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I obtain identities satisfied by the three-loop self-energy master integrals with four or five propagators
with generic masses, including the derivatives with respect to each of the squared masses and the external
momentum invariant. These identities are then recast in terms of the corresponding renormalized master
integrals, enabling straightforward numerical evaluation of them by the differential equations approach.
Some benchmark examples are provided. The method used to obtain the derivative identities relies only on
the general form implied by integration by parts relations, without actually following the usual integration
by parts reduction procedure. As a byproduct, I find a simple formula giving the expansion of the master
integrals to arbitrary order in the external momentum invariant, in terms of known derivatives of the
corresponding vacuum integrals.
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I. INTRODUCTION

In modern evaluations of dimensionally regularized [1–8]
loop integrals for quantum field theory, the integration by
parts (IBP) relations [9,10] often play an important role. By
applying IBP relations repeatedly [11–28], one can dis-
cover identities between different loop integrals with
common topological features, allowing one to eliminate
many of them in favor of a finite [29] number of master
integrals. In particular, derivatives of the master integrals
with respect to the propagator squared masses, and with
respect to external momentum invariants, can always be
written as linear combinations of the master integrals. This
results in differential equations whose solution (either
analytical or numerical) for the master integrals can be
obtained.
The proximate motivation for the present paper was the

problem of evaluating self-energy integrals at up to three-
loop order for use in the Standard Model, with the eventual
goal, certainly not realized in this paper, of evaluating the
complete three-loop corrections to the pole masses of the
electroweak bosons. This involves reduction of a general
three-loop self-energy to master integrals, and then the
evaluation of the master integrals, using differential equa-
tions in the external momentum invariant. In the following,
the differential equations satisfied by the three-loop self-
energy master integrals with four and five propagators will

be found explicitly, enabling their numerical computation.
For the Standard Model, there are only four distinct large
masses, that of the top quark, Higgs boson, and W and Z
bosons, so only a subset of the general kinematic three-loop
topologies will be necessary. However, it is useful to have
methods that work for general masses, for possible future
applications to extensions such as models with super-
symmetric particles or new vectorlike quarks and leptons,
and other models that may not be foreseen at present. The
discussion and results below are therefore formulated for
generic three-loop self-energy integrals, and it is hoped that
some of the ideas may have even broader applicability
beyond self-energy integrals.
In some cases, the reduction to master integrals using

IBP identities can be challenging, due to their number and
complexity. In this paper, I will employ a different method,
which makes use of the general form for results implied by
the IBP relations, without actually using the IBP reduction
procedure itself. The idea will be described in terms of self-
energy integrals involving an external momentum pμ, in

d ¼ 4 − 2ϵ ð1:1Þ

dimensions, assumed to be either Euclideanized or to have
the metric signature with mostly þ signs, so that the
external momentum invariant is

s ¼ −p2: ð1:2Þ

The integrals also depend on some number of internal
propagator squared masses denoted x; y;…. The IBP
procedure leads to identities that can always be written
in the form
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X
k

CkIkðs; x; y;…Þ ¼ 0; ð1:3Þ

where the Ikðs; x; y;… are the loop integrals, and it is a
crucial feature that the Ck are polynomials in s, in the
internal squared masses, and in ϵ.
The idea to be exploited here is to obtain the identities of

the form of Eq. (1.3), not by repeatedly applying IBP
relations, but by making a guess for the degree in s of each
of the polynomials, and writing the most general form for
each polynomial Ck in terms of a finite number of unknown
coefficients. Then, after expanding the loop integrals
Ikðs; x; y;…Þ in small s, the unknown polynomial coef-
ficients in theCk can be fixed by requiring each power of s in
the expansion of Eq. (1.3) to have a vanishing coefficient. If
the degree in s of any one of the polynomials Ck has been
incorrectly guessed to be too low, this procedure will
encounter a contradiction. If the guessed degrees in s are
minimal, one may obtain a unique solution for the unknown
coefficients after expanding Eq. (1.3) in s to some finite
power, after which the next few powers in s will give
consistency checks. If the guessed degree in s for one or
more of the polynomials is larger, then one will find multi-
parameter consistent solutions for the polynomial coeffi-
cients, which can be resolved by setting any unnecessary
coefficients (of the highest powers of s in the Ck) to 0.
Of course, this method relies on the ability to evaluate the

expansions in s of the integrals Ik to sufficiently high order.
That is particularly straightforward for the examples
described below, which are the three-loop self-energy
integrals with four or five propagators with arbitrary
squared masses. In this paper, I will find the master
integrals and identities relating them, including the results
needed to numerically evaluate them using the differential
equations approach [30–44].
Note that the method used here works even if the small s

expansions for the integrals fail to converge for realistic
physical values. The method has several other advantages.
First, because one is looking for a finite set of integer
polynomial coefficients, one can find them by assigning
arbitrary rational numbers to all of the squared masses
x; y;… and even to ϵ, then repeating the process with
different rational numbers until either all coefficients have
been successfully identified, or until a contradiction has
been encountered. (In the latter case, one increases the
degrees of the polynomials, and tries again.) That was the
method used to obtain the results below; it greatly reduces
the computer memory and processing requirements, mak-
ing the calculation tractable in cases where it might be
much more difficult otherwise. The use of rational numbers
is similar to strategies described in the recent literature
for using finite fields and rational fields to reconstruct
identities between integrals, which follow from early work
in Refs. [23,45]. Several public codes employ these
methods, including FiniteFlow [45], the FIRE6 [17] IBP

code, FireFly [46,47], the Kira 2.0 [28] IBP code, and
Caravel [48] based on numerical unitarity.
A second advantage is that when one is evaluating a

physical observable, one need not solve for all of the
individual reducible integrals that may appear in it, or for
other reducible integrals in the same sectors, which are
often vast in number. Instead, one can choose one of the Ik
to be the whole integral expression (typically including
irreducible numerator factors) for the contribution to the
observable in question with a given diagram topology, and
let the others be the master integrals, which will have been
previously identified by finding other identities that elimi-
nate all other candidate masters. If the small s expansion of
the observable can be obtained, it can be used to find the
required polynomial coefficients expressing it in terms of
master integrals, again even if the expansion fails to
converge for the physical values of s and other parameters.
A third advantage is that it allows one to confidently make
statements such as “no identity relating the following
integrals exists, for polynomials Ck up to degrees nk in s.”
Such statements are harder to be completely certain of
using only the IBP procedure, since there are an infinite
number of IBP relations, and it is not even guaranteed that
the IBP relations capture all possible valid identities
between integrals.
One slight disadvantage must be admitted: one cannot be

absolutely certain (in the sense of a rigorous mathematical
proof) that an identity that one has obtained is correct, since
it could be that some contradiction will be encountered
after the expansion in s has been extended beyond the
particular level that one has chosen. However, rigorous
proofs aside, it seems extremely unlikely that an incorrect
identity would survive checks if the expansion in s has been
extended several levels beyond that necessary to uniquely
fix all of the unknown coefficients. Remaining doubts can
be reduced to an infinitesimal level by simply further
extending the expansion in s.
It should also be noted that the expansion need not be in

small s; for example, one could instead expand in some or
all of the squared masses treated as small. One could also
use a large s expansion to solve for the polynomial
coefficients, or even combine constraints on the polynomial
coefficients obtained from different expansions. The small
s expansion was chosen here because of the convenient
availability [43] of arbitrary derivatives of vacuum (no
external momenta) master integrals through three-loop
order. A somewhat similar proposal, based on a still
different type of expansion, may be found in Ref. [49],
and another approach for obtaining identities while avoid-
ing the use of huge numbers of IBP relations can be found
in Refs. [50–52].
The rest of this paper is organized as follows. In Sec. II, I

give my notations and conventions for the relevant scalar
loop integrals without numerators, which adhere to those
used in Refs. [41–44]. Sec. III gives a simple formula for
the expansion to arbitrary order in small s for a large class
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of self-energy integrals, including all of the ones discussed
in this paper, in terms of known derivatives of vacuum
master integrals. Secs. IV and V provide the identities for
the three-loop master integrals with four and five propa-
gators, respectively. Other useful approaches to calculating
three-loop vacuum and self-energy integrals are found in
Refs. [53–75]. In Sec. VI, I describe the numerical
computation of the master integrals using the differential
equations method, and give some benchmark values.
Sec. VII has some concluding remarks.

II. NOTATIONS AND CONVENTIONS

In the following, consider loop momentum integrals in
d ¼ 4 − 2ϵ Euclidean dimensions, written in terms of

Z
k
≡ 16π2μ2ϵ

Z
ddk
ð2πÞd : ð2:1Þ

The integrals appearing in this paper are shown in Figure 1.
The one-loop vacuum and self-energy master integrals are

AðxÞ ¼
Z
k

1

k2 þ x
¼ x

�
4πμ2

x

�
ϵ

Γðϵ − 1Þ; ð2:2Þ

Bðx; yÞ ¼
Z
k

1

½k2 þ x�½ðk − pÞ2 þ y� ; ð2:3Þ

and at two loops,

Iðx; y; zÞ ¼
Z
k

Z
q

1

½k2 þ x�½q2 þ y�½ðkþ qÞ2 þ z� ; ð2:4Þ

Sðx; y; zÞ ¼
Z
k

Z
q

1

½k2 þ x�½q2 þ y�½ðkþ q − pÞ2 þ z� ;

ð2:5Þ

Tðx; y; zÞ ¼
Z
k

Z
q

1

½k2 þ x�2½q2 þ y�½ðkþ q − pÞ2 þ z� :

ð2:6Þ

The three-loop vacuum and self-energy masters are
denoted by

Eðw; x; y; zÞ ¼
Z
k

Z
q

Z
r

1

½k2 þ w�½q2 þ x�½r2 þ y�½ðkþ qþ rÞ2 þ z� ; ð2:7Þ

Fðw; x; y; zÞ ¼
Z
k

Z
q

Z
r

1

½k2 þ w�2½q2 þ x�½r2 þ y�½ðkþ qþ rÞ2 þ z� ; ð2:8Þ

FIG. 1. Diagrams for vacuum and self-energy integrals appearing in this paper, as defined in Eqs. (2.2)–(2.13), following the same
conventions and notations used in Refs. [41–44]. The labels v, w, x, y, z on the internal lines denote the propagator squared masses.
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Gðv; w; x; y; zÞ ¼
Z
k

Z
q

Z
r

1

½k2 þ v�½q2 þ w�½ðkþ qÞ2 þ x�½r2 þ y�½ðkþ rÞ2 þ z� ; ð2:9Þ

I4ðw; x; y; zÞ ¼
Z
k

Z
q

Z
r

1

½k2 þ w�½q2 þ x�½r2 þ y�½ðkþ qþ r − pÞ2 þ z� ; ð2:10Þ

I5aðv; w; x; y; zÞ ¼
Z
k

Z
q

Z
r

1

½k2 þ v�½q2 þ w�½ðkþ q − pÞ2 þ x�½r2 þ y�½ðkþ r − pÞ2 þ z� ; ð2:11Þ

I5bðv; w; x; y; zÞ ¼
Z
k

Z
q

Z
r

1

½k2 þ v�½q2 þ w�½ðkþ q − pÞ2 þ x�½r2 þ y�½ðkþ rÞ2 þ z� ; ð2:12Þ

I5cðv; w; x; y; zÞ ¼
Z
k

Z
q

Z
r

1

½k2 þ v�½ðk − pÞ2 þ w�½q2 þ x�½r2 þ y�½ðkþ qþ r − pÞ2 þ z� : ð2:13Þ

Note that the external momentum invariant s is omitted
from the arguments of the self-energy integral functions.
The integral functions defined above have various sym-
metries under interchange of the squared-mass arguments,
which are obvious from the diagrams in Fig. 1, and will be
used below without commentary. The integral Eðw; x; y; zÞ
is sometimes convenient because of its symmetry proper-
ties, but it is technically not a master integral because it can
be eliminated in favor of the F integrals, through the
identity

ð3ϵ − 2ÞEðw; x; y; zÞ ¼ wFðw; x; y; zÞ þ xFðx; w; y; zÞ
þ yFðy; w; x; zÞ þ zFðz; w; x; yÞ;

ð2:14Þ
which follows from dimensional analysis.
In the following, we will use two different notations for

derivatives with respect to a squared mass x, depending on
the typographical situation. In some cases, we will write ∂x,
while in other cases we will use a prime on a squared-mass
argument of a function to denote differentiation with
respect to that argument, for example,

Tðx; y; zÞ ¼ −∂xSðx; y; zÞ ¼ −Sðx0; y; zÞ; ð2:15Þ

and

Fðw; x; y; zÞ ¼ −∂wEðw; x; y; zÞ ¼ −Eðw0; x; y; zÞ; ð2:16Þ

and for a generic function,

fðx0; y; x00Þ ¼ ∂x∂
2
zfðx; y; zÞjz¼x: ð2:17Þ

It is convenient to write expressions for physical observ-
ables in terms of renormalized master integrals, which are
obtained from the above by subtracting ultraviolet (UV)
divergences in a particular way, then taking the limit ϵ → 0,
and writing the results in terms of the scale Q defined by

