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We explore the exactly duality invariant higher-derivative extension of double field theory due to Hohm,
Siegel, and Zwiebach specialized to cosmological backgrounds. Despite featuring a finite number of
derivatives in its original formulation, this theory encodes infinitely many α0 corrections for metric, B-field,
and dilaton, which are obtained upon integrating out certain extra fields. We perform a cosmological
reduction with fields depending only on time and show consistency of this truncation. We compute the
α04 coefficients of the general cosmological classification. As a possible model for how to deal with all
α0 corrections in string theory we give a two-derivative reformulation in which the extra fields are kept. The
corresponding Friedmann equations are then ordinary second-order differential equations that capture all
α0 corrections. We explore the tensionless limit α0 → ∞, which features string frame de Sitter vacua, and
we set up the perturbation theory in 1

α0.
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I. INTRODUCTION

A basic obstacle for understanding string theory, let
alone confronting it with observation, is that we do not
know the defining equations of string theory. We know the
low-energy effective theories given by (super)gravity, but
even classical string theory, restricted to the massless fields,
features an infinite number of higher-derivative α0 correc-
tions going beyond conventional gravity. While these
corrections have been determined to a few orders in α0,
a computation of all α0 corrections is out of reach. But, it is
precisely in regimes where a gravitational theory beyond
general relativity is almost certainly needed (singularities of
cosmology or black holes), that one plausibly expects all α0
corrections to be important. (See [1–8] for classic and more
recent string cosmology proposals requiring the inclusion
of all α0 corrections.)
In this paper we explore a particular spacetime theory

based on the double-field theory [9–12], due to Hohm,
Siegel, and Zwiebach (HSZ) [13] and apply it to cosmo-
logical backgrounds. Our goal is twofold; namely, first to
compute the α04 coefficients of the general cosmological

classification, thereby going beyond the current state of the
art [14–16], and second and perhaps more intriguingly, to
have a model for a theory that is “α0-complete” in a sense
made precise below. The construction of HSZ theory
was based on a nonstandard chiral CFT and is thus not
a conventional string theory. (It also appears closely related
to the “chiral string theory” of [17] and/or to the ambit-
wistor string [18,19], but to our knowledge the precise
connections have not been established.) Nevertheless, HSZ
theory shares crucial features of any string theory, such as
(1) duality invariance under Oðd; d;RÞ for backgrounds
with dAbelian isometries, and (2) the presence of infinitely
many higher-derivative corrections for the massless fields.
While in its original formulation HSZ theory carries only
up to six derivatives, it also features extra massive fields,
in addition to the familiar massless fields of string theory
(metric, B-field, and dilaton), and integrating out these
extra fields induces an infinite tower of α0 corrections for
the massless fields that are kept. These higher-derivative
corrections include a Green-Schwarz-type deformation at
order α0 and a Riemann-cube invariant at order α02 [20–22],
but beyond that only very little is known.
In order to understand the theory in a simplified setting,

and to relate to the physically interesting case of cosmol-
ogy, we specialize HSZ theory to cosmological back-
grounds, i.e., with fields depending only on time. We
then show how to integrate out the extra fields so as to
compute the order α04 coefficients of the general cosmo-
logical classification [23,24]. As a second main result of
this paper, we then show that, rather than integrating out the
extra fields, we can keep them and reformulate the theory
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so that it features only up to two derivatives. Such a
reformulation was given in [25] for HSZ theory without
reduction, but restricted to quadratic order in a background
field expansion about flat space. Here we exhibit the
corresponding reformulation in the cosmological reduction
but including all nonlinear couplings. Intriguingly, in this
formulation the tensionless limit α0 → ∞ can be taken
smoothly. We also present the equations of motion for
Friedmann-Robertson-Walker backgrounds, which by con-
struction capture all α0 corrections.
It has sometimes been speculated that the tensionless limit

of string theory, if it were accessible, would be a powerful
tool for learning about the fundamental degrees of freedom
of string theory [26,27]. We thus take the opportunity and
explore the cosmological Friedmann equations in the ten-
sionless limit, in which we find the most general solutions.
Remarkably, these solutions include string frame de Sitter
vacua (that are also de Sitter vacua in Einstein frame for
d ¼ 4, i.e., in five spacetime dimensions). Interestingly, the
de Sitter length scale here is not a bare parameter in the
action but rather appears as an integration constant. In order
to find solutions of the full equations we then use perturba-
tion theory, but not in α0 as would be appropriate for small α0,
but rather in 1

α0 as is appropriate for perturbations around
infinite α0. We find that the de Sitter vacua survive the first-
order corrections in 1

α0.
We close this introduction by discussing the

α0-completeness of this theory. Gravity theories with a
finite number of higher derivatives generically suffer from
various pathologies, as the presence of unphysical ghost
modes in the spectrum.1 For this reason, the usual view is
that higher-derivative modifications only make sense in
perturbation theory, with features of the two-derivative
theory being corrected by a small parameter like α0 and
carrying an infinite number of such higher-derivative
corrections. Another perspective showing that a finite
number of higher-derivative corrections is problematic is
that of Oðd; d;RÞ invariance for backgrounds with d
Abelian isometries, in the following referred to as “duality,”
which string theory must possess to all orders in α0 [30].
While in the two-derivative truncation this duality is easily
recognized and realized exactly but once higher-derivative
terms are included the situation becomes more subtle [31].
Adding the known four-derivative (order-α0) terms in the
bosonic string action and performing dimensional reduc-
tion along d dimensions, the resulting theory does not
possess the expected duality invariance. It is, however,
invariant under higher-derivative deformations of the dual-
ity transformations up to terms of order α02 [31]. Thus,
within a theory with infinitely many α0-corrections this

shows compatibility with duality, but a finite higher-
derivative modification is generally incompatible with
duality. The HSZ theory to be investigated here is exactly
duality invariant and in this sense α0 complete.
The rest of this paper is organized as follows. In Sec. II

we introduce the cosmological ansatz for HSZ theory,
which is nontrivial in that certain off-diagonal field
components need to be kept. We prove consistency of this
truncation and give the cosmological action. This is used in
Sec. III in order to integrate out the extra fields up to and
including order α04. The resulting action is then brought to
the canonical form of the cosmological classification [24]
by means of field redefinitions. In Sec. IV we present a
reformulation of the cosmological HSZ action, including
the extra fields, with only two derivatives. In Sec. V we
give the corresponding α0-complete Friedmann equations,
take the tensionless limit and find the most general
solutions which include a de Sitter vacua as a particular
case. We finish this section by computing the first 1

α0

correction to this specific solution. We conclude with a
brief outlook in Sec. VI.

II. CONSISTENT TRUNCATION TO
COSMOLOGICAL BACKGROUNDS

In this section we review the double α0-geometry by
Hohm, Siegel, and Zwiebach [13], here referred to as HSZ
theory. We will introduce the field content, symmetries, and
action. We then perform the truncation that will take us to
the time-dependent cosmological action in terms of (duality
covariant) scalar fields.

A. Review of HSZ theory

The field content of HSZ theory includes the “double
metric” MM̂ N̂ , with OðD;DÞ indices M̂; N̂ ¼ 1;…; 2D,
and a generalized dilaton field d. They are defined on a
double space with coordinates XM̂, but all products of fields
and gauge parameters are annihilated by the duality
invariant Laplacian

ηM̂ N̂
∂M̂∂N̂ � � � ¼ 0; ð2:1Þ

where ηM̂ N̂ is the OðD;DÞ invariant metric that raises and
lowers indices. This is known as the strong constraint. In
contrast to the standard generalized metric formulation of
double field theory (DFT) [9–12], where the generalized
metric HM̂ N̂ obeys the constraint Hη−1H ¼ η, the dou-
ble metric is symmetric but otherwise unconstrained.
Under infinitesimal generalized diffeomorphisms with
parameter ξM̂, the generalized dilaton transforms as in
conventional DFT

1Counter examples are the Starobinsky model [28], which
augments the Einstein-Hilbert term by the square of the Ricci
scalar, and “new massive gravity” [29], with a particular
curvature-squared modification of 3D gravity.
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δd ¼ ξP̂∂P̂d −
1

2
∂P̂ξ

P̂; ð2:2Þ

while the double metric receives linear and quadratic
corrections in α0

δMM̂ N̂ ¼ L̂ξMM̂ N̂ þ α0J ð1Þ
M̂ N̂

þ α02J ð2Þ
M̂ N̂

; ð2:3Þ

where the standard generalized Lie derivative is defined by

L̂ξMM̂ N̂ ≡ ξP̂∂P̂MM̂ N̂ þKM̂
P̂MP̂ N̂ þKN̂

P̂MM̂ P̂;

KM̂ N̂ ≡ 2∂½M̂ξN̂�; ð2:4Þ

and the higher-derivative contributions are given by

J ð1Þ
M̂ N̂

≡−
1

2
∂M̂M

P̂Q̂
∂P̂KQ̂N̂ −∂P̂MQ̂M̂∂N̂K

Q̂P̂þðM̂⇄ N̂Þ;

J ð2Þ
M̂ N̂

≡−
1

4
∂M̂ K̂M

P̂Q̂
∂N̂ P̂KQ̂

K̂þðM̂⇄ N̂Þ: ð2:5Þ

These transformations close under a deformation of the
C-bracket

½ξ1; ξ2�M̂ðCÞ ≡ 2ξP̂½1∂P̂ξ
M̂
2� − ξP̂½1∂

M̂ξ2�P̂; ð2:6Þ

which we call the C0-bracket,

½ξ1; ξ2�M̂ðC0Þ ≡ ½ξ1; ξ2�M̂ðCÞ þ α0∂P̂ξ
Q̂
½1∂

M̂
∂Q̂ξ

P̂
2�: ð2:7Þ

The dynamics of the theory is encoded in an action, that can
be written compactly as

IHSZ ¼
Z

d2DXe−2d
�
Mjη − 1

6
M⋆M

�
: ð2:8Þ

The definitions for the inner product h·j·i and star-product ⋆
involve long expressions in terms of M, d and combina-
tions of them up to and including six derivatives. Since
these explicit expressions are not very illuminating, we
refer the reader to Eqs. (2.11), (2.12), and (2.14) of [32]
where the definitions are given in detail, or to Appendix D
therein where the complete action is given. The exact gauge
symmetry under (2.2) and (2.3) can be checked once the
definitions of the products are used, together with the
strong constraint (2.1).

B. The cosmological truncation

We will now truncate the above theory to a cosmologi-
cal ansatz in which fields depend only on time, and we

will prove that the truncation is consistent. To this end
we assume a split of the coordinates and indices as
follows:

XM̂ ¼ ðt; t̃; YMÞ;
M̂
¼ ð0; 0; MÞ;

M ¼ 1;…; 2ðD − 1Þ: ð2:9Þ

This ansatz breaks the manifest OðD;DÞ invariance to
Oð1; 1Þ ×OðD − 1; D − 1Þ. Furthermore, we will solve the
strong constraint by selecting a frame in which the fields do
not depend on t̃ nor YM, which breaks the Oð1; 1Þ factor
and importantly preserves the internal OðD − 1; D − 1Þ.
We will thus set

∂
0 ¼ ∂M ¼ 0; ð2:10Þ

everywhere in the field equations and gauge transformations.
Let us now turn to the decompositions of the fields and

the OðD;DÞ metric, which are given by

ηM̂ N̂ ¼

0
B@

0 1 0

1 0 0

0 0 ηMN

1
CA;

MM̂ N̂ ¼

0
B@

−n2B A 0

A − 1
n2 0

0 0 ZMN

1
CA;

d ¼ 1

2
Φ −

1

2
ln n; ð2:11Þ

where all fields depend only on time t. Apart from the
exclusive time dependence, the only truncation applied
above is given by the vanishing of some components of the
double metric. We explain latter why setting these “vector”
components to zero is a consistent choice. Additionally,
one would be tempted to further reduce the external 2 × 2
block in the double metric to be diagonal and Oð1; 1Þ
valued by setting A ¼ 0, B ¼ 1, but this turns out to be
inconsistent. By inspecting the action of generalized diffeo-
morphisms (2.3) for this ansatz, with the gauge parameter
decomposed as

ξM̂ ¼ ðξ0; ξ0; ξMÞ≡ ðξ; 0; 0Þ; ð2:12Þ

we find the following gauge transformations for the
component fields
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δn ¼ ξ _nþ n_ξ;

δA ¼ ξ _A − 3α0 ̈ξ
_n
n3

;

