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Soft scalars and the geometry of the space of celestial conformal field theories
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Known examples of the holographic dictionary in asymptotically anti—de Sitter spacetimes equate
moduli spaces of bulk vacua with conformal manifolds in the dual quantum field theory. We demonstrate
that the same identification holds for gravity in asymptotically flat spacetimes in any dimension, in accord
with expectations derived from the celestial conformal field theory (CCFT) formalism. Soft limits of
moduli scalars described by the sigma model are universal, and relate to parallel transport of S-matrix
observables over the moduli space of bulk vacua. The leading “soft moduli operator” is the shadow
transform of a dimension A = d marginal operator M (x). The universal form of the soft limit guarantees
that M (x) acts as a marginal deformation in the CCFT,, and coherent states of the soft scalars correspond to
finite deformations along the conformal manifold. This manifold typically has curvature, which is captured
by the antisymmetric double-soft theorem and which reflects the Berry curvature in CCFT,. We also
compute the Mellin-transformed four-point function in the sigma model and compare to a formula of
Kutasov for the curvature of the conformal manifold.
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I. INTRODUCTION

The “celestial holography” program seeks to construct
a d-dimensional Euclidean “celestial” conformal field
theory (CCFT) capable of defining (nonperturbatively)
the (d + 2)-dimensional quantum gravity scattering ampli-
tudes in asymptotically flat spacetimes. However, there is
as yet no independent construction or definition of such a
theory, and the general set of axioms satisfied by CCFTs is
not yet known. Thankfully, even in the absence of a
concrete realization of such a model, it is still possible to
explore the universal, model independent properties shared
by all CCFTs.

Conformal field theories have a small set of universal
operators. For instance, every local CFT comes equipped
with a stress tensor T, (x) that generates conformal trans-
formations. The existence of this operator in CCFT is
guaranteed by the subleading soft graviton theorem, which
explicitly provides an operator satisfying all of the local
Ward identities of a stress tensor in CFT, [1]. Similarly,
when the Hilbert space of a CFT exhibits global symmetries,
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the local operator spectrum includes a conserved current
J,(x). This family of operators is furnished by the leading
soft photon, soft gluon, and soft graviton theorems [1-3].
The existence of these operators is required in order for the
global symmetries of the bulk theory and its putative dual
to agree.

Beyond this set of universal local operators, much
remains to be understood about the operator content and
abstract characterization of CCFT. One common method
used to investigate an intractable system is to study the
model’s space of possible deformations. In the context of
CCFT, global conformal symmetry corresponds to Lorentz
invariance in the bulk and consequently cannot be violated:
the only interesting deformations are those that preserve
conformal invariance. We are thus led to study the space of
exactly marginal deformations, or equivalently the con-
formal manifold, of CCFT.

In standard examples of the holographic correspondence,
marginal deformations in the dual CFT map onto continu-
ous moduli spaces of vacua in the bulk gravitational theory.
Families of inequivalent bulk vacua are relatively common-
place in models of quantum gravity in asymptotically flat
spacetimes, where they appear as Kéhler and complex
moduli spaces of supersymmetric string compactifications.
This provides a rich set of concrete, self-consistent exam-
ples to which our analysis will apply. Indeed, it may turn out
that conformal manifolds are more common in celestial
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CFT than they are in the more conventional CFT duals to
quantum gravity in anti-de Sitter space, where moduli
spaces of inequivalent vacua are relatively less common.

In asymptotically flat spacetimes, the vacuum is deter-
mined by boundary conditions (vacuum expectation values)
at spatial infinity. Long-wavelength fluctuations about
these vacuum expectation values are described by a sigma
model with target space given by the vacuum manifold M.
The space M comes equipped with an intrinsic geometry
that is specified by the curvature of the metric on the moduli
space of vacua. As we will see, this corresponds precisely
to the geometry of the space of CCFTs. Infinitesimal
variations along the bulk moduli space are captured by
long wavelength (soft) scalars, whose S-matrix elements
are universal and controlled by the moduli space geometry.
These soft scattering states define distinguished operators
in CCFT, whose role is to generate marginal deformations
along the conformal manifold.

Our analysis provides the first robust structural result in
CCFT that does not follow from symmetries of the problem,
and enlarges the set of known universal operators [T, (x)
and J,(x)] to include the spin zero sector. The analysis is
possible because the geometric soft theorems [4], although
not fixed by symmetry, are totally determined by the
geometry of the vacuum manifold. The dual description
is simple because the vacuum manifold is defined at spatial
infinity and is explicitly a boundary quantity.

Recently, a number of works considered celestial ampli-
tudes in nontrivial backgrounds that break translation
invariance while preserving Lorentz invariance [5,6].
These constructions can be viewed as generalized marginal
deformations of CCFT which do not preserve the full set of
symmetries that distinguish CCFT from ordinary CFT. It
would be interesting to understand the conformal manifolds
associated to this more general set of deformations.

The organization of this paper is as follows. In Sec. Il we
review the celestial CFT formalism. Section III collects the
relevant facts about sigma models and geometric soft
theorems. Section IV reviews conformal perturbation
theory and establishes its relationship with the geometric
soft theorems. In Sec. V we compute the Mellin transform
of the four-point function of moduli scalars and compare to
well known formulas for the curvature tensor of the
conformal manifold.

II. KINEMATICS AND CELESTIAL CFT,

The Lorentz group in (d + 2) dimensions is isomorphic
to the Euclidean conformal group in d dimensions. This
correspondence allows one to rewrite the (d + 2)-dimen-
sional S matrix as a collection of d-dimensional conformal
correlators [1,7], as we now briefly review.