Q2 ¼ 4πe−γμ2: ð2:18Þ

If the modified minimal subtraction (MS) renormalization
scheme [7,8] is used, then Q is the renormalization scale.
(This does not obligate one to use the MS scheme,
however.)
As explained in Ref. [44], the renormalized master

integrals have the key advantage that expansions of the
master integrals at a given loop order to positive powers of ϵ
are never needed, even for calculations at higher loop order.
(In fact, in practice this feature provides a very useful
consistency check on calculations.) The renormalized
ϵ-finite basis of master integrals thus constitutes an optimal
and minimal set for expressing physical results. In general,
this assumes that one has first chosen an ϵ-finite basis, in
the sense of Chetyrkin, Faisst, Sturm, and Tentyukov in
Ref. [13], who showed that it is always possible to find a
basis such that the coefficients multiplying the master
integrals in an arbitrary observable are finite as ϵ → 0.
In the present paper, since the masses are treated as
generic, this is trivial; any basis defined in terms of basic
integrals is ϵ finite (unless one introduces poles in ϵ by
hand). For special cases in which masses either vanish or
are equal to each other or are at thresholds, one should first
identify (or verify) the ϵ-finite basis using the algorithm of
Ref. [13] or by other means, then renormalize the integrals
as described below. For more details, and explicit exam-
ples at up to three-loop order, of the feature that renor-
malized ϵ-finite master integrals indeed do not require
evaluation of the components of positive powers in the
expansions in ϵ, see Refs. [33,76–84]. At least in the case
of Ref. [84], the presence of infrared divergences in ϵ in
individual diagrams does not cause problems; in the other
papers listed, infrared divergences were dealt with instead
by including infinitesimal masses, but I believe this is not
necessary.
Each renormalized integral is denoted by a nonboldfaced

letter corresponding to the boldfaced letters in the definitions
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above, and includes counterterms for each ultraviolet-
divergent subdiagram. Explicitly, one defines

AðxÞ ¼ lim
ϵ→0

½AðxÞ þ x=ϵ� ¼ x lnðx=Q2Þ − x; ð2:19Þ

Bðx; yÞ ¼ lim
ϵ→0

½Bðx; yÞ þ 1=ϵ� ð2:20Þ

at one-loop order, and

Sðx; y; zÞ ¼ lim
ϵ→0

½Sðx; y; zÞ − S1;divðx; y; zÞ − S2;divðx; y; zÞ�;
ð2:21Þ

where the one-loop and two-loop UV subdivergences are

S1;divðx; y; zÞ ¼ 1

ϵ
½AðxÞ þAðyÞ þAðzÞ�; ð2:22Þ

S2;divðx; y; zÞ ¼ 1

2ϵ2
ðxþ yþ zÞ þ 1

2ϵ
ðs=2 − x − y − zÞ:

ð2:23Þ
From this, one also has

Iðx; y; zÞ ¼ Sðx; y; zÞjs¼0; ð2:24Þ

Tðx; y; zÞ ¼ −Sðx0; y; zÞ: ð2:25Þ

For the three-loop self-energy integrals, one defines

IXðw; x; y; zÞ ¼ lim
ϵ→0

½IXðw; x; y; zÞ − I1;divX ðw; x; y; zÞ − I2;divX ðw; x; y; zÞ − I3;divX ðw; x; y; zÞ�; ð2:26Þ

for X ¼ 4, 5a, 5b, and 5c, where the UV subdivergences are

I1;div4 ðw; x; y; zÞ ¼ 1

ϵ
½AðwÞAðxÞ þAðwÞAðyÞ þAðwÞAðzÞ þAðxÞAðyÞ þAðxÞAðzÞ þAðyÞAðzÞ�; ð2:27Þ

I2;div4 ðw; x; y; zÞ ¼
��

1

2ϵ2
−

1

2ϵ

�
ðxþ yþ zÞ þ 1

4ϵ
ðsþ wÞ

�
AðwÞ þ ðw ↔ xÞ þ ðw ↔ yÞ þ ðw ↔ zÞ; ð2:28Þ

I3;div4 ðw; x; y; zÞ ¼ s2

36ϵ
þ
�

1

6ϵ2
−

1

8ϵ

�
sðwþ xþ yþ zÞ þ

�
1

6ϵ2
−

3

8ϵ

�
ðw2 þ x2 þ y2 þ z2Þ

þ
�

1

3ϵ3
−

2

3ϵ2
þ 1

3ϵ

�
ðwxþ wyþ wzþ xyþ xzþ yzÞ; ð2:29Þ

and

I1;div5a ðv; w; x; y; zÞ ¼ 1

ϵ
½Sðv; w; xÞ þ Sðv; y; zÞ�; ð2:30Þ

I2;div5a ðv; w; x; y; zÞ ¼ −
1

ϵ2
AðvÞ þ

�
1

2ϵ
−

1

2ϵ2

�
½AðwÞ þAðxÞ þAðyÞ þAðzÞ�; ð2:31Þ

I3;div5a ðv; w; x; y; zÞ ¼
�
−

1

6ϵ2
þ 1

12ϵ

�
sþ

�
−

1

6ϵ3
þ 1

2ϵ2
−

2

3ϵ

�
ðwþ xþ yþ zÞ þ

�
−

1

3ϵ3
þ 1

3ϵ2
þ 1

3ϵ

�
v; ð2:32Þ

and

I1;div5b ðv; w; x; y; zÞ ¼ 1

ϵ
½Sðv; w; xÞ þ Iðv; y; zÞ�; ð2:33Þ

I2;div5b ðv; w; x; y; zÞ ¼ −
1

ϵ2
AðvÞ þ

�
1

2ϵ
−

1

2ϵ2

�
½AðwÞ þAðxÞ þAðyÞ þAðzÞ�; ð2:34Þ

I3;div5b ðv; w; x; y; zÞ ¼
�
−

1

12ϵ2
þ 5

24ϵ

�
sþ

�
−

1

6ϵ3
þ 1

2ϵ2
−

2

3ϵ

�
ðwþ xþ yþ zÞ þ

�
−

1

3ϵ3
þ 1

3ϵ2
þ 1

3ϵ

�
v; ð2:35Þ

and
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I1;div5c ðv; w; x; y; zÞ ¼ 1

ϵ
Bðv; wÞ½AðxÞ þAðyÞ þAðzÞ�; ð2:36Þ

I2;div5c ðv;w;x;y;zÞ ¼−
1

4ϵ
AðvÞþ

�
1

2ϵ
−

1

2ϵ2

�
½AðxÞþAðyÞþAðzÞ�þ

��
1

2ϵ2
−

1

2ϵ

�
ðxþ yþ zÞþ 1

4ϵ
w

�
Bðv;wÞ; ð2:37Þ

I3;div5c ðv; w; x; y; zÞ ¼ −
1

12ϵ
sþ

�
−

1

6ϵ2
þ 3

8ϵ

�
ðvþ wÞ þ

�
−

1

3ϵ3
þ 2

3ϵ2
−

1

3ϵ

�
ðxþ yþ zÞ: ð2:38Þ

Also, one has

Eðw; x; y; zÞ ¼ I4ðw; x; y; zÞjs¼0; ð2:39Þ

Fðw; x; y; zÞ ¼ −I4ðw0; x; y; zÞjs¼0; ð2:40Þ

Gðv; w; x; y; zÞ ¼ I5aðv; w; x; y; zÞjs¼0 ¼ I5bðv; w; x; y; zÞjs¼0; ð2:41Þ

as in Ref. [43]. The renormalized integrals have a dependence on Q given by

Q2
∂

∂Q2
AðxÞ ¼ −x; ð2:42Þ

Q2
∂

∂Q2
Bðx; yÞ ¼ 1; ð2:43Þ

Q2
∂

∂Q2
Iðx; y; zÞ ¼ AðxÞ þ AðyÞ þ AðzÞ − x − y − z; ð2:44Þ

Q2
∂

∂Q2
Sðx; y; zÞ ¼ AðxÞ þ AðyÞ þ AðzÞ − x − y − zþ s=2; ð2:45Þ

Q2
∂

∂Q2
Tðx; y; zÞ ¼ −AðxÞ=x; ð2:46Þ

Q2
∂

∂Q2
Fðw; x; y; zÞ ¼ ½xþ yþ z − w − AðxÞ − AðyÞ − AðzÞ�AðwÞ=wþ 7w=4; ð2:47Þ

Q2
∂

∂Q2
I4ðw; x; y; zÞ ¼ 2AðwÞAðxÞ þ 2AðwÞAðyÞ þ 2AðwÞAðzÞ þ 2AðxÞAðyÞ þ 2AðxÞAðzÞ þ 2AðyÞAðzÞ

þ ðsþ w − 2x − 2y − 2zÞAðwÞ þ ðsþ x − 2w − 2y − 2zÞAðxÞ
þ ðsþ y − 2w − 2x − 2zÞAðyÞ þ ðsþ z − 2w − 2x − 2yÞAðzÞ

þ s2

6
−
3

4
sðwþ xþ yþ zÞ − 9

4
ðw2 þ x2 þ y2 þ z2Þ

þ 2ðwxþ wyþ wzþ xyþ xzþ yzÞ; ð2:48Þ

Q2
∂

∂Q2
I5aðv;w;x;y;zÞ ¼ Sðv;w;xÞþSðv;y;zÞþAðwÞþAðxÞþAðyÞþAðzÞþv− 2w− 2x− 2y− 2zþ s=4; ð2:49Þ

Q2
∂

∂Q2
I5bðv;w;x; y; zÞ ¼ Sðv;w;xÞ þ Iðv; y; zÞ þAðwÞ þAðxÞ þAðyÞ þAðzÞ þ v− 2w− 2x− 2y− 2zþ 5s=8; ð2:50Þ

Q2
∂

∂Q2
I5cðv; w; x; y; zÞ ¼ ½AðxÞ þ AðyÞ þ AðzÞ − x − y − zþ w=2�Bðv; wÞ þ AðxÞ þ AðyÞ þ AðzÞ − AðvÞ=2 − x

− y − zþ 9ðvþ wÞ=8 − s=4: ð2:51Þ
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It is crucial that only the renormalized (nonboldfaced) master integrals appear in renormalized expressions for physical
observables (for examples, see Refs. [33,76–84]), and therefore require numerical evaluation.
The results below involve polynomials that encode the threshold structure of the integrals, and which appear as

denominators in derivatives of the master integrals. They are the triangle function,

Δðx; y; zÞ ¼ ð ffiffiffi
x

p
−

ffiffiffi
y

p
−

ffiffiffi
z

p Þð ffiffiffi
x

p þ ffiffiffi
y

p
−

ffiffiffi
z

p Þð ffiffiffi
x

p
−

ffiffiffi
y

p þ ffiffiffi
z

p Þð ffiffiffi
x

p þ ffiffiffi
y

p þ ffiffiffi
z

p Þ ð2:52Þ

¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz; ð2:53Þ

and the corresponding kinematic threshold function with four arguments,

Ψðw; x; y; zÞ ¼ ð ffiffiffiffi
w

p
−

ffiffiffi
x

p
−

ffiffiffi
y

p
−

ffiffiffi
z

p Þð ffiffiffiffi
w

p þ ffiffiffi
x

p
−

ffiffiffi
y

p
−

ffiffiffi
z

p Þð ffiffiffiffi
w

p
−

ffiffiffi
x

p þ ffiffiffi
y

p
−

ffiffiffi
z

p Þ
× ð ffiffiffiffi

w
p þ ffiffiffi

x
p þ ffiffiffi

y
p

−
ffiffiffi
z

p Þð ffiffiffiffi
w

p
−

ffiffiffi
x

p
−

ffiffiffi
y

p þ ffiffiffi
z

p Þð ffiffiffiffi
w

p þ ffiffiffi
x

p
−

ffiffiffi
y

p þ ffiffiffi
z

p Þ
× ð ffiffiffiffi

w
p

−
ffiffiffi
x

p þ ffiffiffi
y

p þ ffiffiffi
z

p Þð ffiffiffiffi
w

p þ ffiffiffi
x

p þ ffiffiffi
y

p þ ffiffiffi
z

p Þ ð2:54Þ

¼ w4 þ x4 þ y4 þ z4 − 4ðw3xþ w3yþ w3zþ wx3 þ wy3 þ wz3 þ x3y

þ x3zþ xy3 þ xz3 þ y3zþ yz3Þ þ 4ðw2xyþ w2xzþ w2yzþ wx2y

þ wx2zþ wxy2 þ wxz2 þ wy2zþ wyz2 þ x2yzþ xy2zþ xyz2Þ
þ 6ðw2x2 þ w2y2 þ x2y2 þ w2z2 þ x2z2 þ y2z2Þ − 40wxyz; ð2:55Þ

and the threshold function with five arguments:

Ωðs; w; x; y; zÞ ¼ ð ffiffiffi
s

p
−

ffiffiffiffi
w

p
−

ffiffiffi
x

p
−

ffiffiffi
y

p
−

ffiffiffi
z

p Þð ffiffiffi
s

p þ ffiffiffiffi
w

p
−

ffiffiffi
x

p
−

ffiffiffi
y

p
−

ffiffiffi
z

p Þ
× ð ffiffiffi

s
p

−
ffiffiffiffi
w

p þ ffiffiffi
x

p
−

ffiffiffi
y

p
−

ffiffiffi
z

p Þð ffiffiffi
s

p þ ffiffiffiffi
w

p þ ffiffiffi
x

p
−

ffiffiffi
y

p
−

ffiffiffi
z

p Þ
× ð ffiffiffi

s
p

−
ffiffiffiffi
w

p
−

ffiffiffi
x

p þ ffiffiffi
y

p
−

ffiffiffi
z

p Þð ffiffiffi
s

p þ ffiffiffiffi
w

p
−

ffiffiffi
x

p þ ffiffiffi
y

p
−

ffiffiffi
z

p Þ
× ð ffiffiffi

s
p

−
ffiffiffiffi
w

p þ ffiffiffi
x

p þ ffiffiffi
y

p
−

ffiffiffi
z

p Þð ffiffiffi
s

p þ ffiffiffiffi
w

p þ ffiffiffi
x

p þ ffiffiffi
y

p
−

ffiffiffi
z

p Þ
× ð ffiffiffi

s
p

−
ffiffiffiffi
w

p
−

ffiffiffi
x

p
−

ffiffiffi
y

p þ ffiffiffi
z

p Þð ffiffiffi
s

p þ ffiffiffiffi
w

p
−

ffiffiffi
x

p
−

ffiffiffi
y

p þ ffiffiffi
z

p Þ
× ð ffiffiffi

s
p

−
ffiffiffiffi
w

p þ ffiffiffi
x

p
−

ffiffiffi
y

p þ ffiffiffi
z

p Þð ffiffiffi
s

p þ ffiffiffiffi
w

p þ ffiffiffi
x

p
−

ffiffiffi
y

p þ ffiffiffi
z

p Þ
× ð ffiffiffi

s
p

−
ffiffiffiffi
w

p
−

ffiffiffi
x

p þ ffiffiffi
y

p þ ffiffiffi
z

p Þð ffiffiffi
s

p þ ffiffiffiffi
w

p
−

ffiffiffi
x

p þ ffiffiffi
y

p þ ffiffiffi
z

p Þ
× ð ffiffiffi

s
p

−
ffiffiffiffi
w

p þ ffiffiffi
x

p þ ffiffiffi
y

p þ ffiffiffi
z

p Þð ffiffiffi
s

p þ ffiffiffiffi
w

p þ ffiffiffi
x

p þ ffiffiffi
y

p þ ffiffiffi
z

p Þ: ð2:56Þ

Despite the appearances of square roots, this expands to a
homogeneous polynomial of degree 8 in s, w, x, y, z, with
495 terms.
The numerators of expressions for derivatives of the

master integrals contain many other complicated polyno-
mials. The explicit form of these results is relegated to
ancillary electronic files, suitable for use with computers.
The derivatives of the one-loop master integrals with

respect to squared-mass arguments are well-known:

Aðx0Þ ¼ ð1 − ϵÞAðxÞ=x; ð2:57Þ

Bðx0; yÞ ¼ ½ð1 − 2ϵÞðx − y − sÞBðx; yÞ
þ ð1 − ϵÞðxþ y − sÞAðxÞ=x
þ 2ðϵ − 1ÞAðyÞ�=Δðs; x; yÞ: ð2:58Þ

For convenience, these and the more complicated
known results for Iðx0; y; zÞ, Sðx0; y; zÞ, Tðx0; y; zÞ,
Tðx; y0; zÞ, Fðw0; x; y; zÞ, Fðw; x0; y; zÞ, Gðv0; w; x; y; zÞ,
and Gðv; w0; x; y; zÞ are provided in the ancillary file
“derivativesbold,” in computer-readable form [85]. Also
given in that file are the derivatives with respect to s of
Bðx; yÞ, Sðx; y; zÞ, Tðx; y; zÞ. All of the corresponding
results for derivatives of the renormalized integrals AðxÞ,
Bðx; yÞ, Iðx; y; zÞ, Sðx; y; zÞ, Tðx; y; zÞ, Fðw; x; y; zÞ, and
Gðv; w; x; y; zÞ with respect to the squared masses, s, and
Q2 are collected in the ancillary file “derivatives” [85].
In the following, master integrals are simply chosen as

the ones that have unit numerators and the fewest possible
number of propagators, with one exception in Sec. IV. That
exception is made in order to eliminate an avoidable
pseudothreshold denominator factor in the differential
equations. Other than that single exception, in the cases
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encountered in this paper, there are no arbitrary choices to
be made, because of the generic masses.

III. EXPANSIONS IN SMALL EXTERNAL
MOMENTUM INVARIANT

Consider the class of self-energy integrals in which at
least one of the propagators connects the two vertices where
the external legs are attached, as shown in Fig. 2. Let
the momentum and squared mass of this propagator be kμ

and x respectively, and the external momentum is pμ with
invariant s ¼ −p2. The integral in question is denoted
fðs; x;…Þ, with the dependence on the other internal
squared masses indicated by the ellipses. The purpose of
this section is to derive a simple formula for the small-s
expansion of fðs; x;…Þ, in terms of vacuum integrals,
specifically the derivatives of fð0; x;…Þ with respect to x,
which are known for general masses up to three-loop
order [43].
To begin, let the other internal propagator momenta

meeting at one of the external vertices be called qμj , with
j ¼ 1;…; m. Then the integral can be expressed as

fðs; x;…Þ ¼
Z

ddθ
ð2πÞd

Z
ddk eiθ·ðp−k−

P
j
qjÞ G

1

k2 þ x
;

ð3:1Þ

where G denotes the rest of the integral, and contains other
propagators and momentum integrations, including inte-
grations over the qμj , and can even have numerator factors,
but has no direct dependence on pμ or kμ. This allows us
to write

∂

∂pμ

∂

∂pμ fðs; x;…Þ ¼
Z

ddθ
ð2πÞd

Z
ddk eiθ·ðp−k−

P
j
qjÞ

× G
∂

∂kμ

∂

∂kμ
1

k2 þ x
; ð3:2Þ

which in turn can be expressed in terms of derivatives with
respect to x. Doing this n times gives

�
∂

∂pμ

∂

∂pμ

�
n
fðs; x;…Þ

¼
�
−4x

∂
2

∂x2
þ 2ðd − 4Þ ∂

∂x

�
n

fðs; x;…Þ: ð3:3Þ

Now, using the identity

�
∂

∂pμ

∂

∂pμ

�
n
ðp2Þn ¼ dðdþ 2Þ…ðdþ 2n − 2Þ2nn!; ð3:4Þ

which can be verified by induction, I obtain a simple power
series in s ¼ −p2,

fðs; x;…Þ ¼
X∞
n¼0

snanDn
xfð0; x;…Þ; ð3:5Þ

where I have defined a differential operator,

Dx ¼ x
∂
2

∂x2
þ ϵ

∂

∂x
; ð3:6Þ

and the coefficients appearing in the expansion are

an ¼
1

n!
Γð2 − ϵÞ

Γðnþ 2 − ϵÞ : ð3:7Þ

Because derivatives of vacuum integrals fð0; x;…Þ with
respect to squared-mass arguments are relatively easy to
find (see Ref. [43] for the general case through three-loop
order), Eqs. (3.5)–(3.7) allow a fast and straightforward
evaluation of the small-s expansion of all self-energy
integrals of this class. This is the key result used to obtain
the identities below.
In some cases, more than one of the internal masses can

play the role of x in the preceding discussion. Suppose that
x and y are squared masses appearing in distinct single
propagators that both directly connect the two external
vertices. Then, because it does not matter whether one uses
Dx or Dy in the expansion, one obtains the simple but
nontrivial identity

Dxfðs; x; y;…Þ ¼ Dyfðs; x; y;…Þ: ð3:8Þ

For example, at one-loop order, one finds that the self-
energy master integral obeys

DxBðx; yÞ ¼ DyBðx; yÞ; ð3:9Þ

which can be checked using Eqs. (2.57) and (2.58).
Similarly, for the two-loop sunset integral,

FIG. 2. Diagram for a loop integral fðs; x;…Þ with the property
that the vertices where the two external legs are attached share an
internal propagator with squared mass x and momentum kμ. The
external momentum invariant is s ¼ −p2. The small s expansion
for integrals of this type is given by Eqs. (3.5)–(3.7), in terms of
derivatives with respect to x of the corresponding vacuum
integral fð0; x;…Þ.
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DxSðx; y; zÞ ¼ DySðx; y; zÞ ¼ DzSðx; y; zÞ: ð3:10Þ

This identity was noted in Eq. (3.7) of Ref. [41], where it
was expressed in terms of the renormalized version
Sðx; y; zÞ. Until now, the author had been somewhat
perplexed by the existence of this identity, since it is not
immediately obvious from the definition of the sunset
integral or its symmetries.
Similarly, for the three-loop self-energy integrals con-

sidered in this paper, the above argument informs us that

DwI4ðw; x; y; zÞ ¼ DxI4ðw; x; y; zÞ
¼ DyI4ðw; x; y; zÞ ¼ DzI4ðw; x; y; zÞ;

ð3:11Þ

and

DwI5bðv; w; x; y; zÞ ¼ DxI5bðv; w; x; y; zÞ; ð3:12Þ

identities whose existence would otherwise be mysterious,
at least to this author.

IV. THREE-LOOP FOUR-PROPAGATOR
SELF-ENERGY INTEGRALS

A. Inference of four-propagator self-energy
integral identities from small s expansions

Consider the integral I4ðw; x; y; zÞ. The expansion of this
function to arbitrary order in s can be obtained from
Eq. (3.5) using Eðw; x; y; zÞ in the role of fð0; x;…Þ.
The derivatives with respect to x are obtained using first
Eq. (2.16) above, and then iteratively using the results
for the derivatives of Fðx; w; y; zÞ given originally in the
ancillary file “derivatives.txt” included with Ref. [43], and
also provided in the ancillary file “derivativesbold” of the
present paper [85]. Computing Dn

xEðw; x; y; zÞ in this way,
I obtained the expansion to order s24 of I4ðw; x; y; zÞ. This
was then used to obtain the expansions for its first, second,
and third derivatives with respect to the squared masses w,
x, y, z. Then, plugging these into trial identities of the
form of Eq. (1.3), the polynomials giving valid identities
between these integrals were solved for and checked, by
considering for each power of s the coefficients of each of
the eight linearly independent vacuum master integrals
Fðw; x; y; zÞ, Fðx; w; y; zÞ, Fðy; w; x; zÞ, Fðz; w; x; yÞ,
AðwÞAðxÞAðyÞ, AðwÞAðxÞAðzÞ, AðwÞAðyÞAðzÞ, and
AðxÞAðyÞAðzÞ, and demanding that they vanish.
The simplest such nontrivial result involves the integral

defined as follows:

J4ðw; x; y; zÞ ¼ DwI4ðw; x; y; zÞ: ð4:1Þ

I find that this obeys

ðs − w − x − y − zÞJ4ðw; x; y; zÞ
¼ fð3 − 4ϵÞð2 − 3ϵÞ þ ð6ϵ − 4Þ½w∂w þ x∂x þ y∂y þ z∂z�
þ 2½wx∂w∂x þ wy∂w∂y þ wz∂w∂z þ xy∂x∂y

þ xz∂x∂z þ yz∂y∂z�gI4ðw; x; y; zÞ: ð4:2Þ

This identity has the very special feature that only the
polynomial multiplying J4ðw; x; y; zÞ involves s at all, and
it is linear in s. The fact that J4ðw; x; y; zÞ is invariant under
interchange of any of its arguments w, x, y, z is not manifest
from its definition in Eq. (4.1), but is clear from Eq. (4.2), in
agreement with the argument leading to Eq. (3.11).
Equation (4.2) allows us to eliminate one of the integrals

involved in it from the list of candidate master integrals.
It is convenient to keep J4ðw; x; y; zÞ as a master integral,
and eliminate I4ðw; x; y; zÞ instead, because this prevents
the appearance of factors of s − w − x − y − z in denom-
inators of expressions for derivatives of the master inte-
grals. (This choice is made mainly for the sake of
keeping the expressions as simple as possible. It also
makes the numerical evaluation more efficient for s equal
to, or very close to, wþ xþ yþ z, but this is not crucial to
get the numerical evaluation to work, as will be discussed
further in Sec. VI.) Also, the integrals I4ðw00; x; y; zÞ,
I4ðx00; w; y; zÞ, I4ðy00; w; x; zÞ, and I4ðz00; w; x; yÞ are all
easily eliminated, because they can be written in terms of
I4ðw0; x; y; zÞ, I4ðx0; w; y; zÞ, I4ðy0; w; x; zÞ, I4ðz0; w; x; yÞ,
and J4ðw; x; y; zÞ, using Eqs. (3.11) and (4.1). I thus find
that a good set of four-propagator master integrals for
generic w, x, y, z can be chosen to be