δB ¼ ξ _Bþ α0
1

n2
̈ξ _Aþ α02

1

n5
ξ
…
�
n̈ − 3

_n2

n

�
;

δZMN ¼ ξ _ZMN;

δΦ ¼ ξ _Φ; ð2:13Þ

where, here and in the following, the dot denotes time
derivatives, i.e., ∂tΨ ¼ ∂0Ψ≡ _Ψ. To zeroth order in α0 we
recognize the familiar transformations under time repar-
ametrizations t → t − ξðtÞ, but these transformations
receive α0-corrections. The fact that the corrections to
the transformations of A and B contain corrections not
depending on A and B themselves, prevents us from setting
them to a constant, so both A and B must be kept for
consistency of the truncation.
Instead, setting to zero the vectorial components of the

double metricM0M ¼ M0
M ¼ 0 is perfectly consistent. In

fact, the transformations (2.12) acting on these components
vanish when the components themselves are set to zero,
contrary to what happens with A and B. Moreover, and
equally important, the equations of motion of these
components also vanish when the components do. Put
differently, the information contained in the equations of
motion of all fields after setting M0M ¼ M0

M ¼ 0, is the
same as the one obtained by setting these components to
zero in the action and then computing the equations of
motion of the fields we kept. As a consequence of this
truncation, the full original gauge symmetry of HSZ (2.3) is
now broken to time reparametrizations (2.12).
It is instructive to inspect also the gauge algebra under

this cosmological reduction. One obtains with (2.7)

½ξ1; ξ2�0ðC0Þ ¼ 2ξ½1 _ξ2�; ð2:14Þ

½ξ1; ξ2�0ðC0Þ ¼ α0 _ξ½1 ̈ξ2� ¼
" ffiffiffiffi

α0

2

r
_ξ1;

ffiffiffiffi
α0

2

r
_ξ2

#
0ðC0Þ

; ð2:15Þ

½ξ1; ξ2�MðC0Þ ¼ 0: ð2:16Þ

Given the relationship in the second line, one may suspect
that the only surviving algebra is that of standard one-
dimensional diffeomorphisms, suggesting that there should
be a field basis in which this symmetry is realized in the
standard way. Indeed, we can find an explicit field
redefinition that removes the higher-derivative terms in
δA and δB. To this end, it is convenient to introduce the
derivative operator

D≡ 1

n
∂t; ð2:17Þ

which is covariant under conventional time reparametriza-
tions. Specifically, writing the original fields in terms of
new primed fields as

A ¼ A0 −
3

2
α0ðD ln nÞ2;

B ¼ B0 þ α0ðD ln nÞDA0 − α02
�
1

4
ðD ln nÞ4

þ ðD2 ln nÞðD ln nÞ2 − 1

2
ðD2 ln nÞ2

�
; ð2:18Þ

it is straightforward to verify that for A0 and B0 being
reparametrization scalars, the higher-derivative terms
induce precisely the higher-order corrections in (2.13).
Furthermore, it is immediate that the above relations can be
inverted, hence proving that this is a legal field redefinition.
All in all, we can express the theory in terms of fields given
by the lapse function n and a number of reparametrization
scalars, with transformation rules

δn ¼ ξ _nþ n_ξ; δA ¼ ξ _A; δB ¼ ξ _B;

δZMN ¼ ξ _ZMN; δΦ ¼ ξ _Φ; ð2:19Þ

where we removed the primes from A0 and B0.

C. The cosmological action

We now give the HSZ action in this cosmological
reduction, which is obtained by plugging the ansatz
(2.11) together with the field redefinitions (2.18) into
(2.8). More precisely, we performed the reduction at the
level of the inner and star products using their explicit
definitions as given in [32] and then combined these results
back into the form of the action (2.8). As a consistency
check we can use that in this field basis the diffeomor-
phisms act in the usual way, which implies that the
derivatives of the lapse function should combine to form
covariant derivatives D ¼ 1

n ∂t of the scalar fields.
2 We find

that the final manifestly gauge invariant action is given by

I ¼
Z

dt n e−Φ
�
1

α0
Lð−1Þ þ Lð0Þ þ α0Lð1Þ þ α02Lð2Þ

�
;

ð2:20Þ

where

2As a second consistency check, we also performed the
reduction directly at the level of the α0-expanded action as given
in Appendix D of [32]. We used Cadabra2 [33] for the reductions
and consistency checks.
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Lð−1Þ ¼ A −
1

3
A3 − ABþ 1

2
TrZ −

1

6
TrZ3;

Lð0Þ ¼ −
31

12
ðDAÞ2 − 3

2
A2½ðDΦÞ2 − 2D2Φ� þ 35

6
DΦADA −

17

6
AD2A −

5

12
D2Bþ 11

12
DΦDB

−
1

2
B½ðDΦÞ2 − 2D2Φ� − 1

24
TrðDZÞ2 þ 1

12
TrZD2Z −

1

12
DΦTrZDZ þ 3

2
ðDΦÞ2 − 3D2Φ;

Lð1Þ ¼ −
1

4
D4A −

3

4
ðDΦÞ2D2Aþ 1

4
ðDΦÞ3DA − 4ðD2ΦÞ2Aþ 3

4
DΦD3Aþ 3D2ΦD2A

þ 9

2
D3ΦDAþ 5

2
D4ΦAþ 5

2
ðDΦÞ2D2ΦA −

11

2
DΦD2ΦDA − 5DΦD3ΦA;

Lð2Þ ¼ 3

2
ðD2ΦÞ3 − 2ðD3ΦÞ2 þ 1

4
D6Φ − ðDΦÞ2ðD2ΦÞ2 þ 3

4
ðDΦÞ2D4Φ −

1

4
ðDΦÞ3D3Φ

−
3

4
DΦD5Φ −

11

4
D2ΦD4Φþ 19

4
DΦD2ΦD3Φ: ð2:21Þ

By performing integration by parts one may verify that
(2.21) is equivalent to the simpler action of the same
structural form (2.20) but with Lagrangian

Lð−1Þ ¼ 1

2
TrZ −

1

6
TrZ3 þ A −

1

3
A3 − AB;

Lð0Þ ¼ −
1

8
TrðDZÞ2 − 3

2
ðDΦÞ2 þ 1

4
ðDAÞ2

þ 3

2
A2D2Φþ 1

2
BD2Φ;

Lð1Þ ¼ 1

2
A½D4Φ −DΦD3Φ − 3ðD2ΦÞ2�;

Lð2Þ ¼ 1

4
ðD3ΦÞ2 þ 1

2
ðD2ΦÞ3: ð2:22Þ

Finally, we can bring the full action to its simplest form by
performing the following field redefinition

B0 ¼ B − 1þ 1

3
A2 − α0

�
4

3
AD2Φþ 1

4
DΦDA −

1

4
D2A

�

−
α02

2

�
3

4
D4Φ −

3

4
DΦD3Φ −

5

3
ðD2ΦÞ2

�
;

A0 ¼ −Aþ α0

2
D2Φ; ð2:23Þ

to get (omitting the primes for A0 and B0)

I ¼
Z

dt ne−Φ
	
1

α0

�
ABþ 1

2
TrZ −

1

6
TrZ3

�
−
1

8
TrðDZÞ2

− ðDΦÞ2 þ α02

4

�
1

4
ðD3ΦÞ2 þ 1

3
ðD2ΦÞ3

�

: ð2:24Þ

We observe that after the above series of field redefini-
tions A and B completely trivialize in the sense that their
equations of motion simply set them to zero. Therefore, the
original theory given by (2.22) is equivalent to an effective

theory for Z, n, andΦ only, whose action is given by (2.24)
after setting A ¼ B ¼ 0. As a consequence, from now on
we can use this effective action to explore the physics of the
Z, n, Φ system alone, which in the following section we
take as a starting point to get an effective action for standard
gravity fields. In Sec. IV, however, we will reintroduce A
and B to see that, even though they encode no extra
information for the physical fields, they can still be used to
bring the theory to a formulation without positive powers of
α0, i.e., without more than two derivatives.

III. HIGHER-DERIVATIVE CORRECTIONS
AT ORDER α04

Our goal in this section is to relate the cosmological
reduction of HSZ theory to a conventional gravity theory
featuring only the metric, B-field and dilaton. To this end,
setting d ¼ D − 1, we express the internal double metric Z
in terms of an Oðd; dÞ valued generalized metric, encoding
the metric and the B-field, plus extra fields. Integrating
out these extra fields then induces higher-derivative
α0-corrections for the remaining fields that we compute
to order α04. We end the section by showing how to bring
the resulting action to the minimal form classified by Hohm
and Zwiebach [23].

A. From the double to the generalized metric

We start from the action in the form (2.24), setting
A ¼ B ¼ 0, as implied by their own field equations.
Thus, we consider the following action for the remaining
fields Z, n, and Φ:

I ¼
Z

dt n e−Φ
	

1

2α0

�
TrZ −

1

3
TrZ3

�
−
1

8
TrðDZÞ2

− ðDΦÞ2 þ α02

4

�
1

4
ðD3ΦÞ2 þ 1

3
ðD2ΦÞ3

�

: ð3:1Þ
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From the general variation of this action

δI ¼
Z

dt n e−Φ
�
TrδZEZ þ δΦEΦ þ δn

n
En

�
; ð3:2Þ

one obtains the equations of motion

0 ¼ EZ ≡ 1

2α0
ð1 − Z2Þ − 1

4
DΦDZ þ 1

4
D2Z; ð3:3aÞ

0 ¼ EΦ ≡ −
1

2α0

�
TrZ −

1

3
TrZ3

�
þ 1

8
TrðDZÞ2 − ðDΦÞ2 þ 2D2Φ

−
α02

8

�
D6Φ − 3DΦD5Φ − 7D2ΦD4Φþ 3ðDΦÞ2D4Φ −

9

2
ðD3ΦÞ2 þ 11DΦD2ΦD3Φ

− ðDΦÞ3D3Φþ 8

3
ðD2ΦÞ3 − 2ðDΦÞ2ðD2ΦÞ2

�
; ð3:3bÞ

0 ¼ En ≡ 1

2α0

�
TrZ −

1

3
TrZ3

�
þ 1

8
TrðDZÞ2 þ ðDΦÞ2

−
α02

8

�
DΦD5Φ −D2ΦD4Φ − 2ðDΦÞ2D4Φþ 1

2
ðD3ΦÞ2 − 4DΦD2ΦD3Φ

þ ðDΦÞ3D3Φþ 4

3
ðD2ΦÞ3 þ 2ðDΦÞ2ðD2ΦÞ2

�
; ð3:3cÞ

where for the first equation we used a matrix notation
for Z•

•. As a consistency check, we verified that these
equations satisfy the Bianchi/Noether identity implied by
gauge invariance under time reparametrizations. To this
end one specializes in (3.2) the variations to the one-
dimensional diffeomorphism transformations

δΦ ¼ ξ _Φ; δn ¼ ∂tðξnÞ; δZ ¼ ξ _Z; ð3:4Þ

which yields

δξI ¼
Z

dt n e−Φξ½Tr _ZEZ þ _ΦEΦ − eΦ∂tðe−ΦEnÞ� ¼ 0:

ð3:5Þ

Gauge invariance implies that this must hold for arbitrary ξ,
from which we infer

DΦðEΦ þ EnÞ þ TrDZEZ −DEn ¼ 0: ð3:6Þ

This is indeed identically satisfied by (3.3).
Even though discussing solutions of (3.3) is beyond the

scope of this work, there are two of them that can be easily
found. The first one is the trivial configuration

ZðtÞMN ¼ ðS0ÞMN; ΦðtÞ ¼ Φ0; ð3:7Þ

where S0 is the standard generalized metric but with
constant entries, and Φ0 is also a constant. In that case
(3.3) is trivially satisfied. More surprisingly, however, is the
nontrivial and nonperturbative solution

ZðtÞMN ¼ −δMN; ΦðtÞ ¼
ffiffiffiffiffiffiffi
2d
3α0

r
tþΦ0: ð3:8Þ

Note that ZðtÞMN ¼ δM
N is not a solution for a real dilaton

field. We consider this solution to belong to a separate and
somewhat pathological branch that is incompatible with the
interpretation as a generalized metric featuring a conven-
tional spacetime metric plus B field. For this reason we will
focus in later sections on solutions with Z ≠ −1.
We now turn to the decomposition of the double metric

into a generalized metric that encodes conventional gravity
fields plus extra fields that will be integrated out perturba-
tively [34]. We write

