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Using dispersive methods, we study the B → γ� form factors underlying the decay B− → l−ν̄ll0−l0þ.
We discuss the ambiguity that arises from a separation of the full B− → l−ν̄ll0−l0þ amplitude into a
hadronic tensor and a final-state-radiation piece, including effects from nonvanishing lepton masses.
For the eligibility of a dispersive treatment, we propose a decomposition of the hadronic part that leads to
four form factors that are free of kinematic singularities. By establishing a set of dispersion relations,
we then relate the B → γ� form factors to the well-known B → V, V ¼ ωð782Þ; ρð770Þ, analogs. Using
the combination of a series expansion in a conformal variable and a vector-meson-dominance ansatz to
parametrize the B → γ� form factors, we infer the values of the associated unknown parameters from the
available input on B → V. The phenomenological application of our formalism includes the determination
of the branching ratios and forward-backward asymmetries of the process B− → l−ν̄ll0−l0þ.
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I. INTRODUCTION

The radiative leptonic decay B− → l−ν̄lγ is widely
considered to be the best source of information on the
leading-twist B-meson light-cone distribution amplitude
(LCDA) by elucidating the inner structure of the B meson
[1–3]. However, measurements of this decay are likely only
possible at the ongoing Belle II experiment and not at the
LHC experiments, primarily the LHCb. This precludes
leveraging the upcoming large datasets at the LHC, which
will become available from run 3 onwards. The four-lepton
decay of the B meson, B− → l−ν̄ll0−l0þ, with l0 ≠ l,
lð0Þ ¼ e, μ, has been identified as a suitable candidate
for studies at both Belle II and the LHC experiments.
This decay has been studied to some extent in the literature,
with a variety of models for the relevant B → γ� form
factors [4–7]. However, its usefulness to extract B-meson
LCDA parameters is hampered by the need for a

description of a virtual photon in the timelike region,
which requires careful treatment.
We propose a dispersive approach for B → γ�, which is

based on the fundamental principles of analyticity and
unitarity. Dispersive analyses in the timelike region are
commonly done for low-energy processes, such as the pion
vector form factor; see, for instance, Ref. [8] and references
therein. Here, we apply methods originally developed for
these processes to hadronic transition form factors of B
mesons. For future analyses, our approach has the potential
to enable the transfer of information from the region of
timelike photon momentum to the spacelike region, where
the sensitivity to the LCDA parameters is less affected
by soft interactions [3]. We relate the isoscalar and
isovector components of the B → γ� transition inherent
to the hadronic part of the amplitude through B− →
l−ν̄lγ

�ð→ l0−l0þÞ to available input on B → ω≡
ωð782Þ and B → ρ≡ ρð770Þ [9] via a set of dispersion
relations in the photon momentum. Although we use a
vector-meson-dominance (VMD) ansatz in this work, our
results provide the groundwork for more sophisticated future
analyses. Using dispersion relations requires the form factors
to be free of kinematic singularities. We modify the well-
known Bardeen-Tung-Tarrach (BTT) [10,11] procedure,
which has not been designed for hadronic form factors in
weak transitions, to obtain such a set of form factors. At this,
we face a problem: the separation of the amplitude into a
hadronic term—containing the nonperturbative dynamics of
the process—and a final-state-radiation (FSR) term turns out
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to be ambiguous; the two terms are not individually gauge
invariant but only their sum is. A further issue is the lack of
definite angular-momentum and parity quantum numbers of
the form factors. Our modification to the BTT procedure
addresses this issue, and we take special care not to spoil the
singularity-free structure.
To ensure a consistent treatment of lepton-mass effects,

we work with nonzero lepton masses throughout our
analysis; taking the limit mlð0Þ → 0 remains possible.
While the considerations in this article are mostly
restricted to the decay of a negatively charged B meson,
the decay of a positively charged B meson can be
calculated in complete analogy, with some minor adjust-
ments to the formulas given here and completely equiv-
alent numerical results.
The outline of this article is as follows: in Sec. II, we

introduce the Lagrangian of the weak effective theory
(WET) that describes semileptonic b → ulν̄ transitions.
The amplitude for B− → l−ν̄lγ

�ð→ l0−l0þÞ and its decom-
position into a hadronic tensor and an FSR piece is
discussed in Sec. III. Using our modified BTT procedure,
the hadronic tensor is then parametrized in terms of four
form factors that are free of kinematic singularities in
Sec. IV, where the ambiguity arising from the separation of
the full amplitude is a subject of special attention. In Sec. V,
we establish a set of dispersion relations that relate the
B− → γ� transition inherent to the hadronic part of the
amplitude to available input on B− → V form factors,
V ¼ ω, ρ, and provide predictions for the B− → γ� form
factors. Using these predictions, we present numerical
results for the branching ratios and forward-backward
(FB) asymmetries of the process B− → l−ν̄ll0−l0þ in
Sec. VI. We conclude and give a brief outlook in
Sec. VII. Some supplementary material is outsourced to
Appendixes A–G.

II. WEAK EFFECTIVE THEORY

At the energy scale of the B meson, the standard
model’s (SM’s) flavor-changing processes are conveniently
described within an effective field theory [12,13]. The
leading terms in this theory arise at mass dimension six,
with higher-dimensional operators being suppressed by at
least m2

B=M
2
W ≈ 0.4%. Moreover, such an effective field

theory allows us to transparently include potential effects
beyond the SM as long as new matter fields and mediators
live above the scale of electroweak symmetry breaking.
For b → ulν̄l transitions in particular, we use the effective
Lagrangian

Lublν
WET ¼ 4GFffiffiffi

2
p Vub

X
i

Cublνi Oublν
i þ H:c:; ð1Þ

where GF is the Fermi constant as measured in muon
decays, Vub is the Cabibbo-Kobayashi-Maskawa (CKM)
matrix element for the b → u transition, and Cublνi ≡
Cublνi ðμÞ are the so-called Wilson coefficients at the scale
μ that multiply the local field operators Oublν

i ≡Oublν
i ðxÞ.

A convenient basis of operators up to dimension six and
with only left-handed neutrinos is given by

Oublν
V;LðRÞ ¼ ½ūðxÞγμPLðRÞbðxÞ�½l̄ðxÞγμPLνlðxÞ�;

Oublν
S;LðRÞ ¼ ½ūðxÞPLðRÞbðxÞ�½l̄ðxÞPLνlðxÞ�;
Oublν

T ¼ ½ūðxÞσμνbðxÞ�½l̄ðxÞσμνPLνlðxÞ�; ð2Þ

where, in the SM, CublνV;L jSM ¼ 1þOðαeÞ and Cublνi jSM ¼ 0

for all other corresponding Wilson coefficients. Here,
PL=R ¼ ð1 ∓ γ5Þ=2 are the projection operators onto the
left- and right-chiral components and αe ¼ e2=ð4πÞ is the
fine-structure constant. To leading order in the electromag-
netic (EM) interaction, matrix elements of the above
operators factorize into matrix elements of a purely
hadronic and a purely leptonic current. In this work, we
limit ourselves to the SM operator Oublν

V;L and—to a lesser
extent—the scalar operator Oublν

S;L .

III. HADRONIC TENSOR

We study the decay B−ðpÞ → l−ðplÞν̄lðpνÞγ�ðqÞ,
k ¼ pl þ pν, whose amplitude in the SM reads [1]

MðB− → l−ν̄lγ
�Þ ¼ 4GFVubffiffiffi

2
p hl−ν̄lγ

�jOublν
V;L jB−i ð3Þ

up to corrections of OðαeÞ. It is convenient to write
the WET operator in terms of the leptonic and hadronic
weak currents JνWðxÞ ¼ l̄ðxÞγνð1 − γ5ÞνlðxÞ and JνHðxÞ ¼
ūðxÞγνð1 − γ5ÞbðxÞ according to

Oublν
V;L ¼ 1

4
JHνð0ÞJνWð0Þ: ð4Þ

At the level of the WET, there are two possible diagram-
matic ways for the emission of the (virtual) photon: either
from the constituents of the B meson or from the charged
final-state lepton; the respective diagrams are shown
in Fig. 1.
At leading order in the EM coupling, the hadronic matrix

element on the right-hand side of Eq. (3) can be written as

KÜRTEN, ZANKE, KUBIS, and VAN DYK PHYS. REV. D 107, 053006 (2023)

053006-2



hl−ν̄lγ
�jJHνð0ÞJνWð0ÞjB−i ¼ eϵ�μ

�
hl−ν̄ljJWνð0Þj0i

Z
d4x eiqx h0jTfJμEMðxÞJνHð0ÞgjB−i

þ h0jJHνð0ÞjB−i
Z

d4x eiqx hl−ν̄ljTfJμEMðxÞJνWð0Þgj0i
�

¼ eϵ�μ

�
QBLνT

μν
H ðk; qÞ − ifBpν

Z
d4x eiqx hl−ν̄ljTfJμEMðxÞJνWð0Þgj0i

�
¼ eϵ�μ½QBLνT

μν
H ðk; qÞ þQlT

μ
FSRðpl; pν; qÞ�; ð5Þ

where e is the elementary charge and ϵ�μ ≡ ϵ�μðq; λÞ the
polarization vector of the outgoing photon with momentum
q and polarization λ. Furthermore, fB is the decay constant
of the B-meson, h0jūð0Þγνγ5bð0ÞjB−i ¼ ifBpν, and

JμEMðxÞ ¼ q̄ðxÞQγμqðxÞ þ
X
l

Qll̄ðxÞγμlðxÞ ð6Þ

the EM current, with qðxÞ¼ðuðxÞ;dðxÞ;sðxÞ;cðxÞ;bðxÞÞ⊺,
Q ¼ diag½2=3;−1=3;−1=3; 2=3;−1=3� the quark charge
matrix, and QB ¼ −1 ¼ Ql the charge of the B meson and
lepton in units of e. With the aim to render the transfer of
our analysis to the positively charged channel more trans-
parent, we will explicitly retain factors of QB ¼ Ql in our
formulas; it is, however, to be kept in mind that further
modifications of the spinor structure apply beyond this
simple alteration. In Eq. (5), we moreover abbreviate the
leptonic matrix element Lν ¼ ūlγνð1 − γ5Þvν̄ and introduce
the hadronic tensor Tμν