J4ðw; x; y; zÞ; I4ðw0; x; y; zÞ; I4ðx0; w; y; zÞ;
I4ðy0; w; x; zÞ; I4ðz0; w; x; yÞ;
I4ðw0; x0; y; zÞ; I4ðw0; y0; x; zÞ; I4ðw0; z0; x; yÞ;
I4ðx0; y0; w; zÞ; I4ðx0; z0; w; yÞ; I4ðy0; z0; w; xÞ;

ð4:3Þ

and the descendants of these integrals are obtained by
removing one propagator:

AðwÞAðxÞAðyÞ; AðwÞAðxÞAðzÞ;
AðwÞAðyÞAðzÞ; AðxÞAðyÞAðzÞ: ð4:4Þ

The derivatives of the master integrals in Eq. (4.3) with
respect to the squared-mass arguments can now be obtained
using the same strategy for constructing and verifying
identities, as outlined in the Introduction. In the following,
Ω ≡ Ωðs; w; x; y; zÞ. I find that
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ΩJ4ðw0; x; y; zÞ ¼ ð1 − 2ϵÞP7J4ðw; x; y; zÞ þ ð1 − 2ϵÞð2 − 3ϵÞP7I4ðw0; x; y; zÞ
þ ð1 − 2ϵÞð2 − 3ϵÞ½P6xI4ðx0; w; y; zÞ þ fx ↔ yg þ fx ↔ zg�
þ ð1 − 2ϵÞ½P7xI4ðw0; x0; y; zÞ þ fx ↔ yg þ fx ↔ zg�
þ ð1 − 2ϵÞ½P6xyI4ðx0; y0; w; zÞ þ fx ↔ zg þ fy ↔ zg�
þ ð1 − ϵÞ3½P6AðxÞAðyÞ þ fx ↔ zg þ fy ↔ zg�AðwÞ=w
þ ð1 − ϵÞ3P5AðxÞAðyÞAðzÞ; ð4:5Þ

where each instance of Pn indicates schematically the presence of a homogeneous polynomial in w, x, y, z, and s, of degree
n in the latter. Each such appearance of Pn, even within the same equation, stands for a different such polynomial, with the
actual results found in the ancillary files. (In most cases, n is also the squared-mass dimension of Pn, but in a few cases the
coefficient of sn is linear in the internal squared masses v; w; x;…, so that the squared-mass dimension of Pn is nþ 1.) Note
that the dependences on ϵ have been factored out explicitly. Similarly, I find the following schematic forms:

ΩI4ðw0; x0; y0; zÞ ¼ ð1 − 2ϵÞP6J4ðw; x; y; zÞ þ ð1 − 2ϵÞð2 − 3ϵÞP5zI4ðz0; w; x; yÞ
þ ð1 − 2ϵÞð2 − 3ϵÞ½P6I4ðw0; x; y; zÞ þ fw ↔ xg þ fw ↔ yg�
þ ð1 − 2ϵÞ½P7I4ðw0; x0; y; zÞ þ fw ↔ yg þ fx ↔ yg�
þ ð1 − 2ϵÞ½P6zI4ðw0; z0; x; yÞ þ fw ↔ xg þ fw ↔ yg�
þ ð1 − ϵÞ3½P6AðwÞAðxÞ=wxþ fw ↔ yg þ fx ↔ yg�AðzÞ
þ ð1 − ϵÞ3P7AðwÞAðxÞAðyÞ=wxy; ð4:6Þ

ΩwI4ðw00; x0; y; zÞ ¼ ð1 − 2ϵÞP7J4ðw; x; y; zÞ þ ð1 − 2ϵÞð2 − 3ϵÞP6wI4ðw0; x; y; zÞ
þ ð1 − 2ϵÞð2 − 3ϵÞP7I4ðx0; w; y; zÞ
þ ð1 − 2ϵÞð2 − 3ϵÞ½P6yI4ðy0; w; x; zÞ þ fy ↔ zg�
þ ½ð1 − 2ϵÞP7w − ϵΩ�I4ðw0; x0; y; zÞ þ ð1 − 2ϵÞP6yzI4ðy0; z0; w; xÞ
þ ð1 − 2ϵÞ½P6wyI4ðw0; y0; x; zÞ þ fy ↔ zg�
þ ð1 − 2ϵÞ½P7yI4ðx0; y0; w; zÞ þ fy ↔ zg�
þ ð1 − ϵÞ3½P6AðyÞ þ fy ↔ zg�AðwÞAðxÞ=x
þ ð1 − ϵÞ3P5AðwÞAðyÞAðzÞ þ ð1 − ϵÞ3P6AðxÞAðyÞAðzÞ=x: ð4:7Þ

The full explicit forms for Eqs. (4.5)–(4.7) are given in the
ancillary file “derivativesbold” [85]. These equations,
applied recursively, enable one to find all higher derivatives
with respect to the squared masses of the master integrals
listed in Eq. (4.3).
The derivatives of the master integrals with respect to s

can also be obtained from the preceding, by making use of
the dimensional analysis constraint

s
∂

∂s
þ w

∂

∂w
þ x

∂

∂x
þ y

∂

∂y
þ z

∂

∂z
− np ¼ 0; ð4:8Þ

where np is the squared-mass dimension of the integral
being acted on, excluding the μ dependence. (For example,
np ¼ 2–3ϵ for I4, and np ¼ 1–3ϵ for J4.) The results are of
the forms

s
∂

∂s
I4ðw0; x; y; zÞ ¼ ð1 − 2ϵÞI4ðw0; x; y; zÞ − J4ðw; x; y; zÞ

− xI4ðw0; x0; y; zÞ − yI4ðw0; y0; x; zÞ
− zI4ðw0; z0; x; yÞ; ð4:9Þ

and
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Ωs
∂

∂s
I4ðw0; x0; y; zÞ ¼ ð1 − 2ϵÞP6sJ4ðw; x; y; zÞ þ ð1 − 2ϵÞð2 − 3ϵÞ½P7I4ðw0; x; y; zÞ þ fw ↔ xg�

þ ð1 − 2ϵÞð2 − 3ϵÞ½P6yI4ðy0; w; x; zÞ þ fy ↔ zg� þ ½ð1 − 2ϵÞP6 − ϵΩ�I4ðw0; x0; y; zÞ
þ ð1 − 2ϵÞP6yzI4ðy0; z0; w; xÞ þ ð1 − 2ϵÞð½P7yI4ðw0; y0; x; zÞ þ fw ↔ xg� þ fy ↔ zgÞ
þ ð1 − ϵÞ3½P7AðyÞ þ fy ↔ zg�AðwÞAðxÞ=wxþ ð1 − ϵÞ3½P6AðwÞ=wþ fw ↔ xg�AðyÞAðzÞ;

ð4:10Þ

and

Ωs
∂

∂s
J4ðw; x; y; zÞ ¼ ½ð1 − 3ϵÞΩþ ð1 − 2ϵÞP7�J4ðw; x; y; zÞ þ ð1 − 2ϵÞð2 − 3ϵÞ½P7wI4ðw0; x; y; zÞ þ fw ↔ xg

þ fw ↔ yg þ fw ↔ zg� þ ð1 − 2ϵÞ½P7wxI4ðw0; x0; y; zÞ þ ð5 permutationsÞ�
þ ð1 − ϵÞ3½P6AðwÞAðxÞAðyÞ þ fw ↔ zg þ fx ↔ zg þ fy ↔ zg�: ð4:11Þ

Again, the full explicit formulas are given in the ancillary file “derivativesbold” [85].
For practical applications and numerical evaluation, it is appropriate to express results in terms of the renormalized

(nonboldfaced) integrals

J4ðw; x; y; zÞ; I4ðw0; x; y; zÞ; I4ðx0; w; y; zÞ; I4ðy0; w; x; zÞ; I4ðz0; w; x; yÞ;
I4ðw0; x0; y; zÞ; I4ðw0; y0; x; zÞ; I4ðw0; z0; x; yÞ;
I4ðx0; y0; w; zÞ; I4ðx0; z0; w; yÞ; I4ðy0; z0; w; xÞ; ð4:12Þ

defined by (2.26)–(2.29) along with the one-loop integrals AðwÞ, AðxÞ, AðyÞ, and AðzÞ defined by Eq. (2.19). Here the
counterparts of Eqs. (4.1) and (4.2) are the definition

J4ðw; x; y; zÞ ¼ wI4ðw00; x; y; zÞ þ AðwÞ=4 − 13w=12 ð4:13Þ

and the identity

ðs − w − x − y − zÞJ4ðw; x; y; zÞ ¼ f6 − 4½w∂w þ x∂x þ y∂y þ z∂z� þ 2½wx∂w∂x þ wy∂w∂y þ wz∂w∂z þ xy∂x∂y

þ xz∂x∂z þ yz∂y∂z�gI4ðw; x; y; zÞ − AðwÞAðxÞ − AðwÞAðyÞ − AðwÞAðzÞ − AðxÞAðyÞ
− AðxÞAðzÞ − AðyÞAðzÞ þ ð2xþ 2yþ 2z − 3w=4 − 5s=4ÞAðwÞ þ ð2wþ 2yþ 2z

− 3x=4 − 5s=4ÞAðxÞ þ ð2wþ 2xþ 2z − 3y=4 − 5s=4ÞAðyÞ
þ ð2wþ 2xþ 2y − 3z=4 − 5s=4ÞAðzÞ þ ½−25s2 þ 102sðwþ xþ yþ zÞ
þ 195ðw2 þ x2 þ y2 þ z2Þ − 216ðwxþ wyþ wzþ xyþ xzþ yzÞ�=72; ð4:14Þ

which shows that I4ðw; x; y; zÞ can be eliminated in favor of J4ðw; x; y; zÞ, thus avoiding the appearance of s − w − x −
y − z in denominators, and also shows the nontrivial property that J4ðw; x; y; zÞ is invariant under interchange of any two of
w, x, y, z.
It then follows from the results above that the squared-mass derivatives of the renormalized master integrals are

schematically of the forms

ΩJ4ðw0; x; y; zÞ ¼ P7J4ðw; x; y; zÞ þ P7I4ðw0; x; y; zÞ þ ½P6xI4ðx0; w; y; zÞ þ fx ↔ yg þ fx ↔ zg�
þ ½P7xI4ðw0; x0; y; zÞ þ fx ↔ yg þ fx ↔ zg� þ ½P6xyI4ðx0; y0; w; zÞ þ fx ↔ zg þ fy ↔ zg�
þ ½P6AðxÞAðyÞ þ fx ↔ zg þ fy ↔ zg�AðwÞ=wþ P5AðxÞAðyÞAðzÞ
þ ½P7AðxÞ þ fx ↔ yg þ fx ↔ zg�AðwÞ=wþ ½P6AðxÞAðyÞ þ fx ↔ zg þ fy ↔ zg�
þ P8AðwÞ=wþ ½P7AðxÞ þ fx ↔ zg þ fy ↔ zg� þ P8; ð4:15Þ
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ΩI4ðw0; x0; y0; zÞ ¼ P6J4ðw; x; y; zÞ þ P5zI4ðz0; w; x; yÞ þ ½P6I4ðw0; x; y; zÞ þ fw ↔ xg þ fw ↔ yg�
þ ½P7I4ðw0; x0; y; zÞ þ fw ↔ yg þ fx ↔ yg� þ ½P6zI4ðw0; z0; x; yÞ þ fw ↔ xg þ fw ↔ yg�
þ ½P6AðwÞAðxÞ=wxþ fw ↔ yg þ fx ↔ yg�AðzÞ þ P7AðwÞAðxÞAðyÞ=wxy
þ ½P7AðwÞAðxÞ=wxþ fw ↔ yg þ fx ↔ yg� þ ½P6AðwÞ=wþ fw ↔ xg þ fw ↔ yg�AðzÞ
þ ½P7AðwÞ=wþ fw ↔ xg þ fw ↔ yg� þ P6AðzÞ þ P7; ð4:16Þ

ΩwI4ðw00; x0; y; zÞ ¼ P7J4ðw; x; y; zÞ þ P6wI4ðw0; x; y; zÞ þ P7I4ðx0; w; y; zÞ
þ ½P6yI4ðy0; w; x; zÞ þ fy ↔ zg� þ P7wI4ðw0; x0; y; zÞ
þ P6yzI4ðy0; z0; w; xÞ þ ½P6wyI4ðw0; y0; x; zÞ þ ðy ↔ zÞ�
þ ½P7yI4ðx0; y0; w; zÞ þ ðy ↔ zÞ� þ ½P6AðyÞ þ fy ↔ zg�AðwÞAðxÞ=x
þ P5AðwÞAðyÞAðzÞ þ P6AðxÞAðyÞAðzÞ=xþ P7AðwÞAðxÞ=x
þ ½P6AðyÞ þ fy ↔ zg�AðwÞ þ ½P7AðyÞ þ fy ↔ zg�AðxÞ=x
þ P6AðyÞAðzÞ þ P7AðwÞ þ P8AðxÞ=xþ ½P7AðyÞ þ fy ↔ zg� þ P8; ð4:17Þ

while the derivatives with respect to s are

s
∂

∂s
I4ðw0; x; y; zÞ ¼ I4ðw0; x; y; zÞ − J4ðw; x; y; zÞ − xI4ðw0; x0; y; zÞ − yI4ðw0; y0; x; zÞ