Z ¼ Sþ F; ð3:9Þ
where S ∈ Oðd; dÞ is the internal generalized scalar metric
satisfying S2 ¼ 1. A generalized metric can be parame-
trized in terms of symmetric and antisymmetric tensors g
and b, respectively, as follows:

S≡
�
bg−1 g − bg−1b

g−1 −g−1b

�
: ð3:10Þ
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The matrix F encodes the extra fields and can be assumed
to obey some constraints, which we now describe. We first
recall that with the generalized metric one can build
projectors

P≡ 1

2
ð1 − SÞ; P̄≡ 1

2
ð1þ SÞ; ð3:11Þ

satisfying

P2 ¼ P; P̄2 ¼ P̄; PP̄ ¼ P̄P ¼ 0: ð3:12Þ

Furthermore, we have the following useful identities

PS ¼ SP ¼ −P; P̄S ¼ SP̄ ¼ P̄: ð3:13Þ

A generic matrix A ¼ A•
• then can be projected into �

components, defined as

Aþ ≡ PAPþ P̄AP̄; A− ≡ PAP̄þ P̄AP; ð3:14Þ

such that

A ¼ Aþ þ A−: ð3:15Þ
We also have the relations

A� ¼ 1

2
ðA� SASÞ; A�S ¼ �SA�: ð3:16Þ

Such relations are useful in order to show that certain traces
vanish,

TrA− ¼ TrA−S2 ¼ −TrSA−S ¼ −TrA−S2 ¼ −TrA− ¼ 0;

ð3:17Þ

where we used S2 ¼ 1, (3.16) and the cyclicity of the trace.
Thus, traces of minus-projected tensors vanish.
While the decomposition (3.9) is totally generic, in

perturbation theory we think of F as being of one order
in α0 higher than S. This is motivated by the fact that, in this
case, the leading-order contribution to (3.1) does not
depend on F and it corresponds to the standard Neveu-
Schwarz sector of supergravity in cosmological back-
grounds. We can then assume F to be a constrained field
belonging to the þ subspace, i.e., F ¼ Fþ, because any
part in F belonging to the − subspace can be removed by a
field redefinition S → Sþ δS since δS ¼ ½δS�− as follows
by taking the variation of S2 ¼ 1. Thus, without loss of
generality, in perturbation theory we can write

Z ¼ Sþ Fþ: ð3:18Þ

Let us now inspect the equation of motion (3.3a) after
using this decomposition of Z. Inserting (3.18) into (3.3a)
one obtains

SFþ ¼ α0

4
□ΦðSþ FþÞ −

1

2
F2þ; ð3:19Þ

where here and in the following it is convenient to
introduce the linear operator

□Φ ≡D2 −DΦD: ð3:20Þ

From this we can obtain the equations for Fþ or S by
projecting into � subspaces. For the generalized metric we
project to the − subspace, and use ½Fþ�− ¼ ½F2þ�− ¼ 0.
This yields

½□ΦðSþ FþÞ�− ¼ 0: ð3:21Þ

For the extra fields we take the þ projection,

Fþ ¼ α0

4
½□ΦS�þSþ α0

4
½□ΦFþ�þS −

1

2
F2þS: ð3:22Þ

Since this is the equation of motion for Fþ, we can solve for
it perturbatively in α0 following the iterative procedure
described in the following section.

B. Integrating out the extra fields

Equation (3.22) is the starting point for integrating out
the extra fields Fþ. We assume a perturbative expansion in
α0, namely

Fþ ¼
X
i≥1

α0iFðiÞ
þ : ð3:23Þ

Inserting this expansion into (3.22) we obtain the recursive
relations

Fð1Þ
þ ¼ 1

4
½□ΦS�þS¼−

1

4
ðDSÞ2;

FðiÞ
þ ¼ 1

4
½□ΦF

ði−1Þ
þ �þS−

1

2

Xi−1
j¼1

FðjÞ
þ Fði−jÞ

þ S; i≥ 2: ð3:24Þ

By solving these equations recursively, we can express all

FðiÞ
þ in terms of S, Φ, and n. Plugging these expressions

back into the action (3.1) yields the effective action for the
conventional fields.
We perform this computation explicitly to order α04 by

first inserting the decomposition Z ¼ Sþ Fþ into the
action (3.1), which then splits as

I ¼ Ið0Þ þ α0Ið1Þ þ α02Ið2Þ þ α03Ið3Þ þ α04Ið4Þ þOðα05Þ;
ð3:25Þ

with
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Ið0Þ ¼
Z

dt n e−Φ
	
−
1

8
TrðDSÞ2 − ðDΦÞ2



;

Ið1Þ ¼
Z

dt n e−Φ
	
−
1

2
TrSðFð1Þ

þ Þ2 − 1

4
TrDSDFð1Þ

þ



;

Ið2Þ ¼
Z

dt n e−Φ
	
−
1

6
TrðFð1Þ

þ Þ3 − 1

8
TrðDFð1Þ

þ Þ2

þ 1

16
ðD3ΦÞ2 þ 1

12
ðD2ΦÞ3

− TrSFð1Þ
þ Fð2Þ

þ −
1

4
TrDSDFð2Þ

þ



;

Ið3Þ ¼
Z

dt n e−Φ
	
−
1

2
TrSðFð2Þ

þ Þ2 − 1

2
TrFð2Þ

þ ðFð1Þ
þ Þ2

−
1

4
TrDFð1Þ

þ DFð2Þ
þ − TrSFð1Þ

þ Fð3Þ
þ −

1

4
TrDSDFð3Þ

þ



;

Ið4Þ ¼
Z

dt n e−Φ
	
−
1

2
TrFð1Þ

þ ðFð2Þ
þ Þ2 − 1

8
TrðDFð2Þ

þ Þ2

− TrSFð1Þ
þ Fð4Þ

þ −
1

4
TrDSDFð4Þ

þ − TrSFð2Þ
þ Fð3Þ

þ

−
1

2
TrðFð1Þ

þ Þ2Fð3Þ
þ −

1

4
TrDFð1Þ

þ DFð3Þ
þ



: ð3:26Þ

With these expressions, naively it seems that we need to
solve the recursive equation up to quartic order to get the
final expression of the action in terms of S. However, now
we proceed to show that (3.26) can be simplified and in

particular we can remove any appearance of Fð3Þ
þ and Fð4Þ

þ .
We describe in detail how to simplify Ið1Þ, since the exact
same simplifications can be performed in the higher orders.
We find

Ið1Þ ¼
Z

dt n e−Φ
	
−
1

2
TrSðFð1Þ

þ Þ2 − 1

4
TrDSDFð1Þ

þ




¼
Z

dt n e−Φ
	
−
1

2
TrSðFð1Þ

þ Þ2 þ 1

4
Tr□ΦSF

ð1Þ
þ




¼
Z

dt n e−Φ
	
−
1

2
TrSðFð1Þ

þ Þ2 þ 1

4
Tr½□ΦS�þFð1Þ

þ




¼
Z

dt n e−ΦTr

�
−
1

2
SFð1Þ

þ þ 1

4
½□ΦS�þ

�
Fð1Þ
þ

¼ 1

2

Z
dt n e−ΦTrSðFð1Þ

þ Þ2; ð3:27Þ

where in the second equality we integrated by parts
and used the definition (3.20). From the second to
third line we use that only the þ projection survives
inside the trace due to (3.17). For the final step one

uses the leading solution (3.24) for Fð1Þ
þ . Following

these steps in the higher corrections leads to the following
simplifications

Ið0Þ ¼
Z

dt n e−Φ
	
−
1

8
TrðDSÞ2 − ðDΦÞ2



;

Ið1Þ ¼ 1

2

Z
dt n e−ΦTrSðFð1Þ

þ Þ2;

Ið2Þ ¼
Z

dt n e−Φ
	
−
1

6
TrðFð1Þ

þ Þ3 − 1

8
TrðDFð1Þ

þ Þ2

þ 1

16
ðD3ΦÞ2 þ 1

12
ðD2ΦÞ3



;

Ið3Þ ¼ 1

2

Z
dt n e−ΦTrSðFð2Þ

þ Þ2;

Ið4Þ ¼
Z

dt n e−Φ
	
−
1

2
TrFð1Þ

þ ðFð2Þ
þ Þ2 − 1

8
TrðDFð2Þ

þ Þ2


:

ð3:28Þ

This rewriting tells us that only Fð1Þ
þ and Fð2Þ

þ are needed,
which are given by (3.24) for i ¼ 1, 2,

Fð1Þ
þ ¼ −

1

4
ðDSÞ2;

Fð2Þ
þ ¼ −

1

16
½□ΦðDSDSÞ�þS −

1

32
ðDSÞ4S: ð3:29Þ

In order to evaluate the action (3.28) for these solutions
we found it convenient to write the result in terms of

L≡DSS; ð3:30Þ

which satisfies

L ¼ ½L�−; DL ¼ ½DL�−: ð3:31Þ

In particular, we will see that the zeroth-order equations for
S take a simpler form when written in terms of L. The
lowest-order solutions for the extra fields then read

Fð1Þ
þ ¼ 1

4
L2;

Fð2Þ
þ ¼ −

1

32
L4Sþ 1

16
½□ΦðL2Þ�þS: ð3:32Þ

Inserting these expressions into (3.28) one obtains an action
of the form (3.25) with

TOMAS CODINA, OLAF HOHM, and DIEGO MARQUES PHYS. REV. D 107, 046023 (2023)

046023-8



Ið0Þ ¼
Z

dt n e−Φ
	
1

8
TrL2 − ðDΦÞ2



;

Ið1Þ ¼ 0;

Ið2Þ ¼
Z

dt n e−Φ
	
−

1

3.27
TrL6 −

1

27
TrDðL2ÞDðL2Þ

þ 1

16
ðD3ΦÞ2 þ 1

12
ðD2ΦÞ3



;

Ið3Þ ¼
Z

dt n e−ΦL3ðDL;DΦ;TrL2Þ;

Ið4Þ ¼
Z

dt n e−ΦL4ðDL;DΦ;TrL2Þ; ð3:33Þ

where we used

TrSLn ¼ 0; n ∈ N0; ð3:34Þ

which follows by anticommuting S with L and using the
cyclicity of the trace. The notation LiðDL;DΦ;TrL2Þ
refers to functions of the given arguments, whose specific
form is irrelevant for our purposes. As discussed in
previous papers [15,24], terms containing derivatives of
L, dilaton terms or TrL2 can be removed by field
redefinitions at the expense of introducing higher-order
terms. We then call such terms “removable.” The process of
implementing field redefinitions is cumbersome and has
been discussed previously [15], so we move the general
procedure to the Appendix. Here we just summarize our
findings. A redefinition of order 4 eliminates Ið4Þ because it
is purely removable. Of course it might induce higher-order
terms, that we are neglecting here. A redefinition of order 3
eliminates Ið3Þ for the same reason. This could reintroduce
new terms in Ið4Þ, but it does not because there is no Ið1Þ and
so the first-order correction to the equations of motion
vanishes. So we can then start by eliminating Ið3Þ and Ið4Þ

completely to order-α04. When it comes to removing the last
three terms in Ið2Þ, the second-order equations of motion
reintroduce terms in Ið4Þ, some which are removable at no
cost, plus an extra term that defines the new coefficients
found in this paper; c5;0 and c5;1. The final result of this
systematic procedure is the HSZ action in the cosmological
classification

I ¼
Z

dt n e−Φ
	
1

8
TrL2 − ðDΦÞ2 − α02

1

3 · 27
TrL6

þ α04
1

3 · 213
TrL4TrL6 þOðα05Þ



: ð3:35Þ

By coming back to the original basis in terms ofDS and the
classification given in [24], according to which the action
must take the form

I ¼
Z

dte−Φ½− _Φ2 þ c1;0TrðDSÞ2

þ α0c2;0TrðDSÞ4 þ α02c3;0TrðDSÞ6
þ α03ðc4;0TrðDSÞ8 þ c4;1ðTrðDSÞ4Þ2Þ
þ α04ðc5;0TrðDSÞ10 þ c5;1TrðDSÞ6TrðDSÞ4Þ�; ð3:36Þ

we obtain by comparison of coefficients

c1;0 c2;0 c3;0 c4;0 c4;1 c5;0 c5;1

− 1
8

0 1
3·27

0 0 0 − 1
3·213

Up to and including c4 the coefficients coincide with the
ones obtained in [15], whereas c5;0 and c5;1 are new results.