The Lorentz generators M, (u,v €0,...d + 1) ind +2
dimensions are linear combinations of the d-dimensional
Euclidean conformal group generators

Jab :Mabv D:Md+1,07

Ta = MO,a - Md—&-l,m Ka = MO,a +Md+1~a' (21)

The J,, generate SO(d) rotations, T, and K, generate
translations and special conformal transformations, respec-

tively, and D is the dilation operator. In these variables the
Lorentz algebra

[Myw M/m] = i(n/mMmr - npuM;w + nsz,up - nerup) (22)

is simply that of the Euclidean conformal group:

]
Vab:Te] = i(8caly = 8cpTa)
Vap- K| = i(0caKp = 6cpK o),
[T, D] = iT .,
[K,. D] = —iK,.
[To K] = =2i(8upD + Japy)- (2.3)

These generators act on momentum space and preserve the
null cone. The action is particularly simple if we para-
metrize the on-shell momentum as

P(@,x) = g (x) + (m* /0”0,
(2.4)

P (@, x) = wp*(w,x),

where ¢ and n are null vectors

1 1
Q”(x):§(1+x2,2x”,1—x2), n"zi(l,O”,—l). (2.5)

Bulk Lorentz transformations are realized as “boundary”
conformal transformations of the x“ coordinates. The §
matrix is defined to be the overlap of in- and out-scattering
states, and the n-particle scattering amplitude takes the form

An: <p1’"’vpm|pm+lv'°"pn>v
<O|T{a(l)m(pl)”'a%m(pm)a;;l:-l(pm+l)'”a;?-r(pn)}|0>’
(2.6)

where T denotes time ordering. If we define the operators

'"There is a more general parametrization of the null
momenta familiar from the embedding space formalism:
P (w,x) = @Q(x)§* (w, x). Here Q(x)? is the conformal factor
of the conformally flat cross section of the null cone in d + 2
dimensions [1]. When d = 2, most references choose coordi-
nates x; + ix, = z and Q = 2(1 + zz)~!, corresponding to a
spherical (rather than flat) cross section.
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Oi(@;.x;) = a (p(w;.x)(@;) + @ (= pl@;.x,))0(~ ;)

(2.7)
then this amplitude can be written in the suggestive form

A, = <Ol(w17-xl) ) "On(wnvxn)>- (28)
In this paper we will be concerned primarily with scalar
states, so we will not exhibit spin indices unless necessary.
Photon and graviton operators are denoted with spin indices
by O, and O, respectively. The transformation properties
of the O(w, x) are determined by Lorentz invariance. For

scalars one has

[ai(p)7M/w} :’C'/wai(p>7 ’C';w:

Plugging (2.4) into (2.9), one finds the transformation
properties for massless scalar states

—i(pu0p —pL0y). (2.9)

[Oi(w,x), T,] = i0,0,(w, x),
[Oi(@. %), Jap] = =i(x40) — x40,) Oi(@, x),
[0i(w, x), D] = i(x*0, — w9, Oi(w, x),
[0;(w,x), K,] = i[x*d, — 2x,x"0}, + 2x,w0,,)O;(w, x),

(2.10)

where 0, = d«. This is the transformation law for a
conformal primary in CFT,, with the important caveat that
the operator D is not diagonal in this basis. Instead, the
scattering operators have a formal scaling dimension
A = —wd,,. This simply reflects the fact that momentum
eigenstates are not simultaneously boost eigenstates. For
massless particles, this can be fixed by performing a Mellin
transform

O* (A, x) = / doo®*'O(+w,x).  (2.11)

C

The correlation functions of these operators transform as
conformal correlators in a Euclidean CFT, provided that
the integrals converge. We have purposefully not specified
the contour of integration or the admissible values of A
in (2.11). Many works on this subject assume that the correct
conformal weights lie on the principal series A € ‘51 + iR and
that the contour is noncompact:

© d
i(A,x)—/ doo*~'O(+w,x), Aei—l—ilR. (2.12)
0

This choice has an obvious shortcoming in that it excludes
the integer-valued scaling dimensions of crucial operators
like the stress tensor and conserved currents. Indeed, a
number of works (particularly those dealing with universal
properties of CCFT) have demonstrated that a more general

class of operators, including those with integer dimensions,
is required [1-3,8,9]. This class of operators arises as
“residue operators” with integer dimensions and compact
Mellin contours surrounding the origin [2]

O(n,x) = ]{ do " 'O(w, x).

2.13
2m ( )

These operators are intrinsically related to soft scattering
states since they isolate the individual terms in the soft
Laurent expansion of scattering amplitudes. For instance, the
leading soft-photon operator

Sa(x) = 2o (@, x) (2.14)

271

isolates the Weinberg pole in Abelian gauge theory, while
the subleading soft graviton operator

dw
Sab(x> %2—7”60_1(9“17((1) )C)

(2.15)
isolates the subleading, O(1) term in the soft graviton
expansion. The role of these operators in CCFT is to furnish
conserved currents and the stress tensor via the shadow
transform [1,2]. The shadow transform maps a conformal
primary of dimension A and spin s to an operator of
dimension d — A and spin s. For an operator in the
representation R of SO(d) it takes the form

- o) = d 1
0w = [ &' e

where Z (x) is the conformally covariant tensor. For scalar
operators this is simply

R(Z(x=-y))-Oy), (2.16)

~ . d 1
O(X) = / d y [(x _y)z]d_A O(y)

Repeated shadow transforms are proportional to the identity”

(2.17)

O(x) = ca,O(x),
_ 2(A-1)(d-A-1I(§-A(A-9)
s T (A—1+s)(d—A—1+5)(A)(d—A)

(2.18)

The shadow transforms of the leading soft photon operator
and the subleading soft graviton operator

*Note that this coefficient has a finite limit for s = 0 and
A — d when d is even, but vanishes linearly in (A — d) when d is
odd. Similar statements hold for s = 1 and A — d — 1 as well as
for s = 2 and A — d. In each case, the regulated shadow integral
in (2.19) also vanishes, and the combination is finite.
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! S'a(x), Tah(x) = _Lsub(x)’

Jo(x) =
2C1’1 Co,2

(2.19)

define operators in celestial CFT that obey all the Ward
identities of a conserved current and stress tensor, respec-
tively [1]. These relationships suggest that bulk scattering
operators should have interesting boundary shadow trans-
forms, although the extent of this relationship is not fully
understood. We will see that a similar set of statements
relates bulk soft scalars to boundary marginal operators,
offering support for the general correspondence.