− zI4ðw0; z0; x; yÞ −
�
AðxÞ þ AðyÞ þ AðzÞ þ xþ yþ z −

3w
4

−
s
2

�
AðwÞ=wþ 2w

3
−
s
8
; ð4:18Þ

Ωs
∂

∂s
J4ðw; x; y; zÞ ¼ P8J4ðw; x; y; zÞ þ ½P7wI4ðw0; x; y; zÞ þ fw ↔ xg þ fw ↔ yg þ fw ↔ zg�

þ ½P7wxI4ðw0; x0; y; zÞ þ ð5 permutationsÞ�
þ ½P6AðwÞAðxÞAðyÞ þ fw ↔ zg þ fx ↔ zg þ fy ↔ zg�
þ ½P7AðwÞAðxÞ þ ð5 permutationsÞ�
þ ½P8AðwÞ þ fw ↔ xg þ fw ↔ yg þ fw ↔ zg� þ P9; ð4:19Þ

Ωs
∂

∂s
I4ðw0; x0; y; zÞ ¼ P6sJ4ðw; x; y; zÞ þ ½P7I4ðw0; x; y; zÞ þ fw ↔ xg�

þ ½P6yI4ðy0; w; x; zÞ þ fy ↔ zg� þ P7I4ðw0; x0; y; zÞ þ P6yzI4ðy0; z0; w; xÞ
þ ð½P7yI4ðw0; y0; x; zÞ þ fw ↔ xg� þ fy ↔ zgÞ
þ ½P7AðyÞ þ fy ↔ zg�AðwÞAðxÞ=wx
þ ½P6AðwÞ=wþ fw ↔ xg�AðyÞAðzÞ þ P8AðwÞAðxÞ=wx
þ ð½P6AðwÞAðyÞ=wþ fw ↔ xg� þ fy ↔ zgÞ þ P5AðyÞAðzÞ
þ ½P8AðwÞ=wþ fw ↔ xg� þ ½P7AðyÞ þ fy ↔ zg� þ P8: ð4:20Þ

The full explicit expressions for Eqs. (4.15)–(4.20) are
given in the ancillary file “derivatives” [85]. Note that, as
promised in Ref. [44], contributions of positive powers of ϵ
in the expansions of AðxÞ, etc., do not appear. A further
consistency check is provided by comparing the special
case w ¼ x ¼ y ¼ z to the results obtained in Ref. [44].
Obtaining the numerical results for the renormalized

master integrals is now straightforward, using exactly
the same method used for two-loop self-energy integrals

in Ref. [42]. The coupled first-order differential equa-
tions (4.18)–(4.20) can be solved numerically, by applying
a Runge-Kutta or similar method to integrate with respect
to s in the upper half complex plane, starting from s ¼ 0
using the boundary conditions

J4ðw; x; y; zÞjs¼0 ¼ −wFðw0; x; y; zÞ þ AðwÞ=4 − 13w=12;

ð4:21Þ
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I4ðw0; x; y; zÞjs¼0 ¼ −Fðw; x; y; zÞ; ð4:22Þ
I4ðw0; x0; y; zÞjs¼0 ¼ −Fðw; x0; y; zÞ; ð4:23Þ

and obvious permutations thereof. The numerical values of
the right sides of these boundary conditions can be
evaluated using the results for the derivatives of F in the
ancillary file “derivatives” and the 3VIL code [43]. For
reasons of numerical stability, it is often better to start at a
value slightly displaced from s ¼ 0, which can be done
using the series expansions implied by Eq. (3.5).

B. Alternative method: Expansions in one large mass

As noted near the end of the Introduction, the method of
inferring identities using the polynomial form of coefficients

resulting from IBP relations, without actually using the IBP
procedure, can instead be carried out using other expansions
(rather than small s). In this subsection I will briefly remark
on a method that allows one to discover the identities for the
Bðx; yÞ system at the one-loop, two-loop Sðx; y; zÞ and
Tðx; y; zÞ system, and the three-loop four-propagator case,
yielding the same results as in the previous subsection.
The idea is to choose one of the squared masses z on a

propagator connecting both external vertices as large, and
to expand simultaneously in s and all other squared masses.
The tools necessary to find expansions of this type for all
N-loop integrals with N þ 1 propagators were worked out
in Ref. [54]. Applying the methods of that reference, one
finds the completely analytic expansions valid when z is
large compared with s, w, x, y:

AðzÞ ¼ z

�
4πμ2

z

�
ϵ

Γðϵ − 1Þ ð4:24Þ

Bðy; zÞ ¼
�
4πμ2

z

�
ϵ

Γðϵ − 1ÞΓð2 − ϵÞ
X∞
n¼0

X∞
k¼0

ðnþ kÞ!
n!k!Γðnþ 2 − ϵÞ

�
s
z

�
n
�
y
z

�
k
��

y
z

�
1−ϵ Γðnþ kþ 2 − ϵÞ

Γðkþ 2 − ϵÞ −
Γðnþ kþ ϵÞ
Γðkþ ϵÞ

�

ð4:25Þ

Sðx; y; zÞ ¼ z

�
4πμ2

z

�
2ϵ

½Γðϵ − 1ÞΓð2 − ϵÞ�2
X∞
n¼0

X∞
k¼0

X∞
j¼0

ðs=zÞnðx=zÞkðy=zÞj
n!k!j!Γðnþ 2 − ϵÞ

�
Γðjþ kþ nþ ϵÞΓðjþ kþ n − 1þ 2ϵÞ

Γðkþ ϵÞΓðjþ ϵÞ

−
�
y
z

�
1−ϵ Γðjþ kþ nþ 1ÞΓðjþ kþ nþ ϵÞ

Γðkþ ϵÞΓðjþ 2 − ϵÞ −
�
x
z

�
1−ϵ Γðjþ kþ nþ 1ÞΓðjþ kþ nþ ϵÞ

Γðkþ 2 − ϵÞΓðjþ ϵÞ
�

þ
�
x
z

�
1−ϵ

�
y
z

�
1−ϵ Γðjþ kþ nþ 1ÞΓðjþ kþ nþ 2 − ϵÞ

Γðkþ 2 − ϵÞΓðjþ 2 − ϵÞ
�

ð4:26Þ

I4ðw; x; y; zÞ ¼ −z2
�
4πμ2

z

�
3ϵ

½Γðϵ − 1ÞΓð2 − ϵÞ�3
X∞
n¼0

X∞
k¼0

X∞
j¼0

X∞
l¼0

ðs=zÞnðw=zÞkðx=zÞjðy=zÞl
n!k!j!l!Γðnþ 2 − ϵÞ

×

�
Γðjþ kþ lþ n − 2þ 3ϵÞΓðjþ kþ lþ n − 1þ 2ϵÞ

Γðkþ ϵÞΓðjþ ϵÞΓðlþ ϵÞ

−
�
y
z

�
1−ϵ Γðjþ kþ lþ n − 1þ 2ϵÞΓðjþ kþ lþ nþ ϵÞ

Γðkþ ϵÞΓðjþ ϵÞΓðlþ 2 − ϵÞ

−
�
x
z

�
1−ϵ Γðjþ kþ lþ n − 1þ 2ϵÞΓðjþ kþ lþ nþ ϵÞ

Γðkþ ϵÞΓðjþ 2 − ϵÞΓðlþ ϵÞ

−
�
w
z

�
1−ϵ Γðjþ kþ lþ n − 1þ 2ϵÞΓðjþ kþ lþ nþ ϵÞ

Γðkþ 2 − ϵÞΓðjþ ϵÞΓðlþ ϵÞ

þ
�
y
z

�
1−ϵ

�
x
z

�
1−ϵ Γðjþ kþ lþ nþ ϵÞΓðjþ kþ lþ nþ 1Þ

Γðkþ ϵÞΓðjþ 2 − ϵÞΓðlþ 2 − ϵÞ

þ
�
y
z

�
1−ϵ

�
w
z

�
1−ϵ Γðjþ kþ lþ nþ ϵÞΓðjþ kþ lþ nþ 1Þ

Γðkþ 2 − ϵÞΓðjþ ϵÞΓðlþ 2 − ϵÞ

þ
�
x
z

�
1−ϵ

�
w
z

�
1−ϵ Γðjþ kþ lþ nþ ϵÞΓðjþ kþ lþ nþ 1Þ

Γðkþ 2 − ϵÞΓðjþ 2 − ϵÞΓðlþ ϵÞ

−
�
y
z

�
1−ϵ

�
x
z

�
1−ϵ

�
w
z

�
1−ϵ Γðjþ kþ lþ nþ 1ÞΓðjþ kþ lþ nþ 2 − ϵÞ

Γðkþ 2 − ϵÞΓðjþ 2 − ϵÞΓðlþ 2 − ϵÞ
�
: ð4:27Þ
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For the three-loop four-propagator case, arbitrary deriva-
tives of I4ðw; x; y; zÞ are immediately obtained from
Eq. (4.27). Then, consider a trial identity of the form of
Eq. (1.3), with polynomials Ck that are linear combinations
of spswpwxpxypyzpz , subject to the constraints that ps, pw,
px, py, and pz are all non-negative integers, with
ps þ pw þ px þ py þ pz ¼ nk. One can now consider in
turn each coefficient of a fixed power of s, w, x, y in the
identity, and require it to vanish, solving for one of the
polynomial coefficients each time. Note that the power of s
in the identity is always a non-negative integer, while each
of the powers ofw, x, y can be either an integer or an integer
minus ϵ, giving eight linearly independent constraints for
each set of integer powers of s, w, x, y. By using Eq. (4.27)
truncated at large n, k, l, j, I have used this method to check
the three-loop I4 topology identities claimed in the pre-
vious subsection. The same method applied to Eqs. (4.25)
and (4.26) can be used to check the previously known
identities for the one-loop and two-loop topologies.
I emphasize again that the validity of the identities

obtained by this method does not rely on the convergence

of the expansions for physically relevant values of s and the
squared masses. Once an identity has been put into
polynomial coefficient form by multiplying by common
denominators, one can even set z ¼ 0 with impunity,
despite the fact that the expansion used to obtain it relied
on the large z limit (in this subsection) or the small s limit
(in the previous subsection).

V. THREE-LOOP FIVE-PROPAGATOR
SELF-ENERGY INTEGRALS

A. Topology I5a
Consider the self-energy integrals given by the topology

I5a shown in Figure 1. The small-s expansion of the
integral I5aðv; w; x; y; zÞ can in principle be obtained to
arbitrary order using Eqs. (3.5)–(3.7), with v playing the
role of x, andGðv; w; x; y; zÞ playing the role of fð0; v;…Þ.
This can then be used to obtain the small-s expansions of
the derivatives of I5aðv; w; x; y; zÞ with respect to its
squared masses, in terms of the 17 linearly independent
master vacuum integrals

Gðv; w; x; y; zÞ; Fðw; x; y; zÞ; Fðx; w; y; zÞ; Fðy; w; x; zÞ; Fðz; w; x; yÞ;
AðwÞIðv; y; zÞ; AðxÞIðv; y; zÞ; AðyÞIðv; w; xÞ; AðzÞIðv; w; xÞ;
AðvÞAðwÞAðyÞ; AðvÞAðwÞAðzÞ; AðvÞAðxÞAðyÞ; AðvÞAðxÞAðzÞ;
AðwÞAðxÞAðyÞ; AðwÞAðxÞAðzÞ; AðwÞAðyÞAðzÞ; AðxÞAðyÞAðzÞ: ð5:1Þ

The results below were found and checked by doing the expansion to order s20, using different rational numerical values of
v, w, x, y, z repeatedly in order to keep the sizes of the expressions small, until no further information could be obtained.
Then, using the method for discovering identities discussed in the Introduction, I checked that the five-propagator master

integrals for this topology are

I5aðv; w; x; y; zÞ; I5aðv0; w; x; y; zÞ; I5aðv; w0; x; y; zÞ;
I5aðv; x0; w; y; zÞ; I5aðv; y0; z; w; xÞ; I5aðv; z0; y; w; xÞ; ð5:2Þ

and their descendants obtained by removing one of the propagators,

Fðw; x; y; zÞ; Fðx; w; y; zÞ; Fðy; w; x; zÞ; Fðz; w; x; yÞ;
AðyÞSðv; w; xÞ; AðyÞTðv; w; xÞ; AðyÞTðw; v; xÞ; AðyÞTðx; v; wÞ;
AðzÞSðv; w; xÞ; AðzÞTðv; w; xÞ; AðzÞTðw; v; xÞ; AðzÞTðx; v; wÞ;
AðwÞSðv; y; zÞ; AðwÞTðv; y; zÞ; AðwÞTðy; v; zÞ; AðwÞTðz; v; yÞ;
AðxÞSðv; y; zÞ; AðxÞTðv; y; zÞ; AðxÞTðy; v; zÞ; AðxÞTðz; v; yÞ; ð5:3Þ

and further vacuum integral descendants AðvÞAðwÞAðyÞ,
etc., obtained by removing another propagator. The deriv-
atives of the master integrals in Eq. (5.3) were all
previously known, and are given for completeness in the
ancillary file “derivativesbold ” [85].
I then used the same method described in the