IV. TWO-DERIVATIVE REFORMULATION

In [25], HSZ theory was considered up to quadratic order
in field perturbations about flat space. In this limit the higher-
derivative terms can be removed by introducing certain
auxiliary fields. One can then take the tensionless limit
α0 → ∞ smoothly, for which one finds an enhanced gauge
symmetry whose corresponding gauge fields are the aux-
iliary fields. The objective of this section is two-fold: First,
we will show that in the cosmological setting the auxiliary
fields introduced in [25] are not required in order to remove
higher orders in α0, since the already present A and B can be
used to accomplish this. Second, for completeness, we show
that the auxiliary fields are nevertheless needed in order to
make contact with the formulation of [25], but we will see
that for the cosmological setting the enhanced gauge sym-
metries can be trivialized in the sense that the fields can be
rearranged into gauge invariant variables.

A. Two-derivative theory

The action (2.24) contains only two terms at higher orders
in α0 given by the terms in the second line. Remarkably, both
terms can be removed by exact field redefinitions ofA andB.
Explicitly, by performing the transformations

B ¼ B0 −
2

3
A02 þ α0

�
1

4
DA0DΦ −

1

4
D2A0 þ 1

3
A0D2Φ

�

−
α02

2

�
−
1

4
D4Φþ 1

4
DΦD3Φþ 1

3
ðD2ΦÞ2

�
;

A ¼ A0 þ α0

2
D2Φ; ð4:1Þ

the action (2.24) can be brought to the following two-
derivative form (omitting the primes)

I ¼
Z

dt n e−Φ
	
1

α0

�
AB −

2

3
A3 þ 1

2
TrZ −

1

6
TrZ3

�

−
1

8
TrðDZÞ2 − ðDΦÞ2 þ 1

4
ðDAÞ2 þ 1

2
BD2Φ



: ð4:2Þ
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In this formulation, all higher orders in α0 are “hidden” in the
on shell value ofA andB. Indeed, we note thatB enters in the
action just linearly, so it plays the role of a Lagrange
multiplier, which imposes a condition on the scalar
field A,

δI
δB

¼ 0 ⇒ A ¼ −
α0

2
D2Φ: ð4:3Þ

Reinserting this value of A into the action (4.2), the A3 and
ðDAÞ2 couplings are replaced by the α02 terms ðD2ΦÞ3 and
ðD3ΦÞ2, respectively. The resulting action is exactly the
effective action for Z, n and Φ obtained from (2.24) after
fixing A ¼ B ¼ 0.
In order to relate to the results in [25] it is instructive to

go to a more democratic formulation in terms of two
“massive” scalar fields Aþ and A−. To do so, we first
integrate by parts the term BD2Φ and perform the follow-
ing field redefinitions:

A ¼ −ðAþ þ A−Þ; B ¼ 2ðAþ − A−Þ; ð4:4Þ

to arrive at

I ¼
Z

dtne−Φ
	
1

α0

�
−2ðAþÞ2 þ 2ðA−Þ2

þ 2

3
ðAþ þA−Þ3 þ 1

2
TrZ −

1

6
TrZ3

�

−
1

8
TrðDZÞ2 − ðDΦÞ2 þ 1

4
ðDAþÞ2 þ 1

4
ðDA−Þ2

þ 1

2
DAþDA− −DðAþ −A−ÞDΦþ ðAþ −A−ÞðDΦÞ2



:

ð4:5Þ

Finally, we remove the mixed terms with a field redefinition
of the dilaton,

Φ ¼ Φ0 −
1

2
ðAþ − A−Þ: ð4:6Þ

Omitting the primes for the transformed dilaton, the final
action reads

I¼
Z

dtne−Φþ1
2
ðAþ−A−Þ

	
1

α0

�
2

3
ðAþþA−Þ3þ1

2
TrZ−

1

6
TrZ3

�

−
1

8
TrðDZÞ2−ðDΦÞ2

þ1

2
ðDAþÞ2− 2

α0
ðAþÞ2þ1

2
ðDA−Þ2þ 2

α0
ðA−Þ2

þðAþ−A−Þ
�
D
�
Φ−

1

2
ðAþ−A−Þ

��
2


: ð4:7Þ

Here we recognize from the quadratic terms in the third line
that A� correspond to two “massive” scalar fields with
masses ðM�Þ2 ¼ ∓ 4

α0, respectively.
Once we have the action in a form with no positive α0

powers we can take the tensionless limit α0 → ∞. Then all
1
α0 terms drop from the action, in particular the mass terms
for A�. The resulting action is given by

I∞ ¼
Z

dt n e−Φþ1
2
ðAþ−A−Þ

	
−
1

8
TrðDZÞ2 − ðDΦÞ2

þ 1

2
ðDAþÞ2 þ 1

2
ðDA−Þ2

þ ðAþ − A−Þ
�
D
�
Φ −

1

2
ðAþ − A−Þ

��
2


: ð4:8Þ

In contrast to the enhanced gauge symmetries uncovered
in [25], here the tensionless limit does not appear to exhibit
any additional gauge symmetries. However, it does have a
symmetry in the form of a constant shift A� → a ¼ const
because, apart from the kinetic term, A� appear in the
combination Aþ − A−, in contrast to the full theory (4.7)
with finite α0. We will show in the next section that upon
introducing two extra auxiliary fields, motivated by [25],
we can display the expected enhanced gauge symmetries,
albeit in a somewhat trivial fashion.

B. Tensionless limit

In the previous section we have seen that introducing
additional auxiliary fields is not required in order to
remove higher orders in α0. Nevertheless, here we will
introduce two extra fields with the goal of identifying
the enhanced symmetry found in [25], after taking the
tensionless limit.
Returning to (2.24) let us “integrate-in” two auxiliary

fields φ and φ̄ in order to remove the terms of order α02,
mimicking the procedure in [25],

Z
dtne−Φ

	
1

α0

�
AB−2φ2þ2φ̄2

þ2

3
ðφþ φ̄Þ3þ1

2
TrZ−

1

6
TrZ3

�

−
1

8
TrðDZÞ2− ðDΦÞ2þ1

4
ðDφÞ2þ1

4
ðDφ̄Þ2þ1

2
DφDφ̄

−Dðφ− φ̄ÞDΦþðφ− φ̄ÞðDΦÞ2


: ð4:9Þ

In order to show that this action is equivalent to (2.24)
we compute the equations of motion for φ and φ̄, which
yields
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φ ¼ α0

4
D2Φþ η; φ̄ ¼ α0

4
D2Φ − η;

η≡ 1

2
ðφþ φ̄Þ2 þ α0

8
½Dðφþ φ̄ÞDΦ −D2ðφþ φ̄Þ�: ð4:10Þ

Upon reinsertion into (4.9), all η contributions cancel, and
the only surviving terms are exactly the two dilaton
contributions at order α02 of (2.24). Another simpler way
to see that this theory is equivalent to the original one is by

noticing that (4.9) is equal to (4.5) after identifying φ → Aþ
and φ̄ → A− and setting A ¼ B ¼ 0. Moreover, as we did
in the previous section, we can perform a dilaton field
redefinition

Φ ¼ Φ0 −
1

2
ðφ − φ̄Þ; ð4:11Þ

to arrive at the analog of (4.7), namely

I ¼
Z

dt n e−Φþ1
2
ðφ−φ̄Þ

	
1

α0

�
ABþ 2

3
ðφþ φ̄Þ3 þ 1

2
TrZ −

1

6
TrZ3

�

−
1

8
TrðDZÞ2 − ðDΦÞ2 þ 1

2
ðDφÞ2 − 2

α0
φ2 þ 1

2
ðDφ̄Þ2 þ 2

α0
φ̄2 þ ðφ − φ̄Þ

�
D
�
Φ −

1

2
ðφ − φ̄Þ

��
2


: ð4:12Þ

In contrast to (4.7), here we still have A and B, and we can perform the following field redefinitions3:

A ¼ A0 þ Ā − ðφ0 − φ̄0Þ; B ¼ A0 − Ā − ðφ0 þ φ̄0Þ; φ ¼ φ0 −
1

2
A0; φ̄ ¼ φ̄0 þ 1

2
Ā; ð4:13Þ

to arrive at the action

I ¼
Z

dt n e−Φþ1
2
ðφ−φ̄Þ−1

4
ðAþĀÞ

	
1

α0

�
2

3
ðφþ φ̄ −

1

2
ðA − ĀÞÞ3 þ 1

2
TrZ −

1

6
TrZ3

�
−
1

8
TrðDZÞ2 − ðDΦÞ2

þ 1

8
ðDAÞ2 þ 1

2
ðDφÞ2 − 1

2
DADφþ 1

α0

�
1

2
A2 − φ2

�
þ 1

8
ðDĀÞ2 þ 1

2
ðDφ̄Þ2 − 1

2
DĀDφ̄ −

1

α0

�
1

2
Ā2 − φ̄2

�

þ
�
φ − φ̄ −

1

2
ðAþ ĀÞ

��
D
�
Φ −

1

2
ðφ − φ̄Þ þ 1

4
ðAþ ĀÞ

��
2


; ð4:14Þ

omitting again the primes of the transformed fields. One
may verify that the quadratic approximation for field
perturbations around the classical solution A ¼ Ā ¼ φ ¼
φ̄ ¼ 0 coincides with the one obtained in Equation (5.1) of
[25], once reduced to a cosmological background, where
the components a00; ā00;φ00, and φ̄00 correspond to the
fluctuations of A; Ā;φ, and φ̄, respectively.
Given this match, we expect to recover the enhanced

gauge symmetry in the tensionless limit. To this end
consider the following field redefinition of the lapse
function,

n ¼ n0e−Φþ1
2
ðφ−φ̄Þ−1

4
ðAþĀÞ; ð4:15Þ

which removes completely the exponential factor for the
two-derivative part of the action, at the expense of
modifying the measure of the 1

α0 terms. But the latter terms
disappear in the limit α0 → ∞, and we obtain

I∞¼
Z

dtn

	
−
1

8
TrðDZÞ2−ðDΦÞ2þ1

8
ðDAÞ2þ1

2
ðDφÞ2

−
1

2
DADφþ1

8
ðDĀÞ2þ1

2
ðDφ̄Þ2−1

2
DĀDφ̄

þ
h
φ−φ̄−

1

2
ðAþĀÞ

i�
D
�
Φ−

1

2
ðφ−φ̄Þþ1

4
ðAþĀÞ

��
2


:

ð4:16Þ

This action is invariant under the Stückelberg gauge
invariance, with two independent gauge parameters χ
and χ̄,

δA ¼ 2χ; δĀ ¼ −2χ̄;

δφ ¼ χ; δφ̄ ¼ χ̄: ð4:17Þ

Upon setting

χ ¼ −Dζ; χ̄ ¼ Dζ̄; ð4:18Þ

these transformations agree with (the cosmological reduc-
tion of) the gauge symmetries found in [25], but we observe3Here Ā plays the role of a B0.
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that the one-dimensional setting is somewhat degenerate in
that the gauge symmetries become mere Stückelberg
transformations. Consequently, one may immediately pass
over to the gauge invariant quantities

Aþ ≡ φ −
1

2
A; A− ≡ φ̄þ 1

2
Ā; ð4:19Þ

obeying δA� ¼ 0, for which the action (4.16) reads

I∞¼
Z

dtn

	
−
1

8
TrðDZÞ2−ðDΦÞ2þ1

2
ðDAþÞ2þ1

2
ðDA−Þ2

þðAþ−A−Þ
�
D
�
Φ−

1

2
ðAþ−A−Þ

��
2


: ð4:20Þ

This manifestly gauge invariant action agrees precisely
with (4.8) obtained above.
However, as to be expected, the symmetry (4.17) does

not survive for the full theory (4.14). This can be seen by
trying to rewrite it in terms of the gauge invariant quantities
A�, (4.19)

I¼
Z

dtne−Φþ1
2
ðAþ−A−Þ

	
1

α0

�
2

3
ðAþþA−Þ3þ1

2
TrZ−

1

6
TrZ3

�

−
1

8
TrðDZÞ2−ðDΦÞ2þ1

2
ðDAþÞ2

þ 1

α0
½φ2−4φAþþ2ðAþÞ2�þ1

2
ðDA−Þ2

−
1

α0
½φ̄2−4φ̄A−þ2ðA−Þ2�

þðAþ−A−Þ
�
DðΦ−

1

2
ðAþ−A−Þ

�
2


; ð4:21Þ

and observing that the masslike terms in the third and
fourth line explicitly depend on φ and φ̄. Curiously,
however, (4.21) is invariant under the nonlinear gauge
symmetry given by

δφ¼ðφ̄−2A−Þη; δφ̄¼ðφ−2AþÞη; δAð�Þ ¼0; ð4:22Þ

where ηðtÞ is an arbitrary gauge parameter.
We finish this analysis by making a final consistency

check. We note that in the form (4.21), φ and φ̄ can be
integrated out directly since their equations of motion are
given by

φ ¼ 2Aþ; φ̄ ¼ 2A−; ð4:23Þ

and reinserting this into the action yields precisely (4.7).