III. SIGMA MODELS AND SOFT THEOREMS

In standard examples of the holographic dictionary
involving asymptotically anti—de Sitter spacetimes, moduli
spaces of bulk vacua map onto the conformal manifold of
the dual CFT. Although the dictionary in asymptotically
flat space is much less well understood, we will see in the
following sections that a version of this correspondence
also holds for flat space holography within the CCFT
formalism.

Continuous spaces of vacua arise frequently in quantum
field theory in flat spacetime. In these examples, the moduli
space of bulk vacua is parametrized by vacuum expectation
values v/, which are in turn determined by boundary
conditions of local fields at spatial infinity o/ = (®).
Long-wavelength fluctuations about these vacua are
described by a sigma model with target space given by
the vacuum manifold M. In more than two dimensions these
models are nonrenormalizable so this is only an effective
description, valid for low energies below some cutoff.

Sigma models arise frequently in superstring compacti-
fications with asymptotically flat factors, where they
describe fluctuations of the complex and Kéhler moduli
of internal Calabi-Yau manifolds. Another commonly
encountered example of the sigma model arises from
spontaneous breaking of a continuous symmetry group
G to a subgroup H. In this case, the vacuum manifold is
M = G/H and the scalar excitations about the vacuum are
typically termed pions. When G and H arise as global
symmetry groups, they are assumed to be compact in order
to avoid pathologies. Although this example is fundamental
to quantum field theory in flat space, global symmetries are
widely believed to be absent in quantum gravity so the
relevance to CCFT is unclear. Vacuum manifolds with
M = G/H and G noncompact also arise frequently as the
scalar manifolds in supergravity [10] and should be relevant
for fully self-consistent CCFTs.

The sigma model is defined as a functional integral over
maps into the target manifold

ORI 5 M. (3.1)
In more than two dimensions (d > 0) the model is non-
renormalizable, but the minimal action is

1
s=3 / 4125 Gy (0)9,0 #D). (32)

The fields ®' are regarded as coordinates on M, and
G,;(®) is the metric on M, which must be Riemannian in
order for the kinetic terms to have the correct signs. Field
redefinitions in the quantum field theory correspond to
diffeomorphisms of M, and the field-redefinition invari-
ance of physical observables like the S matrix is reflected in
the diffeomorphism covariance of the physical quantities
calculated from the action (3.2).

In order to perform perturbative calculations in the sigma
model, one expands the fields about their vacuum expect-
ation values v/ at spatial infinity, ® = v/ + ¢/, and path
integrates over the normalizable fluctuations. The action is
simplest in Gaussian normal coordinates, and the first few
terms are [11]

1 1
§= 5 / 51,09" o’ + §RIKLJ6¢10¢J¢K¢L

+ éVKR,LM,a¢'a¢J¢K¢L¢M + ... (3.3)
Here V denotes the covariant derivative on M and R;;x; is
the Riemann tensor. In this expansion, R;;x; and its
derivatives are functions of the vacuum expectation values
v!, which parametrize M. The tree-level four-point ampli-
tude of moduli scalars takes the form

AVKL — ¢ RIKIL | o RUKL (3.4)
where s;; = (p; + p j)z. Higher-point amplitudes can also
be written in terms of geometric data. For instance, the tree-
level five-point amplitude in the sigma model takes the
form [4]

Aleds = VI RIalols g, o 7ls RIshIs g 4 7l RILDls g

+ VIR B g, 4 VISRIEEL (55, 4+ 545). (3.5)

A. Geometric soft theorem

There is a long history of soft limits in the sigma model,
dating back to the early attempts to resum soft-pion
emissions in strong-interaction processes [12—-14]. The
results were usefully summarized and extended in the recent
work [4], which emphasized the geometric content of the
soft theorems. In the notation of Sec. I, the single soft limit
of a moduli scalar O;(w, x) takes the form [4]

Olui_l’}’(l)<01(a), x)Ol (a)la xl)'-'on(wnvxn)>v
= v1<01(w1’xl)"‘on(wnvxn»v' (36)

The subscript (), indicates that the S-matrix element is
computed with the boundary conditions (@), = v, and
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the covariant derivative V is understood to act on the
S-matrix element viewed as a tensorial function of the
vacuum expectation values v/ that parametrize M.

Equation (3.6) motivates the definition of the “leading
soft moduli” operator

Si(x) = fd—wa)_l(’)l(a) x). (3.7)

2

This operator has conformal dimension A =0 and its
matrix elements can be calculated from the soft theorem
(S;(x)0y---0,), = V(O -

O,)p- (3.8)

Note that this is essentially a topological operator in the
sense that its matrix elements are independent of the
position on the celestial sphere. However, multiple inser-
tions of this operator can contain position dependence and
we comment on this below. Since §; has A = 0, its shadow
transform is formally a marginal operator with A = d

M, (x) = / ddy(x_l—yyds,@). (3.9)

Inverting this relation using (2.18), it follows that S; is the
shadow transform of a marginal operator

S;(x) = lim M ().

