotics,

denoted as ΓðnÞ
A , for all β values by starting with the small-β

expansion of ΓðnÞ, then adding KnΓð1Þ and subtracting from
it its small-β expansion:

ΓðnÞ
A ¼ ΓðnÞ

β2;4
− KnΓ

ð1Þ
β2;4

þ KnΓð1Þ; ð5:1Þ

where ΓðnÞ
β2;4

¼ ΓðnÞ
β2

þ ΓðnÞ
β4
. We note that the last two terms

on the right in the above equation cancel precisely against
each other at small β, and quite well even at medium β,
while the first two terms largely cancel against each other at
large β.
Equivalently, using Eqs. (2.3), (3.3), and (3.4), we can

write Eq. (5.1) as

ΓðnÞ
A ¼ ΓðnÞ

β2;4
− CFKn

�
4

3
β2 þ 8

15
β4 þ Lβ þ 1

�
: ð5:2Þ

We note that for the one-loop case, we have Γð1Þ
A ¼ Γð1Þ

identically. Applying Eq. (5.1) to higher loops, setting the
number of colors Nc ¼ 3, and numerically evaluating all
constants, we find very simple expressions in terms of β
and nf at two, three, and four loops:

Γð2Þ
A ¼ −0.386490845 β2 − 0.036077819 β4 þ ð3.115932233 − 0.277777778nfÞΓð1Þ; ð5:3Þ

Γð3Þ
A ¼ ð−0.981370903þ 0.214717136nfÞβ2 þ ð−0.141381392þ 0.020043233 nfÞβ4

þ ð13.76833912 − 2.146727700nf − 0.009259259n2fÞΓð1Þ; ð5:4Þ

Γð4Þ
A ¼ ð−3.749290323þ 1.186688634nf − 0.022664587n2fÞβ2

þ ð−0.290594150þ 0.156331101nf − 0.002115675n2fÞβ4
þ ð60.65142489 − 15.15209803nf þ 0.572980154n2f þ 0.009586947n3fÞΓð1Þ; ð5:5Þ

where Γð1Þ is given by Eq. (2.3) with CF ¼ 4=3 in QCD.

We note that the nf terms in Γð2Þ
A are Γð2Þnf

A ¼
−ð5=9ÞnfTFΓð1Þ, so they are identically the same as in
the exact result, but the CFCA terms are not exact. We

also note that the nf terms in Γð3Þ
A are Γð3Þnf

A ¼
K

nf
3 Γð1Þ þ 2K

nf
2 ðΓð2Þ

β2;4
− K2Γ

ð1Þ
β2;4

Þ, where K
nf
2 and K

nf
3

denote the nf terms in K2 and K3. Thus, in Γð3Þ
A , the

C2
Fnf and the CFn2f terms are exact, but the CFC2

A and
the CFCAnf terms are not exact. Finally, at four loops, the

C3
Fnf, C

2
Fn

2
f, and CFn3f terms in Γð4Þ

A are exact, but all the
rest of the terms are not exact.
As mentioned earlier, the method would not work well

directly in terms of θ, i.e., if the above expressions used θ2

and θ4 expansions and Γð1Þ in terms of θ; this is due to the
infinite range of the cusp angle which would result in
incomplete cancellations and poor results at large θ. Thus,
the method has to be used exactly as described above,
which benefits from the finite and small β range of 0 to 1.
Of course, at the end one can still reexpress Eqs. (5.1)

through (5.5) in terms of θ with the simple substitution
β ¼ tanhðθ=2Þ.

A. Results for nf = 3

We begin our numerical study of the cusp anomalous
dimension through four loops for the case nf ¼ 3, i.e., three
light-quark flavors. This would, for example, be relevant to
charm pair production via eþe− → cc̄.
In Fig. 1, we plot the cusp anomalous dimension for

nf ¼ 3 at one, two, three, and four loops as a function of β.

