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We investigate modifications of hadron masses at finite quark chemical potential in two-flavor and two-
color QCD, data of which are available from lattice simulations, within a linear sigma model based on
approximate Pauli-Gursey SUð4Þ symmetry. The model describes not only ground-state scalar diquarks
and pseudoscalar mesons but also the excited pseudoscalar diquarks and scalar mesons; each ground-state
diquark (meson) has the corresponding excited diquark (hadron) with opposite parity as a chiral partner.
Effects of chiral symmetry breaking and diquark condensates are incorporated by a mean-field treatment.
We show that various mixings among the hadrons, which are triggered by the breakdown of baryon number
conservation in the superfluid phase, lead to a rich hadron mass spectrum. We discuss the influence of
Uð1ÞA anomaly on the density dependence of the mass spectrum and also manifestations of the chiral
partner structures as the density increases in the superfluid phase. The predicted hadron masses are
expected to provide future lattice simulations with useful information on such symmetry properties in dense
two-color QCD.
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I. INTRODUCTION

Toward understanding quantum chromodynamics
(QCD) at finite quark chemical potential μq, two-color
QCD (QC2D) with an even number of quark flavors is
useful since in such a QCD-like theory lattice QCD
simulations work even at finite μq without suffering from
the so-called sign problem [1,2]. Based on this advantage,
so far many efforts from lattice QCD simulations at finite
μq in QC2D have been devoted to understanding of, e.g.,
modifications of hadron masses, gluon propagators, phase
diagram of QC2D, electromagnetic transport coefficients,
and so on [3–26]. Therefore, lattice simulations in QC2D at

finite μq serve as a numerical experiment for future
investigation of dense QCD.
Although lattice simulations are powerful, they only

provide us with numerical information. In this regard,
examinations of the simulation results based on effective
models give us deeper insights into dense QCD.
Motivated by this fact, hadron mass modifications and
phase structures at finite μq were theoretically investigated
within chiral perturbation theory [27–31], hidden local
symmetry (HLS) [32], Nambu-Jona-Lasinio (NJL)-type
model [33–44], and quark-meson coupling model with the
functional method [45–47]. Delineation of gluon propa-
gators and transport coefficients in dense QC2D was also
attempted by using the Dyson-Schwinger equation [48]
as well as by combining a massive gluon model with
quasiparticle description of quarks [49–51]. In addition
to those field-theoretical approaches, which are broadly
employed, recently a unified picture that connects the
smooth transition from hadronic matter to quark matter
with the quark model has been developed [52,53]. From
these studies, it is expected that a deeper understanding of
dense QC2D properties, most of which are commonly
shared by three-color QCD, is achieved [54].
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In QC2D, diquarks made of two quarks form a color
singlet and hence can be regarded as baryons. Accordingly,
baryonic matter is formed as a many-body system of
diquarks obeying the Bose-Einstein statistics. As a result,
when the baryon chemical potential or, equivalently, the
quark chemical potential μq exceeds a certain critical value,
the Bose-Einstein condensate (BEC) phase of diquarks
emerges at sufficiently low temperature [27,28]. The phase
is often called the diquark condensed phase or the baryon
superfluid phase since the baryon number conservation is
violated here. In contrast, the normal phase with no BECs,
which is continuously connected to the vacuum, i.e., the
system with vanishing temperature and chemical potential,
is simply referred to as the hadronic phase. In this phase, all
thermodynamic quantities are independent of μq, which is
known as the Silver Blaze property.
Emergence of the baryon superfluidity is manifestly

reflected by hadron mass spectrum. For instance, the
baryon number violation in the superfluid phase causes
mixings among mesons and diquarks having identical
quantum numbers [33]. The appearance of the Nambu-
Goldstone (NG) bosons in association with the breakdown
of Uð1ÞB baryon number symmetry is another striking
consequence [27,28]. For this reason, lattice simulations
that reveal modifications of hadron masses in the baryon
superfuid phase as well as in the hadronic phase were
performed by several groups [3,4,6,9,19,55]. In particular,
in Ref. [55] the simulation was extended in such a way as to
include not only the ground-state hadrons but also the
orbitally excited ones having opposite parities.
Motivated by the above progress in lattice studies, in the

present study, we theoretically investigate hadron mass
modifications in both the hadronic and baryon superfluid
phases at zero temperature by utilizing a linear sigma model
[56]. Since the linear sigma model is based on the linear
representation of quarks, the model has two noteworthy
advantages from the symmetry point of view: (i) The model
can describe both the ground-state hadrons and excited
ones in a unified way, which allows us to identify the chiral
partners. (ii) The model can incorporate changes of the
ground-state configurations associated with in-medium
chiral-symmetry restoration in a broad range of μq at
mean-field level [57].1 In particular, we concentrate on
spin-zero hadrons in this exploratory work where inputs are
provided by the recent lattice results [55]. Then, we
demonstrate how symmetry properties related to chiral
symmetry and Uð1ÞA axial anomaly in dense QC2D are
extracted by the mass spectrum. Moreover, we present

predictions of novel hadron mass modifications, which
might provide useful information on the symmetry insights
of dense QC2D for future lattice simulations.
This article is organized as follows. In Sec. II, general

properties of QC2D are briefly explained, and accordingly
the linear sigma model to investigate hadron mass mod-
ifications at finite μq is introduced. In Sec. III, input
information from recent lattice simulations is presented,
and we therefrom examine the μq dependence of mean
fields to delineate the emergence of the baryon superfluid
phase. In Sec. IV the resultant hadron mass spectra at finite
μq are demonstrated by focusing on effects of Uð1ÞA
anomaly, and also discussions on the chiral partner struc-
tures are provided. In Sec. V we conclude the present work.

II. MODEL

In this section, we construct our linear sigma model from
symmetry arguments.

A. General properties of QC2D

Within the linear sigma model, hadron states are pro-
vided by the linear representation of quark bilinears sharing
the same symmetry properties, which in turn determine the
structure of hadron interactions. In QC2D with two flavors
(Nf ¼ 2), the flavor symmetry is characterized by the
Pauli-Gursey SUð4Þ symmetry [27,28,69,70] rather than
SUð2ÞL × SUð2ÞR ×Uð1ÞB. In this subsection, before
presenting our linear sigma model we briefly review
emergence of the Pauli-Gursey SUð4Þ symmetry by turning
back to the fundamental QC2D Lagrangian.
The QC2D Lagrangian for massless two quarks (Nf ¼ 2)

is of the form

LQD ¼ ψ̄i=Dψ ; ð1Þ

where ψ ¼ ðu; dÞT is the quark doublet and Dμψ ¼ ∂μψ þ
igcAa

μTa
cψ is the covariant derivative describing interactions

between the quarks and gluons, with Ta
c ¼ τac=2 being the

SUð2Þc generator (τac is the Pauli matrix in color space).
Introducing the Weyl representation for the Dirac matrices
for convenience, one can express the Lagrangian (1) in
terms of left-handed and right-handed quarks as