.1 / 1
dly ——
e=0 Ce0 ()C - y)2(:

The choice of boundary conditions (the scalar expectation
values ') is part of the definition of the model (3.3), and
each choice of vacuum ! determines a separate Hilbert
space and collection of observables that depend explicitly
on v': the Hilbert space and the operators of the model are
fibered over the space of vacua M. Since the fluctuations
@' describe the long-wavelength variations of the vacuum
expectation values, the zero modes of ¢ simply implement
shifts in the »’. In other words, adding a coherent state of
zero energy soft pions to a state is equivalent to transporting
the model around in the space of vacua. For an infinitesimal
deformation this is

(3.10)

(01 0,),y = (O - O, exp [-41S)]),,

= (00, exp |- [ ataty(o)])

(3.11)

At higher orders in the presence of curvature this becomes
path dependent and one has to path order along a specific
path I connecting the two models at the points » and 7/ in
the space of vacua

<(’)1---O,1>5,E<(’), .- O, Pexp [—ﬁs,dﬂbv. (3.12)

Here P denotes path ordering, which is necessary since
the bundle over the moduli space is typically not flat:
transport around the space of vacua can have holonomy.
Expanding (3.11) to first order, the single soft insertion
amounts to an infinitesimal deformation in agreement
with (3.8).

B. Consecutive double soft theorem

Taking the path in (3.12) to be a loop in the moduli space
of vacua computes the holonomy of the parallel transported
S matrix, and taking the size of the loop to be infinitesimal
isolates the curvature of the connection. This can be viewed
as composing two infinitesimal deformations, antisymme-
trized in order to close the loop. This effect is captured by
the antisymmetric double soft limit, which takes the general
form [4]

K, 1J
[lim Tim A1 = [V, 97)af

KKK,

n

_ E 1JK;

= RJ IKAn
i=1

If we view the parallel transport around the moduli space of
vacua as an adiabatic variation of the parameters defining
the quantum mechanical system (3.2), then this formula
says that the curvature of the associated Berry connection is
simply the curvature of M.

This antisymmetric double soft limit can be expressed in
terms of the residue operators (3.7)

(3.13)

[lim, li (’)1 o’ 3.14
qll—% q,lin»O %1271'1@ ¢, 2mim (@.x)0(@.3), )

where C; is a contour surrounding the origin and the
contour C, is centered about @'. The expressions are
understood to be @ ordered: the operator on the contour
closest to the origin becomes soft (and acts on the state)
first. This is the analog of radial ordering in CFT,, but in
the complex @ plane.

The noncommutativity of the double-soft limit in (3.13)
has a well-known analog in non-Abelian gauge theory
(and in gravity at subleading order in the soft expansion).
The standard claim in the literature is that gauge theory (in
the Coulomb phase) and gravity in asymptotically flat
space have an infinite dimensional moduli space of vacua
corresponding to gauge transformations with noncompact
support. Insertions of soft gluons and (subleading) soft
gravitons correspond to infinitesimal transport around this
infinite dimensional space of vacua. The metric and
curvature on these moduli spaces have not been inves-
tigated in detail, but they are certainly not flat and the view
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taken in this paper applies to these more complicated
examples. Noncommutativity of the multisoft limits can
be reinterpreted as a reflection of the nontrivial curvature
of the moduli space of vacua, and the different choices of
soft gluon limits correspond to path dependence of the
parallel transport of S-matrix elements about this space.
These results are described in [15].

C. Higher orders and finite deformations

Expanding (3.12) out order by order relates the N-ple
soft theorem for an (n + N)-point amplitude to an order-N
deformation for an n-point correlator at a fixed point in the
moduli space

(O(x1)...0,
(=¥
N!

(xn)> v—A4

<Ol(xl)" 'On(xn)(lISI)N%J’

Il
[]e

(3.15)

=
i

0

In this language, the ambiguity in multiple soft limits is
fixed by the specification of the path.

D. Adler zero

The preceding discussion is general and applies to any
vacuum manifold M and any metric on M. If we place
restrictions on G;; and M, then we can say more. For
instance, when the Riemann tensor is covariantly constant
(i.e. the metric on M is locally symmetric), the single soft
limit (3.8) actually vanishes [4]. This is known in the
literature as the “Adler zero” [16]; it was discovered in
models of spontaneous symmetry breaking, where the
metric on M = G/H is locally symmetric. We will see
in Sec. IV that this is an interesting example in celestial CFT
that imposes restrictions on the operator content and scaling
dimensions of the model.

IV. CONFORMAL PERTURBATION THEORY
AND THE SHADOW TRANSFORM

In this section we discuss conformal perturbation theory
in celestial CFT and demonstrate that the structure of the
celestial conformal manifold is directly related to the
geometry of the moduli space of bulk vacua described
by the sigma model. We then reinterpret the soft theorem
results discussed in Sec. III as a deformation of the celestial
CFT by an exactly marginal operator.

The abstract characterization of a conformal field theory
includes the spectrum of local operators O;(x), their
conformal dimensions A;, and the collection of operator
product expansion (OPE) coefficients c;j;. In some cases,
the spectrum of local operators includes a subset of
marginal operators M;(x) with spin zero and A = d. In
this case, the combinations

5, — / dlx M, (x) (4.1)

are formally conformally invariant. In the context of
celestial CFT, it will be important to note that this formula
defining the “operator” S; is a special case of the shadow
transform (2.17). In fact, S; can be thought of as the shadow
of a marginal operator, independent of any relation to
celestial CFT.

If the original CFT has a Lagrangian description, then
one can add S; to the action

S(A) = Sy + ALS; (4.2)

and define a deformed model by functional integration. If
the original CFT is non-Lagrangian, then the observables in
the deformed theory are simply defined to be

<Ol(x1)”'0n(xn)>v—/1
= <Ol(xl)...(’)n(x,,)e_ﬂs’)l)

= <01(x1)...0,,(x,,)e—ﬁ’f d"fo<X>> .

v

(4.3)

In this formula, (- - -), denotes a correlation function in the
undeformed theory: it is evaluated using the OPE and
spectral data of the original CFT.