V. FRIEDMANN UNIVERSE
AND TENSIONLESS LIMIT

In this section we analyze the two-derivative equations
for FRW backgrounds with a single scale factor. To this end
we bring the equations into the form of string cosmology
with “matter fields,” which here are the extra fields A, B,
and F. While the equations in general are hard to solve, it is
straightforward to give the general solutions in the tension-
less limit α0 → ∞, which include string frame de Sitter
vacua. We then outline perturbation theory in 1

α0 and show
how these solutions get corrected.

A. α0-exact Friedmann equations

We begin by considering the two-derivative form of the
action (4.2) and expanding Z ¼ Sþ F, which yields

I ¼ Ið0Þ þ Im; ð5:1Þ

with

Ið0Þ ≡
Z

dt n e−Φ
	
−
1

8
TrðDSÞ2 − ðDΦÞ2



;

Im ≡
Z

dt n e−Φ
	
1

α0

�
AB −

2

3
A3 −

1

2
TrSF2 −

1

6
TrF3

�

þ 1

4
ðDAÞ2 þ 1

2
BD2Φ −

1

4
TrDSDF −

1

8
TrðDFÞ2



:

ð5:2Þ

In this split Ið0Þ is the standard lowest-order, two-derivative
gravity action, and Im encodes the matter content para-
metrized by A, B, and F. It is important to point out that
here we are keeping both projections of the extra fields
F ¼ Fþ þ F−, and we make no a priori assumptions on
their dependence on α0. This is different from the pertur-
bative setup of Sec. III A. From Ið0Þ one obtains the
equations of motion (EOM) for the massless fields, see
Eq. (A3), while the variation of the matter action is
conveniently encoded in the Oðd; dÞ-covariant energy
momentum tensor, energy density and dilatonic charge
[35,36] as4

T M
N ≡ −2

eΦ

n
SMP δIm

δSPN
; ð5:3aÞ

ρ≡ −eΦ
δIm
δn

; ð5:3bÞ

σ ≡ −2
eΦ

n
δIm
δΦ

: ð5:3cÞ

4All quantities are defined with a
ffiffiffiffiffijgjp

eΦ rescaling compared
to standard definitions.
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The EOM following from (5.1) for S, Φ and n are then
given by

½□ΦS�−S ¼ −2½T �−; ð5:4aÞ

2D2Φ − ðDΦÞ2 þ 1

8
TrðDSÞ2 ¼ 1

2
σ; ð5:4bÞ

ðDΦÞ2 þ 1

8
TrðDSÞ2 ¼ ρ; ð5:4cÞ

with

½T �−¼ S
�
−
1

2
□ΦFþ 1

α0
F2

�
−
; ð5:5aÞ

ρ¼ 1

2α0
TrSF2þ 1

6α0
TrF3−

1

4
TrDSDF−

1

8
TrðDFÞ2

−
1

α0

�
AB−

2

3
A3

�
þ1

4
ðDAÞ2þ1

2
BðDΦÞ2−1

2
DBDΦ;

ð5:5bÞ

σ¼−
1

α0
TrSF2−

1

3α0
TrF3−

1

2
TrDSDF−

1

4
TrðDFÞ2

þ 2

α0

�
AB−

2

3
A3

�
þ1

2
ðDAÞ2þ2BD2Φ−BðDΦÞ2

þ2DBDΦ−D2B: ð5:5cÞ

In addition, the EOM for the matter fields are given by

0 ¼ 1

4
□ΦðSþ FÞ − 1

2α0
ðSF þ FSÞ − 1

2α0
F2; ð5:6aÞ

A ¼ −
α0

2
D2Φ; ð5:6bÞ

B ¼ 2A2 þ α0

2
□ΦA

¼ α02
�
−
1

4
D4Φþ 1

2
ðD2ΦÞ2 þ 1

4
DΦD3Φ

�
; ð5:6cÞ

where in the last equality of (5.6c) we used the on-shell
value of A. Indeed, we see here that A and B can be
eliminated completely, but we find it convenient to keep
them in order to be able to work with second-order
equations.
We also note that reparametrization invariance implies

the following Noether identity or continuity equation,

Dρþ 1

2
TrSDST −DΦ

�
ρþ 1

2
σ

�
¼ 0: ð5:7Þ

Let us now specify to FRW backgrounds, which are
characterized by a single-scale factor aðtÞ, such that

S ¼
�

0 a2

a−2 0

�
: ð5:8Þ

It is also convenient to define the following quantities

J ≡
�

0 a2

−a−2 0

�
; K≡

�
1 0

0 −1

�
; ð5:9Þ

which, together with S, satisfy identities that will become
useful below:

J 2 ¼ −1; J ¼ ½J �−;
K2 ¼ 1; J S ¼ K;

TrS ¼ TrK ¼ TrJ ¼ 0: ð5:10Þ

Moreover, for the Hubble parameter defined as HðtÞ≡ Da
a

we have

DS ¼ 2HJ ; DJ ¼ 2HS: ð5:11Þ
Using (5.10) and (5.11) we can write out the lhs of (5.4) for
the FRW background

½□ΦS�−S → 2ðDH −DΦHÞK;

2D2Φ − ðDΦÞ2 þ 1

8
TrðDSÞ2 → 2D2Φ − ðDΦÞ2 − dH2;

ðDΦÞ2 þ 1

8
TrðDSÞ2 → ðDΦÞ2 − dH2: ð5:12Þ

For the rhs of (5.4) we need to choose a parametrization
for F. Instead of considering the extra fields in full
generality, however, we will truncate the theory to the
subsector F− ¼ 0. Since now we are exploring the theory
also in nonperturbative regimes, the argument of Sec. III A
to fix F ¼ Fþ using field redefinitions does not hold
anymore. There, the theories with or without F− were
equivalent, but here we need to treat F− ¼ 0 as a genuine
truncation of the theory. While we find that in general this is
not a consistent truncation of the full theory (5.2), it is a
consistent truncation for FRW backgrounds. To see this we
split F ¼ Fþ þ F− in (5.2), compute the EOM for S; Fþ
and F− separately and then set F− ¼ 0

5:

δI
δS

����
F−¼0

¼ 1

8
SfðSþ FþÞ½□ΦðSþ FþÞ�−

− ½□ΦðSþ FþÞ�−ðSþ FþÞg ¼ 0; ð5:13aÞ

5When computing the variation of the action with respect to
F�, one should remember that they are constrained fields. As a
consequence, part of their variations are determined by δS which
induce extra terms for the EOM of S.
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δI
δFþ

����
F−¼0

¼ 1

4
½□ΦðSþ FþÞ�þ −

1

α0
SFþ −

1

2α0
F2þ ¼ 0;

ð5:13bÞ

δI
δF−

����
F−¼0

¼ 1

4
½□ΦðSþ FþÞ�− ¼ 0: ð5:13cÞ

Even though we set F− ¼ 0 we still have to satisfy (5.13c),
which is a constraint on S and Fþ. While (5.13c) implies
(5.13a), the reverse need not to be true which means that
F− ¼ 0 is not a consistent truncation in general. In other
words, in principle there could be solutions to (5.13a) that
are not of the form (5.13c). For FRW, however, F− ¼ 0 is a
consistent truncation because in this case one can show that
both equations are equivalent. Thus, from now on we
consider F− ¼ 0 and we proceed to parametrize Fþ. The
most general ansatz for a +-projected Oðd; d;RÞ tensor
consistent with the FRW background (5.8) is given in terms
of two symmetric matrices f1mnðtÞ and f2mnðtÞ,

Fþ ¼
�

f2 f1a2

a−2f1 f2

�
; ð5:14Þ

where the indices are raised and lowered with δmn.
However, here we want to implement homogeneity and
isotropy, as for standard cosmology, by setting

f1mn ¼ f1δmn; f2mn ¼ f2δmn; ð5:15Þ

with f1, f2 being functions of time. This can be seen to be a
consistent truncation of the most general ansatz.6

In this simplified scheme the matter content is described
by just four scalar fields, A; B; f1, and f2. Fþ then takes the
simple form

Fþ ¼
�
f2 0

0 f2

�
þ
�

0 f1a2

a−2f1 0

�

¼ f1Sþ f21; ð5:16Þ

where 1 denotes the unit matrix with components δMN . By
taking derivatives of (5.16) and using the definition for the
generalized energy momentum tensor (5.5a) with F ¼ Fþ
it follows that

½T �− ¼ −
1

2
S½□ΦFþ�−

¼ ½2HDf1 þ ðDH −DΦHÞf1�K; ð5:17Þ

where we used the matrix defined in (5.9).

In order to give a physical interpretation to (5.17) notice
that for FRW backgrounds (5.3a) we have

T M
N ¼ −2

eΦ

n
SMP δIm

δSPN
¼

�−Tm
n 0

0 Tm
n

�
; ð5:18Þ

with

Tm
n ¼ pδmn; ð5:19Þ

which describes a perfect fluid with pressure p.
Comparison with (5.17) then motivates us to view the
extra fields of HSZ as describing an effective perfect fluid
with an effective pressure determined by f1,

½T �− ¼ −pK;

p ¼ −2HDf1 − ðDH −DΦHÞf1: ð5:20Þ

For the energy density and the dilatonic charge we just
need to insert our expressions for S;L; Fþ and their
derivatives in terms of f1 and f2 into the definition of ρ
and σ in (5.5b) and (5.5c). With the help of the identities
(5.10) and (5.11) one obtains

ρ ¼ d
α0

�
2f2f1 þ

1

3
f23 þ f2f12

�
þ dH2f1ðf1 þ 2Þ

−
d
4
ððDf1Þ2 þ ðDf2Þ2Þ

−
1

α0

�
AB−

2

3
A3

�
þ 1

4
ðDAÞ2 þ 1

2
BðDΦÞ2 − 1

2
DBDΦ;

σ ¼ −
2d
α0

�
2f2f1 þ

1

3
f23 þ f2f12

�
þ 2dH2f1ðf1 þ 2Þ

−
d
2
ððDf1Þ2 þ ðDf2Þ2Þ

þ 2

α0

�
AB−

2

3
A3

�
þ 1

2
ðDAÞ2 þ 2BD2Φ

−BðDΦÞ2 þ 2DBDΦ−D2B: ð5:21Þ

With (5.20) and (5.21) the right-hand sides of the equations
of motion (5.4) are completely determined.
Next, for the EOM of the extra fields we can consider

just the þ projection of (5.6a), because the minus projec-
tion is exactly the EOM of S in (5.4a) and so it vanishes
on shell. By taking F− ¼ 0, the þ projection of (5.6a)
reduces to

6To this end one considers the generic ansatz until getting the
final expressions for the EOM (5.4) and (5.6) in terms of f1mn

and f2mn and then verifies that a diagonal ansatz is consistent.
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0 ¼ −
α0

4
½□ΦðSþ FþÞ�þ þ SFþ þ 1

2
F2þ

¼
�
1

2
f12 þ

1

2
f22 þ f1 −

α0

4
□Φf2

�
1

þ
�
ðf2 − α0H2Þðf1 þ 1Þ − α0

4
□Φf1

�
S; ð5:22Þ

which imply two inequivalent equations (one for each
scalar field)

1

2
f12 þ

1

2
f22 þ f1 −

α0

4
□Φf2 ¼ 0;

