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In this paper, we discuss the gauge reduction with respect to the simplicity constraint in both classical
and quantum theory of all dimensional loop quantum gravity. With the gauge reduction with respect to the
edge-simplicity constraint being processed and the anomalous vertex simplicity constraint being imposed
weakly in holonomy-flux phase space, the simplicity reduced holonomy can be established. However, we
find that the simplicity reduced holonomy cannot capture the degrees of freedom of intrinsic curvature,
which leads to its failure to construct a correct scalar constraint operator in all dimensional loop quantum
gravity (LQG) following the standard strategy. To tackle this problem, we establish a new type of holonomy
corresponding to the simplicity reduced connection, which captures the degrees of freedom of both intrinsic
and extrinsic curvature properly. Based on this new type of holonomy, we propose three new strategies to
construct the scalar constraint operators, which serve as valuable candidates to study the dynamics of all

dimensional LQG in the future.
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I. INTRODUCTION

Loop quantum gravity (LQG) [1-4] as a candidate
theory of quantum gravity provides a possibility of unify-
ing general relativity (GR) and quantum mechanics.
Especially, the quantum spacetime geometry is concealed
in some gauge variables and described in a discrete
formulation in LQG, and it is an important aspect to derive
GR from the foundation of plank-scale quantum geometry.
Indeed, in a broader context, LQG provides a concrete
platform for exploring the relation between the continuum
classical geometric variables of GR and the discretized
geometric quantum data, such as the twistor theory and
twisted geometry [5,6]. It has been shown that the corre-
spondence between the field variables of GR and the
quantum discrete variables of the geometry of LQG is
far beyond the issue of merely taking the continuum limit
and semiclassical limit, since the Hamiltonian formulation
of GR is governed by a constraint system, and the
correspondence could be fully revealed only for the
physical degrees of freedom. By this we mean that all
the constraints in LQG should be properly imposed to
ensure that only all of the physical degrees of freedom
remain. From the opposite direction of this view, the
concrete goal of recovering the familiar Arnowitt-Deser-
Misner (ADM) [7] data from LQG could provide useful
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instructions in tackling the abstract issues of quantum
reductions with respect to the constraints in the theory.
A series of illuminating studies in this direction has been
carried out in the case of the SU(2) formulation of (1 + 3)-
dimensional LQG. Based on the loop quantization of
SU(2) connection formulation of (1 + 3)-dimensional
GR, the kinematic structure of LQG contains the kinematic
Hilbert space spanned by the spin-network states and the
well-defined SU(2) holonomy-flux operators. Under the
actions of holonomy-flux operators, the representations of
SU(2)-valued holonomies indicate the quanta of the fluxes
as the area elements dual to the graph’s edges, while the
intertwiners relating these representations indicate the
intersection angles among these fluxes at the vertices.
This discretized distribution of the two-dimensional spatial
area elements with their intersection angles leads to a
specific notion of quantum geometry in LQG. The classical
constraints—the scalar, vector, and SU(2) Gaussian con-
straints—can be represented via the holonomy-flux oper-
ators for the quantum theory. More explicitly, it has been
shown that the imposition of the quantum Gauss constraints
on the spin-network states gives rise to a proper quantum
gauge reduction, which leads to the reduced state space
constituted by the gauge invariant spin-network states.
Remarkably, the gauge invariant spin-network states not
only describe the intrinsic spatial geometry built from the
polyhedra cells dual to the network, but also carry precisely
the right data to specify the extrinsic curvature of the
three-hypersurface partitioned by these polyhedra [6,8,9].
Through this first stage of the gauge reduction with respect
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to the Gaussian constraint, a notion of discrete kinematic
ADM data appears in the formulation of Regge geometry,
upon which the further reductions with respect to the vector
and scalar constraints should be carried out. However, the
quantum vector and scalar constraints take much more
complicated forms and the quantum algebra between them
becomes no longer of first class. At least for now, since the
quantum anomaly hinders the standard Dirac procedure
from mirroring the classical gauge reduction, the treatment
of these loop quantized vector and scalar constraints
remains a crucial challenge for LQG tackled by many
ongoing projects [10-12].

As we mentioned above, LQG was first established as a
quantum theory of GR in four-dimensional spacetime.
Nevertheless, various classical and quantum gravity theo-
ries in higher-dimensional spacetimes (e.g., Kaluza-Klein
theory, supergravity and superstring theories) are explored
from many different kinds of perspectives. The results of
these higher-dimensional theories show remarkable poten-
tials in unifying the gravity and matter fields at the energy
scale of quantum gravity. Thus, by extending the frame-
work of loop quantum gravity to higher-dimensional
spacetime, one may get a novel approach toward the
higher-dimensional ideas of unification, upon the back-
ground-independent and nonperturbative construction of
the discretized quantum geometry. Pioneered by
Bodendorfer, Thiemann, and Thurn, the basic framework
of loop quantum theory for GR in all dimensions has been
developed [13-16]. The (1 + D)-dimensional LQG takes
the similar framework as the standard (1 + 3)-dimensional
SU(2) LQG, i.e., the formulation of Yang-Mills gauge
theory and the loop quantization strategy. The key
differences between these two theories include two points.
The first one is that the gauge group of (1 + D)-dimen-
sional LQG is taken as SO(D + 1), while that of the
standard (1 + 3)-dimensional LQG is SU(2). The second
key difference is that the (1 + D)-dimensional LQG
contains the simplicity constraint, while the standard
(1 4 3)-dimensional SU(2) LQG does not. Because of
the appearance of the simplicity constraint, the challenge of
loop quantum anomaly already exists at the kinematic level
before the accounts of the quantum ADM constraints in all
dimensional LQG. More explicitly, the all dimensional
LQG is based on the connection formulation of (1 + D)-
dimensional GR in the form of the SO(D + 1) Yang-Mills
theory, with the phase space coordinatized by the canonical
pairs (A, 7°KL), consisting of the spatial so(D + 1)
valued connection fields A,;, and the vector fields z”XL.
In this formulation, the theory is governed by the first class
constraint system composed by the SO(D + 1) Gaussian
constraint, the ADM constraints of (1 + D)-dimensional
GR, and an additional constraint called the simplicity
constraint. The simplicity constraint takes the form
S, += nll glPIKL] [13,15], which generates extra gauge
symmetries in the SO(D + 1) connection phase space.

It has been shown that the SO(D + 1) connection phase
space correctly reduces to the familiar ADM phase space
by proceeding with the symplectic reductions with respect
to the Gaussian and simplicity constraints. Similar to the
SU(2) LQG, the loop quantization of the SO(D + 1)
connection formulation leads to the Hilbert space com-
posed by the spin-network states of the SO(D 4+ 1)
holonomies, where the quantum numbers labeling these
states carry the quanta of the flux operators representing the
flux of z°XL over (D — 1)-dimensional surfaces. Following
the previous study for SU(2) LQG, it is expected to look for
all the dimensional Regge ADM data encoded in the
SO(D + 1) spin-network states, through a gauge reduction
procedure with respect to both of the quantum SO(D + 1)
Gaussian constraint and simplicity constraint.