When we do finite deformations in multiple directions
and there is curvature in the conformal manifold, this
equation acquires path dependence at higher orders [17-21]
and becomes

(01 (x1)....0 (5))F, = <C’)1(x1)...(9n(xn)73{e‘frd’llsl] > ,

v

(4.4)

where T is a path that connects the points v and ¢/ on the
conformal manifold.

In either case, since the “operator” S; has A = 0, this
deformation has the potential to preserve conformal invari-
ance. If it does (i.e. the operators M;(x) are exactly
marginal), then we say that the A/ are local coordinates
on the conformal manifold M. Exact marginality is by no
means guaranteed, since the CFT data {A;,c;;} generi-
cally changes under a marginal perturbation.

Conformal perturbation theory approximates the
quantity (4.3) using the series

<Ol(xl)" On(xn)>v

: -2
o~ (DY 1§\
Z (O01(x1).-.0,(x,)(A°81)%),. (4.5)

- |
= N!

The convergence of this series is not understood even in
standard, well-behaved CFTs, but it is certainly an asymp-
totic series when the original CFT is free. Obviously the
situation is even less clear in celestial CFT.
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A. First-order deformation

Proceeding formally, to first order in perturbation theory
one has

<Ol (xl)”'on(xn»v—i = <01 (xl)”'on(xn)>v
- <Ol (xl)"'on(xn)sl>v

+0(22). (4.6)

Rewriting this formula in the limit of an infinitesimal
deformation, one therefore concludes

<Ol(xl)'”0n(xn)sl>v

— lim <Ol(xl)"'0n(xn)>v - <Ol(x1)"'(9n(xn)>1;—l ,
=0 M

= v1<ol(xl)"'on(xn>>v'

(4.7)

This is to be compared with (3.8). Formulas of this form
require careful interpretation. In particular, correlation func-
tions involving one or more insertions of the operator S,
such as (4.7), involve an integrated correlation function in
the undeformed theory. Since correlation functions are
singular at coincident points, the quantities on the right-
hand side of (4.5) are typically infinite and must be
regularized. They are therefore scheme dependent, and
the scheme essentially amounts to a definition of the
correlation functions of the seemingly nonlocal operators ;.

Interestingly, bulk scattering amplitudes translated into
celestial CFT lead to natural, finite correlation functions of
the S; which do not appear to re%uire operator renormal-
ization or subtraction of infinities.” From the bulk point of
view this is natural since the S matrix is a physical
observable free from ambiguity, but the analogous state-
ment in celestial CFT seems nontrivial.

B. Second-order deformation

The fact that the curvature of the conformal manifold M
does not vanish means that the holonomy (Berry phase)
around closed loops in the conformal manifold is nontrivial
[17-21]. By definition, the correlation function is a tensor
on a vector bundle over M. Parallel transport around an
infinitesimal closed loop yields the usual formula for the
leading nontrivial holonomy in terms of the curvature

VL V)0 O,) = RU(O -

O,), (4.8)

where R;; is the curvature two-form. This is to be compared
to (3.13).

It may be the case that different prescriptions for simultaneous
soft limits are related to scheme dependence in celestial CFT,
since they reflect path dependence in the perturbation theory.

C. Exact marginality

Although the combination (4.1) is formally conformally
invariant, the deformation (4.3) is not automatically guar-
anteed to produce conformally invariant correlation func-
tions. This is because the conformal dimensions of
operators generically vary as a function of the A/. For
instance, the first-order change in the conformal dimension
of a primary O; due to an infinitesimal deformation by the
marginal operator M, (x) is
In order for higher-order corrections to remain conformally
invariant, the marginal operator needs to remain marginal at
leading order and should not pick up an anomalous
dimension under the deformation. Vanishing of the three-
point functions of the marginal operators

Cijk = 0 (410)
is therefore a necessary condition for exact marginality. The
complete (all-orders) set of relations defining an exactly
marginal operator in CFT}; is not known, and most examples
of conformal manifolds rely on nonrenormalization theo-
rems (following from supersymmetry) for the dimensions of
marginal operators. As we will see, the situation is some-
what better in celestial CFT.

Three-point functions (and two-point functions) are still
not completely understood within the celestial CFT for-
malism. For instance, massless kinematics in (1,d + 1)
signature sets the three-point on-shell amplitudes of gluons
and gravitons to zero, and the three-point amplitude for
derivative-coupled scalars also vanishes identically for on-
shell momentum-preserving kinematics.* One is tempted
to identify this as a reflection of the exact marginality
condition (4.10), but that is not quite correct. Exact
marginality is equivalent to the preservation of conformal
invariance, and a nontrivial bulk three-point amplitude
(arising from a scalar potential) is certainly consistent with
Lorentz (conformal) invariance. Therefore exact margin-
ality cannot simply be a consequence of the vanishing of
the tree-level on-shell three-point function. Rather, the
existence of a nontrivial conformal manifold (bulk moduli
space of vacua) is equivalent to the fact that the scalar
spectrum is nonperturbatively gapless.

D. Intrinsic geometry of the conformal manifold

When there are exactly marginal operators, the intrinsic
geometry of the conformal manifold can be described using
the abstract conformal field theory data. The two-point

“It has been suggested that to circumvent this, one should study
the corresponding quantities in (2, d) signature where the analog
of the on-shell three-point amplitude does not vanish [8,22].
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function of marginal operators defines the Zamolodchikov
metric on M

Gry(v) = (M;(x)M,(y)), (x = y)*. (4.11)
This metric is always curved, and we denote the curvature

tensor R ;. The geometry of the conformal manifold is
encoded in the OPE of the marginal operators [23,24]

MM () ~ (G_—(y)) DM ()8 (x—y) 4.