H ðk; qÞ,

QBT
μν
H ðk; qÞ ¼

Z
d4x eiqx h0jTfJμEMðxÞJνHð0ÞgjB−i; ð7Þ

and the FSR tensor Tμ
FSRðpl; pν; qÞ,

QlT
μ
FSRðpl; pν; qÞ

¼ −ifBpν

Z
d4x eiqx hl−ν̄ljTfJμEMðxÞJνWð0Þgj0i: ð8Þ

While the hadronic tensor Tμν
H ðk; qÞ describes the genuinely

nonperturbative physics of the process, Tμ
FSRðpl; pν; qÞ

comprises the FSR from the charged lepton and can be
reduced to the B-meson decay constant fB and an entirely
perturbative remainder. The former can be decomposed into
a set of Lorentz structures and associated scalar-valued
functions, which are commonly referred to as the B → γ�
form factors. The purpose of this work is to study these
form factors within a dispersive framework, which requires
knowledge of their singularity structure in the two inde-
pendent kinematic variables and of the form factors’
asymptotic behavior (see Sec. IV).
For the FSR tensor in the case of a massless

charged lepton, one finds the remarkably simple result
[1,4,5,14,15]

Tμ
FSR;0ðpl; pν; qÞ ¼ fBLμ: ð9Þ

The case of nonzero mass leads to the more intricate
formula [16,17]

Tμ
FSR;ml

ðpl; pν; qÞ

¼ fB

�
Lμ þmlūl

2pμ
l þ γμ=q

ðpl þ qÞ2 −m2
l
ð1 − γ5Þvν̄

�
: ð10Þ

For our purpose, it proves convenient to bring the FSR
contribution into such a form that it shares a common factor
of Lν with its hadronic counterpiece, i.e.,

hl−ν̄lγ
�jJνWð0ÞJHνð0ÞjB−i

¼ eQBϵ
�
μ½Tμν

H ðk; qÞ þ Tμν
FSRðpl; pν; qÞ�Lν: ð11Þ

It is straightforward to achieve such a description for
the massless case, ml ¼ 0, Eq. (9). For the massive case,
ml ≠ 0, we make use of the Chisholm identity [18]

iϵμνρσγσγ5 ¼ γμγνγρ − gμνγρ þ gμργν − gνργμ; ð12Þ

with the convention ϵ0123 ¼ þ1. From this, we obtain

FIG. 1. The diagrams contributing to the decay B− → l−ν̄lγ
� at

dimension six in the WET on the hadronic level: (left) pole and
cut contributions of Tμν

H ðk; qÞ, e.g., from the intermediate states B
in k2 or ππ in q2, and (right) emission from the charged final-state
lepton in Tμ

FSRðpl; pν; qÞ. The hadronic tensor Tμν
H ðk; qÞ and FSR

tensor Tμ
FSRðpl; pν; qÞ are defined in Eqs. (7) and (8), respec-

tively. Note that an effective four-particle vertex is discarded here,
since it contributes at dimension eight in the WET.
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Tμν
FSRðpl; pν; qÞ ¼ fB

�
gμν þ 2pμ

lp
ν
l þ pμ

lq
ν þ qμpν

l − ðpl · qÞgμν þ iϵμνρσðplÞρqσ
ðpl þ qÞ2 −m2

l

�
; ð13Þ

which is valid only when contracted with the leptonic
matrix element Lν.

1

Because of gauge invariance, the full amplitude complies
with the Ward identity

qμ½Tμν
H ðk; qÞ þ Tμν

FSRðpl; pν; qÞ�Lν ¼ 0: ð14Þ

However, the hadronic and FSR tensor are not individually
gauge invariant but satisfy [1,4,5]

qμT
μν
H ðk; qÞ ¼ −fBðkþ qÞν;

qμT
μν
FSRðpl; pν; qÞ ¼ fBðkþ qÞν; ð15Þ

so that gauge invariance only holds for the sum of both
contributions. Based on Eq. (15), we split the hadronic
tensor into a homogeneous part and an inhomogeneous
part by means of Tμν

H ðk; qÞ ¼ Tμν
H;homðk; qÞ þ Tμν

H;inhomðk; qÞ,
which obey

qμT
μν
H;homðk; qÞ ¼ 0;

qμT
μν
H;inhomðk; qÞ ¼ −fBðkþ qÞν: ð16Þ

We have not yet made any choice of Lorentz decomposition
for Tμν

H ðk; qÞ or its (in)homogeneous part. In Appendix A,
we demonstrate that any choice for the decomposition of
the hadronic tensor leads to the relation

kνT
μν
H;homðk;qÞ ¼ Tμ

Pðk;qÞ þ fBðkþ qÞμ − kνT
μν
H;inhomðk;qÞ;

ð17Þ

where the pseudoscalar tensor Tμ
Pðk; qÞ is defined in terms

of the pseudoscalar weak current JPðxÞ ¼ ūðxÞγ5bðxÞ via

QBT
μ
Pðk; qÞ

¼ ðmb þmuÞ
Z

d4x eiqx h0jTfJμEMðxÞJPð0ÞgjB−i; ð18Þ

with mb and mu the MS masses of the b- and u-quarks.
As also shown in Appendix A, this tensor is not gauge
invariant but, similar to Eq. (15), fulfills

qμT
μ
Pðk; qÞ ¼ −fBm2

B: ð19Þ

For this reason, we proceed in analogy to Eq. (16) and split
Tμ
Pðk; qÞ ¼ Tμ

P;homðk; qÞ þ Tμ
P;inhomðk; qÞ, where

qμT
μ
P;homðk; qÞ ¼ 0;

qμT
μ
P;inhomðk; qÞ ¼ −fBm2

B: ð20Þ

In this work, we additionally impose that the homogeneous
part of the hadronic tensor fulfills

kνT
μν
H;homðk; qÞ ¼! Tμ

P;homðk; qÞ; ð21Þ

which, using Eq. (17), leads to the condition

Tμ
P;inhomðk; qÞ þ fBðkþ qÞμ − kνT

μν
H;inhomðk; qÞ ¼ 0: ð22Þ

This choice is natural because it relates one of the hadronic
form factors of the axial-vector current with that of the
pseudoscalar current, as is the case for hadronic form
factors in other weak transitions, too.
The tensors Tμν

H ðk;qÞ and Tμν
FSRðpl;pν;qÞ emerge in predi-

ctions for thedecayB−ðpÞ → l−ðplÞν̄lðpνÞl0−ðq1Þl0þðq2Þ,
with l0 ≠ l, q ¼ q1 þ q2,

MðB− → l−ν̄ll0−l0þÞ

¼ 4GFVubffiffiffi
2

p hl−ν̄ll0−l0þjOublν
V;L jB−i

¼ GFVubffiffiffi
2

p e2

q2
QB½Tμν

H ðk;qÞ þ Tμν
FSRðpl; pν; qÞ�lμLν; ð23Þ

where we abbreviate the leptonic matrix element
lμ ¼ ūl0γμvl̄0 . The discussion of the decay with identical
lepton flavors, l0 ¼ l, is more involved [4,19], since an
additional diagram has to be taken into account due to the
interchangeability of two final-state fermions, which is
beyond the scope of this article.

IV. B → γ� FORM FACTORS

We develop a method that closely resembles the BTT
procedure [10,11] to parametrize the homogeneous part
of the hadronic tensor (see Appendix B). Compared to the
BTT procedure, our method has the advantage that the
emerging form factors have definite angular-momentum
and parity quantum numbers. Our result reads

1Note that one can, in principle, further make the replacement
pν
l → kν in Eq. (13) by virtue of the Dirac equation for the

neutrino.
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Tμν
H;homðk; qÞ ¼

1

mB
½ðk · qÞgμν − kμqν�F 1ðk2; q2Þ þ

1

mB

�
q2

k2
kμkν −

k · q
k2

qμkν þ qμqν − q2gμν
�
F 2ðk2; q2Þ

þ 1

mB

�
k · q
k2

qμkν −
q2

k2
kμkν

�
F 3ðk2; q2Þ þ

i
mB

ϵμνρσkρqσF 4ðk2; q2Þ; ð24Þ

where the form factors F 1ðk2; q2Þ and F 2ðk2; q2Þ have
axial-vector, F 3ðk2; q2Þ has pseudoscalar, and F 4ðk2; q2Þ
vector quantum numbers with respect to the weak current.2

Assuming no modification due to the inhomogeneous
part Tμν

H;inhomðk; qÞ, our form factors are free of kinematic
singularities in k2 and q2 as well as kinematic zeros in q2.
However, to ensure a finite amplitude at k2 ¼ 0, the relation
F 2ð0; q2Þ ¼ F 3ð0; q2Þ must hold for all q2. The factors of
mB and the imaginary unit in Eq. (24) render the form
factors dimensionless and—with the phase of the B meson
chosen appropriately—real-valued below the onset of the
first branch cut.
The relations given in Eq. (16) constrain the inhomo-

geneous part of the hadronic tensor to the generic form

Tμν
H;inhomðk; qÞ ¼ −fB

�
agμν þ b

kμkν

k · q
þ c

kμqν

k · q

þ ð1 − bÞ q
μkν

q2
þ ð1 − a − cÞ q

μqν

q2

�
;

ð25Þ

where a≡ aðk2; q2Þ, b≡ bðk2; q2Þ, and c≡ cðk2; q2Þ are
arbitrary real-valued coefficients. The Levi-Civita tensor is
absent in this expression because it carries the wrong
quantum numbers in light of the fact that the inhomoge-
neity is entirely due to the axial-vector part of Eq. (7).
On account of Eq. (20), the inhomogeneous part of the
pseudoscalar tensor furthermore takes the generic form

Tμ
P;inhomðk; qÞ ¼ −fBm2

B

�
d

kμ

k · q
þ ð1 − dÞ q

μ

q2

�
; ð26Þ

where d≡ dðk2; q2Þ is an arbitrary real-valued coefficient.
Adopting the condition imposed in Eq. (22), we find that

d ¼ ð1þ aþ cÞðk · qÞ þ bk2

m2
B

; ð27Þ

which fixes Tμ
P;inhomðk; qÞ once Tμν

H;inhomðk; qÞ is specified.
We collect four different choices for the coefficients,
labeled A through D, in Table I. With regard to the
dispersive treatment of the form factors in this article,
i.e., the requirement of their singularity-free structure,
the question emerges what an appropriate choice for these
coefficients is.
Among the inhomogeneous parts of the hadronic

tensor listed in Table I, A is the only choice that introduces
a term singular in ½2ðk · qÞ þ q2� ¼ ðm2

B − k2Þ. It is evident
that this k2-pole is associated with an intermediate Bmeson
[20], as sketched in the left diagram of Fig. 1; see also
Fig. 2. The choices B and C, on the other hand, introduce
terms singular in ½ðk · qÞ þ q2� and ðk · qÞ, respectively,
which correspond to q2-dependent pole positions in the
variable k2; these are not associated with any hadronic
intermediate state and are therefore not of dynamic but
of kinematic origin. Choice D corresponds to a structure
that is orthogonal to all BTT structures. This might lead
to the presumption that it leaves the form factors of
Eq. (24) unaffected and thus free of kinematic singularities.
However, this choice exhibits a pole in q2, which erro-
neously suggests the emergence of a dynamic photon pole;
working at fixed order in quantum electrodynamics, such a

TABLE I. The ansätze for the inhomogeneous part of the hadronic tensor used in the literature expressed as in Eq. (25) for specific
choices of the coefficients a, b, and c. Also shown are the resulting inhomogeneous parts of the pseudoscalar tensor, Eq. (26), and its
associated coefficient d, Eq. (27). The basis for the homogeneous part of the hadronic tensor differs from our choice, Eq. (24), in some of
the references. A thorough discussion of the various choices can be found in the main text.