Introduction to obtain the identities for the derivatives of

the master integrals in Eq. (5.2) as linear combinations of
the integrals in Eqs. (5.2) and (5.3). The results for

I5aðv00; w; x; y; zÞ; I5aðv0; w0; x; y; zÞ; ð5:4Þ
I5aðv;w00;x;y;zÞ; I5aðv;w0;x0;y;zÞ; I5aðv;w0;x;y0;zÞ;

ð5:5Þ
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and permutations dictated by symmetries, have the pro-
perty that the coefficients are rational functions of v, w,
x, y, z, s, and ϵ, with denominators involving Ψðs; v; w; xÞ,

Ψðs; v; y; zÞ, and s − v, but no other polynomials in s. The
derivatives of the master integrals with respect to s are then
obtained using dimensional analysis:

s
∂

∂s
I5aðv; w; x; y; zÞ ¼ ð1 − 3ϵÞI5aðv; w; x; y; zÞ − vI5aðv0; w; x; y; zÞ − wI5aðv; w0; x; y; zÞ

− xI5aðv; x0; w; y; zÞ − yI5aðv; y0; z; w; xÞ − zI5aðv; z0; y; w; xÞ ð5:6Þ

s
∂

∂s
I5aðv0; w; x; y; zÞ ¼ −3ϵI5aðv0; w; x; y; zÞ − vI5aðv00; w; x; y; zÞ − wI5aðv0; w0; x; y; zÞ

− xI5aðv0; x0; w; y; zÞ − yI5aðv0; y0; z; w; xÞ − zI5aðv0; z0; y; w; xÞ ð5:7Þ

s
∂

∂s
I5aðv; w0; x; y; zÞ ¼ −3ϵI5aðv; w0; x; y; zÞ − vI5aðv0; w0; x; y; zÞ − wI5aðv; w00; x; y; zÞ

− xI5aðv; w0; x0; y; zÞ − yI5aðv; w0; x; y0; zÞ − zI5aðv; w0; x; z0; yÞ: ð5:8Þ

The results for Eqs. (5.4)–(5.8) are given explicitly in terms of the master integrals in the ancillary file
“derivativesbold” [85].
From the above results, it is straightforward to obtain the corresponding nontrivial derivatives of the renormalized master

integrals:

I5aðv00; w; x; y; zÞ; I5aðv0; w0; x; y; zÞ; ð5:9Þ

I5aðv; w00; x; y; zÞ; I5aðv; w0; x0; y; zÞ; I5aðv; w0; x; y0; zÞ; ð5:10Þ

s
∂

∂s
I5aðv; w; x; y; zÞ; s

∂

∂s
I5aðv0; w; x; y; zÞ; s

∂

∂s
I5aðv; w0; x; y; zÞ; ð5:11Þ

Q2
∂

∂Q2
I5aðv; w; x; y; zÞ; Q2

∂

∂Q2
I5aðv0; w; x; y; zÞ; Q2

∂

∂Q2
I5aðv; w0; x; y; zÞ: ð5:12Þ

They are given in the ancillary file “derivatives” [85].
The numerical evaluation of the renormalized master integrals

I5aðv; w; x; y; zÞ; I5aðv0; w; x; y; zÞ; I5aðv; w0; x; y; zÞ;
I5aðv; x0; w; y; zÞ; I5aðv; y0; z; w; xÞ; I5aðv; z0; y; w; xÞ;
Sðv; w; xÞ; Tðv; w; xÞ; Tðw; v; xÞ; Tðx; v; wÞ;
Sðv; y; zÞ; Tðv; y; zÞ; Tðy; v; zÞ; Tðz; v; yÞ; ð5:13Þ

can now be accomplished by solving the coupled first-order
differential equations in s. The numerical solution by
Runge-Kutta or a similar method starts from the boundary
conditions at s ¼ 0 (or small s) in terms of the renormalized
versions of the vacuum integrals in Eq. (5.1), which can be
obtained from the results for the derivatives of I, F, and G
in the ancillary file “derivatives,” and then using the
code 3VIL.
Besides the polynomials in s, the denominators of the

expressions for I5aðv; w00; x; y; zÞ and I5aðv; w0; x0; y; zÞ
contain factors of w − x andΨðw; x; y; zÞ, which can vanish
when w ¼ x and when y ¼ z. The expression for
I5aðv; w0; x; y0; zÞ also has a factor of Ψðw; x; y; zÞ. The

same holds for the derivatives of the corresponding
renormalized master integrals in Eq. (5.10). In the special
cases w ¼ x and y ¼ z, the identities can be obtained by
taking the corresponding limits. More importantly from a
practical point of view, it should be noted that the s
derivatives of the master integrals in Eq. (5.11) are
completely free of denominators that vanish when w ¼ x
and/or y ¼ z, so that there is no obstacle to evaluating the
master integrals numerically even in those special cases. In
particular, I have checked that in the special case of
v ¼ w ¼ x ¼ y ¼ z, all of the results described above
agree with those found (using the traditional IBP method)
in Ref. [44].
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B. Topology I5b
Next, consider the self-energy integrals given by the

topology I5b shown in Figure 1. The small-s expansion of
the integral I5bðv; w; x; y; zÞ can in principle be obtained to
arbitrary order using Eqs. (3.5)–(3.7), with fð0; x;…Þ ¼
Gðv; w; x; y; zÞ. This can then be used to obtain the small-s
expansions of arbitrary derivatives of I5bðv; w; x; y; zÞ with

respect to its squared-mass arguments, in terms of the
same 17 linearly independent master vacuum integrals that
appeared in Eq. (5.1). In practice, I found the results below
using expansions to order s20, repeatedly choosing different
rational values for v, w, x, y, z to keep the expressions
tractable, until no further information could be obtained.
Doing so, I checked that the master integrals are

I5bðv; w; x; y; zÞ; I5bðv0; w; x; y; zÞ; I5bðv; w0; x; y; zÞ; I5bðv; x0; w; y; zÞ; ð5:14Þ

along with their descendants obtained by removing one propagator, including the master integrals associated with the
subsidiary topology I4ðw; x; y; zÞ found in Eq. (4.3), as well as

AðyÞSðv; w; xÞ; AðyÞTðv; w; xÞ; AðyÞTðw; v; xÞ; AðyÞTðx; w; vÞ;
AðzÞSðv; w; xÞ; AðzÞTðv; w; xÞ; AðzÞTðw; v; xÞ; AðzÞTðx; w; vÞ;
AðwÞIðv; y; zÞ; AðxÞIðv; y; zÞ; ð5:15Þ

and further vacuum integral descendants AðvÞAðwÞAðyÞ, etc., obtained by removing another propagator.
I then used the method described in the Introduction to obtain the identities yielding the derivatives of the master integrals

in Eq. (5.14):

I5bðv; w; x; y0; zÞ; I5bðv00; w; x; y; zÞ; I5bðv0; w0; x; y; zÞ;
I5bðv; w0; x0; y; zÞ; I5bðv; w00; x; y; zÞ; ð5:16Þ

and others related to them by symmetries, as linear combinations of the master integrals. The first of these identities is
particularly simple, as there are only a few terms, and all of the polynomials are actually independent of s:

Δðv; y; zÞI5bðv; w; x; y0; zÞ ¼ ð1 − 2ϵÞðy − v − zÞI5bðv; w; x; y; zÞ þ ðv − y − zÞI4ðy0; w; x; zÞ
þ 2zI4ðz0; w; x; yÞ þ ð1 − ϵÞSðv; w; xÞ½ðyþ z − vÞAðyÞ=y − 2AðzÞ�: ð5:17Þ

From the results for Eq. (5.16), all higher derivatives [such as I5bðv000; w; x; y; zÞ and Iðv0; w; x; y0; zÞ] can be obtained by
iteration, and the identity given above as Eq. (3.12) can be verified. Furthermore, the derivatives with respect to s are
obtained using

s
∂

∂s
I5bðv; w; x; y; zÞ ¼ ð1 − 3ϵÞI5bðv; w; x; y; zÞ − vI5bðv0; w; x; y; zÞ − wI5bðv; w0; x; y; zÞ

− xI5bðv; x0; w; y; zÞ − yI5bðv; w; x; y0; zÞ − zI5bðv; w; x; z0; yÞ; ð5:18Þ

s
∂

∂s
I5bðv0; w; x; y; zÞ ¼ −3ϵI5bðv0; w; x; y; zÞ − vI5bðv00; w; x; y; zÞ − wI5bðv0; w0; x; y; zÞ

− xI5bðv0; x0; w; y; zÞ − yI5bðv0; w; x; y0; zÞ − zI5bðv0; w; x; z0; yÞ; ð5:19Þ

s
∂

∂s
I5bðv; w0; x; y; zÞ ¼ −3ϵI5bðv; w0; x; y; zÞ − vI5bðv0; w0; x; y; zÞ − wI5bðv; w00; x; y; zÞ

− xI5bðv; w0; x0; y; zÞ − yI5bðv; w0; x; y0; zÞ − zI5bðv; w0; x; z0; yÞ: ð5:20Þ

The explicit results for Eqs. (5.16)–(5.20) are given in the ancillary file “derivativesbold” [85]. Each of these results is a
linear combination of the master integrals in Eqs. (5.14)–(5.15), with coefficients that are rational functions of s, v, w, x, y,
z, and ϵ, with denominator polynomials Ψðs; w; x; vÞ and Δðv; y; zÞ.
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For the renormalized master integrals, the above results can be used to obtain the nontrivial derivatives

I5bðv; w; x; y0; zÞ; I5bðv00; w; x; y; zÞ; I5bðv0; w0; x; y; zÞ;
I5bðv; w0; x0; y; zÞ; I5bðv; w00; x; y; zÞ; ð5:21Þ

s
∂

∂s
I5bðv; w; x; y; zÞ; s

∂

∂s
I5bðv0; w; x; y; zÞ; s

∂

∂s
I5bðv; w0; x; y; zÞ; ð5:22Þ

Q2
∂

∂Q2
I5bðv; w; x; y; zÞ; Q2

∂

∂Q2
I5bðv0; w; x; y; zÞ; Q2

∂

∂Q2
I5bðv; w0; x; y; zÞ; ð5:23Þ

and others related by symmetries. They are given explicitly in
the ancillary file “derivatives” [85]. I checked that in the special
case v ¼ w ¼ x ¼ y ¼ z, all of the results described above
agree with those found using the traditional IBP method in
Ref. [44]. The first-order coupled linear differential equa-
tions (5.22), together with the ones listed in Eq. (4.12) and the
ones for Sðv; w; xÞ, Tðv; w; xÞ, Tðw; v; xÞ, Tðx; w; vÞ, all
listed in the same ancillary file “derivatives,” can be numeri-
cally solved simultaneously using Runge-Kutta, as discussed
above.

C. Topology I5c
Finally, consider the self-energy integrals given by the

topology I5c depicted in Figure 1. The small-s expansion of

the integral I5cðv; w; x; y; zÞ can in principle be obtained to
arbitrary order using Eqs. (3.5)–(3.7), with v playing the
role of x, and

fð0; v;…Þ ¼ Eðv; x; y; zÞ −Eðw; x; y; zÞ
w − v

: ð5:24Þ

This can then be used to obtain the small-s expansions of
derivatives of I5cðv; w; x; y; zÞ with respect to its squared-
mass arguments, in terms of the 15 linearly independent
master vacuum integrals

Fðw; x; y; zÞ; Fðx; w; y; zÞ; Fðy; w; x; zÞ; Fðz; w; x; yÞ;
Fðv; x; y; zÞ; Fðx; v; y; zÞ; Fðy; v; x; zÞ; Fðz; v; x; yÞ;
AðwÞAðxÞAðyÞ; AðwÞAðxÞAðzÞ; AðwÞAðyÞAðzÞ; AðxÞAðyÞAðzÞ;
AðvÞAðxÞAðyÞ; AðvÞAðxÞAðzÞ; AðvÞAðyÞAðzÞ: ð5:25Þ

In practice, I obtained the results below using expansions to order s20, repeatedly choosing different rational values for v, w,
x, y, z until no further information could be obtained.
Doing so, I found that the master integrals for this topology are

I5cðv; w; x; y; zÞ; I5cðv; w; x0; y; zÞ; I5cðv; w; y0; x; zÞ; I5cðv; w; z0; x; yÞ; ð5:26Þ

together with the ones for I4ðv; x; y; zÞ, obtained from Sec. IVAwith w → v, and the other master integrals for descendants
obtained by removing one of the propagators in other ways:

Fðw; x; y; zÞ; Fðx; w; y; zÞ; Fðy; w; x; zÞ; Fðz; w; x; yÞ;
AðxÞAðyÞBðv; wÞ; AðxÞAðzÞBðv; wÞ; AðyÞAðzÞBðv; wÞ: ð5:27Þ

Then, I used the method outlined in the Introduction to obtain expressions for the derivatives of the master integrals,