LQC2D ¼ ψ†
Ri∂μσ

μψR − gcψ
†
RA

a
μTa

cσ
μψR

þ ψ†
Li∂μσ̄

μψL − gcψ
†
LA

a
μTa

c σ̄
μψL: ð2Þ

In this Lagrangian, we have used u ¼ ðuR; uLÞT and d ¼
ðdR; dLÞT in the Weyl representation, and defined two
component matrices σμ ¼ ð1; σiÞ and σ̄μ ¼ ð1;−σiÞ in
spinor space with the Pauli matrix σi. Here, we utilize
the pseudoreality of the Pauli matrix to obtain the relations

Ta
c ¼ −τ2cðTa

cÞTτ2c; σi ¼ −σ2ðσiÞTσ2; ð3Þ

1Investigation of modifications of light hadron masses from
the aspect of chiral restoration at finite density through the
linear sigma model of three-color QCD have been done widely
by several methods [58–67] such as functional methods. The
model has also been applied to QCD with an isospin chemical
potential [68].
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and accordingly introduce “conjugate quarks”:

ψ̃R ≡ σ2τ2cψ
�
R; ψ̃L ≡ σ2τ2cψ

�
L: ð4Þ

Then, the Lagrangian (2) can be expressed in a unified
form as

LQC2D ¼ Ψ†i∂μσμΨ − gcΨ†Aa
μTa

cσ
μΨ; ð5Þ

when we introduce the four-component column vector as

Ψ≡
�
ψR

ψ̃L

�
¼

0
BBBB@

uR
dR
ũL
d̃L

1
CCCCA: ð6Þ

The Lagrangian (5) is obviously invariant under SUð4Þ
transformation of Ψ:

Ψ → gΨ; ð7Þ

with g ∈ SUð4Þ,2 rather than SUð2ÞL × SUð2ÞR ×Uð1ÞB
chiral transformation. This extended symmetry is some-
times referred to as the Pauli-Gursey symmetry. As can be
seen from Eq. (6), the Pauli-Gursey symmetry is realized by
treating ψ and the conjugate quarks ψ̃ as one quartet.
The baryon number symmetry, i.e., quark number

symmetry, is embedded in the SUð4Þ symmetry. In fact,
from Eq. (6) the quark number transformation reads

Ψ → e−iθqJΨ with J ≡
�
1 0

0 −1

�
: ð8Þ

On the other hand, the Uð1ÞA transformation is generated
by a unit matrix as

Ψ → e−iθAIΨ with I ≡
�
1 0

0 1

�
: ð9Þ

One of the most characteristic properties of QC2D is the
symmetry-breaking pattern triggered by a chiral condensate
hψ̄ψi. Using Eq. (6) one can check

ψ̄ψ ¼ −
1

2
ðΨTσ2τ2cEΨþ Ψ†σ2τ2cETΨ�Þ; ð10Þ

with

E≡
�

0 1

−1 0

�
ð11Þ

the 4 × 4 symplectic matrix. Equation (10) implies that the
chiral condensate hψ̄ψi is invariant under transformations
satisfying

hTEh ¼ E; ð12Þ

where h is an element of Spð4Þ belonging to a subgroup of
the original SUð4Þ. In other words, the symmetry-breaking
pattern triggered by the chiral condensate is SUð4Þ →
Spð4Þ [27,28].
Based on the general properties of QC2D presented

in this subsection, we introduce hadron fields from the
quark bilinears in Sec. II B and construct the linear sigma
model in such a way as to respect SUð4Þ symmetry in
Sec. II C.

B. Flavor matrix Σ
The advantage of employing the linear sigma model of

QCD is that we can simultaneously investigate the ground-
state hadrons and their chiral partners having opposite
parities, i.e., the P-wave excited states in the quark-model
sense, on an equal footing [56]. Such an advantage is
explicitly implemented by introducing a flavor matrix Σ
containing the hadrons defined through a quark bilinear
field in the linear representation. Here, we introduce the
corresponding 4 × 4 Σ matrix in QC2D and present its
properties.
As shown in Sec. II A, QC2D has the Pauli-Gursey

SUð4Þ symmetry when the quarks are massless, and
accordingly any hadronic theory has to respect the sym-
metry as well. Hence, one useful definition of Σ in terms of
the quark bilinear field may be3

Σij ∼ ΨT
j σ

2τ2cΨi: ð13Þ

This Σ is a flavor 4 × 4matrix labeled by i and j, where the
summations over spinor and color indices are implicitly
done. The flavor matrix Σ is antisymmetric as Σ ¼ −ΣT due
to the Grassman nature of Ψ. One can see that Σ transforms
homogeneously under the SUð4Þ as

Σ → gΣgT; ð14Þ

from the linear transformation law of the quartet in Eqs. (6)
and (7). More explicitly, the Σ in Eq. (13) takes the form of

2We consider only SUð4Þ symmetry but not Uð4Þ one, since
the Uð1ÞA axial symmetry is explicitly broken due to the
anomaly.

3Here, the symbol “∼” denotes the correspondence between
the composite state in the linear sigma model and the quark
bilinear in QC2D.
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Σ∼0
BBBBB@

0 dTRσ
2τ2cuR u†LuR d†LuR

−dTRσ2τ2cuR 0 u†LdR d†LdR

−u†LuR −u†LdR 0 d†Lσ
2τ2cu�L

−d†LuR −d†LdR −d†Lσ2τ2cu�L 0

1
CCCCCA
: ð15Þ

Equation (15) implies that mesons and diquark baryons can
be treated in a unified way. To see such a structure more
clearly, we try to rewrite the matrix (15) in terms of
hadronic states. For this reason, we define interpolating
fields for the hadrons by

σ ∼ ψ̄ψ ¼ u†LuR þ d†LdR þ u†RuL þ d†RdL; ð16Þ

aþ0 ∼
1ffiffiffi
2

p ψ̄τ−fψ ¼
ffiffiffi
2

p
ðd†LuR þ d†RuLÞ;

a−0 ∼
1ffiffiffi
2

p ψ̄τþf ψ ¼
ffiffiffi
2

p
ðu†LdR þ u†RdLÞ;

a00 ∼ ψ̄τ3fψ ¼ u†LuR − d†LdR þ u†RuL − d†RdL; ð17Þ

η ∼ ψ̄iγ5ψ ¼ iðu†LuR þ d†LdR − u†RuL − d†RdLÞ; ð18Þ

πþ ∼
1ffiffiffi
2

p ψ̄iγ5τ−fψ ¼
ffiffiffi
2

p
iðd†LuR − d†RuLÞ;

π− ∼
1ffiffiffi
2

p ψ̄iγ5τ
þ
f ψ ¼

ffiffiffi
2

p
iðu†LdR − u†RdLÞ;