(4.12)

Here I'K; is the Levi-Civita connection. Since it enters as a
local contact term, this quantity is scheme dependent and
will not appear in scheme independent observables, which
are independent of the coodinatization of the moduli space.
Another way to say this is to note that the integral

O~ 500 — [ als(MyOM, (M) (@13

is divergent and has to be regulated in a particular scheme.
We are free to pick a scheme in which this quantity vanishes
identically, which is the analog of choosing the Gaussian
normal coordinates in the sigma model (3.3).

The Riemann tensor can be obtained from a twice
integrated four-point function [24,25]

Criy = / 0 xdy (M (x)M, (y)M, (1)M,(0)).

1

RIJKL = 5 (CKILJ - CKJLI + CLJKI - CLIKJ)' (414)

This quantity can be rewritten as a correlation function’

Ckriy = <SKSLM1MJ> (4-15)
of two marginal operators and two shadow transformed
A =0 operators. In Sec. V, we will find an analogous
formula in celestial CFT.

E. When the moduli space is locally symmetric

As emphasized in [4], soft limits in the nonlinear sigma
model with a locally symmetric target space vanish iden-
tically. In this case, (3.13) [equivalently (4.8) in CCFT] still
holds, but only because the right-hand side vanishes iden-
tically due to Jacobi identities. In this case one cannot read
off the curvature from its action on a correlation function as
in (3.13), and one must instead use a more primitive

There are multiple equivalent ways to express this formula.
See for example Sec. 5 of [25]. Equation (4.15) is special in that it
only involves insertions of the marginal operators and their
shadows (without nontrivial integration kernels).

observable like (4.14) to calculate the curvature. We treat
this subtle calculation within the CCFT formalism in the
next section.

However, there might also be a more indirect way to
characterize the curvature when the conformal manifold is
locally symmetric. For instance, Kutasov [24] demon-
strated that a sufficient condition for a locally symmetric
conformal manifold in d =2 is that the OPE of the
marginal operators only contains integer dimension oper-
ators. It would be interesting to check this statement (or find
its analog) in celestial CFT.

From the amplitudes perspective, recent work on the soft
bootstrap [26—28] has shown that the existence of the Adler
zero can be turned into a powerful constraint on scattering
amplitudes, so one might hope for an alternative charac-
terization of this case in celestial CFT as well.

V. MELLIN TRANSFORM OF THE TREE-LEVEL
FOUR-POINT AMPLITUDE

The wuniversal relationship between bulk “soft
moduli scalars” and marginal operators in celestial CFT
is completely encapsulated by the detailed agreement
between (3.8), (3.13) and (4.7), (4.8). Corollaries of this
identification follow from the detailed form of correlation
functions in celestial CFT, and can deviate slightly from
their analogs in garden variety CFT, since the structure of
celestial CFT and its operator product expansion are
relatively nonstandard. In particular, given that two-
and three-point functions for massless fields vanish in
celestial CFT, it is clear that the formulas (4.11)—(4.14)
must take a slightly different form.

With this in mind, in this section we compute a celestial
CFT quantity closely analogous to (4.14) and find close
(though not exact) agreement. The (tree-level) celestial
four-point function is related to the tree-level four-point
amplitude (3.4) through the Mellin transform:

<OIAI (xl)oiz (x2)01§3 (x3)(’)ﬁ4 (x4))

4 e 4
= <H/ dwia)iAi_1>A’JKL5(d+2) <Z€jqu’;). (5.1)
=10 j=1

The indices i, j label the external particles, while ¢; = +-1
indicates whether the particle is outgoing or incoming. All
quantities in the integrand are parametrized in terms of the
coordinates on the celestial sphere using (2.4) and (2.5).
Rescaling w; - w,w4 for i=1, 2, 3, we obtain
(>>%, A;) — 1 powers of @, from the Mellin integration
measure, —(d + 2) powers from the delta function, and two
powers from the amplitude, leading to a factor of the form

o St A-d-1 1
dos ="' =26 A, —d]. 5.2
|7 oy > 52
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Therefore, the sum of the conformal dimensions of oper-
ators in the four-point function is constrained to be d.
Motivated by our discussion of conformal perturbation
theory and the results of [24], we expect that the Riemann
tensor on the conformal manifold should be related to a
twice integrated four-point function of marginal operators.
It seems natural to view this as a correlator of two A = d
operators and two A = 0 shadow operators’ as in (4.15).
However, both combinations of dimensions are apparently
forbidden by the delta function constraint (5.2), which is a
consequence of the extra Abelian translational (Poincaré)
symmetry enjoyed by celestial CFT but not ordinary CFT.

One possible way to circumvent this obstruction is to
compute the nonvanishing four-point function with one
marginal operator and three A =0 operators (so that
> A; = d), and then to perform a A = 0 shadow transform
on the nonzero correlator so that the result formally’
resembles a correlation function of two marginal operators
and two shadows. In other words, we define

<(~9§’—A (x1>0£2 (x2)0§3 (x3)(9i4 (x4))
dd
E/xzd 24, <OI (x

1m

) 04, (1) OF, (63) 0%, (x4)).  (5.3)

with one (not-to-be shadowed) operator of dimension
A = d and three operators of dimension A = 0. It turns
out that different choices of operator dimensions can lead to
finite or divergent results depending on the specific
kinematic configurations. We perform a general calculation
of (5.3) with arbitrary A; in the Appendix. Here we
summarize the results relevant to (4.14).