The one-loop Γð1Þ, two-loop Γð2Þ, and three-loop Γð3Þ

results are exact, while the four-loop result Γð4Þ
A is the

expression from the asymptotics in Eqs. (5.1) and (5.5). To
better show the behavior for small β, we plot the results in a
logarithmic scale over several orders of magnitude in
the lower inset plot. On the other hand, to better show
the behavior near β ¼ 1, we plot the results as functions
of the cusp angle θ in the upper inset plot. For example, a
value of β ¼ 0.99999 corresponds to θ ≈ 12.2. Thus, the
three different ways of plotting the results give an overall
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picture of the behavior of Γcusp for small-, medium-, and
large-β values through four loops.
In Fig. 2, we plot ratios of the various terms in Eq. (5.1)

to the exact result for the cusp anomalous dimension at two
and three loops for nf ¼ 3. The upper plot of Fig. 2 shows

ratios at two loops. The ratio K2Γð1Þ=Γð2Þ approaches the
value 1 at large β, as expected, but it is considerably larger
than that for most of the β range, so by itself it is not an
adequate approximation of the exact two-loop result. The
small-β approximation is a good approximation at small β,
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as expected, but it begins to fail at larger values. The

Γð2Þ
β2
=Γð2Þ ratio shows that the β2 terms by themselves

provide a description of the exact result by better than one
part in ten thousand (i.e., 0.1 per mille) up to β ≈ 0.015, and

better than 1 per mille up to β ≈ 0.05. The Γð2Þ
β2;4

=Γð2Þ ratio
shows that the sum of the β2 and β4 terms provides a
description better than 0.1 per mille up to β ≈ 0.14, and
better than 1 per mille up to β ≈ 0.24. The expansions begin

to fail at higher values of β. By a value of β ≈ 0.6, even Γð2Þ
β2;4

differs by four percent from Γð2Þ. The result for Γð2Þ
A ,

however, provides an excellent description throughout

the β range, as the ratio Γð2Þ
A =Γð2Þ shows. The difference

between Γð2Þ
A and Γð2Þ is less than 1 per mille over the entire

β range from 0 to 1; in fact, it is less than one part per
million from β ¼ 0 up to β ≈ 0.17, and better than
0.1 per mille for most of the β range, from β ¼ 0 to
β ≈ 0.6, and also for values between β ≈ 0.8 and β ≈ 0.9, as
well as for β values extremely close to 1. The inset of the
upper plot of Fig. 2 shows the same two-loop ratios as

functions of θ for nf ¼ 3. Thus, we see that Γð2Þ
A performs

exceptionally well, by any reasonable standard, in giving
the correct prediction for the two-loop cusp anomalous
dimension for all β values or, equivalently, for all θ values.

The line Γð2Þ
A =Γ2Þ is practically indistinguishable from 1 in

the plots.
The lower plot of Fig. 2 shows ratios at three loops for

nf ¼ 3. The ratio K3Γð1Þ=Γð3Þ approaches the value 1 at
large β, as expected, and it actually remains within three
percent of the exact result over the entire β range. As also
expected, the small-β approximation is a good approxima-

tion at small β but not at larger values. The Γð3Þ
β2
=Γð3Þ ratio

shows that the β2 terms by themselves provide a description
of better than 0.1 per mille up to β ≈ 0.016, and better than
1 per mille up to β ≈ 0.05, which is very similar to what we

saw at two loops above. The Γð3Þ
β2;4

=Γð3Þ ratio shows that the

sum of the β2 and β4 terms provides a description of better
than 0.1 per mille up to β ≈ 0.14, and better than 1 per mille
up to β ≈ 0.25, which again is very similar to the behavior

at two loops. By a value of β ≈ 0.6, however, Γð3Þ
β2;4

differs

by four percent from Γð3Þ. On the other hand, as the ratio

Γð3Þ
A =Γð3Þ shows, Γð3Þ

A provides an excellent description over

the entire β range. The difference between Γð3Þ
A and Γð3Þ

stays well below 1 per mille everywhere; in fact, it is less
than one part per million from β ¼ 0 up to β ≈ 0.16, and
better than 0.1 per mille for the majority of the β range,
from β ¼ 0 to above β ≈ 0.5, as well as for β values
extremely close to 1. The inset of the lower plot of Fig. 2
shows the same three-loop ratios as functions of θ for