However, the challenge arises in the gauge reduction
procedures with respect to the quantum simplicity con-
straint—the quantum algebra among simplicity constraints
in all dimensional LQG carries serious quantum anomaly.
More explicitly, the commutative Poisson algebra among
the classical simplicity constraints becomes the deformed
quantum algebra among the quantum simplicity constraint
which is not even close [17]. Besides, it has been shown
that the “gauge” transformations induced by these anoma-
lous quantum simplicity constraints can connect the states
that are supposed to be physically distinct in terms of the
semiclassical limit. Thus, strong imposition of the anoma-
lous quantum simplicity constraint leads to overconstrained
state space that are not able to capture correct physical
degrees of freedom. Indeed, based on the network discre-
tization, the quantum simplicity constraints in all dimen-
sional LQG are divided into two kinds of local constraints,
including the edge-simplicity constraint and the vertex-
simplicity constraint. Specifically, the anomaly of quantum
algebra only appears for the vertex-simplicity constraint,
while the edge-simplicity constraint remains anomaly free
in the sense of taking a weakly commutative quantum
algebra. To deal with the quantum anomaly of the vertex
simplicity constraint, one can focus on the discrete phase
space coordinatized by SO(D + 1) holonomy-flux varia-
bles, in which the Poisson algebras of simplicity constraint
are isomorphic to quantum algebras of simplicity con-
straint, and thus the anomaly of vertex-simplicity constraint
already exists in the classical holonomy-flux phase space.
Previously, based on the so-called generalized twisted
geometric parametrization of the edge-simplicity constraint
surface, we have proceeded with the gauge reduction with
respect to the simplicity constraint in the holonomy-flux
phase space [18]. Our result shows that the discretized
classical Gaussian, edge-simplicity constraints and vertex-
simplicity constraint which catches the anomaly of quan-
tum vertex simplicity constraint define a constraint surface
in the holonomy-flux phase space of all dimensional LQG,
and the kinematical physical degrees of freedom are given
by the gauge orbits in the constraint surface generated by
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the first class system consisting of discretized Gaussian and
edge-simplicity constraints. We found that the reduced
twisted geometry describes the degrees of freedom
of the D-polytopes which partition the D-hypersurface,
i.e., the (D — 1)-faces’ areas, the shape of each single
D-polytope and the extrinsic curvature between arbitrary
two adjacent D-polytopes. Finally, the discrete ADM data
of the D-hypersurface in the form of Regge geometry can
be identified as the degrees of freedom of the reduced
generalized twisted geometry space, up to an additional
condition called the shape matching condition of (D — 1)-
dimensional faces. Following this result, these gauge
reduction procedures can be realized in quantum theory
by imposing the quantum Gaussian and edge-simplicity
constraint strongly, and imposing the vertex-simplicity
constraint weakly. It leads to the physical kinematic
Hilbert space spanned by the spin-network states labeled
by simple representations at edges and gauge invariant
simple coherent intertwiners at vertices [19].

Nevertheless, the gauge reduction with respect to the
simplicity constraint has not been accomplished yet, since
new issues arise when one constructs the gauge invariant
operators to describe the kinematic physical observables.
Similar to the construction of the gauge invariant oper-
ators with respect to the Gaussian constraint, by proceed-
ing with the regularization and quantization procedures in
LQG, one may expect that a gauge invariant variable with
respect to the simplicity constraint in the connection phase
space can be promoted as an operator acting in the
physical kinematic Hilbert space, with the gauge degrees
of freedom being eliminated and the physical meaning
being remained correctly. Unfortunately, these procedures
fail to give a correct scalar constraint operator in all
dimensional LQG. As we will show in the main part of
this article, though the edge simplicity constraints only
transform the pure gauge components in holonomy, the
gauge reduction with respect to the simplicity constraint
destroys the structure of holonomies, and it leads to the so-
called simplicity reduced holonomy which cannot capture
the degrees of freedom of intrinsic curvature. In other
words, the simplicity reduced holonomy is not able to
inherit the property of connection while the scalar con-
straint operator is given by regularizing and quantizing the
connection formulation of scalar constraint. Hence, the
appearance the simplicity reduced holonomy leads this
scalar constraint operator does not have the expected
geometric interpretation.

In fact, this issue arises from the inconsistency of the
geometric meanings of the simplicity reduced connections
and the simplicity reduced holonomies. More explicit
discussions in this article will show that, by considering
the matrix elements of some constraint operators in the
solution space of the quantum edge simplicity constraint,
one finds that the simplicity reduced holonomy operator
appears inevitably. Hence, to ensure the constructed

operators possess correct geometric interpretations, it is
necessary to study the specific geometric interpretation of
the simplicity reduced holonomies in the holonomy-flux
phase space, so that the simplicity reduced holonomies can
be used as a proper building block to construct operators,
e.g., the scalar constraint operator. Besides, by following
the geometric interpretation of each component of holon-
omy given by the twisted geometry parametrization, we
will introduce another type of gauge invariant holonomies
with respect to the simplicity constraint, which captures the
degrees of freedom of intrinsic and extrinsic curvature
properly. We will show that the scalar constraint in
connection formulation can be regularized and quantized
based on this new type of gauge invariant holonomy, with
the intrinsic and extrinsic curvatures being captured in the
resulting scalar constraint operator correctly.

This paper is organized as follows. After our brief review
of the classical theory of all dimensional LQG in Sec. II, we
will introduce the simplicity constraint in both of the
connection and holonomy-flux phase spaces. Especially,
we will analyze the gauge degrees of freedom with respect
to the simplicity constraint in Secs. II A and II B. Then, the
simplicity reduced holonomy will be constructed, and we
will also propose a new choice of the gauge (with respect to
the simplicity constraint) invariant holonomy in Sec. II C.
In Sec. III, we will turn to consider the gauge reduction with
respect to the simplicity constraint in quantum theory of all
dimensional LQG. The solution space of the quantum
simplicity constraint will be introduced first, and then the
simplicity reduced holonomy operator and a new choice of
the gauge (with respect to simplicity constraint) invariant
holonomy operator will be considered in our discussions.
These operators helps us to consider the construction of the
quantum scalar constraint in all dimensional LQG in
Sec. IV. We will first point out that the standard strategy
is problematic to construct the quantum scalar constraint in
Sec. IVA, and then propose three new strategies for this
construction in Sec. IV B. Finally, we will finish with a
summary and discussion in Sec. V.