ðf2 − α0H2Þðf1 þ 1Þ − α0

4
□Φf1 ¼ 0: ð5:23Þ

When combining (5.12), (5.20), (5.21), and (5.23), we end
up with the following nonlinear system of coupled second-
order differential equations for a;Φ; n; A; B; f1, and f2

p ¼ DH −DΦH; ð5:24aÞ

1

2

�
1

2
σ þ ρ

�
¼ D2Φ − dH2; ð5:24bÞ

ρ ¼ ðDΦÞ2 − dH2; ð5:24cÞ

0 ¼ ðf2 − α0H2Þðf1 þ 1Þ − α0

4
□Φf1; ð5:24dÞ

0 ¼ 1

2
f12 þ

1

2
f22 þ f1 −

α0

4
□Φf2; ð5:24eÞ

A ¼ −
α0

2
D2Φ; ð5:24fÞ

B ¼ 2A2 þ α0

2
□ΦA; ð5:24gÞ

with the “effective matter sources”

p ¼ −2HDf1 − ðDH −DΦHÞf1; ð5:25aÞ

ρ¼ d
α0

�
2f1þf12þ

1

3
f22

�
f2þdH2f1ðf1þ2Þ

−
d
4
ððDf1Þ2þðDf2Þ2Þ−

1

α0

�
AB−

2

3
A3

�

þ1

4
ðDAÞ2þ1

2
BðDΦÞ2−1

2
DBDΦ; ð5:25bÞ

1

2

�
1

2
σþρ

�
¼ dH2f1ðf1þ2Þ−d

4
ððDf1Þ2þðDf2Þ2Þ

þ1

4
ðDAÞ2þ1

2
BD2Φþ1

4
DBDΦ−

1

4
D2B:

ð5:25cÞ

It is instructive to check that these equations are invariant
under duality transformations, which in the case of FRW
backgrounds reduce to simple full factorized T-dualities

a → a−1 ⇒ H → −H; ð5:26Þ

while the rest of the fields, including f1 and f2, behave as
scalars. It is also worth performing some consistency checks
before proceeding; the first one comes from the observation
that, if f1 ¼ Oðα0Þ and f2 ¼ Oðα0Þ, thewhole system (5.24)
reduces to the standard Friedmann equations invacuumupon
neglecting higher orders in α0

DH −DΦH ¼ Oðα0Þ; ð5:27aÞ

D2Φ − dH2 ¼ Oðα0Þ; ð5:27bÞ

ðDΦÞ2 − dH2 ¼ Oðα0Þ: ð5:27cÞ

As a second consistency check we corroborated that the
continuity equation (5.7), which for FRWbackgrounds reads

Dρþ 2dHp −DΦ
�
ρþ 1

2
σ

�
¼ 0; ð5:28Þ

is indeed satisfied for the quantities given in (5.25).
Remarkably, the above system represents a nonpertur-

bative and α0-complete set of equations for a consistent
truncation of a theory sharing many features of genuine
string theory. Unfortunately, finding analytic solutions of
(5.24) seems to be difficult, but as an example of a rather
degenerate solution, we can check the one found in (3.8).
Specifically, using the decomposition Z ¼ Sþ Fþ and
Fþ ¼ f1Sþ f21, the solution Z ¼ −1 corresponds to

f1ðtÞ ¼ f2ðtÞ ¼ −1; ð5:29Þ

where HðtÞ can be arbitrary. While this latter point may be
hidden in the way the Eq. (5.24) are written, one can see
that with (5.29) all contributions related to the scale factor
just disappear. In this case (5.24d) and (5.24e) are auto-
matically satisfied and (5.25) take the form

p ¼ DH −DΦH; ð5:30aÞ

ρ ¼ 2d
3α0

− dH2 −
1

α0

�
AB −

2

3
A3

�
þ 1

4
ðDAÞ2

þ 1

2
BðDΦÞ2 − 1

2
DBDΦ; ð5:30bÞ

1

2

�
1

2
σ þ ρ

�
¼ −dH2 þ 1

4
ðDAÞ2 þ 1

2
BD2Φ

þ 1

4
DBDΦ −

1

4
D2B: ð5:30cÞ
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By inserting these results into (5.24a), (5.24b), and (5.24c)
it is easy to see that all Hubble parameters cancel out.
Finally, by picking the same dilaton value as in (3.8),

ΦðtÞ ¼
ffiffiffiffiffiffiffi
2d
3α0

r
tþΦ0; ð5:31Þ

with Φ0 constant, A ¼ B ¼ 0, the rest of the equations in
(5.24) are trivially satisfied.
Apart from this simple case, looking for exact and more

complex solutions of the system (5.24) is a complicated
task and one should look for simplifications. One option
would be to restrict to backgrounds whose matter content
describes a barotropic fluid p ¼ wρ and/or no dilatonic
charge, σ ¼ 0. A second option is to study particular
configurations for the dilaton and Hubble parameter and
to ask if there exist any configuration of the extra fields
AðtÞ; BðtÞ; f1ðtÞ, and f2ðtÞ such that the equations are
satisfied. Another possibility is to study the system per-
turbatively. In the remainder of this section wewill focus on
the last two approaches. For the perturbative computation
in particular we will not consider the typical low-energy
case of small α0, but rather perform an expansion in 1

α0

around the tensionless limit α0 → ∞.
In order to study these two particular paths, we first make

some assumptions on the fields and rewrite the system in a
more convenient way. We begin by ruling out the somewhat
degenerate branch of solutions by demanding f1 ≠ −1. On
top of that we also exclude the flat Minkowski background
by demanding H ≠ 0. From now on we will gauge fix the
lapse to nðtÞ ¼ 1 and adopt the following notation for the
extra fields

x≡ 1þ f1 ≠ 0; y≡ f2: ð5:32Þ

We now observe that under these assumptions Eq. (5.24a)
can be solved exactly. To see this we begin by noting the
simpler expression for the pressure

p ¼ −2H _x − ð _H − _ΦHÞðx − 1Þ
¼ −2H _x − pðx − 1Þ

¼ −2H
_x
x

¼ −2H∂t ln x; ð5:33Þ

where in the second equality we used (5.24a) and in the
third one we isolated p by assuming x ≠ 0. Plugging (5.33)
into (5.24a) we get

−2H∂t ln x ¼ _H − _ΦH;

∂t lnðx−2Þ ¼ ∂tðlnH −ΦÞ; ð5:34Þ

where in the second line we invertedH, which is valid since
we are assuming H ≠ 0. This equation can be integrated
exactly to arrive at

HðtÞ ¼ QeΦðtÞxðtÞ−2; Q ¼ const: ≠ 0: ð5:35Þ

This relation tells us that the Hubble parameter is com-
pletely determined from the dilaton and one of the extra
fields. For the rest of the system we cannot do much
without considering particular truncations or certain limits
of the theory and so here we just rewrite them in terms of x
and y,

H ¼ QeΦx−2; ð5:36aÞ

Φ̈ ¼ dH2x2 −
d
4
ð_x2 þ _y2Þ þ 1

4
ð _AÞ2 þ 1

2
BΦ̈þ 1

4
_B _Φ−

1

4
B̈;

ð5:36bÞ

_Φ2 ¼ d
α0

�
x2 − 1þ 1

3
y2
�
yþ dH2x2 −

d
4
ð_x2 þ _y2Þ

−
1

α0

�
AB −

2

3
A3

�
þ 1

4
ð _AÞ2 þ 1

2
Bð _ΦÞ2 − 1

2
_B _Φ;

ð5:36cÞ

0 ¼ −
α0

4
ẍþ α0

4
_Φ _xþxy − α0H2x; ð5:36dÞ

0 ¼ −
α0

2
ÿþ α0

2
_Φ _yþx2 þ y2 − 1; ð5:36eÞ

A ¼ −
α0

2
Φ̈; ð5:36fÞ

B ¼ 2A2 þ α0

2
Ä −

α0

2
_Φ _A : ð5:36gÞ

Most of the complexity of the system comes from the
terms involving A and B. This is because they are the only
ones implicitly encoding up to order six in derivatives of the
dilaton, as can be seen by solving (5.36f) and (5.36g) to
express A and B in terms of Φ. We did not succeed in
finding solutions of the full theory for specific ansatze. In
the following we summarize the backgrounds we studied
that turn out not to be exact solutions7:

(i) There are no solutions with constant dilaton
ΦðtÞ ¼ Φ0 ¼ const.

(ii) There are no solutions with HðtÞ ¼ H0 ¼ const
and Φ being a Laurent polynomial ΦðtÞ ¼P

k∈ZΦkðt − t0Þk ∈ R½t; t−1� where all Φk are con-
stant and there are only finitely-many nonvanishing
of them.

7We are always considering xðtÞ ≠ 0.
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In particular, this result already rules out the
possibility of having de Sitter backgrounds in Ein-
stein framewith constant dilaton ϕðtÞ ¼ ϕ0 ¼ const.
To see this we remember that the original dilaton
ϕðtÞ coming from the two-dimensional string sigma
model is related to the duality invariant one ΦðtÞ by

ΦðtÞ¼ 2ϕðtÞ−d lnaðtÞ; _Φ¼ 2 _ϕ−dH: ð5:37Þ

A constant dilaton then imposes the condition

_Φ ¼ −dH: ð5:38Þ

On top of that, one can show that for constant
dilaton, the Hubble parameter in Einstein frame is
constant if and only if HðtÞ ¼ H0 ¼ const in string
frame. In other words, for constant dilaton, de Sitter
in string frame is equivalent to de Sitter in Einstein
frame. Since (5.38) with HðtÞ ¼ H0 implies a linear
dilaton, by ruling out all possible Laurent polyno-
mial forms for ΦðtÞ, de Sitter solutions in Einstein
frame with constant dilaton are also excluded.

(iii) We previously observed that by assuming x ¼ 1þ
Oðα0Þ and y ¼ Oðα0Þ and performing an α0 expan-
sion, the leading-order equations of the system
(5.36) reduce to standard (string) Friedmann equa-
tions in vacuum (5.27). The well-known exact
solution to this system is given by

HðtÞ ¼ � signðωÞffiffiffi
d

p 1

ðt − t0Þ
;

ΦðtÞ ¼ − logðωðt − t0ÞÞ: ð5:39Þ

We checked whether this background corresponds to
a consistent truncation of the full theory, i.e., upon
including the complete α0-dependency. We found
that this is only the case if

xðtÞ¼ 1; yðtÞ¼ 2α0
1

ðt− t0Þ2
; d¼ 1

2
; ð5:40Þ

with the final equality of course rendering this
unphysical.

This analysis shows that some of the simplest back-
grounds one can propose for the standard fields H and Φ
are not solutions of the HSZ equations for any configura-
tion of the extra fields A, B, x, and y. It is worth mentioning,
however, that this study just scratches the surface of the
whole landscape of possible backgrounds one could
propose, and we expect that upon a more exhaustive
analyses exact (analytic or numerical) solutions could
be found.

B. Tensionless limit, de Sitter solution
and 1

α0 expansion

While at the present moment we cannot solve the full
system (5.36) analytically, in the tensionless limit α0 → ∞
the equations are simple enough to obtain the general exact
solutions. In this limit, all nonderivative contributions
disappear, and (5.36) reduces to

H ¼ QeΦx−2; Q ¼ const: ≠ 0; ð5:41aÞ

Φ̈ ¼ dH2x2 −
d
4
ð_x2 þ _y2Þ þ 1

4
ð _AÞ2 þ 1

2
BΦ̈þ 1

4
_B _Φ−

1

4
B̈;

ð5:41bÞ

_Φ2 ¼ dH2x2 −
d
4
ð_x2 þ _y2Þ þ 1

4
ð _AÞ2 þ 1

2
Bð _ΦÞ2 − 1

2
_B _Φ;

ð5:41cÞ

0 ¼ ẍ − _Φ _xþ4H2x; ð5:41dÞ

0 ¼ ÿ − _Φ _y; ð5:41eÞ

0 ¼ Φ̈; ð5:41fÞ

0 ¼ Ä − _Φ _A : ð5:41gÞ

We now turn to (5.41f), which implies a linear dilaton
profile,

ΦðtÞ ¼ −ωðt − t0Þ; ð5:42Þ

where ω is an integration constant. From now on the
solutions are different depending whether ω vanishes or
not. Since the procedure to get both family of solutions is
almost identical, we will describe in detail only the ω ≠ 0
case and just give the final result for vanishing ω.
Equations (5.41g) and (5.41e) take exactly the same

form and, upon using (5.42), they can be solved exactly by

AðtÞ ¼ A0 þ A1e−ωðt−t0Þ;

yðtÞ ¼ y0 þ y1e−ωðt−t0Þ: ð5:43Þ

Then, by subtracting (5.41c) from (5.41b), using (5.42) and
reordering terms we get a second-order differential equa-
tion for B,