nf ¼ 3. Thus, we see that Γð3Þ
A performs exceptionally well

in giving the correct prediction for the three-loop
cusp anomalous dimension over all β or θ values. The

line Γð3Þ
A =Γ3Þ is virtually indistinguishable from 1 in

the plots.
The great similarity between the two-loop and three-loop

cases in the behavior of the expansions with β2 and β4

terms and, more importantly, of the approximate expres-
sions from asymptotics (despite the difference in the ratios
K2 Γð1Þ=Γð2Þ and K3 Γð1Þ=Γð3Þ), indicates a very strong

robustness of our method for calculating ΓðnÞ
A . The fact

that Γð2Þ
A and Γð3Þ

A are practically indistinguishable from the
corresponding exact results highlights the success of the
formula in Eq. (5.1) and gives strong confidence for its
success at higher loops.
Since we do not know the full exact result for Γð4Þ, we

cannot create an exact analog of Fig. 2 at four loops.
However, we can do something similar and study the ratio

K4Γð1Þ=Γð4Þ
A , as well as the ratios of the small-β expansions

to Γð4Þ
A . In the top plot of Fig. 3, we plot these ratios for

nf ¼ 3. We also plot the dashed line identically equal to 1
for reference, and note that we expect it to be practically

indistinguishable from the ratio Γð4Þ
A =Γð4Þ. The K4Γð1Þ term

by itself is very close to Γð4Þ
A , around one percent or better

over the entire range. We observe that the behavior of the
small-β expansions is very similar to the two-loop and
three-loop cases, again displaying consistency across dif-

ferent orders. The Γð4Þ
β2
=Γð4Þ

A ratio shows that the β2 terms

provide a description better than 0.1 per mille up to
β ≈ 0.016, and better than 1 per mille up to β ≈ 0.05,
which is very similar to what we saw at two and three loops

above. The Γð4Þ
β2;4

=Γð4Þ
A ratio shows that the sum of the β2 and

β4 terms provides a description better than 0.1 per mille up
to β ≈ 0.14, and better than 1 per mille up to β ≈ 0.25,
which again is very similar to the behavior at two loops and

at three loops. By a value of β ≈ 0.6, Γð4Þ
β2;4

differs by four

percent from Γð4Þ
A . Again, all this behavior is very similar to

the situation at two and three loops, and it highlights the
robustness of the approach and provides strong confidence

that the result for Γð4Þ
A is numerically essentially the same as

that for Γð4Þ for all practical purposes.

B. Results for nf = 4

We continue our numerical study of the cusp anomalous
dimension through four loops for the case nf ¼ 4, i.e., four
light-quark flavors. This would, for example, be relevant to
b-quark pair production via eþe− → bb̄.
In Fig. 4, we plot the cusp anomalous dimension for

nf ¼ 4 as a function of β. As before, the one-loop Γð1Þ, two-
loop Γð2Þ, and three-loop Γð3Þ results are exact, while the
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four-loop result Γð4Þ
A is the expression from the asymptotics.

Of course, since the one-loop result is independent of nf,
it is identical to what we already plotted in Fig. 1, but for
higher loops the results differ, and thus, the vertical scales

used in the plots of Fig. 4 are different from those in Fig. 1.
Again, to better show the behavior for small β, we plot
the results in a logarithmic scale over several orders of
magnitude in the lower inset plot, while to better show the
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behavior near β ¼ 1, we plot the results as functions of the
cusp angle θ in the upper inset plot.
In Fig. 5, we plot ratios of the various terms in Eq. (5.1)

to the exact result for the cusp anomalous dimension at two
and three loops for nf ¼ 4. The upper plot of Fig. 5 shows
ratios at two loops. The ratio K2Γð1Þ=Γð2Þ approaches the
value 1 at large β, as expected, but it is considerably larger

than that for most of the β range. Γð2Þ
β2

differs from Γð2Þ by
less than 0.1 per mille up to β ≈ 0.015, and less than

1 per mille up to β ≈ 0.05. Γð2Þ
β2;4

differs from Γð2Þ by less

than 0.1 per mille up to β ≈ 0.14, and less than 1 per mille

up to β ≈ 0.24. By a value of β ≈ 0.6, Γð2Þ
β2;4

differs by more

than four percent from Γð2Þ. This is all very similar to the
small-β asymptotic behavior for nf ¼ 3, as we saw in the