II. SIMPLICITY CONSTRAINT IN CLASSICAL
THEORY OF (1+D)-DIMENSIONAL LQG

A. Simplicity constraint in connection phase
space of (1+ D)-dimensional GR

The connection dynamics of (1 + D)-dimensional GR is
based on the phase space coordinatized by the canonical
field variables (A,;;,7"%) on a spatial D-dimensional
manifold o, which is equipped with the kinematic con-
straints—Gauss constraint G ~ 0 and simplicity constraint
SeblIJKL] 0 inducing the gauge transformation of this
theory, and the dynamics constraints—vector constraint
C,~0 and scalar constraint C =~ 0. More explicitly, the
only nontrivial Poisson bracket between the conjugate pair
is given by [13]
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{Aars(x), 7" (3)} = 26P855K 656 (x — ), (1)

where x is Newton’s gravitational constant, f is the
Barbero-Immirzi parameter, and we used the notation
a,b,...=1,2,....D for the spatial tensorial indices and
I,J,...=1,2,....,D+1 for the so(D+ 1) Lie algebra
indices in the definition representation. The Gaussian
constraint and simplicity constraint are given by

G = 0,2 4 24 29KV 0 (2)
and

SabIIKL] .= gall £IbIKL] () 3)

respectively. It is easy to verify that

{g’g} “gv {g’S} (XS’ {Sa S} 207
which means that the Gaussian and simplicity constraints
obey a first class constraint algebra. It has been shown that
the symplectic reduction with respect to the Gaussian and
simplicity constraints reduces the connection phase space
to the ADM phase space of geometry dynamics of all
dimensional GR. In details, the ADM variables (g,,, P)
can be defined as the functionals [13]

Qab = Qab[ﬂ"L PCd = PCd[A7”]
in the connection phase space. It has been verified that
qapl7] and P°U[A,z] are weak Dirac observables with
respect to Gaussian and simplicity constraints, and they
obey the standard ADM Poisson brackets [13]

{qan(x). P ()} = x{,84 57 (x — y),
{4 (%), gea(y)} = {P*(x), P(y)} = 0

on the constraint surface defined by simplicity and
Gaussian constraints. The vector constraint and scalar
constraint in the connection phase space can be defined by

CulA, 7] := Co(qealnl, P/ (A, 7])
and
ClA, 7] = C(qeqln], P/[A, 7]),

respectively, wherein C,(q.4, P¢) and C(q.4, P¢') are the
vector constraint and scalar constraint in the ADM phase
space. Since g.q4[z] and P*/[A, z] are weak Dirac observ-
ables with respect to S and are invariant under G, one can
immediately get that

{8,C,} xS, {S,C}«S,

{g.C,}=0, {g.C}=0.

Next, notice the fact that the Poisson algebra between ¢..,[7]
and P¢/[A, z] is the same as that of the ADM variables
modulo S, G terms, and therefore the Poisson algebra of the
vector constraint and scalar constraint in the ADM phase
space can be reproduced by that in the connection phase
space modulo S, G terms, which means that

{Ca’ Cb} [S3 Ccv S7 g7
(C.C} x C,.S,G.

{C,.C} xC,S.G,

Then, one can conclude that the Gaussian, simplicity, vector,
and scalar constraints form a first class constraint system in
the connection phase space.

As one expected, the Gaussian constraint induces the
SO(D + 1) gauge transformation of the connection A,;;
and its momentum #”X, while the simplicity constraint
restricts the degrees of freedom of 7%/ to that of a D-frame
E“! to describe the spatial internal geometry and generates
some other gauge transformation. To clarify the gauge
transformation induced by simplicity constraint, let us first
give the explicit relations between the connection variables
and the geometric variables on the constraint surface of
both Gaussian and simplicity constraints. Specifically, the
solution of the simplicity constraint is given by
7 = 2nllElV]] with E“! being the densitized D-frame
related to double densitized dual metric by §** = E“/E?
and n’ being a unit internal vector defined by n;E = 0.
Also, one can define the spin connection I',;; satisfying
d,el =T el +THe,; =0 as

2 D-3_

Tty + Ty +T5:.T5,, (4

Lopgln] = D1 D_1

on the simplicity constraint surface, where T,;; :=
”hK[IaaﬂbKj]’ Ty, = ”bK[IﬂCKJ]’ Tars =1 Takes Tl =
5] —nn’, T¢, is the Levi-Civita connection of g, and e,
is the D-bein defined by E¥e;; = \/q6}. Based on these
conventions, the densitized extrinsic curvature of the spatial
manifold ¢ can be given by

- 1
Kab = Kauﬂb” = E (AaIJ - Falj)”b” (5)

on the constraint surface of both Gaussian and simplicity
constraints. Now, it is ready to clarify the gauge trans-
formation induced by the simplicity constraint. One can
check that A,;; transforms with respect to the simplicity
constraint as

/ defab[I]KL] (x){Sab”KL’AcMN(y)}

= 28K aclrman) (V)7 (y) = 4BKfaclrrmn) (y)nl El*l (y)

(6)
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on the simplicity constraint surface. By decomposing the
connection A,y = 2n;A| ;) + A,y itis easy to see that on
the simplicity constraint surface, only the component
A transforms while the component 2ny Ay s
gauge invariant with respect to the simplicity constraint.
Similarly, K,;; = /%(Aa” —TI',;y) can be decomposed as
Karg =2n;K 4 + K,;;. One can also check that on the
simplicity constraint surface, the component 2n; K\, is
invariant and only K’/ transforms under the gauge trans-
formation induced by simplicity constraint. Hence, we see
that the simplicity constraint fixes both K% and ¢, so that it
exactly introduces extra gauge degrees of freedom. In fact,
to give the gauge invariant variables with respect to the
simplicity constraint, one can construct the simplicity
reduced connection

A8 = Auy — BK - (7)

Then, the symplectic reduction with respect to the sim-
plicity constraint in the connection phase space can be
illustrated as

reduction
(A, 7)) —> (A5, 2"*F)

SablIKL (),

which gives the gauge invariant variables (A3, ,, z/XL) with
respect to simplicity constraint on the constraint surface
defined by SeI/KL = (.

B. Simplicity constraint in discrete phase space
of (1+ D)-dimensional GR

Apart from the different gauge group which, however, is
compact and the additional simplicity constraint, the
SO(D + 1) connection formulation of (1 4+ D)-dimensional
GR is precisely the same as the SU(2) connection formu-
lation of (1 + 3)-dimensional GR, and the quantization of
the SO(D + 1) connection formulation is therefore in
complete analogy with (1 + 3)-dimensional SU(2) LQG
[1-4,20]. By following any standard text on LQG such as
[3,4], the loop quantization of the SO(D + 1) connection
formulation of (1 4+ D)-dimensional GR leads to a kinemati-
cal Hilbert space H [15], which can be regarded as a union of

the Hilbert spaces H, = L*((SO(D + 1))/E7), A= on

all possible graphs y embedded in o, where E(y) denotes the

set composed by the independent edges of y and dufgl)‘

denotes the product of the Haar measure on SO(D + 1). In
this sense, on each given y there is a discrete phase space
(T*SO(D + 1))IEWI, which is coordinatized by the elemen-
tary discrete variables—holonomies and fluxes. The hol-
onomy of A,;; along an edge e € y is defined by

e [ 4

al 1 Iy 15}
=1+ dtn/ dt,,_---/ dnA(ty)---A(t,),
;O | At | dnA(n)--Al)
(8)

where A(1) == 1¢9A,,;,7"7, & is the tangent vector field of e,
¥ is a basis of so(D + 1) given by (¢//)df = 26057 in
definition representation space of SO(D + 1), and P
denotes the path-ordered product. The flux FY of 74V
through the (D — 1)-dimensional face dual to edge e is

defined by
Fl .= 1 1J h(p®
e T _Ztr T o €aal.4.aD,1 (pe(a))
P o) (o)) ). o)

where e* is the (D — 1)-face traversed by e in the dual lattice
of y, p*(6):[0,1] > £ is a path connecting the source
point s, €e to 6 € e* such that pi(s):[0.}] - ¢ and
pi(o):[5.1] - ¢*. Similarly, we can define the dimension-
less flux X%/ as