Label a b c Tμν
H;inhomðk; qÞ d Tμ

P;inhomðk; qÞ References

A 1 2ðk·qÞ
2ðk·qÞþq2

0 −fB½gμν þ ð2kμþqμÞkν
2ðk·qÞþq2 �

2ðk·qÞ
2ðk·qÞþq2

−fBm2
B

2kμþqμ

2ðk·qÞþq2
[15–17,20]

B 0 k·q
k·qþq2

k·q
k·qþq2 −fB

ðkþqÞμðkþqÞν
k·qþq2

k·q
k·qþq2 −fBm2

B
kμþqμ

k·qþq2
[1,14]

C 0 1 1 −fB
kμðkþqÞν

k·q
2ðk·qÞþk2

2ðk·qÞþk2þq2 −fB½m2
B

kμ
k·q −

q2kμ−ðk·qÞqμ
k·q � [4]

D 0 0 0 −fB
qμðkþqÞν

q2
k·q

2ðk·qÞþk2þq2 −fB½m2
B
qμ

q2 −
ðk·qÞqμ−q2kμ

q2 � [5]

2Note that for on-shell photons, only the form factors
F 1ðk2; q2Þ and F 4ðk2; q2Þ contribute, which correspond to
transverse polarizations.
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pole cannot arise. In fact, the behavior ∝ 1=q2 would lead
to a double pole ∝ 1=q4 in Eq. (23), a feature that is to be
avoided in any amplitude. As a consequence of this double
pole, choiceD is—in addition to the kinematic nature of the
q2 pole—disqualified by its effect on the longitudinal
B− → l−ν̄lγ

� helicity amplitude.
To further illustrate the effect that choice D causes, we

investigate the B− → l−ν̄lγ
� amplitude in more detail.

From Eqs. (3) and (11), one finds the squared spin-
averaged amplitude for photons with polarization λ to be
given by

jMðB− → l−νlγ
�ðλÞÞj2 ¼ e2G2

FjVubj2
2

ϵ�μðq; λÞϵαðq; λÞ½Tμν
H ðk; qÞ þ Tμν

FSRðpl; pν; qÞ�½Tαβ
H ðk; qÞ þ Tαβ

FSRðpl; pν; qÞ�†

×
X
spins

LνL
†
β; ð28Þ

see Appendix D for details on the kinematics. For a
longitudinal photon, λ ¼ 0, this matrix element ought to
vanish in the limit q2 → 0, i.e., for an on-shell photon.
Using choice D, one does, however, find that the matrix
element diverges ∝ f2B, independent of any choice of form
factors. The discussion of such divergent contributions is
not purely academic: in Ref. [5], a supposed collinear
enhancement of the B− → l−ν̄ll0−l0þ decay rate is dis-
cussed, which is caused by such an unphysical behavior
as q2 → 0. Therein, a different choice is made for the
decomposition of the homogeneous tensor, in combination
with choice D for the inhomogeneous part and an incon-
sistent treatment of the charged lepton’s finite mass in the
FSR term. Using the formulas of Ref. [5] and our result
for the FSR tensor, Eq. (13), we validate that treating the
effects of a finite lepton mass consistently resolves this
issue and removes the supposed contribution due to a
longitudinal on-shell photon.3 This leads us to infer that the
supposed collinear enhancement is not a physical feature of
the B− → l−ν̄ll0−l0þ decay rate.
Moreover, we can draw conclusions from the results for

the hadronic tensor in the decay K� → l�νlγ�ð→ l0−l0þÞ.
An explicit calculation in chiral perturbation theory at
next-to-leading order [16,17] confirms that choiceA yields
form factors that are free of kinematic singularities.
Transforming between choice A and any other choice of
Table I modifies the homogeneous part through introducing
kinematic singularities. Consequently, the assumption that
choice A leads to form factors free of kinematic singular-
ities unavoidably implies the emergence of such singular-
ities for all the other choices considered here.

Under some rather general, reasonable assumptions, it is
possible to deduce that the inhomogeneous part of the
hadronic tensor ought to be of the form

Tμν
H;inhomðk; qÞ

¼ −fB
�
âgμν þ ð2kμ þ qμÞkν þ ð1 − âÞð2kμ þ qμÞqν

2ðk · qÞ þ q2

�
ð29Þ

in combination with the BTT basis of Eq. (24) for the
homogeneous part. Here, â is an arbitrary real-valued
coefficient that does not depend on any of the momenta.
The assumptions underlying the above form are the
following:

(i) there exists a unique choice for the coefficients in
Eq. (25) that leaves the form factors free of kin-
ematic singularities;

(ii) the apparent kinematic poles in Tμν
H;inhomðk; qÞ cancel

and no new such poles are introduced;
(iii) a dynamic B-meson pole appears at most in the

pseudoscalar form factor F 3ðk2; q2Þ.
Consequently, the inhomogeneous part of the pseudoscalar
tensor, Eq. (26), turns out to be given by

Tμ
P;inhomðk; qÞ ¼ −fB

�
m2

B
2kμ þ qμ

2ðk · qÞ þ q2

− ð1 − âÞ q
2kμ − ðk · qÞqμ
2ðk · qÞ þ q2

�
: ð30Þ

Assuming that â ¼ 1 meets the above requirements, it can
be shown that any other choice of â would introduce a
dynamic pseudoscalar B-meson pole in the axial-vector
form factors F 1ðk2; q2Þ and F 2ðk2; q2Þ. Since â ¼ 1

FIG. 2. Diagram illustrating the B-meson pole in the variable k2

as part of the hadronic tensor Tμν
H ðk; qÞ; see also the left diagram

of Fig. 1.

3After submitting our article for review, this has been con-
firmed to us by the authors of Ref. [5] and is revised in an
Erratum.
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corresponds to the choiceA from Table I, this gives further
indication that A is the proper choice for our analysis.
For the reasons stated above, we make A the default

choice in the following and parametrize the hadronic
tensor as

Tμν
H ðk;qÞ ¼ Tμν

H;homðk;qÞ−fB

�
gμνþð2kμþqμÞkν

2ðk ·qÞþq2

�
: ð31Þ

This yields a total of six independent Lorentz structures,
which form a basis; see the discussion in the appendix of
Ref. [4]. Having such a basis of structures allows us to find
projectors Pμν

i ðk; qÞ that fulfill

Piμνðk; qÞTμν
H ðk; qÞ ¼

(
F iðk2; q2Þ; i ¼ 1;…; 4;

fB=mB; i ¼ 5; 6:
ð32Þ

Explicit formulas for these projectors are provided in
Appendix C.

V. DISPERSION RELATIONS AND z EXPANSION

We aim to parametrize the form factors F iðk2; q2Þ,
i ¼ 1;…; 4, in accordance with analyticity and unitarity.
To this end, we split the form factors with respect to
the photon’s isospin according to F iðk2; q2Þ ¼
F I¼0

i ðk2; q2Þ þ F I¼1
i ðk2; q2Þ. For each component, we

then establish a set of dispersion relations and assume
the underlying discontinuities to be dominated by the
one-body intermediate states ω and ρ, respectively, which
allows us to relate the B → γ� form factors to the B → V,
V ¼ ω, ρ, analogs. In doing so, we neglect contributions
due to B → ϕ in the isoscalar components for two reasons:
first, these contributions are expected to be small due to the
Okubo-Zweig-Iizuka mechanism [21–23], and second, we
lack nonperturbative input for the B → ϕ form factors. We
also do not model contributions from further excited states,
such as ωð1420Þ and ρð1450Þ. As a consequence, we
provide our nominal phenomenological results only in the
region q2 ≲ 1 GeV2.
Based on Eq. (7), the discontinuity of the form factors

with respect to q2 and for fixed k2 is given by [24,25]

Discq2 ½QBF iðk2; q2Þ� ¼ Discq2 ½Piμνðk; qÞQBT
μν
H ðk; qÞ�

¼ Piμνðk; qÞ
�
i
X
n

Z
dτnð2πÞ4δð4Þðq − PnÞh0jJμEMð0ÞjnihnjJνHð0ÞjB−i

�
: ð33Þ

Here, we use the n-body phase-space volume

dτn ¼
Y
j

d3pj

ð2πÞ32p0
j
¼

Y
j

d4pj

ð2πÞ4 ð2πÞδðp
2
j −M2

jÞθðp0
jÞ; ð34Þ

and Pn ¼
P

j pj is the total momentum of the intermediate state. Assuming the discontinuities of the isoscalar and isovector
components to be dominated by the one-body intermediate states ω and ρ, respectively, we useZ

dτnð2πÞ4δð4Þðq − PnÞfðPnÞ ¼ 2πδðq2 −M2
nÞfðqÞ ð35Þ

for the one-body phase-space volume to obtain

Discq2 ½QBF I
iðk2; q2Þ� ¼ Piμνðk; qÞ

�
2πi

X
λ

δðq2 −M2
VÞh0jJμEMð0ÞjVðq; λÞihVðq; λÞjJνHð0ÞjB−i

�
; ð36Þ

with V ¼ ω for I ¼ 0 and V ¼ ρ for I ¼ 1. For the above matrix elements, we employ [9]

h0jJμEMð0ÞjVðq; λÞi ¼
ημ

cV
dVMVfV;

hVðq; λÞjJνHð0ÞjB−i ¼ η�α
cV

½Pνα
1 ðk; qÞVB→Vðk2Þ þ Pνα

2 ðk; qÞAB→V
1 ðk2Þ þ Pνα

3 ðk; qÞAB→V
3 ðk2Þ þ Pνα

P ðk; qÞAB→V
0 ðk2Þ�; ð37Þ

where the form factors VB→Vðk2Þ, AB→V
1 ðk2Þ, AB→V

3 ðk2Þ, and AB→V
0 ðk2Þ are given in the so-called traditional basis and

account for a vector-, two axial-vector-, and a pseudoscalar-like B → V transition. Furthermore, dω ¼ Qu þQd ¼ 1=3,
dρ ¼ Qu −Qd ¼ 1, and the composition of the ω and ρ wave function is accounted for by the factors cω ¼ cρ ¼

ffiffiffi
2

p
.
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The decay constant of the respective vector meson is denoted by fV, and ημ ≡ ημðq; λÞ represents the polarization vector of
the incoming vector meson with momentum q and polarization λ. The structures in Eq. (37) are given by [9]