To be concrete, consider the case €; =€, = —e3 =
—e4 = —1, where particles 1 and 2 are incoming while
particles 3 and 4 are outgoing. In this case, the correlators

[JKL( l)
< (xl O’(xz)O{f(x3)(9§(x4)>,

)

— (O (x,) O (x2) O (x3) O (x)),
4”5(0) J mdj(W— l)d—l(Rll(]LW _ RIJKL)
T W WS (Ut u— o)W+ u)

’

(5.4)
and

*We are implicitly identifying the A = 0 “conformally soft”
operator with the residue operator (3.7). Single insertions of these
operators agree, but it has not been demonstrated that multiple
insertions are identical.

This procedure indicates that taking the shadow transform
does not always commute with taking expectation values in the
conformal basis. We hope to understand the interpretation of this
calculation better.

AIJKL( )
= (O (xl)oj(xz) <x3)0L(x4)>
<OI(X1)OJ(X2)O (x3)OL(x4)>

47[5(0) Md 00 diw (W _ )d—l(RIKJLW _ RIJKL)
|2d W (WE -

(1+u—v)W+u)?
(5.5)

X34

are finite [except for the factor 5(0) due to the delta function
(5.2)]. The notation Aj/*" indicates that the legs i, j are
taken to be marginal and we have expressed the correlators

in terms of the d-dimensional conformal cross ratios u =

z _
12 + and v = 14 23
13454 X5y

We show in the Appendix that (5.4) and (5.5) are the
only choices of marginal operators for which the correlator
is finite. When one marginal operator appears in the in state
and the other appears in the out state, the result is divergent.
For example, the integrals

475(0)
AIJKL _ _
( ) |x13|2d
y / W Wd I(W _ l)d—l (RIKJLW _ RIJKL)
! (W2 —(1+u—v)W+u)!
(5.6)
and
)
IJKL _ d
A () |x14|2d '

o dW Wd—l(RlKJLw_RIJKL)
P W=1W?=(1+u—v)W+ u)?
(5.7)

X

diverge logarithmically in the regions W — oo and W — 1,
respectively.

The four-point functions (5.4) and (5.5) do not exhibit
the correct algebraic structure of a curvature tensor and
therefore cannot be identified with the Riemann tensor of
the conformal manifold. However, the combination

1<AK1LJ_AKJL1+ALJK1_AL1K1) (58)

RIJKL _
2

taken in [24] is indeed proportional to the Riemann tensor
RVKL For example,
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RUVKL (x,) = —RIKL 4”5(23 ud
%12
odW (W-1)12W-1)

LW W (1 +u—0)W+u)®

(5.9)

This follows from the analogous statement for the momen-
tum-space amplitude (3.4):

l(AKILJ _AKJLI +ALJKI _ALIK./>
2

= RI‘IKL(2534 ‘I— 324). (510)

A. Discussion

Equation (4.14) is subtle in standard Euclidean CFT:
operators at noncoincident points commute so it is naively
impossible to obtain a tensor antisymmetric under index
exchange. Of course, the twice-integrated four-point func-
tion is formally divergent, and it is a scheme-independent
combination of the regulated correlators (which do not
satisfy the axioms of local CFT) which yields the Riemann
tensor. Although the calculation is not identical, we have
seen that there is a version of a “twice integrated four-point
function of marginal operators” in celestial CFT which is
also proportional to the Riemann tensor of the conformal
manifold. The correlator retains position dependence in
contrast to Kutasov’s result [24,25], but the expression is
finite and free from ambiguity. It seems interesting that the
bulk § matrix provides a set of regulated, finite answers for
conformal perturbation theory in celestial CFT. Indeed, the
results obtained in this section may indicate an underlying
principle in the CCFT formalism. The relation between
kinematic configurations and finiteness of the Mellin
transformed celestial correlator is reminiscent of the con-
clusions in [29,30], where it was necessary to define the
Hilbert space of incoming (outgoing) states in terms of
unshadowed (shadowed) operators.

B. Higher-point correlators and covariant derivatives of
the Riemann tensor

In standard conformal perturbation theory, the covariant
derivative of the Riemann tensor is related to the five-point
function of marginal operators integrated three times [24].
The corresponding quantity in celestial CFT would appear
to be a five-point correlator of two A = d and three A =0
operators. Unsurprisingly, the bulk tree-level five-point
amplitude (3.5) contains the covariant derivative of the
Riemann tensor of the vacuum manifold. This suggests
a generalization of the above calculation for the case of a
five-point correlator. The operator dimensions work out
similarly: rescaling w; — w;ws for i =1, 2, 3, 4, we have
(323, A;) — 1 powers of ws from the Mellin integration
measure, —(d + 2) powers from the delta function and two

powers from the amplitude (3.5). Performing the ws
integral then leads to a factor 5(> 7 | A; —d), so we
can choose Ay =d, A, =--- = A5 =0 and shadow one
of the dimension 0 operators to obtain an analog of
Kutasov’s formula. An appropriate combination of these
correlators will be proportional to the covariant derivative
of the Riemann tensor.

In general, a correlation function of n marginal operators
integrated (n — 2) times can be thought of as a correlator of
two A =d operators and (n—2) A =0 operators in
celestial CFT. Conformal perturbation theory predicts that
this quantity should be related to the (n — 4)th derivative of
the Riemann curvature, and the action (3.3) makes it clear
that the bulk n-point amplitude will produce terms with this
structure. The Mellin transform of the bulk n-point ampli-
tude always includes a factor of 5() 7 ; A; — d), so we can
always pick A; =d, A, =--- = A, = 0 and shadow one
of the dimension 0 operators to obtain an analogous
formula in celestial CFT.
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APPENDIX: SHADOWING THE FOUR-POINT
CORRELATORS

In this appendix we compute the shadow correlator (5.3):
(OF, (3104, (x2) O, (x3) 0K, (x4))

= [ 32104, (1) 0%, (12005, (59)05,(x)

(A1)

with A; =d — A, and

<OIAl (x1 )Oiz (x2)0§3 (X3)0i4 (x4))