1
XV = = 4GaD tr(r” l €aay...ap (PL(0))
ﬂ“@ummwwﬂ, (10)

where a is an arbitrary but fixed constant with the dimension
of length. Since SO(D + 1) x so(D + 1) 2 T*SO(D + 1),
this new discrete phase space X,e,(SO(D +1)x
so(D +1)),, called the phase space of SO(D + 1) loop
quantum gravity on the fixed graph y, is a direct product of
SO(D + 1) cotangent bundles. Finally, the complete phase
space of the theory is given by taking the union over the
phase spaces of all possible graphs. In the discrete phase
space associated with y, the constraints are expressed by the
smeared variables. The discretized Gauss constraints are
given by

Gy= > X,— Y h;'X hy 0. (11)
b(e)=v t(e')=v

The discretized simplicity constraints are separated as two

sets. The first one is the edge-simplicity constraint S/KL ~

which takes the form [15,16]
SUKL = xxK 40, Veey, (12)

and the second one is the vertex-simplicity constraint
SIKL 2~ 0 which is given by [15,16]
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SHKL — xllVx

v.ee

K20, Ve e ey sle)=s(e) =

(13)

The symplectic structure of the discrete phase space can be
expressed by the Poisson algebra between the elementary
variables (h,, X'), which reads

{he’he’} =0,

{he,X{),J} = 66,6/ (elﬁ[”he)h:()’

aP=Tdr
(XU XL} = 5,0 s (37 XEE + 5/ XIK

— §ILXIK — /K XIL). (14)
Based on these Poisson algebras, one can check that the
Gaussian constraint generates the SO(D + 1) gauge trans-

formation in SO(D + 1) Yang-Mills theory, and the edge
simplicity constraint induces the transformation

2K
D1

X (tKn,).
(15)

Besides, one can evaluate the algebra among the discretized
Gauss constraints, edge-simplicity constraints, and vertex-
simplicity constraints. It turns out that G, ~# 0 and S, =~ 0
form a first class constraint system, with the algebra

(XU XE ey = 2xExE ey = -

{Se7 Se} X Se’ {S(E’ Sv} S Se’ {G'U7 GU} S GU’
{vase} xS, {Gv’ Sb} xSy, b(e) =70, (16)

where the brackets within G, =~ 0 are isomorphic to the
so(D + 1) algebra, and the ones involving S, ~ 0 weakly
vanish. Especially, since the commutative momentum
Poisson algebra in connection phase space is instead by
the noncommutative flux Poisson algebra in the holonomy-
flux phase space, the simplicity constraint becomes anoma-
lous at the vertex of the graphs in the holonomy-flux phase
space. In other words, the algebras among the vertex-
simplicity constraint are the problematic ones, with the
open anomalous brackets [17]

{Sy.ee'»Speer} x anomaly terms, (17)

where the anomaly terms are not proportional to any of the

existing constraints in the phase space.
The anomalous Poisson algebra of the vertex simplicity
constraint in discrete phase space destroys the first class
|

(Ve’ Ve’gw ﬂe,ég) = (the) € T:SO(D + l)e: X, = %neve = %neu(ve)rou(ve)_l7
h,

constraint system in continuum phase space. Thus, the
gauge reduction in discrete phase space cannot be a simple
copy of the corresponding reduction in continuum phase
space. The main obstacle to explore the gauge reduction in
discrete phase space is how to deal with the anomaly of the
vertex simplicity constraint to reduce correct gauge degrees
of freedom. This problem is solved based on the general-
ized twisted geometric parametrization of the discrete
phase space, where the twisted geometry covers the degrees
of freedom of the Regge geometries so that it can get
back to the connection phase space in some continuum
limit [18]. Let us give a brief introduction of this para-
metrization as follows.

From now on, let us focus on a graph y whose dual lattice
gives a partition of ¢ constituted by D-dimensional poly-
topes, and the elementary edges in y refer to such a kind of
edges that only pass through one (D — I)-dimensional
face in the dual lattice of y. The discrete phase space
related to the give graph y is given by X, T*SO(D + 1),
with e being the elementary edges of y. Then, the edge
simplicity constraint surface that we are interested in can be
given as [18]

Xoe, TeSO(D + 1), = {(h,. X,) € X, T*SO(D + 1),
X x5 = 0. (18)

Without loss of generality, we can focus on the edge
simplicity constraint surface 7:;SO(D + 1), related to
one single elementary edge e € y. This space can be
parametrized by using the generalized twisted-geometry

variables

(ng Ve’gea rle?ég) S Pe = QeD_] X QeD—l X T*Se
x SO(D - 1),, (19)

where 5, € R, 05,_,:=S0(D+1)/(S0(2)xSO(D-1))
is the space of unit bivectors V, or V, where SO(2) x
SO(D — 1) is the maximum subgroup fixing the bivector
7,:=20060 in SOD+1), & €l-mn), &&=,
and 7, where u € {1, ”.’%2(0—2)} is the basis of the
Lie algebra of the subgroup SO(D — 1) fixing both 8/, &3 in
SO(D + 1). To capture the intrinsic curvature, we specify
one pair of the SO(D+1) valued Hopf sections
u, = u(V,) and ii, == it(V,) which satisfies V, = u,7,u;'
and V, = —ii,z,ii;'. Then, the parametrization associated
with each edge is given by the map

2z " (20)
=u(V,)e“mesn(V,)".
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Now we can get back to the discrete phase space of all
dimensional LQG on the whole graph y. Notice that the
discrete phase space on y is just the Cartesian product of
the discrete phase space on each single edge of y; thus the
twisted geometry parametrization of the discrete phase
space on one copy of the edge can be generalized to that
of the whole graph y directly. One should note that the
twisted geometry parameters (V,, V,.,&,,7,) take the inter-
pretation of the discrete geometry describing the dual
lattice of y, which can be explained explicitly as follows.
First, 1n,V, and 1y,V, represent the area-weighted
outward normal bivectors of the (D — 1)-face dual to
e in the perspective of source and target points of e,
respectively, with %116 being the dimensionless area of the
(D — 1)-face dual to e. Second, the holonomy h, =
u,(V,)emetmon; (V,) takes the interpretation that it
rotates the inward normal — %176 V, of the (D — 1)-face dual
to e in the perspective of the target point of e, into the
outward normal %716 V, of the (D — 1)-face dual to e in the
perspective of the source point of e, wherein u,(V,) and
it,(V,) capture the contribution of intrinsic curvature, and
%% captures the contribution of extrinsic curvature to this
rotation. Moreover, i, = eS% are some redundant
degrees of freedom for the reconstruction of the discrete
geometry, and it also captures the gauge degrees of
freedom with respect to edge-simplicity constraint. Now,
beginning with the twisted geometry parameter space P, =
XogyPe. Po=05_ x 0f_ xT;SxSO(D-1),, the gauge
reduction with respect to the kinematic constraints—Gauss
constraint and simplicity constraints—can proceed by fol-
lowing the guiding of the geometric interpretation of the
twisted geometry parameters in the subset of P, withz, # 0.
Up to a double-covering symmetry, we first reduce the
SO(D - 1), fibers for each edge e to get the phase space
P, = x,,P, with P, := 0f, x Qf_; x T*S,. Then, the
discretized Gauss constraint (11) can be imposed to give
the reduced phase space