Pνα
1 ¼ 2i

mB þMV
ϵναβγqβkγ; Pνα

2 ¼ −
1

mB −MV
½ðm2

B −M2
VÞgνα − ðkν þ 2qνÞkα�;

Pνα
3 ¼ 2MV

k2

�
kν −

k2

m2
B −M2

V
ðkν þ 2qνÞ

�
kα; Pνα

P ¼ −
2MV

k2
kνkα; ð38Þ

where we adjusted the phases to our convention. Using the additional relation [9,26]

AB→V
12 ðk2Þ ¼ k2ðmB þMVÞðm2

B − k2 þ 3M2
VÞAB→V

1 ðk2Þ þ 2MVλVðk2ÞAB→V
3 ðk2Þ

16mBM2
VðmB þMVÞðmB −MVÞ

; ð39Þ

where λVðk2Þ≡ λðm2
B; k

2;M2
VÞ, with λðx; y; zÞ ¼ x2 þ y2þ

z2 − 2ðxyþ xzþ yzÞ the Källén function, we can express
all form factors of Eq. (37) in terms of VB→Vðk2Þ,
AB→V
1 ðk2Þ, AB→V

12 ðk2Þ, and AB→V
0 ðk2Þ, which fulfill the

exact relation [9]

A0ð0Þ ¼
8mBMVA12ð0Þ

m2
B −M2

V
: ð40Þ

The generic parametrization of FB→Vðk2Þ ∈ fVðk2Þ;
A1ðk2Þ; A12ðk2Þ; A0ðk2Þg in terms of a series expansion
in the conformal variable

zVðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
����
V¼ω;ρ

; ð41Þ

with t0 ¼ ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t−=tþ

p Þtþ and t� ¼ ðmB �MVÞ2, is
given by [9]

FB→Vðk2Þ ¼ RJPðk2Þ
X
j≥0

αF;Vj ½zVðk2Þ − zVð0Þ�j; ð42Þ

where the series is truncated after three summands; this
truncation is imposed on us by the B → V parameters
provided in Ref. [9]. Here, the expansion takes into account
the dominant subthreshold poles of the B → V form factors
through the term RJP ¼ ð1 − k2=m2

JPÞ−1, where JP refers to
the angular-momentum and parity quantum number of the
respective form factor (see Table II).
The isoscalar and isovector form factors can then be

reconstructed from

QBF I
iðk2; q2Þ ¼

1

2πi

Z
∞

sthr

ds
Discs½QBF I

iðk2; sÞ�
s − q2

; ð43Þ

where sthr ¼ 9M2
π; 4M2

π for I ¼ 0, 1, respectively. In the
above, no subtractions are needed for convergence, since
the discontinuities drop off as 1=q2 asymptotically; see
Appendix E. Inserting Eq. (36) into Eq. (43) and using the
polarization sum of the ω and ρ mesons,

X
λ

ημðq; λÞη�νðq; λÞ ¼ −gμν þ
qμqν
M2

V
; ð44Þ

TABLE II. The quantum numbers JP, resonance masses mJP , and numerical values (rounded to two significant digits) of the series
coefficients αF;Vj [9] for the z expansion of the form factors FB→Vðk2Þ, truncated after three summands; see Eq. (42). The corresponding
values of the resonance masses can be found in Appendix G. Because of parity conservation of the strong interactions, no form factor
with JP ¼ 0þ exists. For the exact numerical values of αF;Vj and the covariances as well as correlations between these, see Ref. [9]. Note

that αA0;V
0 and αA12;V

0 are not independent but have to fulfill the exact relation given in Eq. (40).

FB→Vðk2Þ JP mJP αF;ω0 αF;ω1 αF;ω2 αF;ρ0 αF;ρ1 αF;ρ2

VB→Vðk2Þ 1− mB� 0.304(38) −0.83ð29Þ 1.7(1.2) 0.327(31) −0.86ð18Þ 1.80(97)
AB→V
1 ðk2Þ 1þ mB1

0.243(31) 0.34(24) 0.09(57) 0.262(26) 0.39(14) 0.16(41)

AB→V
12 ðk2Þ 1þ mB1

0.270(40) 0.66(26) 0.28(98) 0.297(35) 0.76(20) 0.46(76)

AB→V
0 ðk2Þ 0− mB 0.328(48) −0.83ð30Þ 1.4(1.2) 0.356(42) −0.83ð20Þ 1.3(1.0)
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we obtain the VMD result for the B → γ� form factors,

QBF I
1ðk2; q2Þ ¼ mBMVfVdV

16mBM2
VA

B→V
12 ðk2Þ − ðmB þMVÞðm2

B − k2 −M2
VÞAB→V

1 ðk2Þ
λVðk2Þðq2 −M2

VÞ
;

QBF I
2ðk2; q2Þ ¼ 2mBMVfVdV

4mBðm2
B − k2 −M2

VÞAB→V
12 ðk2Þ − ðmB þMVÞk2AB→V

1 ðk2Þ
λVðk2Þðq2 −M2

VÞ
;

QBF I
3ðk2; q2Þ ¼ mBfVdV

AB→V
0

q2 −M2
V
;

QBF I
4ðk2; q2Þ ¼ mBMVfVdV

VB→Vðk2Þ
ðmB þMVÞðq2 −M2

VÞ
: ð45Þ

Compared to F 1ðk2; q2Þ and F 4ðk2; q2Þ, the form factors
F 2ðk2; q2Þ and F 3ðk2; q2Þ enter observables with a relative
suppression factor of q2, thereby ensuring that unphysical
longitudinal on-shell photons do not contribute.
Naturally, we now aim to use an expansion similar to

Eq. (42) for the B → γ� form factors,

QBF I
iðk2; q2Þ ¼ RJPðk2Þ

X
j≥0

βVi;jðq2Þ½zVðk2Þ − zVð0Þ�j;

ð46Þ

where the form factors have definite angular-momentum
and parity assignments, with the term RJPðk2Þ again
accounting for the dominant subthreshold poles in the
variable k2. In contrast to Eq. (42), the series coefficients
have a dependence on q2, for which we will assume VMD
and use an ad hoc Breit-Wigner (BW) ansatz with the
resonance’s width inserted by hand,

βVi;jðq2Þ ¼ NV
i;jP

BW
V ðq2Þ: ð47Þ

At this, it is justified to use a monopolelike ansatz because
the form factors drop off as 1=q2 asymptotically; see
Appendix E. Because of its smallness, we use a constant
approximation for the ω decay width above the 3π thresh-
old, whereas we incorporate the broad ρ width energy-
dependently,

PBW
ω ðq2Þ ¼ M2

ω

M2
ω − q2 − iMωΓω

;

PBW
ρ ðq2Þ ¼ M2

ρ

M2
ρ − q2 − i

ffiffiffiffiffi
q2

p
Γρðq2Þ

: ð48Þ

Here, the proper threshold behavior is implied for the ω,
i.e., Γω ¼ 0 for q2 < 9M2

π, and the energy-dependent width
of the ρ is parametrized according to [27]

Γρðq2Þ ¼ θðq2 − 4M2
πÞ

γρ→ππðq2Þ
γρ→ππðM2

ρÞ
Γρ;

γρ→ππðq2Þ ¼
ðq2 − 4M2

πÞ3=2
q2

: ð49Þ

The normalizations NV
i;j can be determined from Eq. (45)

by inserting Eqs. (42) and (46) and using the numerical
values from Table II to match at q2 ¼ 0, resulting in
Table III. The full form factors are then given by

QBF iðk2; q2Þ ¼ QB½F I¼0
i ðk2; q2Þ þ F I¼1

i ðk2; q2Þ�
¼ RJPðk2Þ

X
V¼ω;ρ
j≥0

NV
i;jP

BW
V ðq2Þ½zVðk2Þ − zVð0Þ�j:

ð50Þ

TABLE III. The quantum numbers JP, resonance masses mJP , and numerical values (rounded to two significant
digits) of the normalizations NV

i;j for the z expansion of the form factors F iðk2; q2Þ, truncated after three summands;
see Eq. (46). The corresponding values of the resonance masses can be found in Appendix G. For the covariances
between the normalizations, see Appendix F. Note that NV

2;0 and N
V
3;0 are identical due to the exact relation given in

Eq. (40) or, equivalently, the condition F 2ð0; q2Þ ¼ F 3ð0; q2Þ imposed below Eq. (24).

F iðk2; q2Þ JP mJP Nω
i;0 Nω

i;1 Nω
i;2 Nρ

i;0 Nρ
i;1 Nρ

i;2

F 1ðk2; q2Þ 1þ mB1
0.0156(30) −0.033ð19Þ 0.003(85) 0.0557(88) −0.115ð48Þ 0.01(24)

F 2ðk2; q2Þ 1þ mB1
−0.186ð27Þ 0.39(14) −0.17ð52Þ −0.676ð79Þ 1.34(41) −0.6ð1.5Þ

F 3ðk2; q2Þ 0− mB −0.186ð27Þ 0.47(17) −0.80ð71Þ −0.676ð79Þ 1.58(39) −2.5ð2.0Þ
F 4ðk2; q2Þ 1− mB� −0.0222ð28Þ 0.061(21) −0.125ð91Þ −0.0795ð75Þ 0.209(44) −0.44ð23Þ
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We present three-dimensional plots of the absolute values
of the full form factors, Eq. (50), in Fig. 3. In addition, we
present two-dimensional plots in Fig. 4, where we also
show the absolute values of the isoscalar and isovector
components separately, Eq. (46), including uncertainties
and with k2 ¼ 1 GeV fixed.

VI. PHENOMENOLOGY

The decay B− → l−ν̄ll0−l0þ provides a rich phenom-
enology through a large number of angular observables.