previous subsection. Moreover, the result for Γð2Þ
A provides

an excellent description throughout the β range as the ratio

Γð2Þ
A =Γð2Þ shows. The difference between Γð2Þ

A and Γð2Þ is
1 per mille or less over the entire β range from 0 to 1; in
fact, it is less than one part per million from β ¼ 0 up to
β ≈ 0.16, and 0.1 per mille or better for most of the β range,
from β ¼ 0 to β ≈ 0.6, and also for values between β ≈ 0.8
and β ≈ 0.9, as well as for β values extremely close to 1.
Again, these results are very similar to the corresponding
ones for nf ¼ 3. The inset of the upper plot of Fig. 5 shows
the same two-loop ratios as functions of θ for nf ¼ 4.
The lower plot of Fig. 5 shows ratios at three loops

for nf ¼ 4. The ratio K3Γð1Þ=Γð3Þ approaches the value 1
at large β, as expected, and it actually remains within

one-and-a-half percent of the exact result over the entire β

range. The Γð3Þ
β2

terms differ from Γð3Þ by less than

0.1 per mille up to β ≈ 0.016, and less than 1 per mille
up to β ≈ 0.05, which is very similar to what we saw at

two loops. The Γð3Þ
β2;4

terms differ from Γð3Þ by less than

0.1 per mille up to β ≈ 0.14, and less than 1 per mille
up to β ≈ 0.25, which again is very similar to the behavior

at two loops. The result for Γð3Þ
A provides an excellent

description over the entire β range. The difference between

Γð3Þ
A and Γð3Þ is 1 per mille or better everywhere; it is

actually less than one part per million from β ¼ 0 up to
β ≈ 0.15, and 0.1 per mille or better for half of the β range,
from β ¼ 0 to β ≈ 0.5 as well as for β values extremely
close to 1. Again, this is very similar to what we saw for the
nf ¼ 3 case. The inset of the lower plot of Fig. 5 shows the

same three-loop ratios as functions of θ. Thus, Γð3Þ
A again

performs exceptionally well in giving the correct prediction
for the three-loop cusp anomalous dimension for nf ¼ 4.
Again, since we do not know the full exact result for Γð4Þ,

we cannot create a direct analog of Fig. 5 at four loops.

However, we can study the ratio K4Γð1Þ=Γð4Þ
A as well as the

ratios of the small-β expansions to Γð4Þ
A . In the middle plot

of Fig. 3, we plot these ratios for nf ¼ 4, with the dashed
line identically equal to 1 for reference. The K4Γð1Þ term by

itself is somewhat smaller than Γð4Þ
A . Also, Γð4Þ

β2
differs from

Γð4Þ
A by less than 0.1 per mille up to β ≈ 0.016, and less than

1 per mille up to β ≈ 0.05, which is very similar to what we
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saw at two and three loops. Γð4Þ
β2;4

differs from Γð4Þ
A by less

than 0.1 per mille up to β ≈ 0.14, and less than 1 per mille
up to β ≈ 0.25. Once again, all this behavior is very similar
to the situation at two and three loops for both nf ¼ 3 and
nf ¼ 4, as well as the four-loop results for nf ¼ 3, and it

provides strong confidence that the result for Γð4Þ
A is

numerically essentially the same as that for Γð4Þ also for
nf ¼ 4 for all practical purposes.