H, = P,//SO(D + 1)Vl = (x,e,T*S5¢) x (x,e,By,)
(21)

with |V(y)| being the number of the vertices in y and

PBi = {(VE....VE ) EX ey Q%_1|G, =0}/SO(D+1),
(22)

where we reoriented the edges linked to v to be outgoing at v
without loss of generality, {e,} represents the set of edges
beginning at v with n, being the number of elements in {e, },
and G, = Y (,,, 7., Vil here. Further, we solve the vertex
simplicity constraint equation (12) in the reduced phase
space I:Iy and get the final reduced twisted geometric space

Hy = (xeeyT*S;) X (xyeyiﬁ‘%v) with ’,B%l = S’Bﬁv|5,,:0' It has
been shown that the generalized twisted geometry in the
space f]f, is consistent with the Regge geometry on
the spatial D-manifold ¢ if the shape match condition in
the D-polytopes’ gluing process is considered, which means
the gauge reduction scheme in the parametrization space
captures the correct physical degrees of freedom of all
dimensional LQG in the kinematical level. Thus, based on
this twisted geometry parametrization, one can conclude
that, to get correct kinematical physical degrees of freedom,
the anomalous vertex should be treated as a second class
constraint while the Gauss constraint and edge simplicity
constraint are treated as a first class constraint in discrete and
quantum theory of all dimensional LQG. The reduction
procedures can be roughly illustrated as follows [18];
XeGyT*SO<D+ l)ewxeeypewHyWH;’ (23)
where the symplectic reductions with respect to edge
simplicity constraint and Gaussian constraint are proceeded
in step (i) and (ii), respectively, and in step (iii) the vertex
simplicity constraint equation is solved.

The reduction of the holonomy-flux phase based on
twisted geometry parametrization can be related to the
reduction of the connection phase space by taking the
continuum limit [18]. Observe that the choice for the Hopf
sections is clearly nonunique, and the twisted geometric
parametrization is given under one fixed choice of {u,, i, }
for every edge e, under which the Levi-Civita holonomy A%
can be expressed in the form

hE(Ve/, ‘76/) = ue(e@;%ﬂeéfa)ﬁ;l’
¢ € {{E(b(e))}. {E(1(e))}}, (24)

where {E(b(e))} and {E(t(e))} are the collections of
edges linked to the beginning point b(e) of e and the target
point 7(e) of e, respectively, e%% takes value in the
subgroup SO(D —1) C SO(D + 1) preserving both &
and 55. Note that the functions ¢, and % are well-defined
via the given /! and the chosen Hopf sections. Then, let us
take the continuum limit that makes the coordinate length
of each edge of y tends to 0, and we get

h, = u,ebTo et 1+ A,, (25)
X¢ ~ 7, (26)

and
B = u, (bl it T+ T,. (27)

Furthermore, let us factor out AL from h, through the
expressions
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he:hg(

= <ezj,e‘ue‘?u”;1 e_?el”ef/du;] e(f«‘é})‘&») hl; (28)

B, BT, —(@—4)%)

Recall the splitting

AL =T ) + Y 29
with T’/ (z) being a function of z°XL satisfying I'lY () =
I'/(e) on the simplicity constraint surface, and notice
Egs. (25) and (27), where we have the continuum limit

1
Ke ﬁ (507 +§e ;4) ’ (30)

EH= Bz _PH=
— ¢, and e%% = ¢%Te %%, Denote K :=

where &9 := ¢,
Lu, (&7, )uz! and Kb/ == %ue( %7, )u;", and we can clearly
see that despite the anomaly in the vertex-simplicity
constraints, our reduction procedure correctly removes
the component K é/ , while it preserves the component
K that contributes to the extrinsic curvature as expressed
in the same form as in the classical connection formulation.
In other words, we have

/ 1 v /
tr(K,7¢) =~ Etr(ue@zfo + &7, )u;' X)

= %tr( (E0T ) u7' X)) = tr(KEX),

ble) = b(e) (31)

in the continuum limit. Indeed, on the constraint surface of
both edge-simplicity and vertex-simplicity constraints, the

component K/ / has no projection on the bivector z¢ ~

X¢ =19V, satisfying vy KL] =0 with b(e) = b(€),
thus it provides no contribution t0 the extrinsic curvature as it
showed in Eq. (31). Then, recall the pure gauge component
K ,;; for nonanomalous simplicity constraint in continuum
phase space, and one can conclude that the degrees of
freedom of & are consistent with that of K,;; in the con-
tinuum limit, so that the components ;”e’ are regarded as the
pure gauge (with respect to simplicity constraint) compo-
nent in discrete phase space, which can be illustrated as [18]

- correspondence of gauge degrees of freedom v
u
K aJj < ——————-"—-—--"—-—"———— - é e~ (32)

in continuum limit

C. Classical gauge reduction with respect
to simplicity constraint

To construct the gauge invariant variables with respect to
the edge-simplicity constraint in the holonomy-flux phase
space, one needs to reduce the holonomy and flux

variables, respectively. Let us focus on the constraint
surface defined by the edge-simplicity constraint in the
phase space T*SO(D + 1) associated with one single
elementary edge e of y. Based on the twisted geometry
parametrization, the gauge transformation induced by the
edge-simplicity constraint on the edge-simplicity constraint
surface can be given by

(X% ney = 2x{xEt n)
x 17, V[EIJ(TKL]M eETueteTo i)

= 1, (u, (T KL 5T )ebemoii; ) (33)
and
(X xKE xmny — o, (34)

where we defined 7/K% := VI (u;12KUy,) € so(D - 1). It
is easy to see that the edge simplicity constraint induces the
transformation of the component ¢%% € SO(D — 1) in the
parametrization of %,, and the flux is gauge invariant with
respect to the edge-simplicity constraint on the constraint
surface defined by the edge-simplicity constraint. Thus, we
only need to focus on the reduction of holonomy. Let us
introduce the averaging operation Py with respect to the
gauge transformation induced by the edge-simplicity con-
straint in the discrete phase space, whose infinitely small
transformation is generated by the edge-simplicity con-
straint as Eq. (33). Then, the action of Pg on the constraint
surface defined by the edge-simplicity constraint can be
given as

Poohe= [ dglueci g = (39)
SO(D-1)

H:DS OXe:Xe" (36)

where we used that , = u,eé%e*%ii;!, g e SO(D — 1) C
SO(D + 1), and kS is the simplicity reduced holonomy
defined by

S = u e iy (37)

where (I°)) = (6,)1(8,), + (6,)1(8,),. Now, the classical
gauge invariant elementary variables with respect to the
simplicity constraint are given by (h3, X, )|, K] o Notice

that they give a pair of gauge invariant functlonals with
respect to the simplicity constraint, instead of giving a point
on the simplicity constraint surface. In details, the gauge
transformation with respect to the simplicity constraint on
the constraint surface is given by

h, > h,X,—>X,,
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wherein h, = u,e%% (%) i7" and b, = u,eb% (5% )7
It is easy to see that only the component &% in h, is
changed along the gauge orbits with respect to thsimplicity
constraint. Since this component does not appear in the
simplicity reduced holonomy A = u,e*I*ii;!, one can
conclude that (h$, X, )] XKL are a pair of gauge invari-
ant functionals with respect to simplicity constraint on the
constraint surface. Now, by recalling the simplicity reduced
connection AS;; := A,;; — BK,;; constructed in connection
phase space, we can establish the following correspondence
AS,, and the simplicity reduced holonomy £,

bKL
(AaIJ, & ) regularization (h€7 Xe)

(Dl (2

CO['['eSpOIl(lellCe .
(Agl.]'/ 7TbKL)lS"””KL:O (hé, Xe) ‘ Se=0,5,=0;

wherein the symplectic reductions with respect to simplic-
ity constraint are proceeded in steps (1) and (2).