4 4
= <H/ da)l-a)iA"_1>A”KL 5d+2) (Z eia)iq’;). (A2)
i=1J0

i=1

The tree-level four-point amplitude (3.4) in terms of
coordinates on the celestial sphere reads

A[JKL RIKJL RIJKL

2
€2€40,04X3,),

(A3)

(@;,x;) =—( 63640304 X34 +

where R//KL is the Riemann tensor of the target space. The
momentum conserving delta function in (A2) in these
coordinates is
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4 4 4
5ld+2) <Z eia)iq’;> =26 <Z e,w,-) ) <Z e,-a)ixlz>
i=1 i=1 i1
4
x 6@ (Z 6,-(0,-)6?).

i=1

(A4)

The d-dimensional delta function in (A4) can be used to do
the d shadow integrals in (Al). The remaining two delta
functions in (A4) then localize the w, and w; integrals
in (A2). Rescaling w; — @y, the w4 integral leads to the
delta function (5.2). The result takes the form

(Of (x1) 04, (x2) O (x3) Ok (x4))

_ 2R 428y -A3-Ay 28 -Ay-A3 1244
6 v 6

= 47'[F(A1 Az, A3, A4’xi)u

(AS)

I(u,v) = /0 dw; O(—€r64 — €16,0)0(—€1€3 — 63640)1)(

€1 1 €4 €4
% RIKJL€3€4 a4 +RIJKL€2€4 f4
€30 €3 €

where

F(AI’A27A3’A4vxi>:H|xij|%_Ai_Aj’

i<j

A= i:Ai (A6)

is a (nonunique) kinematic factor that accounts for the
transformation properties of the correlator under con-
formal transformations. The other factors in (AS5) are
expressed in terms of the d-dimensional conformal cross

. Xz )Cz X2 XZ .
ratios u = =23 and v = %2 Here, I,(u, v) is the con-
X374 13X

formally invariant integral

Aj—d—1
[0}

€4 €] Ay-1 €1 1 €4 As3-1 1
- ——w - = -
€ € 3w €3 |Z + S

)

€10

(A7)

where Z is a complex number related to u, v through u = |Z|?> and v = |Z — 1]2. Due to the Heaviside step functions in the

integrand, we have

I(u,v) € =€ =—€e3 =—€; (s kinematics)

1) = I'(u,v) € =—€6=6=—¢ (t ki.nemati.cs) ’ (AS)
I'(u,v) € =—€y=—€3 =¢€; (u kinematics)
0 Otherwise

where

oo 1
1{:/ dwG,(W), I :/ dWG, (W),
0

1

I — / " awe, (w), (A9)

o0

|W|A]—A2—2|W_ 1|AI—A4
(W2 = (1 4+ u— o)W +u)

w2 w
X RIKJL _ RIJKL . (AlO)
wW—1 wW—1

In obtaining these expressions, we have changed the
integration variable to W = —ej¢e4/w;. This concludes
the computation of the integral (Al). To obtain the

Gl(W):

correlators with the shadow transform on other legs, one
simply relabels the expressions at every step above. For
example, exchanging 1 <> 2 and 3 <> 4 everywhere,’ we
obtain the correlator with the second leg shadowed:

(04, (11) O3, (x2) OF, (x3) O, (x4))

201 +28)—A3—Ay  28)—A|-A4+243
6 v 6

=4rxF (A, Ay, As, Ay, x;)u

x 5((2 &) - a) ).

The conformally invariant integral is

(A1)

¥Note that the momentum conserving delta function (A4), the
kinematics and the cross ratios u, v are all invariant under this
exchange. The amplitude (A3) is invariant under this exchange on
the support of (A4).
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L(u,v) € =€ =—e3 =—€; (s kinematics)
L, v) = jti(u v) € i —€ i € :_—(:'4 (1 ki'nemati'cs) ’ (A12)
Y(u,v) € =—e; =—€3 =¢€4 (u kinematics)
0 Otherwise

with

I = /w AWG, (W),

1

0
14 = / dWG,(W),

o

1
I = / dWG,(W),
0

(A13)

|W|52—A1—2|W_ 1|52—A3
(W2 = (1 4+ u—0)W + u)k

W2 w
X RIKJL _ RIJKL . (A14)
w-1 w-1

The correlators with the third or fourth leg shadowed can be
obtained in a similar fashion. Because of this, it suffices to
consider (Al).

G,(W) =

1. Two marginal and two shadowed marginal

We now consider the combinations of operator dimen-
sions discussed in the main text. It is clear that we must take
A, = d while we are free to pick one of A,, As, A, to be d
and the other two to be 0. When A, = dand A; = A, =0,

W[ W — 1|
(W2 —(1+u—v)W+u)?

w2 w
X RIKJL _ RIJKL . (AlS)
w—1 W —1

GI(W) =

I
This expression makes it is clear that ] is finite” while 1 1

and I{ diverge logarithmically in the regions W — 0.
Similarly, when A; = d and A, = A4 =0,

G (W) o ‘W|d_2|W_ l‘d
BT W= (1 u— o)W+ u)?
X RIKJL W2 _RIJKL w , (A16)
w—1 w—1

in which case [/ is finite while /{ and /{ diverge logarithmi-
cally in the regions W — +oo, respectively. Finally, when
A4:dandA2:A3:0,

|W|d—2
(W2 = (1+u—v)W+u)

W2 w
X RIKJL _ RIJKL , (A17)
wW-1 w-1

in which case /{ is finite while /{ and I diverge logarithmi-
cally in the region W — 1. Therefore, in order to obtain a
finite result, the two dimension d operators must be both
incoming (outgoing) and the two dimension O operators
must be both outgoing (incoming).

Gl(W) =

The integral is a sum of Appel F; functions.
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