C. Results for nf = 5

We continue our numerical study of the cusp anomalous
dimension through four loops for the case nf ¼ 5, i.e., five
light-quark flavors. This would, for example, be relevant to
top-quark pair production via eþe− → tt̄.
In Fig. 6, we plot the cusp anomalous dimension for

nf ¼ 5 as a function of β. As in the previous cases of
Figs. 1 and 4, the one-loop Γð1Þ, two-loop Γð2Þ, and three-

loop Γð3Þ results are exact, while the four-loop result Γð4Þ
A is

the expression from the asymptotics. As we have discussed,
the one-loop result is the same as before, but for higher
loops the results differ, and the vertical scales used in the
plots of Fig. 6 are different from those in the other cases.
The lower inset plot shows more clearly the small-β
asymptotics in a logarithmic scale, while the upper inset
plot shows the results versus θ in order to show more
clearly the behavior near β ¼ 1.
In Fig. 7, we plot ratios of the various terms in Eq. (5.1)

to the exact result for the cusp anomalous dimension at two

and three loops for nf ¼ 5. As before, the upper plot of
Fig. 7 shows ratios at two loops. The ratio K2Γð1Þ=Γð2Þ is
considerably larger than 1 for most of the β range but tends

to 1 at large β. The Γð2Þ
β2

terms differ from Γð2Þ by less than

0.1 per mille up to β ≈ 0.015, and less than 1 per mille up to

β ≈ 0.05. The Γð2Þ
β2;4

terms differ from Γð2Þ by less than

0.1 per mille up to β ≈ 0.14, and less than 1 per mille up to

β ≈ 0.24. Also, the result for Γð2Þ
A provides an excellent

description throughout the β range. The difference between

Γð2Þ
A and Γð2Þ is 1 per mille or less over the entire β range

from 0 to 1; indeed, it is less than one part per million from
β ¼ 0 up to β ≈ 0.16, and better than 0.1 per mille for most
of the β range, from β ¼ 0 to above β ≈ 0.5, and also for
values between β ≈ 0.8 and β ≈ 0.9, as well as for β values
extremely close to 1. These results are very similar to the
corresponding ones for nf ¼ 3 and nf ¼ 4, again high-
lighting the robustness and success of the method. The inset
of the upper plot of Fig. 7 shows the same two-loop ratios
as functions of θ for nf ¼ 5.
The lower plot of Fig. 7 shows ratios at three loops for

nf ¼ 5. The ratio K3Γð1Þ=Γð3Þ approaches the value 1 at
large β, as expected, and it remains within 2% of the exact

result over the entire β range. Γð3Þ
β2

differs from Γð3Þ by less

than 0.1 per mille up to β ≈ 0.016, and less than 1 per mille
up to β ≈ 0.05, which is very similar to what we saw at two

loops. Γð3Þ
β2;4

differs from Γð3Þ by less than 0.1 per mille up to

β ≈ 0.14, and less than 1 per mille up to β ≈ 0.25, which is
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also very similar to the behavior at two loops. Γð3Þ
A provides

an excellent description over the entire β range. The

difference between Γð3Þ
A and Γð3Þ is well below 3 per mille

everywhere; it is actually less than one part per million from
β ¼ 0 up to β ≈ 0.14, and 0.1 per mille or better for half of
the β range, from β ¼ 0 to β ≈ 0.5 as well as for β values
extremely close to 1. Again, this is similar to what we
observed in the nf ¼ 3 and nf ¼ 4 cases. The inset of the
lower plot of Fig. 7 shows the same three-loop ratios as

functions of θ. Thus, we observe that Γð3Þ
A performs

exceptionally well in giving the correct prediction for
the three-loop cusp anomalous dimension for nf ¼ 5.
As discussed before, since we do not know the full exact

result for Γð4Þ, we do not have a direct analog of Fig. 7 at
four loops. In the bottom plot of Fig. 3, we plot ratios at
four loops for nf ¼ 5, with the dashed line identically equal

to 1 for reference. The Γð4Þ
β2

terms differ from Γð4Þ
A by less

than 0.1 per mille to β ≈ 0.018, and less than 1 per mille up

to β ≈ 0.06. The Γð4Þ
β2;4

terms differ from Γð4Þ
A by less than

0.1 per mille up to β ≈ 0.18, and less than 1 per mille up to
β ≈ 0.32. All this is again similar to the previous cases, and

it provides strong confidence in the result for Γð4Þ
A for

nf ¼ 5.