It has been pointed out that only the factor e¢% in h, is
changed along the gauge orbits with respect to simplicity
constraint, and thus the corresponding gauge degrees of
freedom in the holonomy are contained entirely in this
factor. However, it does not mean that the factor e is
pure gauge. Notice that the edge simplicity constraint is a
monomial of the flux and it is transformed by the Gaussian
constraint in the adjoint transformation of so(D + 1).
Thus, the pure gauge component with respect to simplicity
constraint must also be transformed by the Gaussian
constraint in the adjoint transformation of SO(D + 1).
Nevertheless, it is not the case for the factor e<%. Indeed,
by recalling the Levi-Civita holonomy given by Eq. (27),
one can factor out AL from A, through the expressions [18]

h,— (ue BT o=l oL u;l) hh = (ue BT 0 u;l) AL

(38)

with & := ¢, — ¢, and €% := e%Te=C%, Notice AU is
purely determined by flux, thus it is invariant under the
gauge transformation induced by edge simplicity constraint
on the simplicity constraint surface. Then, it is easy to see

that only the factor %% in the decomposition (38) of £, is
changed along the gauge orbits with respect to the
simplicity constraint, and it transforms by the Gaussian
constraint in the adjoint transformation of some elements of
SO(D + 1) [18]. Hence, the pure gauge component in /4, is
given by the factor e%7%. This result is consistency with that
of Sec. II B which is achieved by considering the con-

tinuum limit. In the following part of this paper, 5% will
be called the pure gauge component, and it is distinguished

from the gauge component e,

The simplicity reduced holonomy /3§ corresponds to the
simplicity reduced connection AS;; in the sense of gauge
reduction, but /$ is not the holonomy defined by A%, ;. This
can be seen by considering the continuous limit of %3,
which reads

hS = u,es" ;! = u, et I u; hY

~ (uLu;' + pKy)(I+T,),

where the appearance of I° leads that 4} is not the
holonomy defined by A3,,. In fact, notice that the dis-
appearance of %% in kS reduces not only the gauge degrees
of freedom captured by E’; but also the degrees of freedom
of &% which corresponds to some components of I',;;. To

retain €% in the simplicity reduced holonomy, one may
proceed with the gauge reduction of 4, with respect to the
pure gauge component e’ by substituting % =
e“wefeTs into Eq. (35). However, the result of this gauge
reduction still gives &$. More explicitly, similar to Eq. (35),
one can take the averaging operation of 4, with respect to
the gauge transformation induced by the simplicity con-
straint, which gives

/ dg(u, geTo @eéﬁneéﬁ,)g;l)
SO(D-1)

= u, et (Pef) i, = u e (P)a;',  (39)

where the gauge transformation only changes the pure
gauge component e5% as e — ge¥%, and we use the
fact that I° vanishes the factor %% by I'¢%% =I* in the
second “=." Hence, the gauge reduction procedure of #,
gives the simplicity reduced holonomy A unavoidably,
which loses the structure of a holonomy, and it cannot catch
the degrees of freedom of {%. Further, by using Eq. (39),
one can check that % constructed on a loop @ cannot
capture the degrees of freedom of the intrinsic curvature,
while it is able to capture the degrees of freedom of the
extrinsic curvature properly; see more details in the
Appendix. Thus, the variables constructed based on 4},
have different interpretations from that based on #,.
Finally, we can conclude that the regularization of con-
nection variables is not commutative to the gauge reduction
with respect to the simplicity constraint in all dimensional
LQG, and this point can be regarded as another aspect of
the anomaly of the simplicity constraint.

Since the constructions of kinds of operators in all
dimensional LQG relies on the regularized formulation
of the simplicity reduced connection A3,,, it is worthwhile
to construct the holonomy corresponding to A3,;. Let us
define
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(he)'p = (h)'p + (D)) + VIEV, k) (he)
= u,ef% et (40)
on the gauge reduced holonomy-flux phase space with

respect to the edge-simplicity constraint. One can check
that

hS = u,eou; hl ~ 1+ pKL) (I +T,) (41)
in the continuum limit. It is easy to see that 43 captures the
physical degrees of freedom of both intrinsic and extrinsic

curvature properly, and it can be regarded as the holonomy
of AS,,. We conclude this point as

(Agu , PKE )

regularization K
SabIKL _( ———> (heaXe)|SL,=Sl,:O'

One should notice that the definition (40) of 45 only holds
for the elementary edges e of y whose dual lattice gives a
D-polytope partition of ¢. For a loop a = ejoe,o---o¢,
with eq, e, ..., e, being elementary edges of y, we have
hy == hS hS ---hS . As we will see in Sec. IV, the proper-
ties of h$ and hS will be the key ingredients in the
construction of the scalar constraint operator.

III. QUANTUM GAUGE REDUCTION WITH
RESPECT TO SIMPLICITY CONSTRAINT

A. The solution space of quantum simplicity constraint

The Hilbert space H of all dimensional LQG is given by
the completion of the space of cylindrical functions on the
quantum configuration space, which can be decomposed
into the sectors—the Hilbert spaces associated with graphs.
For a given graph y with |E(y)| edges, the related Hilbert
space is given by M, = L*((SO(D + 1) EDI gulE0h,
This Hilbert space associates with the classical phase space
X,e,T*SO(D + 1), aforementioned. A basis of this space
is given by the spin-network functions constructed on y
which are labeled by (1) an SO(D + 1) representation A
assigned to each edge of y; and (2) an intertwiner i,
assigned to each vertex » of y. Then, each basis state

‘PMJ(E)’ as a wave function on x,¢,SO(D + 1),, can be
given by

¥ ::(1(A) = i, > Qx, (h(A),  (42)

vey ecy

where  h(A) = (... h,(A),...). A= (... A,....), e €7,
i= (ceosiys...), v €y, 7y (h,) denotes the matrix of hol-
onomy h, associated with edge e in the representation
labeled by A,, and > denotes the contraction of the
representation matrixes of holonomies with the inter-
twiners. Hence, the wave function ¥, K;(E(A)) is simply

the product of the functions on SO(D + 1), which are given

by specified components of the holonomy matrices
selected by the intertwiners at the vertices. The action of
the elementary operators—holonomy operator and flux
operator—on the spin-network functions can be given as

he(A)o W, 5:(h(A)) = h (AW, ;:(A(A)),

F oW 5+(h(A)) = —ihcpRYP 5=(h(A)),  (43)

where the holonomy operator acts by multiplying, R :=
tr((z"/h,)T5%) is the right invariant vector fields on

SO(D + 1) associated with the edge e, and T denoting
the transposition of the matrix. Then, the other operators in
all dimensional LQG, such as spatial geometric operators
and scalar constraint operators, can be constructed based on
these elementary operators [21-23].