π0 ∼ ψ̄iγ5τ3fψ ¼ iðu†LuR − d†LdR − u†RuL þ d†RdLÞ; ð19Þ

B ∼ −
iffiffiffi
2

p ψTCγ5τ2cτ2fψ

¼ −
ffiffiffi
2

p
iðdTRσ2τ2uR þ dTLσ

2τ2uLÞ;

B̄ ∼ −
iffiffiffi
2

p ψ†Cγ5τ2cτ2fψ
�

¼ −
ffiffiffi
2

p
iðd†Rσ2τ2u�R þ d†Lσ

2τ2u�LÞ; ð20Þ

B0 ∼ −
1ffiffiffi
2

p ψTCτ2cτ2fψ

¼ −
ffiffiffi
2

p
ðdTRσ2τ2uR − dTLσ

2τ2uLÞ;

B̄0 ∼
1ffiffiffi
2

p ψ†Cτ2cτ2fψ
�

¼
ffiffiffi
2

p
ðd†Rσ2τ2u�R − d†Lσ

2τ2u�LÞ; ð21Þ

with τ�f ¼ τ1f � iτ2f (τaf is the Pauli matrix in flavor space)
and C ¼ iγ2γ0 the charge-conjugation operator. For the
mesons defined in Eqs. (16)–(19), we have employed the
notations which are ordinarily adopted in three-color QCD,
and thus their chiral properties are well known. For the

baryons defined in Eqs. (20) and (21), current structures are
largely different from the case of three-color QCD where
baryons are composed of three quarks; B and B̄ represent
diquark and antidiquark baryons, respectively, which are
singlet in both spin and isospin and characterized by
JP ¼ 0þ, while B0 and B̄0 are their chiral partners carrying
opposite parities. In fact, B (B̄) and B0 (B̄0) are interchanged
under the SUð2ÞA axial transformation. In order to man-
ifestly display the properties, we tabulate quantum numbers
of the hadrons in Table I.
Using the hadronic states defined in Eqs. (16)–(21), the

matrix (15) can be described in terms of the hadrons as

Σ¼N

0
BBBBBBB@

0 −B0 þ iB σ−iηþa0−iπ0ffiffi
2

p aþ− iπþ

B0−iB 0 a−−iπ− σ−iη−a0þiπ0ffiffi
2

p

−σ−iηþa0−iπ0ffiffi
2

p −a−þ iπ− 0 −B̄0 þ iB̄

−aþþ iπþ −σ−iη−a0þiπ0ffiffi
2

p B̄0−iB̄ 0

1
CCCCCCCA
:

ð22Þ

As for the normalization constantN , we takeN ¼ 1=2 for
later use.
The matrix (22) implies that when σ is replaced by its

mean field σ0 responsible for the chiral condensate hψ̄ψi,
the vacuum expectation value (VEV) of Σ is proportional to
the symplectic matrix:

hΣich ∝ E: ð23Þ

Thus, from the transformation law in Eq. (14) we see that
the VEV hΣich is singlet only when g is replaced by h
satisfying Eq. (12), which obviously reflects the symmetry-
breaking pattern of SUð4Þ → Spð4Þ as explained at the end
of Sec. II A.
The matrix (22) can be written in a more compact form.

In fact, once one defines Sa, Pa, Bi, and B0i as

TABLE I. Quantum numbers carried by the hadrons defined
in Eqs. (16)–(21).

Hadron JP Quark number Isospin

σ 0þ 0 0
a0 0þ 0 1
η 0− 0 0
π 0− 0 1
B (B̄) 0þ þ2ð−2Þ 0
B0 (B̄0) 0− þ2ð−2Þ 0
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σ ¼ S0; a00 ¼ S3; a�0 ¼ S1 ∓ iS2ffiffiffi
2

p

η ¼ P0; π0 ¼ P3; π� ¼ P1 ∓ iP2ffiffiffi
2

p ;

B ¼ B5 − iB4ffiffiffi
2

p ; B̄ ¼ B5 þ iB4ffiffiffi
2

p ;

B0 ¼ B05 − iB04ffiffiffi
2

p ; B̄0 ¼ B05 þ iB04ffiffiffi
2

p ; ð24Þ

and some generators of Uð4Þ as

Xa ¼ 1

2
ffiffiffi
2

p
� τaf 0

0 ðτafÞT
�

ða ¼ 0 − 3Þ;

Xi ¼ 1

2
ffiffiffi
2

p
�

0 Di
f

ðDi
fÞ† 0

�
ði ¼ 4; 5Þ; ð25Þ

with τ0f ¼ 1, D4
f ¼ τ2f and D5

f ¼ iτ2f, the matrix (22)
turns into

Σ ¼ ðSa − iPaÞXaEþ ðB0i − iBiÞXiE: ð26Þ

The flavor matrix (26) together with its transformation
property (14) enables us to construct the linear sigma model
in a familiar way but now based on the Pauli-Gursey SUð4Þ
symmetry of QC2D.

C. Linear sigma model

In this subsection we construct the linear sigma model
from the flavor matrix Σ, which allows us to investigate the
hadron mass spectrum at finite quark chemical potential.
From the flavor matrix (26) with the transformation

property (14), our linear sigma model that approximately
preserves the Pauli-Gursey SUð4Þ symmetry can be
obtained as4

LLSM ¼ tr½DμΣ†DμΣ� −m2
0tr½Σ†Σ� − λ1ðtr½Σ†Σ�Þ2

− λ2tr½ðΣ†ΣÞ2� þ tr½H†Σþ Σ†H�
þ cðdetΣþ detΣ†Þ: ð27Þ

In Eq. (27), we have left the flavor matrices up to the fourth
order in Σ (Σ†) such that the theories are renormalizable as
widely done for the three-color version of linear sigma
model [71–73]. H is defined by

H ¼ hqE; ð28Þ

which describes the explicit breaking of the chiral sym-
metry or the Pauli-Gursey SUð4Þ symmetry. Here, hq is a

constant which captures the effects of the current quark
masses.
Besides, the Uð1ÞA axial transformation for Σ is Σ →

e−iθAIΣe−iθAI as can be understood from Eq. (9), and
hence the Kobayashi–Maskawa–’t Hooft (KMT)-type
term proportional to c is responsible for the Uð1ÞA axial
anomaly [74–77]. The covariant derivative with respect to
Uð1ÞB symmetry in Eq. (27) is defined by

DμΣ ¼ ∂μΣ − iðVμΣþ ΣVT
μ Þ; ð29Þ

where the “gauge field” Vμ is replaced by

Vμ ¼ Jμqδμ0; ð30Þ

with μq the quark number chemical potential introduced to
access finite density.
In the vacuum the approximate Pauli-Gursey SUð4Þ

symmetry is further broken due to the VEV of chiral
condensate hψ̄ψi, which is described by the appearance
of a mean field of σ in our model. In addition, at finite μq
it is possible that the diquark condensate hψTCγ5τ2cτ2fψi
emerges, leading to the baryon superfluidity that breaks the
quark number conservation [27,28]. Such superfluidity is in
our model triggered by a nonzero mean field of B (B̄). In
fact, once, in Eq. (27), one replaces σ and B5 by their mean
fields, which are real5:

σ0 ≡ hσi; Δ≡ hB5i; ð31Þ

the effective potential with respect to σ0 and Δ can be
obtained as

Vσ0;Δ ¼ −2μ2qΔ2 þm2
0

2
ðσ20 þΔ2Þ

þ 8λ1 þ 2λ2 − c
32

ðσ20 þΔ2Þ2 − 2
ffiffiffi
2

p
hqσ0: ð32Þ

It should be noted that both the mean fields σ0 and Δ keep
the parity and isospin symmetries intact.
The mass of each hadron can be determined by expanding

the Lagrangian (27) up to quadratic order in the correspond-
ing hadron field on top of the mean fields (31). We display
their detailed expressions in Appendix A and here we only
explain important features:

(i) In the vacuum where μq ¼ 0 and naturally Δ ¼ 0, a
mass difference between π and η is proportional to c
that stems from the Uð1ÞA axial anomaly as seen in
Eq. (A21). In other words, in our model the mass of
η is pushed up by the anomaly effect as observed
from the KMT term in three-color QCD [74–77].

4Due to Σ† ¼ −Σ�, for instance, tr½Σ�Σ� is identical to
−tr½Σ†Σ�.

5In this phase choice for Δ, mean fields of B and B̄ become
hBi ¼ hB̄i ¼ Δ=

ffiffiffi
2

p
, and B4 turns into the NG mode associated

with the breakdown of baryon number symmetry.
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(ii) For λ1 ¼ c ¼ 0,6 the vacuum masses of η, π, B, and
B̄, which belong to the same multiplet of SUð4Þ, are
degenerate, and so are those of σ, a0, B0, and B̄0 [see
Eqs. (A24) and (A25)]. These degeneracies indicate
that effects of SUð4Þ symmetry partly remain even
when the symmetry is explicitly broken by current
quark masses.

(iii) In the baryon superfluid phase where Δ is nonzero,
σ, B, and B̄, whose spin and parity are JP ¼ 0þ, can
mix. Similarly, η, B0, and B̄0 having JP ¼ 0− can mix
in the superfluid phase. Such mixing stems from
violation of baryon number conservation triggered
by the diquark condensates. In fact, as can be seen
from Eqs. (A15) and (A19) the corresponding
mixing terms are proportional to Δ. However, the
mixing terms happen to be proportional to σ0 as
well, and therefore at sufficiently large μq when the
chiral condensate becomes small due to the approxi-
mate restoration of chiral symmetry, all mixings are
small too.

The ground state is determined by stationary conditions
of the potential (32) with respect to σ0 and Δ. That is, the
relevant mean fields must satisfy

m2
0 þ

8λ1 þ 2λ2 − c
8

ðσ20 þ Δ2Þ ¼ 2
ffiffiffi
2

p
hq

σ0
; ð33Þ

and
�
−4μ2q þm2

0 þ
8λ1 þ 2λ2 − c

8
ðσ20 þ Δ2Þ

�
Δ ¼ 0; ð34Þ

respectively. Chiral symmetry or, more precisely, SUð4Þ
Pauli-Gursey symmetry, is explicitly broken due to the
current-quark mass effect hq, and hence the trivial solution
of σ0 ¼ 0 denoting the SUð4Þ symmetric phase does not
satisfy Eq. (33). On the other hand, Eq. (34) possesses both
the trivial and nontrivial solutions of Δ. The nontrivial
solutions are selected by the value of chemical potential. In
fact, once one inserts Eq. (33) into Eq. (34), the nontrivialΔ
solution leads to

μ2q ¼
hqffiffiffi
2

p
σ0

; ð35Þ

which cannot hold for smaller μq. For adequately small μq,
therefore, the nontrivial solution of Δ can be discarded and
hence the baryon superfluid phase does not emerge as
naively expected. The trivial solution Δ ¼ 0 leads to the
hadronic phase, which is continuously connected to the
system with vanishing μq. In the hadronic phase, according
to Eq. (33), the value of σ0 does not change from that in the

vacuum σvac0 . Note that the vacuum pion mass can be
expressed as

ðmvac
π Þ2 ¼ 2

ffiffiffi
2

p
hq

σvac0

ð36Þ

from Eq. (A10). Then, the critical chemical potential μ�q for
the baryon superfluid phase can be analytically evaluated as

μ�q ¼
mvac

π

2
; ð37Þ

from Eq. (35) with σ0 being replaced by σvac0 . The critical
chemical potential (37) is the same as the result of chiral
perturbation theory [27,28] and NJL model [33],7 and
suggested numerically by lattice simulations [5,14,18].
The baryonic density can be evaluated by taking a

derivative of the potential Vσ0;Δ with respect to μq:

ρ ¼ −
∂Vσ0;Δ

∂μq
¼ 4Δ2μq: ð38Þ

Therefore, the baryonic density arises above the critical
chemical potential μq accompanied by the onset of baryon
superfluidity, whereas in the hadronic phase ρ always
vanishes. The latter constant behavior is related to the
Silver Blaze property, which dictates the constancy of all
thermodynamic quantities.

III. INPUTS

In order to fix the model parameters, in the present work
we employ the recent lattice results for hadron mass
spectrum [55,81], which ensures quantitatively convincing
investigation.8 Results from the lattice simulation, which
are in part still tentative, are summarized as follows:

(i) In the physical unit, the pion mass is estimated to be
mπ ¼ 738 MeV with good accuracy.

(ii) It seems that masses of π and η are almost identical
in the hadronic phase, and hence we can take c ¼ 0.
This choice implies disappearance of Uð1ÞA
anomaly effect in the hadronic phase.9

(iii) The measured masses of negative-parity
baryons B0 and B̄0 in the vacuum read mvac

B0ðB̄0Þ ¼
½1611�128ðstatÞþ128

−678ðsystÞ�MeV. Taking the central

6It corresponds to the leading approximation of the large Nc
expansion [78,79] as shown in Appendix B.

7It is expected that the critical chemical potential (37) holds to
all orders in perturbation theory. In particular, Eq. (37) was
proven at one-loop order explicitly in chiral perturbation
theory [80].

8In Ref. [21], the physical scale is fixed by Tc ¼ 200 MeV at
μq ¼ 0, where Tc denotes the pseudocritical temperature of the
chiral-phase transition.