D. Results for other values of nf
Finally, we consider other values for nf, even ones not

realized in nature but possibly used in toy models or in
models of physics beyond the Standard Model. In fact, we

have calculated the cusp anomalous dimension for integer
values of nf ranging from 0 to 10. The results are
remarkably consistent, in that Eq. (5.1) always provides
an excellent approximation to the exact results at two and
three loops, throughout the β range, and we derive robust
and precise four-loop predictions for the cusp anomalous
dimension from its asymptotics via Eq. (5.1).

E. Extensions of the expressions and method

The method presented in this paper can be extended in a
number of ways. One obvious extension is to include more
(or fewer) terms in the small-β expansion contribution to
Eq. (5.1). We can write that relation more generally as

ΓðnÞ
A ¼ ΓðnÞ

small-β − KnΓ
ð1Þ
small-β þ KnΓð1Þ; ð5:6Þ

where we can keep as many terms in the small-β expansion
as we wish.
For example, in Ref. [12], results were presented using

Eq. (5.6) for nf ¼ 5 at two loops with a couple of different
choices. On one hand, results were given with only β2 terms
included in Eq. (5.6). As shown in Ref. [12], this is still a
good approximation over all β values, only about half of
one percent or better from the exact value. On the other
hand, results were also given in Ref. [12] with terms
included through β12, which of course provide a better
approximation. However, there is an issue of diminishing
returns. While the inclusion of both β2 and β4 terms
provides small but significant improvements relative to
only β2 terms in the numerical result from Eq. (5.6), further
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additional terms provide negligible impact while affecting
the simplicity of our approach.
We also note that in Ref. [18] results were presented

using Eq. (5.6) for nf ¼ 5 at three loops with only β2 terms
included, which still gave a good approximation, about half
of one percent or better from the exact value, though of
course not as good as the one discussed in this paper where
β4 terms are also included.
Another possible extension is to include further exact

results (in addition to the exact terms already present) for
some color structures and/or other combinations of terms
(when those are known) in the approximate expression. For
example, at three loops we can include the full two-loop
results in our expression and only have a small-β expansion
in Cð3Þ; i.e., we could consider the alternative expression

2K2ðΓð2Þ − K2Γð1ÞÞ þ Cð3Þ
β2;4

þ K3Γð1Þ. This, again, makes a

negligible difference over the entire β range, at the level of
parts per million for much of it, with details depending on
the number of flavors.
Our method is also clearly applicable to higher numbers

of loops, and it could be utilized when the necessary
information becomes available. For example, for a five-
loop prediction, we would need to know the small-β
expansion of the cusp anomalous dimension at five loops
as well as the result for the lightlike K5.

F. Further study of color structures

We can also study the approximation separately for each
color structure in the cusp anomalous dimension at each
perturbative order.
At two loops, the CFCA terms are not exact in Γð2Þ

A , as
mentioned earlier, while the CFnf terms are exact.
Studying the approximation from asymptotics just for
the CFCA terms alone, we find excellent agreement with
the exact result for those terms, better than 1 per mille
everywhere in the β range, and much smaller than that for
most of the range. This is consistent with and expected

from the excellence of the approximation for the total Γð2Þ
A .

At three loops, the C2
Fnf and the CFn2f terms are exact in

Γð3Þ
A , as mentioned earlier, but the CFC2

A and CFCAnf terms
are not exact. We study the approximation from asymp-
totics separately for those terms. We find excellent agree-
ment with the exact result for both the CFC2

A and CFCAnf
terms, within a fraction of 1 per mille everywhere in the β
range, smaller than 0.1 per mille for the majority of the β
range, and smaller than one part per million at small speeds.
This behavior is fully consistent with the behavior and

excellence of the approximation for the total Γð3Þ
A .