They arise from the differential decay width dΓ≡
dΓðB− → l−ν̄ll0−l0þÞ, which is given by

dΓ ¼ 1

2mB
jMj2dΦ4ðp;pl; pν; q1; q2Þ; ð51Þ

where jMj2 ≡ jMðB− → l−ν̄ll0−l0þÞj2 is the squared
spin average of Eq. (23). The Lorentz-invariant four-body
phase space is conveniently split according to [28]

dΦ4ðp;pl; pν; q1; q2Þ ¼ dΦ2ðp; k; qÞdΦ2ðk;pl; pνÞdΦ2ðq; q1; q2Þ
dk2

2π

dq2

2π
: ð52Þ

Here, dΦ2ðp; k; qÞ, dΦ2ðk;pl; pνÞ, and dΦ2ðq; q1; q2Þ are
the respective Lorentz-invariant two-body phase space
measures of the subsystems fl−ν̄lðkÞ; γ�ðqÞg, fl−ðplÞ;
ν̄lðpνÞg, and fl0−ðq1Þ;l0þðq2Þg. The fivefold differential
decay rate reads

d5Γ
dk2dq2d cos ϑWd cosϑγdφ

¼ jpγjjpljjpl0 j
4096m2

Bπ
6

ffiffiffiffiffi
k2

p ffiffiffiffiffi
q2

p jMj2;

ð53Þ

where ϑW is the polar angle of l−ðplÞ in the center-of-mass
system (CMS) fl−ðplÞ; ν̄lðpνÞg, ϑγ is the polar angle of
l0−ðq1Þ in the CMS fl0−ðq1Þ;l0þðq2Þg, and φ is the
relative azimuthal angle between the planes of these two
subsystems. Moreover, jpγj, jplj, and jpl0 j are the magni-
tudes of the three-momenta of the photon and the neg-
atively charged leptons in the respective CMS; further
details on the kinematics and the four-body phase space are
provided in Appendix D. The angular integrations can be
performed analytically, leading to

FIG. 3. Three-dimensional plots showing the absolute values of the full form factors, Eq. (50), in the range k2∈ ½0;10�GeV2 and
q2∈ ½0;1�GeV2. The peak of the ω resonance is clearly visible, while the ρ resonance is lower in magnitude and hardly discernible
here.
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d2Γ
dk2dq2

¼ N
�X4
i¼1

fi;i
m2

B
jF iðk2; q2Þj2 þ 2

X4
i¼1
j>i

fi;j
m2

B
Re½F iðk2; q2ÞF �

jðk2; q2Þ� þ 2fB
X4
i¼1

fi;5
mB

Re½F iðk2; q2Þ� þ f5;5f2B

�
;

N ¼ G2
FjVubj2e4jpγjjpljjpl0 j
8192m2

Bπ
6

ffiffiffiffiffi
k2

p ffiffiffiffiffiffiffi
q10

p ; ð54Þ

where an additional dependence of the lepton masses mlð0Þ

in the functions fi;j ≡ fi;jðk2; q2Þ is omitted. We collect the
resulting expressions for these functions in Appendix F.
The remaining integrations over k2 and q2 have to be
performed numerically,

Γ ¼
Z

dq2
Z

dk2
d2Γ

dk2dq2
; ð55Þ

where the available phase space is bounded by k2 ∈
½m2

l; ðmB −
ffiffiffiffiffi
q2

p
Þ2� and q2 ∈ ½4m2

l0 ; ðmB −mlÞ2�. Our re-
sults will be quoted for the branching ratio, B ¼ ΓτB=ℏ,
where τB is the lifetime of the charged B meson.

Beyond the integrated decay rate, another observable of
interest is the FB asymmetry. It provides a complementary
probe of the form factors as compared to the decay width
and is defined as

AFBðk2; q2Þ ¼
�

d2Γ
dk2dq2

�−1 Z
d cos ϑW sgn½cos ϑW �

×
d3Γ

dk2dq2d cos ϑW
: ð56Þ

As for the decay width, the integration over the angle(s) can
be performed analytically, with the result

FIG. 4. Two-dimensional plots of the absolute values of the form factors’ isoscalar and isovector components as well as the sum of
these for k2 ¼ 1 GeV fixed in the range q2 ∈ ½0; 1.25� GeV. We additionally show the uncertainties of the corresponding contributions.
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AFBðk2; q2Þ ¼
�

d2Γ
dk2dq2

�−1
N
�X4
i¼1

gi;i
m2

B
jF iðk2; q2Þj2 þ 2

X4
i¼1
j>i

gi;j
m2

B
Re½F iðk2; q2ÞF �

jðk2; q2Þ�

þ 2fB
X4
i¼1

gi;5
mB

Re½F iðk2; q2Þ� þ g5;5f2B

�
; ð57Þ

where the functions gi;j ≡ gi;jðk2; q2Þ also depend on the lepton masses mlð0Þ . The resulting expressions for these functions
are collected in Appendix F. Experimentally, it is convenient to access the integrated asymmetry, which is defined as

hAFBðk2; q2Þi ¼
�

d2Γ
dk2dq2

	
−1 Z

d cos ϑW sgn½cos ϑW �
�

d3Γ
dk2dq2d cosϑW

	
; ð58Þ

where h� � �i denotes the integration over a suitable bin in the kinematic variables k2 and q2.

We provide numerical results for both observables for
the processes B− → l−ν̄ll0−l0þ with l ∈ fe; μ; τg and
l0 ∈ fe; μg in Table IV. Decays involving a τ−τþ pair
are not considered here, since the ditau threshold is large
compared to our self-imposed upper cutoff in the variable
q2. We do not provide results for the decay with l0 ¼ l
either; see the discussion at the end of Sec. III. Our results
are obtained

(i) after integrating over the full phase space in k2

and q2;
(ii) after integrating over the phase space with an upper

cutoff at q2 ¼ 1 GeV2.

Beyond the q2 cutoff, the absence of the modeling of the
ϕ and further resonances introduces a hardly quantifiable
model uncertainty. The latter variant therefore provides
our nominal results. Modeling the contributions beyond
the cutoff seems possible in light of similar efforts in the
case of B → ππ form factors [29,30] and is left for
future work.

VII. SUMMARY AND OUTLOOK

In this article, we use dispersive methods to study theB →
γ� form factors underlying the decay B− → l−ν̄ll0−l0þ,

TABLE IV. Numerical results for the branching ratio and FB asymmetry [see Eqs. (55) and (58)] for B− →
l−ν̄ll0−l0þ in the SM. The quoted uncertainties originate from the parametric uncertainties on the normalizations
NV

i;j and Vub, respectively. Because of the absence of CP violation in the SM, the results for the CP-conjugated
decay modes are identical. Within uncertainties, our predictions for the branching ratio of the process
B− → e−ν̄eμ−μþ agree well with Ref. [5], BðB− → e−ν̄eμ−μþÞ ¼ f3.01 × 10−8; 2.96 × 10−8g, without and with
an upper cutoff, respectively. For the process B− → μ−ν̄μe−eþ, however, our results are in strong tension with
Ref. [5], BðB− → μ−ν̄μe−eþÞ ¼ f6.38 × 10−7; 6.37 × 10−7g, which can be attributed to the unphysical collinear
enhancement inferred thereina (see the discussion in Sec. IV). The results of Ref. [4], Table 2, are—within their
uncertainties—compatible with our results; note the numerically insignificant impact of the slight difference in the
upper integration boundary used therein.

Process Upper cutoff q2 B AFB

B− → e−ν̄eμ−μþ None 3.19ð43ÞNð25ÞVub
× 10−8 −0.358ð31ÞN

1 GeV2 3.13ð42ÞNð25ÞVub
× 10−8 −0.361ð32ÞN

B− → μ−ν̄μe−eþ None 3.78ð47ÞNð30ÞVub
× 10−8 −0.398ð38ÞN

1 GeV2 3.72ð46ÞNð30ÞVub
× 10−8 −0.401ð38ÞN

B− → τ−ν̄τe−eþ None 2.75ð27ÞNð22ÞVub
× 10−8 −0.500ð18ÞN

1 GeV2 2.72ð27ÞNð22ÞVub
× 10−8 −0.502ð18ÞN

B− → τ−ν̄τμ
−μþ None 1.77ð23ÞNð14ÞVub

× 10−8 −0.458ð15ÞN
1 GeV2 1.75ð23ÞNð14ÞVub

× 10−8 −0.460ð15ÞN
aThe tension with our result for the electron channel is reduced but not removed entirely with the results quoted in

the Erratum to Ref. [5].
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where we limit our analysis to the case l0 ≠ l. We separate
the full B− → l−ν̄ll0−l0þ amplitude into a nonperturbative
hadronic tensor and a perturbative FSRpiece and, in doing so,
thoroughly investigate the properties of these individual
objects. One of the major advances of our analysis is to treat
nonzero lepton masses consistently in the FSR piece at all
stages. The separation of the full amplitude into a hadronic
tensor and an FSR piece leads to an ambiguity with regard to
the dispersive treatment. More specifically, it hinders one to
find a decomposition into Lorentz structures and form factors
that are free of kinematic singularities. As a remedy, we
discuss in great detail how the hadronic tensor can be split into
a homogeneous and an inhomogeneous part, with the
homogeneous part being chosen such that it contains form
factors with well-separated angular-momentum and parity
quantum numbers. From this, we propose a decomposition
of the homogeneous part of the hadronic tensor into a set of
Lorentz structures and four form factors that are free of
kinematic singularities in both the weak momentum and the
photon momentum. This renders possible a dispersive treat-
ment of the form factors. For the parametrization of the
inhomogeneous part, we consider several choices from the
literature and investigate their effect on the full amplitude in
great detail, in particular with regard to the singularity-free
property of the form factors. Moreover, we find that the
inhomogeneous part needs to be of a specific formunder a few
reasonable assumptions. These considerations allow us to
eliminate all except for one choice for the inhomogeneous
part from the literature, which we consequently fix for the
remainder of our analysis.
Having found a decomposition of the hadronic tensor

into four form factors that are free of kinematic singular-
ities, we split the form factors into their isospin components
and establish a set of dispersion relations that relate the
B → γ� form factors to the well-known B → V, V ¼ ω, ρ,
analogs. The B → V form factors are expanded in a series
in the conformal variable zðtÞ, with the dominant sub-
threshold poles taken into account via a pole factor.
Performing a similar series expansion for the B → γ� form
factors and using a VMD ansatz for the virtual photon, we
are able to parametrize these form factors reliably below the
onset of the ϕ.
Using our framework, we perform a phenomenological

analysis by means of two observables: the branching ratio
and the FB asymmetry. The numerical results for these
quantities are given for l ≠ l0 and agree with previous
determinations from the literature.
Possible future improvements of our framework involve

the inclusion of the ϕ contribution and replacing the
resonant ρ by a description of the two-pion intermediate
state, in which the ρ can be included model-independently
through pion-pion rescattering [31]. The B → γ� form
factors are then obtained via a dispersion relation in a
similar way to the reconstruction of, e.g., the ηð0Þ transition
form factors from ππ intermediate states [32,33].
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APPENDIX A: INHOMOGENEOUS TENSOR
IDENTITIES

In this appendix, we derive the identities for the hadronic
tensor Tμν

H ðk; qÞ and pseudoscalar tensor Tμ
Pðk; qÞ given in

Eqs. (17) and (19).