9In the simulation contributions from disconnected
diagrams are not included. Such effects however seem to be
negligible [9,55].
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value as mvac
B0ðB̄0Þ ≈ 1611 MeV, we estimate a mass

ratio of B0 (B̄0) and π to be mvac
B0ðB̄0Þ=m

vac
π ≈ 2.18.10

(iv) The computed mass of the 0þ scalar meson in the
hadronic phase is also accompanied by uncertain-
ties. The results in the vacuum (μq ¼ 0) are quite
noisy, but those at finite μq in the hadronic phase
are rather worth using as inputs: mσ ¼ ½1453�
84.7ðstatÞþ103

−84.7ðsystÞ� MeV at μq ¼ 119 MeV and
mσ ¼ ½1452� 101ðstatÞþ109

−106ðsystÞ� MeV at μq ¼
238 MeV. From these values and the assumption
that mσ dose not change in the hadronic phase, we
find 1.75≲mvac

σ =mvac
π ≲ 2.2.

From those lattice inputs we can fix m2
0, c, and hq and also

determine a range of λ1. In contrast, the dimensionless
parameter λ2 remains to be fixed. Then, we choose σvac0 ¼
250 MeVas a typical value to determine λ2 in such away that
the magnitude of λ2 becomes comparable to that broadly
employed in the three-flavor linear sigma model [71–73].
The smaller (larger) value of σvac0 we take, the larger (smaller)
value of λ2 weobtain.We note that the choice of σvac0 does not
affect the hadron mass spectrum at any μq as shown in
Appendix B, as long as we stick to the large-Nc limit, i.e.,
λ1 ¼ c ¼ 0. The VEV σvac0 is related to the pion decay
constant fπ associated with the breakdown of SUð4Þ →
Spð4Þ as fπ ¼ σvac0 =

ffiffiffi
2

p
; fπ has yet to be measured on

the lattice.
From the above procedure, the range of λ1 is found to be

−7≲ λ1 ≲ 0, and hence for the numerical analysis in
Sec. IV we consider two distinct cases λ1 ¼ 0 and λ1 ¼
−7 for clear discussions. The resultant parameters are
summarized in the sets (I) and (II) in Table II. In the table,
although the simulated mass spectrum favors c ¼ 0, we
also display the parameter set (III) with nonzero value of c
to examine effects of the Uð1ÞA axial anomaly on hadron
mass spectrum, especially in the baryon superfluid phase
later. Here, we again emphasize that the parameter set (I)
where λ1 ¼ c ¼ 0 is satisfied corresponds to the leading
approximation of the large-Nc expansion.
Before moving on to numerical computations of the

hadron mass spectrum, we plot μq dependence of σ0,Δ, and
ρ in Fig. 1 with the parameter set (I) of Table II as a
demonstration. The left panel depicts σ0 (blue) and Δ (red)
normalized by σvac0 , respectively, and the right one depicts
the scaled baryonic density [5].

ρ̃ ¼ ρ

16f2πmvac
π

: ð39Þ

In the figure the vertical dotted line corresponds to the
critical chemical potential μ�q given by Eq. (37), i.e., the
transition between the hadronic and baryon superfluid
phases. Figure 1 clearly exhibits the Silver Blaze property
in the hadronic phase. Besides, the figure indicates that σ0
decreases with μq in the baryon superfluid phase, resulting
in the restoration of chiral symmetry at sufficiently high
baryonic density. On the other hand, Δ increases mono-
tonically as μq becomes large in the superfluid phase.
Besides, unlike analysis from chiral perturbation theory
within the mean-field approach where σ20 þ Δ2 ¼
ðconstantÞ is satisfied for any value of μq [27,28],11 the
linear sigma model naturally violates such a conservation
law. This is because the latter is based on the linear
representation of quarks where the ground-state configu-
ration is dynamically changed in accordance with the
change of breaking strength of the Pauli-Gursey SUð4Þ
symmetry. A similar behavior is observed in the NJL
model [33].

IV. MASS SPECTRUM

In this section we display the numerical results for μq
dependence of the hadron masses evaluated in our present
model. First, in Sec. IVA we present the resultant mass
spectrum with the parameter sets (I) and (II) in Table II
consistent with the recent lattice simulation. Next, in
Sec. IV B we study the mass modifications with the set
(III) in Table II to have a closer look at effects of the Uð1ÞA
axial anomaly especially in the baryon superfluid phase.
Finally, in Sec. IV C, we discuss the chiral partner structure
in our model with the set (I).

A. Results in the absence of Uð1ÞA anomaly

Here, we investigate the hadron mass modifications for
the parameter sets (I) and (II) in Table II, which are favored
by the mass spectrum in the hadronic phase measured by

TABLE II. Parameter sets employed for computation of hadron
mass spectrum in Sec. IV. The sets (I) and (II) are reasonable
enough to reproduce the recent lattice results for hadron masses in
the hadronic phase.

c λ1 λ2 m2
0 hq

Set (I) 0 0 65.6 −ð693 MeVÞ2 ð364 MeVÞ3
Set (II) 0 −7 65.6 −ð206 MeVÞ2 ð364 MeVÞ3
Set (III) 15 0 58.1 −ð495 MeVÞ2 ð364 MeVÞ3

10The simulated values ofmB0 andmB̄0 at μq ¼ 119 MeV in the
hadronic phase are mB0 ¼ ½1238� 87.6ðstatÞþ112

−87.6ðsystÞ� MeV
and mB̄0 ¼ ½1704� 65.5ðstatÞþ98.2

−71.0ðsystÞ� MeV, respectively.
When estimating mvac

B0ðB̄0Þ ≈ 1611 MeV, the mass formula that
diquark baryons must satisfy in the hadronic phase, as will be
shown in Eq. (40), reads mB0 ≈ 1373 MeV and mB̄0 ≈ 1849 MeV
at μq ¼ 119 MeV. Deviations between these theoretical values
and the simulated values are not large unreasonably.

11The relation σ20 þ Δ2 ¼ ðconstantÞ is violated when loop
corrections are taken into account, even in chiral perturbation
theory.
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the recent lattice simulation [55,81]. The sets are charac-
terized by c ¼ 0, where the Uð1ÞA anomaly is absent.
Depicted in Fig. 2 is the resultant μq dependence of the

hadron masses with the set (I). The left and right panels
indicate the 0þ (a0, σ, B, and B̄) and 0− (π, η, B0, and B̄0)
hadron masses normalized by the vacuum pion mass mvac

π ,
respectively, and the vertical dotted line for these panels
corresponds to the critical chemical potential μ�q in Eq. (37).
As can be seen from the figure, in the hadronic phase for
μq < μ�q the masses of mesons, which do not carry the
baryon number, are unchanged while those of baryons and
antibaryons monotonically change as

mB;B0 ¼ mvac
B;B0 − 2μq;

mB̄;B̄0 ¼ mvac
B̄;B̄0 þ 2μq: ð40Þ

These behaviors mean that in this phase the chemical
potential μq simply shifts energy levels of the (anti)baryons

without being accompanied by medium effects. Such stable
μq dependences are understandable by the absence of
baryonic density as in the right panel of Fig. 1.
Here, we note that for the parameter set (I), not only the

a0 and σ masses but also the π and η ones are identical in
the hadronic phase. The former is realized by the large-Nc

condition λ1 ¼ c ¼ 0, and the latter is solely by the neglect
of Uð1ÞA anomaly, i.e., c ¼ 0 as already explained. These
properties are clearly understood by Fig. 3, where the mass
spectrum is obtained with the parameter set (II); the figure
shows that the negative λ1 acts to lower the σ mass, leading
to breaking of the degeneracy of (a0, σ), while it does not
destroy the mass degeneracy of (π, η). As a result, a level
crossing between σ and B̄ takes place below the critical
chemical potential μ�q. From the figure, it is also found that
the positive λ1 acts to increase the σ mass to break the
degeneracy of a0 and σ.