B̈þ 3ω _Bþ 2ω2B − 4ω2 ¼ 0; ð5:44Þ

which is exactly solved by

BðtÞ ¼ 2þ B1e−ωðt−t0Þ þ B2e−2ωðt−t0Þ: ð5:45Þ

At this point we have two remaining equations for xðtÞ,
namely (5.41d) and (5.41b) (or equivalent (5.41c)).
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We found it easier to solve (5.41b) because it is a first-order
differential equation, and then check (5.41d). Inserting
(5.41a), (5.42), (5.43), and (5.45) into (5.41b) we arrive at
the first-order equation

_x2 − ð4Q2x−2 þ C1Þe−2ωðt−t0Þ ¼ 0;

C1 ≡ ω2

d
ðA2

1 − dy21 − 2B2Þ; ð5:46Þ

where we defined the constant C1 to simplify the notation.
By multiplying both sides with x2 and changing variables
to zðtÞ≡ xðtÞ2 we arrive at the equation

_z2 − ð16Q2 þ 4C1zÞe−2ωðt−t0Þ ¼ 0; ð5:47Þ

which has different solutions depending whether C1 van-
ishes or not,

zðtÞ ¼ � 4Q
ω

e−ωðt−t0Þ þ x0 if C1 ¼ 0; ð5:48Þ

zðtÞ ¼ C1

ω2
ðe−ωðt−t0Þ þ x0Þ2 −

4Q2

C1

if C1 ≠ 0: ð5:49Þ

Returning to the original variable xðtÞ ¼ � ffiffiffiffiffiffiffiffi
zðtÞp

and
plugging the result together with (5.41a) and (5.42) into
(5.41d) one can verify that the last equation of the system is
also satisfied.
All in all, combining the above results we conclude that,

for ω ≠ 0, the most general solution to the system (5.41) is
given by

ΦðtÞ ¼ −ωðt − t0Þ; ω ≠ 0; ð5:50aÞ

HðtÞ ¼ Qe−ωðt−t0ÞxðtÞ−2; Q ≠ 0; ð5:50bÞ

AðtÞ ¼ A0 þ A1e−ωðt−t0Þ; ð5:50cÞ

BðtÞ ¼ 2þ B1e−ωðt−t0Þ þ B2e−2ωðt−t0Þ; ð5:50dÞ

yðtÞ ¼ y0 þ y1e−ωðt−t0Þ; ð5:50eÞ

xðtÞ ¼
8<
:

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� Q

ω e
−ωðt−t0Þ þ x0

q
if C1 ¼ 0;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1

ω2 ðe−ωðt−t0Þ þ x0Þ2 − 4Q2

C1

q
if C1 ≠ 0;

C1 ≡ ω2

d
ðA2

1 − dy21 − 2B2Þ: ð5:50fÞ

Repeating identical steps for the ω ¼ 0 case, we get a
second set of solutions:

ΦðtÞ ¼ 0; ð5:51aÞ

HðtÞ ¼ QxðtÞ−2; Q ≠ 0; ð5:51bÞ

AðtÞ ¼ A0 þ A1ðt − t0Þ; ð5:51cÞ

BðtÞ ¼ B0 þ B1ðt − t0Þ; ð5:51dÞ

yðtÞ ¼ y0 þ y1ðt − t0Þ; ð5:51eÞ

xðtÞ ¼
8<
:

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Qðt − t0Þ þ x0

p
if C2 ¼ 0;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2½ðt − t0Þ þ x0�2 − 4Q2

C2

q
if C2 ≠ 0;

C2 ≡ 1

d
ðA2

1 − dy21Þ: ð5:51fÞ

Each of these families is parametrized by several indepen-
dent free parameters. In particular, for the ω ≠ 0 case one
can analyze the simplest solution of this family obtained by
taking A0 ¼ A1 ¼ B1 ¼ B2 ¼ y0 ¼ y1 ¼ x0 ¼ 0 and so
arriving at

ΦðtÞ ¼ −ωðt − t0Þ; HðtÞ ¼ sgnðQÞ jωj
4

;

xðtÞ ¼ �2

ffiffiffiffiffiffiffiffi����Qω
����

s
e−

1
2
ωðt−t0Þ; ð5:52aÞ

AðtÞ ¼ yðtÞ ¼ 0; BðtÞ ¼ 2; ð5:52bÞ

where we kept only the real xðtÞ branch. Remarkably the
Hubble parameter is constant, and hence this solution
corresponds to a de Sitter background in string frame.
Note that the de Sitter scale here is simply an integration
constant and not determined by a bare parameter in the
action, which means that H is fixed by the initial con-
ditions. Furthermore, (5.52) also admits a de Sitter solution
in Einstein frame with constant dilaton for the particular
case of d ¼ 4 [see (5.38)], corresponding to five spacetime
dimensions.
The tensionless limit can be interpreted as the zeroth

order of a perturbative expansion in small 1
α0. Therefore, in

the remainder of this section we explore the first-order
correction in 1

α0 to the system (5.41). More precisely, we
return to the full system (5.36), write for all fields

ΨðtÞ ¼ Ψð0ÞðtÞ þ 1

α0
Ψð1ÞðtÞ þO

�
1

α02

�
; ð5:53Þ

and expand all equations up to first order in 1
α0. By doing so

each equation will split in two, one for each order, the
leading one corresponding to the tensionless limit studied
in (5.41). We will not consider corrections to the most
general zeroth-order solutions found in (5.50) and (5.51)
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but we will restrict to the particular case of (5.52) with
Q > 0 and ω > 0 for simplicity. However, the following
steps should be equally applicable to the general solutions.
Rather than going into each detail, here we show some

examples of the procedure described above for the simplest
equations. Taking (5.36f) as an example, we expand and
keep only up to first order in the string’s tension,

0 ¼ Φ̈þ 2

α0
A;

0 ¼ Φ̈ð0Þ þ 1

α0
ðΦ̈ð1Þ þ 2Að0ÞÞ þO

�
1

α02

�
: ð5:54Þ

This splits into two equations, one for the tensionless limit
and a new first-order equation that determinesΦð1Þ in terms
of Að0Þ. Inserting the solution (5.52) we see that (5.54) is
solved by

Φð1ÞðtÞ ¼ −ω1ðt − t0Þ; ð5:55Þ

where ω1 is a new integration constant, and we omitted a
possible constant shift for simplicity. For the second and
last explicit calculation, we consider Eq. (5.36g)

0 ¼ Ä − _Φ _Aþ 1

α0
ð4A2 − 2BÞ;

0 ¼ Äð0Þ − _Φð0Þ _Að0Þ

þ 1

α0
ðÄð1Þ − _Φð0Þ _Að1Þ − _Φð1Þ _Að0Þ þ 4ðAð0ÞÞ2 − 2Bð0ÞÞ

þO
�

1

α02

�
: ð5:56Þ

By inserting (5.50), the leading order is automatically
solved while the 1

α0 contribution determines Að1Þ in terms
of the zeroth-order solutions to be

Að1ÞðtÞ ¼ A0 þ A1e−ωðt−t0Þ þ
4

ω
ðt − t0Þ: ð5:57Þ

Following the same procedure, yð1ÞðtÞ can be determined
by expanding Eq. (5.36e) and Bð1ÞðtÞ by expanding the
combination of (5.36b) and (5.36c). Inserting these and all
previous results into the expansion of (5.36b) we get a first-
order differential equation for xð1ÞðtÞ which can be solved
exactly. Finally, at this point all first-order corrections were
determined, yet we still have to check that the expansion of
(5.36d) holds up to first order in the string’s tension. We
performed all these steps and we found that the extension to
the solution (5.52) (with positive Q and ω) up to and
including first order in 1

α0 is given by

ΦðtÞ ¼ −
�
ω0 þ

1

α0
ω1

�
ðt − t0Þ; ð5:58aÞ

HðtÞ ¼ 1

4

�
ω0 þ

1

α0
ω1

�

þ 1

α0

�
B2ω

2
0

8dQ
e−ω0ðt−t0Þ −

x1
4

ffiffiffiffiffiffi
ω3
0

Q

s
eω0ðt−t0Þ

�
; ð5:58bÞ

AðtÞ ¼ 1

α0

�
A0 þ A1e−ω0ðt−t0Þ þ 4

ω0

ðt − t0Þ
�
; ð5:58cÞ

BðtÞ ¼ 2þ 1

α0
½B1e−ω0ðt−t0Þ þ B2e−2ω0ðt−t0Þ�; ð5:58dÞ

yðtÞ ¼ 1

α0

�
y0 þ y1e−ω0ðt−t0Þ −

8Q
ω2
0

e−ω0ðt−t0Þðt − t0Þ

−
2

ω0

ðt − t0Þ
�
; ð5:58eÞ

xðtÞ ¼�2

ffiffiffiffiffiffi
Q
ω0

s
e−

1
2
ω0ðt−t0Þ

� 1

α0
e−

1
2
ω0ðt−t0Þ

�
x1eω0ðt−t0Þ −

ffiffiffiffiffiffi
Q
ω0

s
ω1

�
1

ω0

þðt− t0Þ
�

−
ffiffiffiffiffiffi
ω0

Q

r
B2

2d
e−ω0ðt−t0Þ

�
; ð5:58fÞ

where we renamed the ω appearing in (5.52) as ω0. For
generic integration constants the solutions (5.58) are not de
Sitter vacua. However, there are particular integration
constants for which the zeroth-order de Sitter solution
(5.52) is indeed preserved. For example, by choosing
A0 ¼ A1 ¼ B1 ¼ B2 ¼ y0 ¼ y1 ¼ x1 ¼ 0 and combining
the dilaton integration constants into a renormalized
ω ¼ ω0 þ 1

α0 ω1, (5.58) reduces to

ΦðtÞ¼−ωðt− t0Þ; HðtÞ¼ω

4
; xðtÞ¼�2

ffiffiffiffi
Q
ω

r
e−

1
2
ωðt−t0Þ;

ð5:59aÞ

AðtÞ ¼ 4

α0ω
ðt − t0Þ; BðtÞ ¼ 2; ð5:59bÞ

yðtÞ ¼ −
8Q
α0ω2

e−ωðt−t0Þðt − t0Þ −
2

α0ω
ðt − t0Þ;

ω > 0; Q > 0: ð5:59cÞ

For ΦðtÞ; HðtÞ; xðtÞ, and BðtÞ the solutions take the same
structural form as in the tensionless limit (5.52), except that
the integration constants are 1

α0-corrected. It remains as an
important open question whether the de Sitter vacua are
preserved perturbatively at higher orders in 1

α0.
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VI. CONCLUSIONS AND OUTLOOK

In this paper we have explored HSZ theory for the purely
time-dependent backgrounds of cosmology. While HSZ
theory, being based on a nonstandard chiral CFT, is not a
conventional string theory, it shares many features of string
theory such as the presence of a fundamental parameter α0
governing higher-derivative corrections and exact duality
invariance under Oðd; d;RÞ. We hope that this theory may
thus be a model for how to deal with string theory in the
regimes we are most interested in, such as close to the
singularities of the big bang and black holes. Perhaps most
intriguingly, we were able to provide a two-derivative yet
α0-exact reformulation in which the tensionless limit
α0 → ∞ can be taken smoothly, and we set up perturbation
theory with 1

α0 as the small expansion parameter.
Possible future directions for research include the

following:
(i) There are now two known limits of HSZ theory in

which a two-derivative reformulation is possible: for
the quadratic theory in a background field expansion
around flat space [25] and for the reduction to one
dimension (cosmic time) displayed here. It is thus
natural to inquire whether the full HSZ theory
admits a reformulation as a two-derivative theory.
Such a formulation could provide the tensionless
limit without any truncations.

(ii) In modern cosmology it is equally important to have
control not only over the dynamics of the homog-
enous and isotropic backgrounds but also over their
fluctuations that generally break the symmetries.
Recently, the cosmological perturbation theory was
explored for a so-called weakly constrained double
field theory to cubic order in fluctuations, in order to
analyze the dynamics of genuine winding modes
[37]. It would be interesting to extend this analysis
to HSZ theory and, assuming the program of the
previous item can be accomplished, to see how the
modes behave in the tensionless limit.

(iii) It is important to find nonperturbative solutions for
the α0-complete Friedmann equations, ideally upon
adding genuine matter, in order to find semirealistic
string cosmology models. In particular, one should
further explore the de Sitter solutions that we found
here in the tensionless limit, for instance in relation
to their stability, as recently explored in a related
context in [38].

(iv) While HSZ theory is not a genuine string theory one
might hope that the α0-complete formulation intro-
duced here could serve as a model for a genuine
string theory, with the massive string modes playing
the role of the extra fields employed here. Although
genuine string theories feature an infinite number of
massive string modes, one might still hope that there
are formulations not too dissimilar to the one
discussed in this paper.