1. Hadronic tensor

We start by using translational invariance of the vacuum
to rewrite the hadronic tensor, Eq. (7), as

QBT
μν
H ðk; qÞ ¼

Z
d4x eikx h0jTfJνHðxÞJμEMð0ÞgjB−i: ðA1Þ

By means of an integration by parts, a differentiation of the
Heaviside step function in the time-ordered product and the
Dirac equation, we find

kν½QBT
μν
H ðk; qÞ�

¼ QBT
μ
Pðk; qÞ þ i

Z
d3x e−ik·x h0j½J0Hðx̄Þ; JμEMð0Þ�jB−i;

ðA2Þ

where x̄ ¼ ðx0 ¼ 0; xÞ. In the above, we furthermore used
that a scalar-vector current-current matrix element of type B
meson to vacuum vanishes due to the involved quantum
numbers, h0jTfJSðxÞJμEMð0ÞgjB−i ¼ 0, JSðxÞ ¼ ūðxÞbðxÞ.
From an explicit calculation of the commutator in Eq. (A2),
we finally arrive at

kνT
μν
H ðk; qÞ ¼ Tμ

Pðk; qÞ þ fBðkþ qÞμ; ðA3Þ

which is equivalent to Eq. (17) after inserting the decom-
position of the hadronic tensor into its homogeneous
and inhomogeneous parts, Tμν

H ðk; qÞ ¼ Tμν
H;homðk; qÞ þ

Tμν
H;inhomðk; qÞ; see Eq. (16).

2. Pseudoscalar tensor

For the pseudoscalar tensor, we proceed similarly and
use the definition in Eq. (18) to calculate
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qμ½QBT
μ
Pðk; qÞ� ¼ i

Z
d3x e−iq·xh0j½J0EMðx̄Þ; JPð0Þ�jB−i:

ðA4Þ

An explicit calculation of the commutator results in
Eq. (19),

qμT
μ
Pðk; qÞ ¼ −fBm2

B: ðA5Þ

APPENDIX B: BARDEEN-TUNG-TARRACH
PROCEDURE

In this appendix, we outline the modification to the BTT
procedure [10,11] that leads us to the decomposition of the
homogeneous part of the hadronic tensor into Lorentz
structures and form factors given in Eq. (24). To this end,
we recall that the homogeneous part fulfills

qμT
μν
H;homðk; qÞ ¼ 0; ðB1Þ

and that we additionally impose

kνT
μν
H;homðk; qÞ ¼! Tμ

P;homðk; qÞ ðB2Þ

[see Eqs. (16) and (21)] with qμT
μ
P;homðk; qÞ ¼ 0. Hence,

we can split Tμν
H;homðk; qÞ according to

Tμν
H;homðk; qÞ ¼ T̃μν

H;homðk; qÞ þ Tμ
P;homðk; qÞ

kν

k2
; ðB3Þ

where qμT̃
μν
H;homðk; qÞ ¼ kνT̃

μν
H;homðk; qÞ ¼ 0. In the above,

Tμ
P;homðk; qÞ necessarily comes with a factor kν=k2 due to

its pseudoscalar nature; cf. the fact that the spin-0 compo-
nent of a spin-1 field is of timelike polarization. Since the
explicit k2-pole attached to Tμ

P;homðk; qÞ is thus an inherent
feature of the pseudoscalar contribution, it needs to be
regularized either by a zero in the accompanying form
factor or by a corresponding contribution within
T̃μν
H;homðk; qÞ. We follow the latter approach: we perform

the BTT procedure for Tμ
P;homðk; qÞ and T̃μν

H;homðk; qÞ
separately, where we use the native blueprint for the former
and a variant that introduces an explicit k2-pole to cancel
the aforementioned pole of the pseudoscalar contribution
for the latter.
We first perform the BTT procedure for Tμν

P;homðk; qÞ,
where the only available building blocks for the Lorentz
structures are

fLμ
P;hom;ig ¼ fkμ; qμg ðB4Þ

and gauge invariance in the form qμT
μ
P;homðk; qÞ ¼ 0 is

imposed by means of

fL̃μ
P;hom;ig ¼ Iμ

αfLα
P;hom;ig; Iμν ¼ gμν −

kμqν

k · q
: ðB5Þ

The resulting set

fL̃μ
P;hom;ig ¼



0; qμ −

q2

k · q
kμ
�

ðB6Þ

consists of a single nonvanishing structure with a pole in
ðk · qÞ. Following the regular procedure, this irreducible
pole is to be eliminated by multiplying with ðk · qÞ, leading
to the structure

L̂μ
P;hom ¼ ðk · qÞqμ − q2kμ: ðB7Þ

To perform the BTT procedure for T̃μν
H;homðk; qÞ, we note

that the interaction is of the form V − A. Hence, the
available building blocks for the Lorentz structures are
given by

fLμν
H;hom;ig¼fgμν;kμkν;kμqν;qμkν;qμqν;ϵμναβkρqσg; ðB8Þ

and we impose qμT̃
μν
H;homðk; qÞ ¼ kνT̃

μν
H;homðk; qÞ ¼ 0 by

means of

fL̃μν
H;hom;ig¼Iμ

αfLαβ
H;hom;igĨβ

ν; Ĩμν¼ gμν−
kμkν

k2
: ðB9Þ

The resulting set

fL̃μν
H;hom;ig ¼



gμν −

kμqν

k · q
; 0; 0; 0;

q2

k2
kμkν −

q2

k · q
kμqν

−
k · q
k2

qμkν þ qμqν; ϵμνρσkρqσ

�
ðB10Þ

contains structures with poles in ðk · qÞ as well as k2.
While we explicitly keep the k2 poles, as mentioned
above, we get rid of one of the two poles in ðk · qÞ by
following the regular procedure, i.e., by taking an appro-
priate linear combination with nonsingular coefficients and
multiplying the remaining pole by ðk · qÞ. This leads to the
minimal [10,11] set

n
L̂μν
H;hom;i

o
¼

n
ðk · qÞL̃μν

H;hom;1; L̃
μν
H;hom;5 − q2L̃μν

H;hom;1; L̃
μν
H;hom;6

o
¼



ðk · qÞgμν − kμqν;

q2

k2
kμkν −

k · q
k2

qμkν þ qμqν − q2gμν; ϵμνρσkρqσ

�
: ðB11Þ
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Combining Eqs. (B7) and (B11) with Eq. (B3), the homogeneous part of the hadronic tensor thus takes the form given
in Eq. (24).4

APPENDIX C: FORM FACTOR PROJECTORS

In this appendix, we collect the formulas for the projectors Pμν
i ðk; qÞ that fulfill Piμνðk; qÞTμν

H ðk; qÞ ¼ F iðk2; q2Þ,
i ¼ 1;…; 4, and Piμνðk; qÞTμν

H ðk; qÞ ¼ fB=mB, i ¼ 5, 6, for an arbitrary choice of basis for Tμν
H ðk; qÞ, as introduced in

Sec. III [34–37]:

1

mB
Pμν

1 ðk; qÞ ¼ k · q
2½ðk · qÞ2 − k2q2� g

μν þ 3q2ðk · qÞ
2½ðk · qÞ2 − k2q2�2 k

μkν −
ðk · qÞ2 þ 2k2q2

2½ðk · qÞ2 − k2q2�2 k
μqν

−
3ðk · qÞ2

2½ðk · qÞ2 − k2q2�2 q
μkν þ 3k2ðk · qÞ

2½ðk · qÞ2 − k2q2�2 q
μqν;

1

mB
Pμν

2 ðk; qÞ ¼ k2

2½ðk · qÞ2 − k2q2� g
μν þ 2ðk · qÞ2 þ k2q2

2½ðk · qÞ2 − k2q2�2 k
μkν −

3k2ðk · qÞ
2½ðk · qÞ2 − k2q2�2 k

μqν

−
3k2ðk · qÞ

2½ðk · qÞ2 − k2q2�2 q
μkν þ 3k4

2½ðk · qÞ2 − k2q2�2 q
μqν;

1

mB
Pμν

3 ðk; qÞ ¼ 1

ðk · qÞ2 − k2q2
kμkν −

2k2

½ðk · qÞ2 − k2q2�½2ðk · qÞ þ q2� q
μkν −

k2

½ðk · qÞ2 − k2q2�½2ðk · qÞ þ q2� q
μqν;

1

mB
Pμν

4 ðk; qÞ ¼ −
i

2½ðk · qÞ2 − k2q2� ϵ
μνρσkρqσ;

mBP
μν
5 ðk; qÞ ¼ −

k · q
ðk · qÞ2 − k2q2

qμkν þ k2

ðk · qÞ2 − k2q2
qμqν;

mBP
μν
6 ðk; qÞ ¼ q2

ðk · qÞ2 − k2q2
qμkν −

k · q
ðk · qÞ2 − k2q2

qμqν: ðC1Þ

At this, an ambiguity is hidden in how to collect the terms of the inhomogeneous part into basis structures in Eq. (31), since
such different choices will lead to another set of projectors than the ones given above. However, any difference P̄μν

i ðk; qÞ
between two sets of valid projectors is at most of the form

P̄μν
i ðk; qÞ ¼ Aiqμ½kν½ðk · qÞ þ q2� − qν½ðk · qÞ þ k2�� ðC2Þ

for i ¼ 3, 5, 6, with some coefficient Ai ≡ Aiðk2; q2Þ, so that

P̄iμνðk; qÞTμν
H;homðk; qÞ ¼ Ai½qμTμν

H;homðk; qÞ�½kν½ðk · qÞ þ q2� − qν½ðk · qÞ þ k2�� ¼ 0;

P̄iμνðk; qÞTμν
H;inhomðk; qÞ ¼ Ai½qμTμν

H;inhomðk; qÞ�½kν½ðk · qÞ þ q2� − qν½ðk · qÞ þ k2��
¼ Ai½−fBðkþ qÞν�½kν½ðk · qÞ þ q2� − qν½ðk · qÞ þ k2�� ¼ 0: ðC3Þ

For i ¼ 1, 2, 4, the projectors are independent of this choice, i.e., Ai ¼ 0.