At four loops, as mentioned earlier, the C3
Fnf, C

2
Fn

2
f, and

CFn3f terms in Γð4Þ
A are exact, but all the rest of the terms in

Γð4Þ
A —i.e., the CFC3

A, C
2
FCAnf, CFC2

Anf, CFCAn2f, dFdF,
and dFdA terms—are not exact. There exist exact results for

some of these color structures, so one can make compar-
isons to them. The exact results for the dFdF terms are very
complicated [23], but it is easier to make comparisons with
the conjectured results for the C2

FCAnf and CFCAn2f
terms [16,17].
The C2

FCAnf terms in Γð4Þ are conjectured to be

2K
CFnf
3 ðΓð2Þ − K2Γð1ÞÞ þ K

CFCAnf
4 Γð1Þ, while the CFCAn2f

terms are conjectured to be ð19=81Þn2fT2
FðΓð2Þ − K2Γð1ÞÞ þ

K
CAn2f
4 Γð1Þ [16,17,25], where the superscripts in K3 and K4

denote the corresponding terms in them, and both of these
conjectured expressions are consistent with the small-β
expansions in Eqs. (3.10) and (3.11), so they seem to be
correct. We find superb agreement for both of these color
structures between the conjectured results and our results
from asymptotics. The difference is at the level of parts per
million up to β ≈ 0.3, less than 0.03 per mille for the vast
majority of the β range, and less than a small fraction of
1 per mille (0.3 per mille for C2

FCAnf, and 0.2 per mille for
CFCAn2f) for all β. We note that β6 terms are also available
in the small-β expansion for the CFCAn2f terms [22], but as
can easily be seen from the above comparison, there is
negligible room for improvement.
Furthermore, even though the dFdF exact results [23]

are very complicated, one can investigate further known
terms of this color structure at small speeds [22]. Using the
results in Ref. [22], we find that the β6 terms in the
small-β expansion of the dFdF color structure at four loops
are β6ð−904=1225−10132ζ2=3675þ53248ζ3=11025−
718ζ4=735−2816ζ5=441þ38944ζ2ζ3=11025Þ. Their con-
tribution does not materially change the four-loop predic-
tion: a difference of less than one part per million for much
of the β range, and everywhere less than 0.02 per mille for
nf ¼ 3, 0.05 per mille for nf ¼ 4, and 0.7 per mille for
nf ¼ 5. Once again, this highlights the robustness of our
approach and the reliability of our method.
Finally, we can also investigate the effect of including the

exact form of the conjectured C2
FCAnf and CFCAn2f terms

in our four-loop expression. Again, we find remarkable
robustness in our method, consistent with all the previous
checks. The difference between the results is negligible, of
the order of parts per million for much of the β range (with
exact numbers depending on the number of flavors) and at
the level of per mille for the entirety of the β range. Thus,
there can be no reasonable doubt that our four-loop result is
very precise, and the inclusion of any future exact results or
more terms in the small-β expansion would make very little
numerical difference.

VI. CONCLUSIONS

An expression for the massive cusp anomalous dimen-
sion has been derived from its asymptotic behavior at small
and large quark velocities through four loops. At two and

NIKOLAOS KIDONAKIS PHYS. REV. D 107, 054006 (2023)

054006-12



three loops, the expression predicts numerically the known
exact results astonishingly well, and new calculations
have been presented at four loops. The consistency and
excellence of the results across different orders and number
of flavors as well as color structures illustrates the success
and robustness of the method. The expression is in general
applicable to an arbitrary number of loops, so it can be
utilized at five loops or higher once the small-β behavior
and the lightlike cusp anomalous dimension are determined
at those loops.
The method presented has been developed in terms of

the quark velocity for the case of equal mass for the two
eikonal lines, but the results can afterwards be reexpressed
in terms of the cusp angle θ; then, those results are valid for
a given θ even when it describes cases with different masses
for the two eikonal lines. Thus, the method is completely
general and applies to any situation. The method can be
readily extended to higher-term β expansions as well as to
higher loops once the necessary ingredients are known.
Calculations of soft anomalous dimensions, which are

used in resummations for various processes, involve the
cusp anomalous dimension as an essential component.
Soft-gluon resummation has been very successful in
approximating and predicting higher-order corrections
for top-quark production and other heavy-quark processes
and beyond. Thus, the derivation of highly accurate results
for the cusp anomalous dimension at four loops is an
important step towards more precise theoretical predictions
for hard-scattering processes as well as a better under-
standing of the infrared behavior of QCD.
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APPENDIX A: LIGHTLIKE CUSP
ANOMALOUS DIMENSION