FIG. 1. The μq dependence of σ0 andΔ (left panel) and that of the scaled baryonic density ρ̃ (right panel). The vertical line corresponds
to μ�q ¼ mvac

π =2, which distinguishes the normal and baryon superfluid phases.

FIG. 2. Left and right panels represent the μq dependence of 0þ hadron masses (a0, σ, B, and B̄) and that of 0− hadron masses (π, η, B0,
and B̄0), respectively, calculated with the parameter set (I). These hadron masses are normalized by the vacuum pion mass mvac

π . The
vertical dotted line corresponds to the critical chemical potential μ�q.
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In the baryon superfluid phase at μq > μ�q in Figs. 2
and 3, due to the violation of baryon number conservation
several nontrivial mass modifications are found. First, for
JP ¼ 0þ hadrons, σ, B, and B̄ mix, and the lowest branch
becomes massless, which plays the role of the NG boson
associated with the violation of Uð1ÞB baryon number
symmetry. The isotriplet a0 meson does not join the mixing
since the SUð2Þ isospin symmetry is not broken byΔ. Next,
for JP ¼ 0− hadrons, η, B0, and B̄0 also mix to draw a
complicated mass spectrum. Due to the level repulsion
among them, the lowest branch is pushed down and its
mass becomes smaller than mvac

π . Such remarkable behav-
iors of the lowest branches are certainly observed in the
recent lattice simulation [55,81]. Comparing Figs. 2 and 3,
we can see that in the baryon superfluid phase the negative
λ1 acts to slightly increase the mass of a0 and that of the
second-lowest branch of the η-B0-B̄0 mixed state. The mass
orderings in the superfluid phase are nevertheless identical
for the sets (I) and (II). For λ1 ¼ c ¼ 0, it should be noted
that the lowest branch of the η-B0-B̄0 mixed state is reduced
to a massless mode at sufficiently large μq. In Sec. IV C we
will come back to this point.

In addition to the above findings, interestingly enough,
the μq dependence of the π mass in the baryon superfluid
phase is found to be expressed as

m2
π ¼ 4μ2q; ð41Þ

which is the same as that predicted by chiral perturbation
theory and the NJL model [27,28,33]. The mass for-
mula (41) is analytically derived for any parameter set in
the present model.

B. Effects of the Uð1ÞA anomaly

As mentioned above, the mass spectrum in the hadronic
phase measured by the recent lattice simulation supports
the absence of Uð1ÞA anomaly. Even so, it is useful to
study the hadron mass spectrum at finite μq in the case in
which the anomaly is present. For this reason, in this
subsection we work with the parameter set (III).
Depicted in Fig. 4 is the result with the set (III). In the

hadronic phase, the Uð1ÞA anomaly effect with c > 0
pushes down the σ mass and pushes up the η mass,

FIG. 3. Same as Fig. 2 but with the parameter set (II).

FIG. 4. Same as Fig. 2 but with the parameter set (III).
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resulting in breaking of mass degeneracies of ða0; σÞ and of
ðπ; ηÞ. As a result, level crossings of B̄ and σ for 0þ hadrons
and of B0 and η for 0− ones can occur below μ�q. In the
baryon superfluid phase, the mass spectrum is mostly
similar to the one presented with the parameter sets (I)
and (II) except the lowest branch of the η-B0-B̄0 mixed state;
notably the mass reduction of the state observed in Figs. 2
and 3 is tempered, and the mass again increases gradually
well above μ�q. Such a characteristic behavior is obviously
distinct from the c ¼ 0 case where the mass reduction is
striking and becomes asymptotically zero. Therefore, we
conclude that such weakened mass reduction can be a
useful signal to measure the change of the magnitude of the
Uð1ÞA anomaly in the superfluid phase.
In order to have a closer look at the influence of the

Uð1ÞA anomaly on the mass of the lowest branch of the
η-B0-B̄0 mixed state, we depict μq dependence of its mass in
the baryon superfluid phase for several values of c with λ
being set to zero in Fig. 5. From the figure one can see that
the mass is strongly affected by the value of c, i.e., the
magnitude of theUð1ÞA anomaly. In particular, when c > 0
the mass is proportional to μq in the limit of μq → ∞, while
only when c ¼ 0 the mass is reduced to zero in this limit.

C. Chiral partner structures

One of the characteristic features of the conventional
linear sigma model is manifestation of the so-called chiral
partner structure [57]. That is, the linear representation of
hadrons allows us to explore how the mass degeneracy
occurs among hadrons having opposite parities via axial
transformations at the chiral restoration point. In order to
identify the mass degeneracy structure at large μq, in this
subsection we study the positive and negative parity
hadrons simultaneously.
We display the μq dependence of all the hadron masses

treated in the present model in Fig. 6. In this figure, we
employ the parameter set (I) where the large-Nc limit is

taken as the most instructive choice. The solid curves and
dashed curves denote the positive and negative parity
hadrons, respectively, and the vertical dotted line corre-
sponds to μ�q. Figure 6 clearly shows that each state can be
classified by asymptotic mass degeneracy as a chiral
partner of the degenerate pair. Analytically, once one takes
σ0 → 0 at large μq and sets λ1 ¼ c ¼ 0 in the mass
formulas in Appendix A, the troublesome mixing disap-
pears and one can easily find

m2
B ¼ m2

B0 ¼ 0;

m2
σ ¼ m2

π ¼ μ2q;

m2
a0 ¼ m2

η ¼ 12μ2q;

m2
B̄ ¼ m2

B̄0 ¼ 24μ2q; ð42Þ

which are independent of λ2. The asymptotic mass for-
mula (42) clearly exhibits the chiral partner structure. In
particular, the formula indicates that the partners are
ðB;B0Þ, ðσ; πÞ, ða0; ηÞ, and ðB̄; B̄0Þ from the lowest mass,
a sequence expected from the SUð2ÞA axial transforma-
tions. It should be noted that the chiral partner structures
for baryons ðB;B0Þ and antibaryons ðB̄; B̄0Þ are realized
only when the Uð1ÞA anomaly effect is switched off, i.e.,
c ¼ 0, and the large-Nc limit is taken, i.e., λ1 ¼ c ¼ 0,
respectively.

FIG. 5. The μq dependence of the mass of the lowest branch of
the η-B0-B̄0 mixed state in the baryon superfluid phase calculated
for several c’s. The mass is normalized by mvac

π .