APPENDIX D: KINEMATICS

In this appendix, we present some details on the kinematics for the processes B− → l−ν̄lγ
� and B− → l−ν̄ll0−l0þ,

which are necessary ingredients to calculate the squared spin-averaged amplitudes jMðB− → l−ν̄lγ
�Þj2 in Eq. (28)

and jMðB− → l−ν̄ll0−l0þÞj2 in Sec. VI.

4Note that for the decay of an electrically neutral B meson, as opposed to the case of a charged B meson considered in this article, no
inhomogeneous contribution, Eq. (16), is present. As a consequence, in this scenario, the associated form factors are readily free of
kinematic singularities in k2 and q2 as well as kinematic zeros in q2 but contain an explicit kinematic zero in k2 due to the singularities in
the structures.
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1. B− → l− ν̄lγ�
For a consistent treatment of the kinematics in the

process B− → l−ν̄lγ
�, all momenta and polarization vec-

tors have to be evaluated in a single frame of reference. To
this end, we calculate the corresponding quantities in the
CMS of the fl−ν̄lðkÞ; γ�ðqÞg and fl−ðplÞ; ν̄lðpνÞg sub-
system and perform a Lorentz transformation of the latter to
the former frame.
In the CMS fl−ν̄lðkÞ; γ�ðqÞg, one finds the magnitude

of the photon’s three-momentum and the energies

jpγj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B; k
2; q2Þ

p
2mB

; Elν ¼
m2

B þ k2 − q2

2mB
;

Eγ ¼
m2

B − k2 þ q2

2mB
: ðD1Þ

The four-momentum of the leptonic subsystem thus reads

k ¼ ðElν; 0; 0; jpγjÞ⊺; ðD2Þ

and, accordingly, the four-momentum of the photon and its
polarization vectors are given by

q ¼ ðEγ; 0; 0;−jpγjÞ⊺;

ϵðq; λ ¼ �1Þ ¼ ∓ 1ffiffiffi
2

p ð0; 1;∓ i; 0Þ⊺;

ϵðq; λ ¼ 0Þ ¼ 1

ξ
ð−jpγj; 0; 0; EγÞ⊺;

ϵðq; λ ¼ TÞ ¼ 1

ξ
ðEγ; 0; 0;−jpγjÞ⊺; ðD3Þ

where any physical observable necessarily needs to be
independent of ξ ¼

ffiffiffiffiffi
q2

p
.

In the CMS fl−ðplÞ; ν̄lðpνÞg, we have

jplj ¼
k2 −m2

l

2
ffiffiffiffiffi
k2

p ; El ¼ k2 þm2
l

2
ffiffiffiffiffi
k2

p ; Eν ¼
k2 −m2

l

2
ffiffiffiffiffi
k2

p

ðD4Þ

for the magnitude of the negatively charged lepton’s three-
momentum and the corresponding energies. Hence, trans-
forming the subsystem fl−ðplÞ; ν̄lðpνÞg to the CMS
fl−ν̄lðkÞ; γ�ðqÞg, the four-momenta of the leptons are
found to be

pl ¼

0
BBBBB@

γlν;γðEl þ βlν;γjplj cosϑWÞ
jplj sinϑW

0

γlν;γðβlν;γEl þ jplj cosϑWÞ

1
CCCCCA;

pν ¼

0
BBBBB@

γlν;γðEν − βlν;γjplj cosϑWÞ
−jplj sinϑW

0

γlν;γðβlν;γEν − jplj cosϑWÞ

1
CCCCCA; ðD5Þ

where βlν;γ ¼ jpγj=Elν, γlν;γ ¼ ð1 − β2lν;γÞ−1=2, and ϑW is
the polar angle of l−ðplÞ in the CMS fl−ðplÞ; ν̄lðpνÞg.

2. B− → l− ν̄ll0 −l0 +

In addition to the magnitudes of three-momenta jpγj and
jplj in the CMS fl−ν̄lðkÞ; γ�ðqÞg and fl−ðplÞ; ν̄lðpνÞg,
respectively, we need the three-momentum of l0−ðq1Þ in the
CMS fl0−ðq1Þ;l0þðq2Þg to describe the kinematics of the
process B− → l−ν̄ll0−l0þ,

jpl0 j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 4m2

l0

q
2

: ðD6Þ

Furthermore, two additional angles besides ϑW are neces-
sary here: the polar angle ϑγ of l0−ðq1Þ in the CMS
fl0−ðq1Þ;l0þðq2Þg and the azimuthal angle φ between
the decay planes of the subsystems fl−ðplÞ; ν̄lðpνÞg and
fl0−ðq1Þ;l0þðq2Þg (see Fig. 5).
For the four-body phase space, we used

dΦ4ðp;pl; pν; q1; q2Þ ¼ dΦ2ðp; k; qÞdΦ2ðk;pl; pνÞ

× dΦ2ðq;q1; q2Þ
dk2

2π

dq2

2π
ðD7Þ

in Eq. (52), where

dΦ2ðp; k; qÞ ¼
1

16π2
jpγj
mB

dΩB;

dΦ2ðk;pl; pνÞ ¼
1

16π2
jpljffiffiffiffiffi
k2

p dΩW;

dΦ2ðq; q1; q2Þ ¼
1

16π2
jpl0 jffiffiffiffiffi
q2

p dΩγ ðD8Þ

are the two-body phase spaces of the subsystems
fl−ν̄lðkÞ; γ�ðqÞg, fl−ðplÞ; ν̄lðpνÞg, and fl0−ðq1Þ;
l0þðq2Þg, respectively. Here, dΩB, dΩW , and dΩγ denote
the differential solid angles in the corresponding CMS.
Three of the six angular integrations can be rendered trivial
to carry out by rotating the coordinate system appropriately,
leading to the expression
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dΦ4ðp;pl; pν; q1; q2Þ

¼ 1

2048π6
jpγj
mB

jpljffiffiffiffiffi
k2

p jpl0 jffiffiffiffiffi
q2

p d cos ϑWd cos ϑγdφ dk2dq2

ðD9Þ

for the four-body phase space, with the remaining angles
being as illustrated in Fig. 5.

APPENDIX E: ASYMPTOTICS

In this appendix, we show that the form factors
F I

iðk2; q2Þ introduced in Sec. V as well as their

discontinuities drop off as 1=q2 asymptotically. This
behavior was assumed to avoid subtracting the dispersion
relation of Eq. (43) and justified the monopolelike ansatz
for the form factors in Eq. (47). We determine the form
factors’ asymptotic behavior for q2 → ∞ by inspecting the
results of a calculation of the B → γ form factors within an
operator product expansion (OPE) [15]. For our purposes,
it suffices to inspect the leading-power terms within
this OPE, which are diagrammatically depicted in Fig. 6.
The OPE uses an interpolating quark current for the B
meson, namely [15] JBðxÞ ¼ ūðxÞγ5bðxÞ, which fulfills
h0jJBð0ÞjB−i ¼ −im2

BfB=ðmb þmuÞ. We then calculate
the sum of the two diagrams depicted in Fig. 6, leading to

XI
μνðk; qÞ ¼ e

Z
d4l
ð2πÞ4 Tr

�
−γ5

ið=l − =qþmuÞ
ðl − qÞ2 −m2

u
QI

uγμ
ið=lþmuÞ
l2 −m2

u
γνð1 − γ5Þ

ið=lþ =kþmbÞ
ðlþ kÞ2 −m2

b

− γ5
ið=l − =kþmuÞ
ðl − kÞ2 −m2

u
γνð1 − γ5Þ

ið=lþmbÞ
l2 −m2

b

QI
bγμ

ið=lþ =qþmbÞ
ðlþ qÞ2 −m2

b

�
; ðE1Þ

where l is the loop momentum and q2 < 0 large. The
isospin charges are given by ðQI¼0

u ; QI¼0
b Þ ¼ ð1=6;−1=3Þ

and ðQI¼1
u ; QI¼1

b Þ ¼ ð1=2; 0Þ.
For the discontinuities, it then follows that

Discq2F
I;OPE
i ðk2; q2Þ ∝ Discq2 ½Pi

μνðk; qÞXI
μνðk; qÞ�; ðE2Þ

so that the asymptotic behavior for large q2 < 0 is found to
be given by [37]

Discq2F
I;OPE
i ðk2; q2Þ ∼ 1=q2; ðE3Þ

rendering the dispersion integrals convergent without any
subtractions.
Similarly, we find

F I;OPE
i ðk2; q2Þ ∼ 1=q2 ðE4Þ

for the asymptotic behavior of the form factors, so that a
monopolelike ansatz in the framework of VMD is justified.

FIG. 5. Illustration of the decay B− → l−ν̄ll0−l0þ along with the two decay planes of the leptonic subsystems and the three angles
necessary to describe the kinematics of the process.

FIG. 6. The leading-order diagrams in the OPE for the form factors F iðk2; q2Þ. Diagrams contributing at a higher order in the OPE are
neglected here.
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APPENDIX F: INTERMEDIATE RESULTS

In this appendix, we collect the covariance matrices for the normalizations NV
i;j from Table III and the functions fi;j as

well as gi;j introduced in Eqs. (54) and (57).

1. Covariance matrices

For reasons of consistency with the rounding of the uncertainties on the normalizations, we round the numerical values in
the covariance matrices to four significant digits. Because of the fact that the input used to determine the normalizations
does not exhibit a correlation between the parameters of the ω and ρ, the normalizations Nω

i;j and Nρ
i;j are uncorrelated,

i.e., CovðNω
i;j; N

ρ
k;lÞ ¼ 0 for all i, j, k, l, so that our results can be collected in two ð12 × 12Þ matrices.