(v) Even if genuine string theories do not allow for such
reformulations one may wonder whether there are
other, simpler UV completions of gravity, that dis-
play features of string theory, yet lead to a version of
“string cosmology” that is as manageable as the
model explored here.
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APPENDIX: FIELD REDEFINITIONS

In this appendix we spell out the details of the field
redefinitions performed in Sec. III. In the action (3.33) we
have integrated out the extra fields, leaving an effective
action purely in terms of the fields S, Φ, and n. In [24] it
was shown that any action can be brought to a minimal
form by performing field redefinitions. In this scheme,
there are no higher derivatives of S, nor any appearance of
DΦ or TrDSDS at any higher order in α0. We call any term
removable if it contains powers or derivatives of at least
one of the following objects: fDL;DΦ;TrL2g. Inside a
Lagrangian these will be denoted as L, while for removable
terms in the equations of motion and field redefinitions we
will use E and D, respectively. The remaining unremovable
couplings are composed of traces of single powers of L.
The procedure to “clean” removable terms order-by-

order was explained in detail in [24], and here we
summarize the main steps that are needed. The method
relies on field redefinitions of the effective action (3.33), for
which we need the general variation

δI ¼
Z

dt n e−Φ
�
TrESδSþ En

δn
n
þ EΦδΦ

�
; ðA1Þ

where ES is the projected version of the original variation,
namely ES ¼ ½δIδS�−. The equations of motion have an α0

expansion, which in our case contains no α0 order because
Ið1Þ ¼ 0,

EΨ¼Eð0Þ
Ψ þα02Eð2Þ

Ψ þα03Eð3Þ
Ψ þα04Eð4Þ

Ψ þOðα05Þ¼0: ðA2Þ

Here we denoted all fields collectively as Ψ ¼ fS;Φ; ng.
The highest orders in our case Eð3Þ

Ψ and Eð4Þ
Ψ will not be
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needed to perform field redefinitions. However, we do need

Eð0Þ
Ψ and Eð2Þ

Ψ , given by

Eð0Þ
S ¼ 1

4
DLS −

1

4
DΦLS;

Eð0Þ
n ¼ ðDΦÞ2 − 1

8
TrL2;

Eð0Þ
Φ ¼ 2D2Φ − ðDΦÞ2 − 1

8
TrL2; ðA3Þ

and for Eð2Þ
Ψ by

Eð2Þ
S ¼ ES;

Eð2Þ
n ¼ 5

3.27
TrL6 þ En;

Eð2Þ
Φ ¼ 1

3.27
TrL6 þ EΦ: ðA4Þ

As explained before, we collected all removable terms
inside EΨ ¼ EΨðDL;DΦ;TrL2Þwhose explicit form is not
needed.
Let us now consider a general field redefinition

Ψ → Ψ0 ¼ Ψþ δΨ; ðA5Þ
which we take to be perturbative in α0, so that we can
expand

δΨ ¼ α02δð2ÞΨþ α03δð3ÞΨþ α04δð4ÞΨþ � � � : ðA6Þ

Here we take an expansion of the redefinitions in terms of
powers of α0, skipping the first order because there are no
such terms to remove from the action. The action expands
as follows:

I0½Ψ0�≡ I½Ψþ δΨ�

¼ I½Ψ� þ Δ1I · δΨþ 1

2
Δ2I · ðδΨÞ2 þ � � � ; ðA7Þ

where we defined ΔnI ≡ δnI
δΨn, the first of which is nothing

but the equation of motion, Δ1I ≡ δI
δΨ ≡ EΨ. Each of these

variations should be expanded in α0 as well

ΔnI ¼ ΔnIð0Þ þ α02ΔnIð2Þ þ α03ΔnIð3Þ þ α04ΔnIð4Þ þ � � � :
ðA8Þ

Plugging this expansion into the redefined action I0, we
obtain

I0 ¼ Ið0Þ þ α02ðIð2Þ þ Eð0Þ
Ψ · δð2ÞΨÞ þ α03ðIð3Þ þ Eð0Þ

Ψ · δð3ÞΨÞ

þ α04ðIð4Þ þ Eð2Þ
Ψ · δð2ÞΨþ 1

2
Δ2Ið0Þ · ðδð2ÞΨÞ2

þ Eð0Þ
Ψ · δð4ÞΨÞ þ � � � ; ðA9Þ

where the order α03 does not receive any induced terms
from lower orders as a consequence of not having Ið1Þ in the
original action. Moreover, δð3ÞΨ does not propagate to the
next order, which will become useful in the following
analysis. In order to bring the action into canonical form we
apply the following recipe. First we pick a particular δð2ÞΨ
to bring the action to second order in α0 to canonical form.

This in turn induces new terms proportional to Eð2Þ
Ψ and

Δ2Ið0Þ into the action of order α04. For the third order we
only need to pick some δð3ÞΨ that brings Ið3Þ0 to canonical
from, yet this step induces no terms at order α04. The
induced terms, together with the original Ið4Þ, can be
brought to canonical form by picking a suitable δð4ÞΨ.
Obviously these steps induce terms to all orders in α0 but,
since we are neglecting orders higher than α04, the above
mentioned effects are the only relevant for our work.
In principle, from the above procedure it seems that we

must keep track of the field redefinitions δð2ÞΨ and δð4ÞΨ
which can become rather tedious. However, let us show
how we can easily obtain δð2ÞΨ and how δð3ÞΨ and δð4ÞΨ
are not needed at all. In order to see this, let us suppose that
the action contains a term at second order in α0 which
multiplies the lowest-order equations of motion, i.e.,

I ¼ � � � þ α02Eð0Þ
Ψ · XðΨÞ þ � � � ; ðA10Þ

where XðΨÞ is an arbitrary function of the fields Ψ with
four derivatives and the ellipsis denote the remaining terms
in the action. By performing a field redefinition of the form

δð2ÞΨ ¼ −XðΨÞ ðA11Þ

from (A9) we then infer that in the redefined action I0 the
term in (A10) is replaced by

I0 ¼ � � � − α04Eð2Þ
Ψ · XðΨÞ

þ α04
1

2
Δ2Ið0Þ · ð−XðΨÞÞ2 þ � � � ; ðA12Þ

where the ellipsis denote the same terms as in (A10), which
are unaffected by the redefinition. By comparing (A10) and
(A12) we see that we managed to remove a term at order α02
in the original action, at expenses of inducing higher-order
contributions. In particular, we learn two important lessons:
(1) We can simply use the equations of motion (A2) as a

replacement rule in the form Eð0Þ
Ψ ¼ −α02Eð2Þ

Ψ þ � � �,
where higher-order terms can be ignored as we are
considering orders up to an including α04.

(2) We can get access to the induced δð2ÞΨ by looking at

what is left together with Eð2Þ
Ψ in the induced terms.

For instance, in the previous example we see that in
(A12) this is exactly δð2ÞΨ ¼ −XðΨÞ.
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A similar argument follows at α03 and α04 orders. Therein
we should pick suitable δð3ÞΨ and δð4ÞΨ respectively to
eliminate any term proportional to the EOM. The crucial
point here is that we do not need their explicit form,
because the induced effects of these field redefinitions will
become visible at order α05 and higher. In other words, at
order α03 and α04 we can just freely use the zeroth-order
EOM to eliminate any removable contribution.
One can then proceed order-by-order in α0 by freely

using the equations of motion in the action at each order in
α0, as long as one keeps track of the induced terms and
δð2ÞΨ. To this end we will use the EOM in the form

DL ¼ DΦL − α024Eð2Þ
S S; ðA13aÞ

ðDΦÞ2 ¼ 1

8
TrL2 − α2Eð2Þ

n ; ðA13bÞ

D2Φ ¼ 1

2
ðDΦÞ2 þ 1

16
TrL2 − α02

1

2
Eð2Þ
Φ : ðA13cÞ

By using these equations in a systematic way, one can
bring Ið2Þ; Ið3Þ and Ið4Þ to canonical form where all
removable terms were redefined away. This systematic
approach was explained several times already in [24] and
[15]. We will not repeat these steps in detail here but just
summarize the main ideas:
(1) As a first step one removes all higher derivatives of

L by using (A13a) as many times as needed.
(2) Using (A13b) we remove any higher powers of DΦ.
(3) At this point we make use of (A13c) to eliminate

higher derivatives of the dilaton. In this step higher
powers of DΦ and higher derivatives of L could be
generated in which case one has to repeat the first
two steps. It could be possible that this third step
needs to be iterated a few times.

(4) Reached this point, the only possible contribution
from the dilaton comes from a linear term in DΦ.
This can be eliminated by an integration by parts
together with (A13a).

(5) Finally, in order to eliminate terms with TrL2 one has
to use (A13b) to make a ðDΦÞ2 factor reappear,
followed by an integration by parts of the dilaton.
This will induce higher derivatives of DΦ and L that
can be traded for ðDΦÞ2 andTrL2 byusing (A13a) and
(A13c). Finally, one uses (A13b) once more to bring
everything to exactly the same formas theoriginal term
that we started from, but with a different coefficient.

We applied this systematic procedure to the second-order
action

Ið2Þ ¼
Z

dt n e−Φ
	
−

1

3.27
TrL6 −

1

27
TrDðL2ÞDðL2Þ

þ 1

16
ðD3ΦÞ2 þ 1

12
ðD2ΦÞ3



; ðA14Þ

and we managed to redefine away all removable terms at
expenses of inducing α04 orders

α02Ið2Þ þ α02Eð0Þ
Ψ · δð2ÞΨ

¼ α02
Z

dt n e−Φ
	
−

1

3.27
TrL6




þ α04
Z

dt n e−Φ
	
1

28
ðEð2Þ

n − Eð2Þ
Φ ÞTrL4 þ L




¼ α02
Z

dt n e−Φ
	
−

1

3.27
TrL6




þ α04
Z

dt n e−Φ
	

1

3.213
TrL4TrL6 þ L



; ðA15Þ

where we used the second-order EOM (A4) for n andΦ and
packaged all removable terms appearing at order α04 in
L ¼ LðDL;DΦ;TrL2Þ. From the first line we can read
δð2ÞΨ as explained in point 2 below Eq. (A12). These
variations are given by

δð2ÞS ¼ DS;

1

n
δð2Þn ¼ 1

28
TrL4 þ Dn;

δð2ÞΦ ¼ −
1

28
TrL4 þ DΦ: ðA16Þ

Where DΨ denote removable terms that we do not write
explicitly.
For Ið3Þ the situation is much simpler since there are no

induced terms to keep track of. Therefore, we can just
simply eliminate all removable contributions for free,
knowing that behind the scenes we picked a suitable
δð3ÞΨ. Moreover, from (3.33) we see that Ið3Þ is purely
removable which leads to

α03Ið3Þ þ α03Eð0Þ
Ψ · δð3ÞΨ ¼ 0: ðA17Þ

Finally, for the fourth order we need the induced terms
coming from the cleaning process at order α02. Together
with (A15), we also require the quadratic terms
Δ2Ið0Þ · ðδð2ÞΨÞ2, which can be computed by taking two
consecutive variations of the first-order action and using
(A16). However, we can notice that the only nonremovable
variations we have are 1

n δ
ð2Þn ∝ δð2ÞΦ ∝ TrL4. Then,

whatever Δ2Ið0Þ is, it needs to be an Oðd; dÞ plus one-
dimensional diffeoinvariant object with two derivatives.
There are only three possible objects with these character-
istics: D2Φ; ðDΦÞ2, and TrL2, all of them removable. As a
consequence, without computing it, we know already that
Δ2Ið0Þ · ðδð2ÞΨÞ2 with δð2ÞΨ given by (A16), is removable at
order α04.
Adding to Ið4Þ (given in (3.33) the induced terms from

(A15) together with the (removable)Δ2Ið0Þ · ðδð2ÞΨÞ2 we get
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α04ðIð4Þ þ Eð2Þ
Ψ · δð2ÞΨþ 1

2
Δ2Ið0Þ · ðδð2ÞΨÞ2Þ ¼ α04

Z
dt n e−Φ

	
1

3.213
TrL4TrL6 þ L



: ðA18Þ

Finally, we can finish the process of taking the action to minimal form by choosing a particular δð4ÞΨ (that we do not need to
keep track of) to eliminate all removable terms at order α04, L. The final result of this systematic procedure is the HSZ action in
the cosmological classification (3.35).
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