FIG. 6. The μq dependence of all the normalized hadron masses
calculated with the parameter set (I). The solid and dashed curves
denote the positive and negative parity hadrons, respectively, and
the vertical dotted line corresponds to μ�q. The two states indicated
in each parenthesis are the respective chiral partners realized at
sufficiently large μq.
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The predicted mass degeneracies are expected to provide
useful information of chiral symmetric properties of the
hadrons at dense regime for future lattice simulations.

V. CONCLUSIONS

In this article, motivated by the recent lattice simu-
lation [55,81], we have investigated hadron mass modifi-
cations at finite quark chemical potential μq in QC2D with
two flavors within the linear sigma model. The model
enables us to study not only the masses of the ground-state
pseudoscalar mesons and scalar diquark baryons but also
those of the chiral partners carrying opposite parities, which
is the notable advantage of employing the linear sigma
model. That is, we have succeeded in treating the positive
parity mesons and diquark baryons: σ, a0, B, and B̄, and the
negative parity ones: η, π, B0, and B̄0, in a unified way.
In order to fix the model parameters, we have used

the lattice results for hadron mass spectrum in the hadronic
phase where the diquark condensate does not emerge
[55,81]. In particular, the lattice result suggests that masses
of π and η are identical in the hadronic phase, implying that
effects of the Uð1ÞA axial anomaly are suppressed there.
Within our present model, such a suppression has been
described by omitting the KMT-type contributions.
In the baryon superfluid phase where the diquark con-

densate emerges, we have found a rich mass spectrum
involving the mixing among σ-B-B̄ for JP ¼ 0þ hadrons
and that among η-B0-B̄0 for JP ¼ 0− ones, which is triggered
by the Uð1ÞB baryon number violation. The former mixing
plays an essential role in describing themassless nature of the
NG boson in association with the violation ofUð1ÞB baryon
number symmetry, while the latter leads to a noteworthy
mass reduction of the lowest branch of the η-B0-B̄0 mixed
state. These characteristic properties have been indeed
observed by the lattice simulation.
Besides, at sufficiently large μq, we have demonstrated

the chiral partner structure by deriving mass degeneracies
of the hadrons that have opposite parities and are connected
by the axial transformations. The predicted mass degener-
acies are expected to be useful as guides for future lattice
simulations toward elucidation of influence of the chiral
restoration on the hadron properties, i.e., elucidation of the
hadron mass generation.
In the absence of the Uð1ÞA anomaly, the mass reduction

of the lowest branch of the η-B0-B̄0 mixed state is striking
and the state finally becomes massless to exhibit the chiral
partner structure with the NG boson. When the anomaly is
present, the mass reduction is tempered such that the
corresponding chiral partner structure is broken. The lattice
simulation implies the latter tempered reduction. If this is
the case, the Uð1ÞA anomaly effects which are negligible in
the hadronic phase possibly become sizable in the baryon
superfluid phase. In this regard, we have also clarified a
relation between the tempered mass reduction and the
strength of the KMT determinant term. The relation is

expected to be useful to derive the change of the magnitude
of anomaly effects from further lattice simulations.
Meanwhile, within effective models, the increment of the
anomaly in medium measured by the magnitude of the
KMT determinant term in three-color QCD was indeed
reported in Refs. [64,65,82]. Thus, we leave investigation
on the strengthened anomaly effect in dense QC2D matter
for future study.
In what follows, we comment on relations between QC2D

and there-color QCD by focusing on the diquarks. In three-
color QCD, diquarks themselves are not observable since
they are not color singlets. Instead, singly heavy baryons
consisting of one heavy quark and one diquark can be
regarded as the corresponding hadrons to the diquark
baryons in QC2D. In three-color QCD, when one looks at
the singly charmed baryons, the ground state is the well-
establishedΛcð2286Þ [83] (counterpart ofB in QC2D) but its
chiral partner carrying a negative parity Λcð12−Þ (counterpart
of B0 in QC2D) has not yet been observed experimentally
despite theoretical predictions [84–90]. For this reason,
seeking forΛcð12−Þ is one of the challenging topics on singly
heavy baryon spectroscopy. On the other hand, in QC2D the
mass of negative-parity diquark B (B̄) has been certainly
measured by the lattice simulation.However, the pionmass is
rather heavy such that B0 (B̄0) becomes stable. Therefore,
numerical investigation of the hadrons in QC2D by changing
the pion mass, especially via dynamical aspects of B0 (B̄0),
would be desired to give clues to unveil problems on hidden
Λcð12−Þ in three-color QCD. In addition, from further
numerical elucidation of modifications of diquark baryons
at finite density in QC2D, it is expected that our deeper
understanding of medium corrections of singly heavy bary-
ons from a symmetry point of view would be achieved.
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APPENDIX A: HADRON MASSES AT FINITE μq

Here, we show mass terms of the hadrons treated in our
linear sigma model.

PROBING THE HADRON MASS SPECTRUM IN DENSE TWO- … PHYS. REV. D 107, 054001 (2023)

054001-11



The mass terms are provided by expanding the
Lagrangian (27) up to quadratic order in the hadron fields,
on top of the mean fields (31). The resultant Lagrangian
reads