For the covariances between the normalizations Nω
i;j, we find

106×CovðNω
i;j;N

ω
k;lÞmn

¼

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

9.186 −11.29 66.84 16.05 −65.26 739.2 16.05 57.91 −371.5 −7.348 −37.43 135.1

−11.29 378.7 −1444 −151.5 491.6 −3209 −151.5 −186.7 1270 2.220 −241.8 353.4

66.84 −1444 7180 991.8 −5858 24670 991.8 −911.2 −1778 −6.404 558.3 −1611
16.05 −151.5 991.8 740.4 −1134 7731 740.4 2429 −6410 13.70 3.901 134.0

−65.26 491.6 −5858 −1134 20370 −52440 −1134 14440 −31960 −9.187 986.6 −2592
739.2 −3209 24670 7731 −52440 266600 7731 −9322 46070 −305.2 −3351 16080

16.05 −151.5 991.8 740.4 −1134 7731 740.4 2429 −6410 13.70 3.901 134.0

57.91 −186.7 −911.2 2429 14440 −9322 2429 28910 −63340 15.82 682.5 204.0

−371.5 1270 −1778 −6410 −31960 46070 −6410 −63340 498000 144.6 −1346 13990

−7.348 2.220 −6.404 13.70 −9.187 −305.2 13.70 15.82 144.6 7.794 34.85 −134.1
−37.43 −241.8 558.3 3.901 986.6 −3351 3.901 682.5 −1346 34.85 450.4 −1108
135.1 353.4 −1611 134.0 −2592 16080 134.0 204.0 13990 −134.1 −1108 8249

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

; ðF1Þ

where m ¼ ð3iþ j − 2Þ and n ¼ ð3kþ l − 2Þ denote the rows and columns of the matrix, respectively. At this, it is to be
noted that Nω

2;0 ¼ Nω
3;0 (see the discussion in Sec. V) so that one row and one column of the matrix is, in fact, redundant,

reducing the degrees of freedom to an ð11 × 11Þ matrix.
In the same way and with the analogous caveat Nρ

2;0 ¼ Nρ
3;0, we find the covariances between the normalizations Nρ

i;j to
be given by

105×CovðNρ
i;j;N

ρ
k;lÞmn

¼

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

7.758 −25.35 132.8 17.88 −47.77 705.8 17.88 70.38 −233.2 −5.403 −18.46 46.61

−25.35 231.1 −988.0 −151.1 393.9 −3906 −151.1 −389.7 7.717 12.95 −55.78 −26.32
132.8 −988.0 5543 1059 −5304 26800 1059 411.8 −3620 −55.19 −90.41 −25.79
17.88 −151.1 1059 631.5 −1626 7978 631.5 1294 −2278 9.762 −23.75 −12.89
−47.77 393.9 −5304 −1626 17200 −43390 −1626 7476 −12080 −44.36 814.8 −1798
705.8 −3906 26800 7978 −43390 224000 7978 2795 15740 −248.9 −2166 8948

17.88 −151.1 1059 631.5 −1626 7978 631.5 1294 −2278 9.762 −23.75 −12.89
70.38 −389.7 411.8 1294 7476 2795 1294 14980 −16040 −29.65 443.1 795.0

−233.2 7.717 −3620 −2278 −12080 15740 −2278 −16040 396500 42.62 123.5 27430

−5.403 12.95 −55.19 9.762 −44.36 −248.9 9.762 −29.65 42.62 5.693 16.05 −56.63
−18.46 −55.78 −90.41 −23.75 814.8 −2166 −23.75 443.1 123.5 16.05 197.2 −383.9
46.61 −26.32 −25.79 −12.89 −1798 8948 −12.89 795.0 27430 −56.63 −383.9 5497

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

: ðF2Þ
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2. Functions f i;j and gi;j
For the functions fi;j introduced in Eq. (54), we obtain

f1;1 ¼
64πk2−q2þðk2þ þ k2Þ½λðm2

B; k
2; q2Þ þ 6k2q2�

9k2
; f2;2 ¼

32πk2−q2þq2ðk2þ þ k2Þ½λðm2
B; k

2; q2Þ þ 12k2q2�
9k4

;

f3;3 ¼ m2
l
32πk2−q2þq2λðm2

B; k
2; q2Þ

3k4
; f4;4 ¼

64πk2−q2þðk2þ þ k2Þλðm2
B; k

2; q2Þ
9k2

;

f1;2 ¼ −
64πk2−q2þq2ðk2þ þ k2ÞΔðk2; q2Þ

3k2
ðF3Þ

and

f1;5 ¼ m2
l
128πq2þ
3k2−

½k2−½Δðk2; q2Þ − k2þ� − k2Bk
2½Δðk2; q2Þ − 2m2

l�LDðk2; q2Þ�;

f2;5 ¼ −m2
l
128πq2þq2

3k2−
½3k2− − ½3k2Bk2 þ ðk2−Þ2�LDðk2; q2Þ�;

f3;5 ¼ −m2
l
64πq2þq2

3k2Bk
2
−k2

½k2−½k2−Δðk2; q2Þ þ 2k2ðk2B þ 2k2−Þ� − 2k2Bk
2ðk2Bk2 þ k2−k2þÞLDðk2; q2Þ�;

f4;5 ¼ −m2
l
128πq2þ
3k2−

½k2−Δðk2; q2Þ − k2½k2BΔðk2; q2Þ − 2k2−q2�LDðk2; q2Þ�;

f5;5 ¼ −m2
l

128πq2þ
3ðk2BÞ2k2−½k2−q2ðk2B þ k2−Þ þm2

lðk2BÞ2�
× ½k2−½k2−ðk2B þ k2−Þ½k2B − Δðk2; q2Þ�½4ðk2−Þ2 þ k2−½3k2B þ Δðk2; q2Þ� þ 4ðk2BÞ2�
þm2

l½4ðk2−Þ3½k2B − Δðk2; q2Þ� þ 8k2Bðk2−Þ2½2k2B − Δðk2; q2Þ� þ ðk2BÞ2k2−½13k2B − 5Δðk2; q2Þ�
þ 2ðk2BÞ3½2k2B − Δðk2; q2Þ�� þ 8m4

lðk2BÞ2ðk2B þ k2−Þ�
þ 2k2Bk

2½k2B½Δðk2; q2Þ − 2k2B� − 2k2−ðk2B þ k2−Þ − 4m2
lðk2B þ k2−Þ�½k2−q2ðk2B þ k2−Þ þm2

lðk2BÞ2�LDðk2; q2Þ�; ðF4Þ

where we defined

k2B ¼ m2
B − k2; k2� ¼ k2 �m2

l; q2þ ¼ q2 þ 2m2
l0 ;

Δðk2; q2Þ ¼ k2B − q2; LD ¼ Lþðk2; q2Þ − L−ðk2; q2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B; k
2; q2Þ

p ; L�ðk2; q2Þ ¼ log

�
1� k2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B; k
2; q2Þ

p
k2Bk

2þ þ k2−q2

�
: ðF5Þ

All other, unlisted functions vanish, i.e., f1;3 ¼ f1;4 ¼ f2;3 ¼ f2;4 ¼ f3;4 ¼ 0. Given the scaling with the lepton mass, one
finds that this set further reduces to four functions in the chiral limit ml ¼ 0.
For the functions gi;j introduced in Eq. (57), we similarly obtain

g1;3 ¼ m2
l
32πk2−q2þq2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B; k
2; q2Þ

p
3k2

; g1;4 ¼
32πk2−q2þΔðk2; q2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B; k
2; q2Þ

p
3

;

g2;3 ¼ −m2
l
16πk2−q2þq2Δðk2; q2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B; k
2; q2Þ

p
3k4

; g2;4 ¼ −
64πk2−q2þq2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B; k
2; q2Þ

p
3

ðF6Þ

and
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g1;5 ¼ m2
l
32πq2þ
3k2Bk

2
−

h
2ðk2−Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B; k
2; q2Þ

q
− 4ðk2BÞ2k2½Δðk2; q2Þ − 2m2

l�L̃Dðk2; q2Þ
i
;

g2;5 ¼ m2
l
32πq2þq2

3k2Bk
2
−k2

h
ðk2−Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B; k
2; q2Þ

q
þ 4k2Bk

2½3k2Bk2 þ ðk2−Þ2�L̃Dðk2; q2Þ
i
;

g3;5 ¼ m2
l
128πq2þq2

3k2−
ðk2Bk2 þ k2þk2−ÞL̃Dðk2; q2Þ;

g4;5 ¼ m2
l
128πk2q2þ

3k2−
½2k2−½Δðk2; q2Þ − k2B� þ k2BΔðk2; q2Þ�L̃Dðk2; q2Þ;

g5;5 ¼ m2
l

256πk2q2þ
3k2Bk

2
−½k2−q2ðk2B þ k2−Þ þm2

lðk2BÞ2�½k2þΔðk2; q2Þ þ 2k2q2�

×

�
k2Bðk2−Þ2ðk2B þ k2−Þðq2 þ 2m2

lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B; k
2; q2Þ

q
þ ½k2þΔðk2; q2Þ þ 2k2q2�½m2

lðk2BÞ2 þ k2−q2ðk2B þ k2−Þ�

× ½4m2
lðk2B þ k2−Þ þ 2½ðk2BÞ2 þ ðk2−Þ2 þ k2Bk

2
−� − k2BΔðk2; q2Þ�L̃Dðk2; q2Þ

�
; ðF7Þ

where we additionally defined

L̃D ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B; k
2; q2Þ

p log

�
4k2−k2q2ðk2B þ k2−Þ þ 4m2

lðk2BÞ2k2
½k2þΔðk2; q2Þ þ 2k2q2�2

�
: ðF8Þ

All other, unlisted functions vanish, i.e., g1;1 ¼ g2;2 ¼ g3;3 ¼ g4;4 ¼ g1;2 ¼ g3;4 ¼ 0. Again, from the scaling with the lepton
mass, one finds that this set further reduces to two functions in the chiral limit ml ¼ 0.

APPENDIX G: CONSTANTS AND PARAMETERS

We collect the constants and parameters used throughout our analysis in Table V.

TABLE V. The masses, widths, and other physical parameters needed for the calculations in this article.

Quantity Variable Value Reference

Mass π� Mπ 139.57039(18) MeV [28]
Mass B� mB 5279.34(12) MeV [28]
Mass B� mB� 5324.71(21) MeV [28]
Mass B1 mB1

5725.9þ2.5
−2.7 MeV [28]

Mass ρ0ð770Þ Mρ 775.26(23) MeV [28]
Mass ωð782Þ Mω 782.66(13) MeV [28]
Lifetime B� τB 1638(4) fs [28]
Width ρ0ð770Þ Γρ 147.4(8) MeV [28]
Width ωð782Þ Γω 8.68(13) MeV [28]

Decay constant ρ0ð770Þ fρ 216(3) MeV [9]
Decay constant ωð782Þ fω 197(8) MeV [9]

Decay constant B� fB 190.0(1.3) MeV [38–42]
CKM matrix element b → u jVubj 3.77ð15Þ × 10−3 [43]
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