I5cðv0; w; x; y; zÞ; I5cðv; w0; x; y; zÞ; I5cðv; w; x00; y; zÞ; I5cðv; w; x0; y0; zÞ; ð5:28Þ

as linear combinations of the master integrals. The first two can be written in a remarkably compact form, in terms of
Δðs; v; wÞ (denoted as Δ in the remainder of this subsection):
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ΔI5cðv0; w; x; y; zÞ ¼ ð1 − 2ϵÞðv − w − sÞI5cðv; w; x; y; zÞ þ ðw − 3v − sÞI4ðv0; x; y; zÞ
− 2xI4ðx0; v; y; zÞ − 2yI4ðy0; v; x; zÞ − 2zI4ðz0; v; x; yÞ
þ 2ð3 − 4ϵÞI4ðv; x; y; zÞ þ 2ðϵ − 1ÞEðw; x; y; zÞ; ð5:29Þ

ΔwI5cðv; w0; x; y; zÞ ¼ ð1 − 2ϵÞðs2 − 2sv − 3swþ v2 − 3vwþ 2w2ÞI5cðv; w; x; y; zÞ
− Δ½xI5cðv; w; x0; y; zÞ þ yI5cðv; w; y0; x; zÞ þ zI5cðv; w; z0; x; yÞ�
þ ð3 − 4ϵÞðs − v − wÞI4ðv; x; y; zÞ þ 2ðv − sÞvI4ðv0; x; y; zÞ
þ ðvþ w − sÞ½xI4ðx0; v; y; zÞ þ yI4ðy0; v; x; zÞ þ zI4ðz0; v; x; yÞ
þ ð1 − ϵÞEðw; x; y; zÞ�: ð5:30Þ

Here I have used Eqs. (2.14) and (4.2) to make the formulas even more compact. For the remaining two quantities in
Eq. (5.28), the coefficients of the master integrals are somewhat more complicated but do not depend on s at all, and have
denominator polynomials Ψðw; x; y; zÞ. The results for derivatives indicated in Eq. (5.28) are provided in the ancillary file
“derivativesbold” [85].
The results for the derivatives of the master integrals with respect to s follow from dimensional analysis, and are simple

enough that they can be written on a few lines:

Δs
∂

∂s
I5cðv; w; x; y; zÞ ¼ fð1 − 2ϵÞ½sðvþ wÞ − ðv − wÞ2� − ϵΔgI5cðv; w; x; y; zÞ

þ ð3sþ v − wÞvI4ðv0; x; y; zÞ þ ðsþ v − wÞ½ð4ϵ − 3ÞI4ðv; x; y; zÞ
þ xI4ðx0; v; y; zÞ þ yI4ðy0; v; x; zÞ þ zI4ðz0; v; x; yÞ þ ð1 − ϵÞEðw; x; y; zÞ�; ð5:31Þ

Δs
∂

∂s
I5cðv; w; x0; y; zÞ ¼ fð1 − 2ϵÞ½sðvþ wÞ − ðv − wÞ2� − ϵΔgI5cðv; w; x0; y; zÞ

þ ð3sþ v − wÞvI4ðv0; x0; y; zÞ þ ðsþ v − wÞ½ð3ϵ − 2ÞI4ðx0; v; y; zÞ
þ zI4ðx0; z0; v; yÞ þ yI4ðx0; y0; v; zÞ þ J4ðv; x; y; zÞ þ ðϵ − 1ÞFðx; w; y; zÞ�; ð5:32Þ

and the obvious permutations obtained from the latter equation with x ↔ y or x ↔ z. For convenience, these are also
included in the ancillary file “derivativesbold” in computer readable form, but written directly in terms of the master
integrals rather than Eðw; x; y; zÞ and I4ðv; x; y; zÞ.
The corresponding results for the renormalized master integrals,

I5cðv0; w; x; y; zÞ; I5cðv; w0; x; y; zÞ; I5cðv; w; x00; y; zÞ; I5cðv; w; x0; y0; zÞ;

s
∂

∂s
I5cðv; w; x; y; zÞ; s

∂

∂s
I5cðv; w; x0; y; zÞ;

Q2
∂

∂Q2
I5cðv; w; x; y; zÞ; Q2

∂

∂Q2
I5cðv; w; x0; y; zÞ; ð5:33Þ

and others related to them by symmetries are given in the ancillary file “derivatives” [85]. In particular, the derivatives of the
master integrals with respect to s are simple enough to present explicitly here:

Δs
∂

∂s
I5cðv; w; x; y; zÞ ¼ ½sðvþ wÞ − ðv − wÞ2�I5cðv; w; x; y; zÞ þ ð3sþ v − wÞvI4ðv0; x; y; zÞ

þ ðsþ v − wÞ½−3I4ðv; x; y; zÞ þ xI4ðx0; v; y; zÞ þ yI4ðy0; v; x; zÞ þ zI4ðz0; v; x; yÞ þ Eðw; x; y; zÞ
þ AðvÞAðxÞ þ AðvÞAðyÞ þ AðvÞAðzÞ þ AðxÞAðyÞ þ AðxÞAðzÞ þ AðyÞAðzÞ
þ ð−x − y − zþ v=2þ s=2ÞAðvÞ þ ð−v − y − zþ x=2þ s=4ÞAðxÞ
þ ð−v − x − zþ y=2þ s=4ÞAðyÞ þ ð−v − x − yþ z=2þ s=4ÞAðzÞ
þ vxþ vyþ vzþ xyþ xzþ yz − 9ðv2 þ x2 þ y2 þ z2Þ=8
− sð½23vþ 7w�=24þ ½xþ yþ z�=6Þ þ 7s2=36�; ð5:34Þ
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Δs
∂

∂s
I5cðv; w; x0; y; zÞ ¼ ½sðvþ wÞ − ðv − wÞ2�I5cðv; w; x0; y; zÞ

þ ð3sþ v − wÞvI4ðv0; x0; y; zÞ þ ðsþ v − wÞ½−2I4ðx0; v; y; zÞ
þ zI4ðx0; z0; v; yÞ þ yI4ðx0; y0; v; zÞ þ J4ðv; x; y; zÞ − Fðx; w; y; zÞ
þ ½AðvÞ þ AðyÞ þ AðzÞ − v − y − zþ 3x=4þ s=4�AðxÞ=x − 2x=3þ s=12�: ð5:35Þ

Note that these differential equations are free of denom-
inator factors that could vanish identically when w ¼ x and
y ¼ z. These results, together with the derivatives of
Bðv; wÞ and the master integrals for the four-propagator
topology with arguments v, x, y, z, as worked out in
section IVA, can be used for numerical evaluation of the
master integrals, as discussed above. I have again checked
that in the special case v ¼ w ¼ x ¼ y ¼ z, all of the
results described above agree with those found using the
traditional IBP method in Ref. [44].

VI. NUMERICAL EVALUATION

As already mentioned above, one of the main reasons for
obtaining the identities above is to enable the numerical
computation of the master integrals. In general, one starts
with the master integrals at (or near) s ¼ 0, using the values
of vacuum integrals obtained by using, for example, the
code 3VIL [43]. Then, the coupled first-order differential
equations for master integrals IjðsÞ are of the form

d
ds

Ij ¼
X
k

cjkðsÞIk; ð6:1Þ

which can be solved by Runge-Kutta or similar methods.
The explicit forms of the differential equations are given
in the ancillary file “derivatives” [85]. In order to get
the branch cuts correct, a rectangular contour is chosen in
the upper-half complex s plane to avoid threshold and

pseudo-threshold singularities, as shown in Figure 3, as
first suggested in Ref. [38–40]. The height of the contour is
arbitrary, and can be varied as a check on the numerical
accuracy and stability. Because of the possibility that there
may be a threshold or pseudothreshold singularity at or near
the desired final value of s, one should choose a Runge-
Kutta algorithm that does not use calculation of the Runge-
Kutta coefficients exactly at the final endpoint; a specific
example of such an algorithm was provided in Ref. [42],
but there are many other such algorithms. To speed up the
computation for a Runge-Kutta program with adaptive
step size, and increase the accuracy for a fixed working
precision, it is preferable to choose master integrals in such
a way as to avoid singularities in the differential equations,
to the extent possible. (We did this for the case of the
topology I4ðw; x; y; zÞ, by avoiding the basis where a
denominator s − w − x − y − z would have appeared.)
However, with arbitrary precision arithmetic and adaptive
step-size control algorithms, any desired accuracy can in
principle be obtained even if there are singular points on the
real-s line, at the cost of some computation time.
For the initial condition at s ¼ 0, the necessary boundary

values for the master integrals treated in this paper are as
follows:

Bðv; wÞjs¼0 ¼ ½AðvÞ − AðwÞ�=ðw − vÞ; ð6:2Þ
Sðx; y; zÞjs¼0 ¼ Iðx; y; zÞ; ð6:3Þ

Tðx; y; zÞjs¼0 ¼ −Iðx0; y; zÞ; ð6:4Þ

I4ðw; x; y; zÞjs¼0 ¼ Eðw; x; y; zÞ; ð6:5Þ

I4ðw0; x; y; zÞjs¼0 ¼ −Fðw; x; y; zÞ; ð6:6Þ

I4ðw0; x0; y; zÞjs¼0 ¼ −Fðw; x0; y; zÞ; ð6:7Þ
J4ðw; x; y; zÞjs¼0 ¼ −wFðw0; x; y; zÞ þ AðwÞ=4 − 13w=12;

ð6:8Þ
I5aðv; w; x; y; zÞjs¼0 ¼ Gðv; w; x; y; zÞ; ð6:9Þ

I5aðv0; w; x; y; zÞjs¼0 ¼ Gðv0; w; x; y; zÞ; ð6:10Þ

I5aðv; w0; x; y; zÞjs¼0 ¼ Gðv; w0; x; y; zÞ; ð6:11Þ

I5bðv; w; x; y; zÞjs¼0 ¼ Gðv; w; x; y; zÞ; ð6:12Þ

FIG. 3. Contour for evaluation of self-energy master integrals
by using their coupled first-order differential equations in the
external momentum invariant s. The initial boundary conditions
are set at (or near) s ¼ 0 in terms of vacuum integrals as in
Eqs. (6.2)–(6.16), and then evolved by Runge-Kutta or similar
methods along the path in the upper-half complex s plane, thus
avoiding threshold and pseudothreshold singularities indicated as
dots on the real-s axis.
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I5bðv0; w; x; y; zÞjs¼0 ¼ Gðv0; w; x; y; zÞ; ð6:13Þ

I5bðv; w0; x; y; zÞjs¼0 ¼ Gðv; w0; x; y; zÞ; ð6:14Þ

I5cðv;w;x;y;zÞjs¼0 ¼ ½Eðv;x;y;zÞ−Eðw;x;y;zÞ�=ðw−vÞ;
ð6:15Þ

I5cðv;w;x0; y; zÞjs¼0 ¼ ½Fðx;w;y; zÞ−Fðx;v;y;zÞ�=ðw−vÞ:
ð6:16Þ

The derivatives of the vacuum master integral on the right-
hand sides of these equations can be obtained in terms of
the vacuum master integrals, using the results presented in
the same notation in the ancillary file “derivatives.txt” of

Ref. [43]. For v ¼ w, Eqs. (6.2), (6.15), and (6.16) have
singular denominators, but the limits are smooth:

Bðw;wÞjs¼0 ¼ −1 − AðwÞ=w; ð6:17Þ

I5cðw;w; x; y; zÞjs¼0 ¼ Fðw; x; y; zÞ; ð6:18Þ

I5cðw;w; x0; y; zÞjs¼0 ¼ Fðw; x0; y; zÞ: ð6:19Þ

The nongeneric case of masses x, x, y, y for the four-
propagator vacuum integrals requires some care, as it
corresponds to the somewhat less trivial combined limit
w → x and z → y, for which I now present the results
necessary for their evaluation. First, one has the identity

Fðy; y; x; xÞ þ Fðx; x; y; yÞ ¼ ½AðxÞ þ AðyÞ − 2ðxþ yÞ�AðxÞAðyÞ=xyþ AðxÞ2=xþ AðyÞ2=y
þ ½2y=x − 15=4�AðxÞ þ ½2x=y − 15=4�AðyÞ þ 14ðxþ yÞ=3: ð6:20Þ

Then one has the derivative formulas

4xFðx0; x; y; yÞ ¼ −Gð0; x; x; y; yÞ þ xþ y
x − y

Fðx; x; y; yÞ þ 2

xðy − xÞAðxÞ
2AðyÞ þ 1

xy
AðxÞAðyÞ2 þ 2

x
AðxÞ2

þ x − 3y
yðx − yÞAðyÞ

2 þ 2ðxþ yÞ
xðx − yÞ AðxÞAðyÞ þ

3x2 þ 3xy − 8y2

4xðx − yÞ AðxÞ þ 4y
x − y

AðyÞ þ 17x2 þ xyþ 10y2

3ðy − xÞ ;