Now one can proceed with the quantum gauge reduction
procedures to obtain the kinematic physical Hilbert space.
To achieve this goal, one needs to solve the kinematic
constraints, including the Gaussian constraint, edge-sim-
plicity constraint, and vertex-simplicity constraint in H.
Following the results given in Sec. II B, the Gaussian
constraint and edge-simplicity constraint are imposed
strongly and the corresponding solution space is spanned
by the edge-simple and gauge invariant spin-network states,
which are constructed by assigning simple representations
of SO(D + 1) to edges and gauge invariant intertwiners to
vertices of the associated graphs. Besides, the anomalous
vertex simplicity constraints are imposed weakly and the
corresponding weak solutions are given by the spin-
network states labeled by the simple coherent intertwiners
at vertices [19]. Specifically, a typical spin-network state
labeled by the gauge invariant simple coherent intertwiners
at vertices is given by

¥ 5z (h(A) = tr(@ce, 1y, (h(A)) ®ue, T3%).  (44)

where 7y (h,(A)) denotes the representation matrix of
h,(A) with N, being a non-negative integer labeling a
simple representation of SO(D + 1), and ... is defined by
fs,c. = (...,Z%%,...) with Z%°. being the so-called gauge
invariant simple coherent intertwiner labeling the vertex
v €y [19]. More explicitly, the gauge invariant simple
coherent intertwiner is defined as

Iic = / dg ®e:b(e):v <Ne7 Ve 9, (45)
SO(D+1)

where all the edges linked to » are reoriented to be outgoing
at v without loss of generality, the labels V, satisfy the
classical vertex-simplicity constraint as

v YKL _ g,

e

Vb(e) =b(e) =, (46)
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and |N,,V,) is the Perelomov type coherent state in
the simple representation space of SO(D + 1) labeled by
N, [24], which satisfies

(N Ve |N, V) = N VY, (47)
where 7/ is a basis element of so(D + 1) and it acts on
IN,,V,) as an operator.

It is ready to relate the procedures of classical reduction
with respect to simplicity constraint to the quantum case.
Notice that the quantum theory is based on the holonomy-
flux variables, so that we follow the reduction procedures
introduced by the twisted geometry parametrization of
holonomy-flux phase space. The key step in these proce-
dures is the weak imposition of the quantum vertex-
simplicity constraint. Such a treatment relies on the
spin-network states labeled by the simple coherent inter-
twiners at vertices, which give the expectation value of the
flux operator by their labels with minimal uncertainty [24].
Based on the fact that vertex simplicity constraint operators
are purely composed by flux operators, we construct the
simple coherent intertwiners labeled by the points on the
constraint surface of both edge and vertex-simplicity
constraints, which ensures that the spin-network states
labeled by these simple coherent intertwiners at vertices
weakly solve the quantum vertex simplicity constraints
with minimal uncertainty [19]. With this key step being
completed, we can realize the complete quantum reduction
procedures and give the correspondence between the
classical and quantum reductions, which can be illustrated
as follows:

Xeey T*SO(D + 1 H
e€y ( + )e quantization v
()
~ quantization
XeE'yPe ny
(i)
> quantization s
H’y 7_{'y,inv
(iii)
o quantum
HY HS .
v correspondence y,1nv.?
(48)

where the procedures on the left-hand side repeat the
classical reduction procedures of the holonomy-flux phase
space given in the flow chart (23), and the procedures on
the right-hand side are explained as follows. In step (i), the
edge-simplicity constraint is imposed strongly, and we get
the cylindrical function space H; spanned by the spin-
network functions whose edges are labeled by simple
representations of SO(D + 1). Then in step (ii), we impose

the quantum Gauss constraint that further restricts the state

space H; to the gauge (with respect to the Gaussian
constraint) invariant subspace ;. . In the key step
(iii), we weakly impose the vertex-simplicity constraint
based on the spin-network basis labeled by the coherent
intertwiners, and it leads to the kinematical physical

Hilbert space HS of all dimensional LQG. The

y,inv.
resulting space 3. ~is spanned by the spin-network

y.nv.
states T},ﬁjm(ﬁe(f\)) defined by Eq. (44). Thus, the
quantum reduction procedures of the state space on the
right-hand side of (48) faithfully realize the quantum
version of the classical reduction procedures of the
holonomy-flux phase space, up to some quantum pertur-
bations of the weakly vanishing vertex-simplicity con-
straint operators.

B. Quantum gauge reduction of elementary operators
with respect to simplicity constraint

To realize the quantum gauge reduction with respect to
the simplicity constraint, let us introduce a new procedure
to establish the gauge (with respect to the simplicity
constraint) invariant holonomy and flux operators in this
subsection, and they will be referred to as simplicity
reduced holonomy and flux operators, respectively, in
the following part of this paper. Since the gauge trans-
formations with respect to simplicity constraint are gen-
erated by edge-simplicity constraint in holonomy-flux
phase space, let us consider the construction of simplicity
reduced holonomy and flux operators in the solution space
H; of quantum edge-simplicity constraint. It is easy to

check that the flux operator X, satisfies
[}A(Qm,f([e”f(f”]ofyzo, forf,€H; and e€y, (49)
while the holonomy operator ﬁe gives

he, XV X5 0 f, 0, for f,eH; and ee€y (50)

Sl KL . S .
generally, where X, X, is the edge simplicity constraint
operator which induces the gauge transformation with
respect to the simplicity constraint in quantum theory.
Thus, the flux operator X . 1s simplicity reduced in H; while
the holonomy operator fze is not. To find the simplicity
reduced holonomy operator, let us define a projection
operator Pg which projects an arbitrary quantum state in
H, into the solution space H; of edge simplicity constraint.
Then, one can check that

A

[Bsh Bs, X X5 o f, =0, forf,eHs and e€y.  (51)

Thus, the simplicity reduced holonomy operator hAj can be
defined as
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~ A

hs = Pgh,P. (52)

One should note that the action of P on the quantum
state is distinguished with the action of Pg on the
classical variables (h,, X, ). To understand this point, notice
that the quantum edge-simplicity constraint generates the
infinitely small transformation of a cylindrical function

f(.h,,...) as

KKE o f (g ) o X XS F (R, L))

o f, (ot ekbp, ), (53)

wherein the transformation of holonomy is not identical
with the transformation of holonomy induced by the
classical edge-simplicity constraint given in Eq. (15).
Finally, we conclude the gauge reduction with respect to
the simplicity constraint in both classical and quantum
theory with Table I. Note that the quantum simplicity
reduced variables (ﬁi, X .) with domain 7; are constructed
by projecting the action of holonomy and flux operators
(h,.X,) into H;, instead of quantizing the classical

simplicity reduced variables (hj,Xe)|XLuX5L]:O directly.

Thus, one may doubt whether (hAi,}A(e) with domain H;

are the quantization of (3, X, )|, xu_,. In Sec. III D, we

will confirm that (%%, X,) with domain H; can be regarded

as the quantization of (h,X,)| xWxkt_o by showing that

(hAZ,)A(e) with domain H; reproduce (4, X,)| X
the semiclassical limit.