The massless limit of the cusp anomalous dimension,
i.e., the limit θ → ∞, can be written as

lim
θ→∞

ΓðnÞ ¼ AðnÞ lim
θ→∞

θ þ Rn; ðA1Þ

where AðnÞ ¼ CFKn is the lightlike cusp anomalous
dimension, and CF ¼ ðN2

c − 1Þ=2Nc, with Nc the number
of colors.
At one loop, K1 ¼ 1, and at two loops [32],

K2 ¼ CA

�
67

36
−
ζ2
2

�
−
5

9
nfTF; ðA2Þ

where CA ¼ Nc, ζ2 ¼ π2=6, TF ¼ 1=2, and nf is the
number of light-quark flavors.
At three loops [33],

K3 ¼C2
A

�
245

96
−
67

36
ζ2þ

11

24
ζ3þ

11

8
ζ4

�

þCFnfTF

�
−
55

48
þζ3

�

þCAnfTF

�
−
209

216
þ5

9
ζ2−

7

6
ζ3

�
−

1

27
n2fT

2
F; ðA3Þ

with ζ3 ¼ 1.202056903… and ζ4 ¼ π4=90.

At four loops [34,35],

K4 ¼ C3
A

�
42139

10368
−
5525

1296
ζ2 þ

1309

432
ζ3 þ

451

64
ζ4 −

451

288
ζ5 −

313

96
ζ6 −

11

24
ζ2ζ3 −

ζ23
16

�

þ C2
FnfTF

�
143

288
þ 37

24
ζ3 −

5

2
ζ5

�
þ CFCAnfTF

�
−
17033

5184
þ 55

48
ζ2 þ

29

9
ζ3 −

11

8
ζ4 þ

5

4
ζ5 − ζ2ζ3

�

þ C2
AnfTF

�
−
24137

10368
þ 635

324
ζ2 −

361

54
ζ3 −

11

24
ζ4 þ

131

72
ζ5 þ

7

6
ζ2ζ3

�
þ CFn2fT

2
F

�
299

648
−
10

9
ζ3 þ

ζ4
2

�

þ CAn2fT
2
F

�
923

5184
−

19

162
ζ2 þ

35

27
ζ3 −

7

12
ζ4

�
þ n3fT

3
F

�
−

1

81
þ 2

27
ζ3

�

þ dabcdF dabcdF

CFNc
nf

�
ζ2 −

ζ3
3
−
5

3
ζ5

�
þ dabcdF dabcdA

CFNc

�
−
ζ2
2
þ ζ3

6
þ 55

12
ζ5 −

31

8
ζ6 −

3

2
ζ23

�
; ðA4Þ

where ζ5 ¼ 1.036927755…, ζ6 ¼ π6=945, dabcdF dabcdF =ðCFNcÞ ¼ ðN4
c − 6N2

c þ 18Þ=ð48N2
cÞ, and dabcdF dabcdA =ðCFNcÞ ¼

NcðN2
c þ 6Þ=24.

FOUR-LOOP MASSIVE CUSP ANOMALOUS DIMENSION IN … PHYS. REV. D 107, 054006 (2023)

054006-13



APPENDIX B: THREE-LOOP MASSIVE CUSP ANOMALOUS DIMENSION

The cusp anomalous dimension at three loops is given by Eq. (2.6) with Cð3Þ ¼ CFC2
AC

0ð3Þ, where C0ð3Þ written as a
function of β is given by

C0ð3Þ ¼ −
1

2
þ ζ2

2
−
ζ3
2
−
9

8
ζ4 þ

ζ2
2

ln

�
1 − β

1þ β

�
−
1

4
ln2

�
1 − β

1þ β

�
þ 1

12
ln3

�
1 − β

1þ β

�
−

1

24
ln4

�
1 − β
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�

þ 1

4
ln2
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�
ln
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�
þ 3

4
ln

�
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�
Li2
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�
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5

8
Li3
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�
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�
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ln4
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þ ð1þ β2Þ3
32β3
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where explicit expressions for the six distinct weight-five harmonic polylogarithmsH in the above equation can be found in
the Appendix of Ref. [18].
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