ð6:21Þ

4xFðx; x0; y; yÞ ¼ Gð0; x; x; y; yÞ þ 3x − y
x − y

Fðx; x; y; yÞ þ 2

xðy − xÞAðxÞ
2AðyÞ − 1

xy
AðxÞAðyÞ2 þ 2

x
AðxÞ2

þ xþ y
yðy − xÞAðyÞ

2 þ 2ð3x − yÞ
xðx − yÞ AðxÞAðyÞ þ 3x2 þ 7xy − 8y2

4xðy − xÞ AðxÞ þ 4y
x − y

AðyÞ þ 4x2 þ 10xyþ 14y2

3ðy − xÞ ;

ð6:22Þ

ðx − yÞFðx; y0; x; yÞ ¼ −Fðx; x; y; yÞ=2þ AðxÞ2AðyÞ=2xyþ AðyÞ2=2y − AðxÞAðyÞ=x
þ ðy=x − 7=8ÞAðxÞ − AðyÞ þ 4x=3þ y: ð6:23Þ

The integrals Fðx; x; y; yÞ and Gð0; x; x; y; yÞ appearing in Eqs. (6.20)–(6.23) are given in terms of polylogarithms in
Ref. [43], and so can be very quickly evaluated to arbitrary accuracy. The further limit y → x is also smooth:

Fðx; x; x; xÞ ¼ AðxÞ3=x2 − AðxÞ2=x − 7AðxÞ=4þ 14x=3; ð6:24Þ

Fðx0; x; x; xÞ ¼ 2AðxÞ2=x2 − 15AðxÞ=4xþ 35=12 − 7ζ3; ð6:25Þ

Fðx; x0; x; xÞ ¼ AðxÞ3=3x3 þ 7ζ3=3: ð6:26Þ

In general, for faster performance, one can also use initial
boundary conditions at a small nonzero value of s, obtained
by deriving the power series solution to the differential
equation in s using the results above for the s0 terms. (Here

it is important that the initial value of s is not above, or
close to, the lowest threshold of the integral. In particular, it
is assumed that s ¼ 0 is not a threshold; otherwise terms
involving lnð−sÞ would be necessary in the expansion.)
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FIG. 4. Sample results, as a function of
ffiffiffi
s

p
, for renormalized master integrals I4ð30; 50; 7; 9Þ, I5að1; 70; 9; 3; 5Þ, I5bð1; 30; 5; 7; 9Þ, and

I5cð3; 1; 50; 7; 9Þ. The left panels show the real parts, and the right panels show the imaginary parts. For the real part, the solid line is the
full result, while the short-dashed and long-dashed lines are the expansions in small s at order s1 and s2, respectively.
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For the master integrals studied in this paper, I have used
the out-of-the-box differential equation solver NDSolve in
Mathematica as a proof of principle for the numerical
evaluation. (The same method was used for the three-
loop vacuum integrals that were used as the boundary

conditions.) This is not particulary fast, but allows for
arbitrary numerical precision by a suitable choice of the
WorkingPrecision parameter. A few minutes’ total comput-
ing time is needed with a single 4.2 GHz processor to
obtain 24 digits of precision for all of the five-propagator
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FIG. 5. Results for renormalized master integrals I4ðZ;H; T; TÞ, I4ðZ0; H; T; TÞ, I4ðZ;H0; T; TÞ, I5aðT;H0; T; Z; TÞ,
I5bðT; Z; T;H; TÞ, and I5cðT; T; Z;H; TÞ, normalized in units of T ¼ ð173 GeVÞ2, as a function of

ffiffiffi
s

p
, for H ¼ ð125 GeVÞ2 and

Z ¼ ð91 GeVÞ2. The solid line is the full result, while the dashed lines are the expansions in small s at order s1.
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topologies at a fixed s, with somewhat longer times needed
when s is at (or very close to) a threshold, and shorter
times needed when s is smaller. Note that the differential
equations method computes simultaneously all of the
relevant master integrals for a given topology and its sub-
topologies. A much more efficient and optimized dedi-
cated code is certainly possible, and may appear after the
corresponding results for six-, seven-, and eight-propagator
master integrals become available.
As a first example, consider the master integrals for the

topologies I4ð3; 5; 7; 9Þ, I5að1; 3; 5; 7; 9Þ, I5bð1; 3; 5; 7; 9Þ,
and I5cð3; 1; 5; 7; 9Þ. There is a four-particle threshold
at

ffiffiffi
s

p ¼ ffiffiffi
3

p þ ffiffiffi
5

p þ ffiffiffi
7

p þ 3 ≈ 9.614 for I4ð3; 5; 7; 9Þ,
I5bð1; 3; 5; 7; 9Þ, I5cð3; 1; 5; 7; 9Þ and their derivatives; a
3-particle threshold at

ffiffiffi
s

p ¼ 1þ ffiffiffi
3

p þ ffiffiffi
5

p
≈ 4.968 for

I5að1; 7; 9; 3; 5Þ, I5bð1; 3; 5; 7; 9Þ, and their derivatives;
another three-particle threshold

ffiffiffi
s

p ¼ 4þ ffiffiffi
7

p
≈ 6.646

for I5að1; 3; 5; 7; 9Þ and its derivatives; and a two-particle

threshold
ffiffiffi
s

p ¼ 1þ ffiffiffi
3

p
≈ 2.732 (with cuspy behavior) for

I5cð3; 1; 5; 7; 9Þ and its derivatives. The results for four
sample dimensionless master integrals are shown as a
function of

ffiffiffi
s

p
in Fig. 4, with real parts shown in the left

panels and imaginary parts shown in the right panels.
The imaginary parts turn on for

ffiffiffi
s

p
larger than the lowest

threshold in each case.
As another benchmark example, relevant for the Standard

Model, I consider the integrals obtained from the topologies
I4ðZ;H; T; TÞ, I5aðT;H; T; Z; TÞ, I5bðT; Z; T;H; TÞ, and
I5cðT; T; Z;H; TÞ, which arise in the three-loop self-energies
and pole masses of the Higgs and Z bosons. For simplicity,
I take squared mass arguments

T ¼ Q ¼ ð173 GeVÞ2; ð6:27Þ

H ¼ ð125 GeVÞ2; ð6:28Þ

TABLE I. Benchmark values for the renormalized master integrals following from the topologies I4ðZ;H; T; TÞ
and I5aðT; Z; T;H; TÞ and I5bðT; Z; T;H; TÞ and I5cðT; T; Z;H; TÞ, for T ¼ Q ¼ ð173 GeVÞ2, H ¼ ð125 GeVÞ2,
and Z ¼ ð91 GeVÞ2. The results are given to 16 digits of relative accuracy, and in units such that the top-quark mass
is unity, so that T ¼ 1 and 1 GeV ¼ 1=173. This is equivalent to multiplying each integral by the appropriate power
of T to make it dimensionless.

Integral s ¼ Z s ¼ H

BðT; TÞ 0.04744351586953098 0.09192546525780287
SðZ; T; TÞ −4.703771341470273 −4.760582805362995
TðT; Z; TÞ 0.08378683288496525 0.1364935723146822
TðZ; T; TÞ −1.0837868328849654 −1.0059164828526561
SðH; T; TÞ −4.459767166902337 −4.533014718203875
TðT;H; TÞ −0.1972725394703064 −0.14936776548906433
TðH; T; TÞ −0.9092134235860295 −0.8506322345109357
J4ðZ;H; T; TÞ −3.7648277272371593 −3.861531900214871
I4ðZ;H; T; TÞ 4.671030470289084 4.340032890945725
I4ðT 0; Z; H; TÞ −1.5389591085746437 −1.4394297253491581
I4ðZ0; H; T; TÞ 0.31126684040808783 0.6287408011731227
I4ðH0; Z; T; TÞ −0.3439228747220906 −0.1270716818364309
I4ðZ0; T 0; H; TÞ −2.392283625188141 −2.2572720592690305
I4ðT 0; T 0; Z;HÞ 0.5816634714095499 0.6783516671195731
I4ðH0; T 0; Z; TÞ −1.110806285033397 −0.995579455324551
I4ðZ0; H0; T; TÞ −5.479015505305125 −5.317553339995855
I5aðT; Z; T;H; TÞ −13.622488723207809 −13.488450608458654
I5aðT 0; Z; T;H; TÞ −2.0416981691719878 −1.9715402873940417
I5aðT; T 0; Z;H; TÞ 2.5994642205657446 2.603265962001946
I5aðT; Z0; T;H; TÞ 1.9742385083634955 1.9789726508216219
I5aðT; T 0; H; Z; TÞ 1.7041404263890743 1.7007051476320272
I5aðT;H0; T; Z; TÞ 1.1558139055810304 1.151248509704206
I5bðT; Z; T;H; TÞ −13.86191527817819 −13.939919181091156
I5bðT 0; Z; T;H; TÞ −2.096130262915311 −2.0730906512207676
I5bðT; T 0; Z;H; TÞ 2.622312357453426 2.6470911925905387
I5bðT; Z0; T;H; TÞ 2.002565676860892 2.033414650054237
I5cðT; T; Z;H; TÞ 1.5021951295702383 1.354662946221542
I5cðT; T; Z0; H; TÞ 2.59121942635416 2.634353749579119
I5cðT; T; T 0; Z; HÞ −0.4805187352659836 −0.4883968583818474
I5cðT; T;H0; Z; TÞ 1.2635192651839127 1.2843120129525298
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Z ¼ ð91 GeVÞ2; ð6:29Þ

and present results using units in which the top-quarkmass is
1, so that T ¼ 1, and 1 GeV ¼ 1=173. (This is equivalent to
multiplying each integral by the appropriate integer power of
T to make it dimensionless.) The results for some selected
integrals are shown in Figure 5 for

ffiffiffi
s

p
up to 140 GeV. For

comparison, the results of the expansions around s ¼ 0 up to
linear order in s are also shown. In these cases, the results of a
series expansion to order s2 would be visually almost
indistinguishable from the full results on these plots. This
makes it seem likely that simply expanding the integrals to
order s2 would be sufficient for practical results, at least for a
Higgs andZ self-energy evaluation near the physical masses.
However, some care is needed, because there could be
cancellations between different master integrals in a given
observable, and because in other mass configurations the
small s expansions of integrals will not converge if there are
lower thresholds. As benchmarks, the numerical results of all
of the master integrals are given in Table I for s ¼ Z and
s ¼ H, to 16 digits of relative accuracy.

VII. OUTLOOK

In this paper, I have provided results for the master
integrals for three-loop self-energy integrals with four or
five propagators with generic masses. Provided in ancillary
files in computer readable form, these results include the
derivatives with respect to each of the squared masses and
the external momentum invariant [85]. In particular, the
results for derivatives with respect to s enable the numerical
computation of the renormalized master integrals for
general arguments, using the coupled first-order differential
equations starting from (or near) s ¼ 0 and integrating
along a contour in the upper half complex s plane.
In some cases of nongeneric masses that are either

equal to each other or to 0, the results as given above
require some care, because the polynomials in denomi-
nators of some of the identities can vanish identically for
all s, for example due to the appearance ofΨðx; x; y; yÞ ¼ 0
or Δð0; x; xÞ ¼ 0. The corresponding identities between
master integrals, and elimination of nonmasters, can be
derived either by reprising the procedure outlined in this
paper with the nongeneric mass relations implemented, or
simply by taking limits of the identities given here when put
into polynomial coefficient form. In the cases considered in
the present paper, the offending denominators do not
appear in the derivatives with respect to s anyway, so that

there is no obstacle to their numerical computation. In
particular, there are no Standard Model master integrals
with four and five propagators for which the limits cannot
be obtained very simply, except the ones with 0 masses
already covered in Ref. [44] and references therein.
For practical applications, it will be necessary to extend

these results to the remaining three-loop self-energy master
integrals with six, seven, and eight propagators, since self-
energies and pole masses of scalars, fermions, and vector
bosons in the Standard Model and its extensions will
always involve such integrals. I think it is likely that a
relatively efficient way to obtain those results will be to use
the same sort of approach as in this paper, relying on the
form guaranteed by the structure of the IBP relations but
without actually following the IBP reduction and elimina-
tion procedure. It would be interesting to see whether
traditional IBP methods and codes can produce the results
for general masses. In any case, the eventual goal will be to
produce computer code that can evaluate all pertinent
renormalized master integrals for a given three-loop self-
energy topology on demand, and an algorithm that can
reduce any given self-energy loop integral functions,
including those involving nontrivial numerators, to the
masters. The latter algorithm might be applied only at the
numerical level (perhaps in terms of rational numbers
that closely approximate physical masses), because of
the extreme algebraic complexity involved if the squared
masses are general and treated symbolically.
The expansion method outlined in Sec. III can be applied

in the very same way to the topologies that were called I6a,
I6c, I6d, and I7d in Fig. 3.2 of Ref. [44]. The expansions of s
for the remaining diagram topologies with six, seven, or
eight propagators will not be quite so straightforward, since
they are not of the form assumed in Sec. III. However, they
can in principle always be found by simply expanding
denominators to move all pμ factors to numerators, result-
ing in linear combinations of scalar vacuum integrals,
which can in turn be reduced to masters. More optimis-
tically, it also seems plausible to me that one can instead
obtain more general all-orders formulas for the expansions
in s, in terms of differential operators containing derivatives
of the masses acting on the vacuum integrals, similar to and
generalizing Eqs. (3.5)–(3.7).
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