L ¼ LB þ Lσ þ LBσ þ LB0 þ Lη þ LB0η

þ La0 þ Lπ þ � � � ; ðA1Þ
where

LB ¼ 1

2
∂μB4∂

μB4 þ
1

2
∂μB5∂

μB5 þ 2μqð∂0B4B5

− B4∂0B5Þ −
m2

B4

2
B2
4 −

m2
B5

2
B2
5; ðA2Þ

Lσ ¼
1

2
∂μσ∂

μσ −
m2

σ

2
σ2; ðA3Þ

LBσ ¼ −m2
B5σ

σB5; ðA4Þ

LB0 ¼ 1

2
∂μB0

4∂
μB0

4 þ
1

2
∂μB0

5∂
μB0

5 þ 2μqð∂0B0
4B

0
5

− B0
4∂0B

0
5Þ −

m2
B0
4

2
B02
4 −

m2
B0
5

2
B02
5 ; ðA5Þ

Lη ¼
1

2
∂μη∂

μη −
m2

η

2
η2; ðA6Þ

LB0η ¼ −m2
B0
5
ηB

0
5η; ðA7Þ

La0 ¼
1

2
∂μaa0∂

μaa0 −
m2

a0

2
aa0a

a
0 ða ¼ 1; 2; 3Þ; ðA8Þ

and

Lπ ¼
1

2
∂μπ

a
∂
μπa −

m2
π

2
πaπa ða ¼ 1; 2; 3Þ; ðA9Þ

with the corresponding masses

m2
π ¼ m2

0 þ
8λ1 þ 2λ2 − c

8
ðσ20 þ Δ2Þ; ðA10Þ

m2
a0 ¼ m2

π þ
λ2
2
ðσ20 þ Δ2Þ þ c

4
ðσ20 þ Δ2Þ; ðA11Þ

m2
B4

¼ m2
π − 4μ2q; ðA12Þ

m2
B5

¼ m2
π − 4μ2q þ

8λ1 þ 2λ2 − c
4

Δ2; ðA13Þ

m2
σ ¼ m2

π þ
8λ1 þ 2λ2 − c

4
σ20; ðA14Þ

m2
B5σ

¼ 8λ1 þ 2λ2 − c
4

σ0Δ; ðA15Þ

m2
B0
4
¼ m2

π − 4μ2q þ
2λ2 þ c

4
ðσ20 þ Δ2Þ; ðA16Þ

m2
B0
5

¼ m2
π − 4μ2q þ

λ2
2
σ20 þ

c
4
ðσ20 þ 2Δ2Þ; ðA17Þ

m2
η ¼ m2

π þ
λ2
2
Δ2 þ c

4
ð2σ20 þ Δ2Þ; ðA18Þ

and

m2
B0
5
η ¼

2λ2 − c
4

σ0Δ: ðA19Þ

Equations (A4) and (A7) tell us that not only σ, B, and B̄ but
also η, B0, and B̄0 can mix in the baryon superfluid phase
where Δ ≠ 0, due to the violation of baryon number
conservation. In fact, as can be seen from Eqs. (A15)
and (A19) those mixing terms are proportional to Δ.
In order to examine the detailed structure of hadron

masses in our model, we focus on the vacuum described by
μq ¼ 0 with σ0 ¼ σvac0 and Δ ¼ 0. The resultant hadron
masses read

ðmvac
π Þ2 ¼ ðmvac

B4
Þ2 ¼ ðmvac

B5
Þ2; ðA20Þ

ðmvac
η Þ2 ¼ ðmvac

π Þ2 þ c
2
ðσvac0 Þ2; ðA21Þ

ðmvac
a0 Þ2 ¼ ðmvac

B0
4
Þ2 ¼ ðmvac

B0
5

Þ2

¼ ðmvac
π Þ2 þ 2λ2 þ c

4
ðσvac0 Þ2; ðA22Þ

ðmvac
σ Þ2 ¼ ðmvac

π Þ2 þ 8λ1 þ 2λ2 − c
4

ðσvac0 Þ2: ðA23Þ

Equation (A21) implies that in the vacuum the mass
difference between η and π is proportional to c and thus
stems from the Uð1ÞA anomaly. Typically the η meson is
heavier than π, so in this case c > 0. Besides, when
assuming the large-Nc limit, i.e., λ1 ¼ c ¼ 0, we can find

ðmvac
η Þ2 ¼ ðmvac

π Þ2 ¼ ðmvac
B4

Þ2 ¼ ðmvac
B5

Þ2; ðA24Þ

and

ðmvac
σ Þ2 ¼ ðmvac

a0 Þ2 ¼ ðmvac
B0
4
Þ2 ¼ ðmvac

B0
5

Þ2: ðA25Þ

APPENDIX B: THE Nc COUNTING

In this appendix, we give explanations of our Nc
counting of the model parameters and also clarify how
hadron masses depend on the value of σvac0 .
As is well known, diagrams in the mesonic level are of

OðNcÞ since the leading contributions are scaled in the

SUENAGA, MURAKAMI, ITOU, and IIDA PHYS. REV. D 107, 054001 (2023)

054001-12



same way as a simple quark loop when the gauge coupling
gc is scaled as N−1=2

c . Meanwhile, wave functions of the
mesons are of Oð ffiffiffiffiffiffi

Nc
p Þ [78,79]. Thus, the Nc counting

of coupling constants in effective models involving n

mesons is estimated to be of OðNð2−nÞ=2
c Þ [73]. Within this

Nc counting, m2
0 and λ2 behave as m2

0 ¼ OðN0
cÞ and

λ2 ¼ OðN−1
c Þ, respectively. The other four-point coupling

λ1 is, however, scaled as N−2
c since the λ1 term includes two

traces with respect to flavors; the leading contributions
cannot be described by one quark loop but by two loops
mediated by gluons in between. Phenomenologically,
such an Nc suppression is referred to as the Zweig rule.
Besides, the constant hq, which is responsible for the
explicit breaking of the Pauli-Gursey SUð4Þ symmetry, is
hq ¼ OðN1=2

c Þ, and σ0 is of OðN1=2
c Þ. By combining these

Nc countings with Eqs. (35), (36), and (41), the pion mass
in both the vacuum and medium can be understood to be of
OðN0

cÞ as expected.
The Nc counting of the anomalous contribution c can be

determined by focusing on the η mass formula in the
vacuum. As discussed in Ref. [78], the η mass must be
scaled as N−1=2

c in such a way that the ηmeson turns into an
NG boson in association with the suppression of the Uð1ÞA
anomaly. Therefore, we can conclude from Eq. (A21) that c
is scaled as N−2

c .
To summarize, our Nc counting of the model parameters

is determined as

m2
0 ¼ OðN0

cÞ; λ1 ¼ OðN−2
c Þ; λ2 ¼ OðN−1

c Þ;
hq ¼ OðN1=2

c Þ; c ¼ OðN−2
c Þ: ðB1Þ

Therefore, the parameter set with λ1 ¼ c ¼ 0 corresponds
to the large-Nc limit in which higher-order contributions
can be discarded.
In the large-Nc limit where λ1 ¼ c ¼ 0, one notable

universal behavior of the hadron mass spectrum at finite μq
can be derived. In this limit, from the stationary conditions
for σ0 and Δ in Eqs. (33) and (34), the nontrivial solutions
are found to satisfy

λ2σ
2
0 ¼

�
mvac

π

mπ

�
4

λ2ðσvac0 Þ2;

λ2Δ2 ¼
�
1 −

ðmvac
π Þ2
m2

π

�
½λ2ðσvac0 Þ2 þ 4m2

π�; ðB2Þ

respectively. That is, when we take mvac
π and mvac

B0ðB̄0Þ as

inputs,

λ2ðσvac0 Þ2 ¼ 2ðmvac
B0ðB̄0ÞÞ2 − 2ðmvac

π Þ2 ¼ ðconstantÞ ðB3Þ

holds from Eq. (A22), and accordingly λ2σ
2
0 and λ2Δ2

depend only on μq as can be seen from Eq. (B2) with
m2

π ¼ 4μ2q. On the other hand, the mass formulas (A10)–
(A19) become dependent only on λ2σ

2
0 and λ2Δ2 for

λ1 ¼ c ¼ 0. Therefore, the hadron masses in the baryon
superfluid phase turn out to be dependent on μq alone in the
large-Nc limit and hence unaffected by the vacuum value
σvac0 . In other words, the hadron mass spectrum in both the
hadronic and baryon superfluid phases is independent of
the choice of σvac0 in the limit of interest here.
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