However, as aforementioned in Sec. IIC, since the
simplicity reduced holonomy 4 is not able to capture
the degrees of freedom of the intrinsic curvature properly,
its quantum operator lf‘; cannot be used to construct the
scalar constraint operator that involves the intrinsic curva-

XfL] —0 m

ture. Thus, it is also worthwhile to construct the operator hAi
which corresponds to the holonomy 45 of A3, ;. Recall

(h)' = (h)' L + (M), + VIEEV ) (BY), (54)

defined on the reduce holonomy-flux phase space with
respect to the edge-simplicity constraint. It is easy to see
that we still need to construct the operators corresponding

to V, and hl. Notice that V/ = L holds on the

\/2X o XKL

edge-simplicity constraint surface, and thus we have

2X£KX6,KJ

VIKV, ) = , (55)
e e, KJ XQ/[N

Xe,MN

and it can be quantized as a function of flux operator acting
in the space H,, which reads

-1
VIV, ks = 255X, ) (XE,MNXQ“V> . (56)

where (X, ;v X¥V)~! is the inverse operator of X, 5,y XYV .
It is easy to see that X . v XMV acts as the Casimir operator
of SO(D + 1), and it has discrete eigenspectrum. Thus, the
inverse operator of )A(e,MN)A(yN can be defined as

—1
(xe,MNxz”N) = SR (k

where |k) represents the eigenstate of )A(e,MN)A(’e”N with E,
being the corresponding eigenvalue, and the summation
takes over all of |k) with E; # 0. Then, the major obstacle
to construct the operator corresponding to A3 is the
quantization of h. Note that Al is the holonomy of the
spin connection I',;; determined by z%". Thus, it is
reasonable to define the smeared spin connection operator
[, :=T,(X) as a function of X,, and then the operator

, (57)

corresponding to 4T could be given by AL :=exp(l,).
However, I',;; is a rather complicated function of z®X-
so that the construction of I', = I, (X) is a knotty issue (see
related research in Ref. [25]), and we will leave it to
future study.

C. Comparison between the gauge reductions with
respect to simplicity and Gaussian constraints

It is interesting to compare the gauge reduction with
respect to the simplicity constraint to that of the Gaussian
constraint. In fact, the gauge reduction with respect to the
Gauss constraint is quite different from that of the sim-
plicity constraint, so that the gauge reduction procedure
used in this article cannot be applied to the Gaussian
constraint. Let us explain it explicitly as follows.

As shown in Eqgs. (6) and (33), the key character of
simplicity constraint is that the induced gauge transforma-
tions only transform some specific components of con-
nection or holonomy, thus the gauge degrees of freedom
can be eliminated by trimming these gauge components.
More explicitly, in the discrete phase space, the simplicity

TABLE I. Gauge reduction with respect to the edge-simplicity constraint.

Edge-simplicity constraint Gauge invariant state Simplicity reduced variables
Classical X[eu fL] ~0 (I’lz, Xe) |XL”X{,(L] —0 (l’lz), XL,) |X£IJX§L] —0
Quantum DD R f, =0 fr €My (h$, X,) with domain
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constraint induces such gauge transformations h, — &,
where h, = u,ef% (5% i and K, = u,ebe% (50 )i; !
One can see that only the components % in h, are
transformed by the simplicity constraint. Specifically, the
gauge degrees of freedom with respect to the simplicity
constraint in holonomy £, are purely contained in the gauge

component el [see Eq. (33)]. The gauge reduction with
respect to the simplicity constraint in discrete phase space
proceeds by taking the average with respect to gauge
transformation, which gives the simplicity reduced holon-
omy /3 on the edge-simplicity constraint surface defined by

X x5 = 0 [see Eqgs. (35) and (36), and Table II]. By
recalling the twisted geometry interpretation of each

component of the holonomy-flux variables introduced in
Sec. II. 2, it is easy to see that the gauge components 5T
are trimmed in A4}, so that the gauge degrees of freedom in
h, are eliminated correctly and the resulting reduced
variables (%, X,)| Xl xkil_ capture the physical geometric
degrees of freedom properly. Then, by introducing the
projection operator g and defining the simplicity reduced

holonomy operator hAi, the gauge averaging projection with
respect to the gauge transformation induced by the sim-
plicity constraint is generalized to quantum theory, which
leads to the simplicity reduced holonomy and flux oper-
ators (3, X,) with domain H;.

The situation of the gauge reduction with respect to the
Gaussian constraint is quite different from that of the
simplicity constraint. Usually, the Gaussian constraint
induces the gauge transformations #h, — gA,(e)hegt‘(i),
X, - gs(e>Xegs‘<le). Compared with that of the simplicity
constraint, there is no guarantee that one can specify some
gauge components of holonomy-flux variables transformed
by the Gaussian constraint, with the physical degrees of
freedom being contained in the remaining components.
Thus, it is not valid to eliminate the gauge degrees of
freedom with respect to the Gaussian constraint by trim-
ming the gauge components. This result is concluded in
Table II.

D. Realization of quantum gauge reduction based on
twisted geometry coherent state

To show the semiclassical property of the simplicity
reduced operators with respect to the twisted geometry
coherent state, let us consider the phase space and the
Hilbert space associated with a single edge e in all

TABLE II.

dimensional LQG. Then, we have the simplicity reduced
operators (hAi, X,) with domain ¢ and the twisted geom-
etry coherent state ‘i’Hg € H{ labeled by the twisted

geometry parameters HY := (n,.&,.V,.V,) on the edge
e, where the semiclassicality parameter ¢ is defined by

‘P 10

h t H

t := X Denoted b o 1= T
aP! y ¢He [Wyao|

geometry coherent state and then the semiclassical property

the normalized twisted

of hA; and X, can be shown by evaluating their expectation
values and matrix elements in the twisted geometry
coherent state basis. These calculations have been done
in Refs. [26-28], and it has been shown that the expectation

values and matrix elements of hAi and X, are well-estimated

by their classical correspondence (A$, X, )| o- More

| X! xKE
explicitly, one notices that

(Dl |12\ Bhey) = (Do [Psh Ps|fss) = (Dol Bl bir).  (58)

and then the expectation values of hAi and X, are
evaluated by

S largen, Y,
(Bl X 9) "E LV 1+ O) (59)

and

uZTfl\gﬁe’¢ﬁ-ug>lar§"“uZlhf»ﬁe(l +0(1)). (60)

(Pl

respectively. Moreover, the matrix elements of fz\i and X,
are evaluated by

A n.
(G| XE [ hyy) =5V (i i)
large n,
S Ufx (M HE)| - [biol i) (61)
and
(& ”/e_lheﬁe|¢ut4];o>_“/e_lh/iﬁ,e< e | Pigo)
large 7, ,
S il fn(He HE )| - [{hg i) (62)

respectively, where fy(H?,H)) and f),(H?, H?) are func-
tions that are always suppressed by the exponentially
decayed factor |(¢f, for H¢ # H?, and u., i@, in

)

Comparison between the gauge reductions with respect to simplicity and Gaussian constraints.

Gauge transformation

Gauge components Reduced variables

Simplicity constraint (hy = N, X, > X,)

Gaussian constraint

‘X[EIJX:(L]:O
he = GseheGye): Xe = G50 X ey N/A N/A

exp(&e7,) (e Xe )y yxei_g
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the holonomy operator u';'h,ii, act on the basis vectors

that select a specific matrix element of the holonomy in the
definition representation of SO(D + 1). As one can see, the
simplicity reduced operators (/$,X,) with domain
reproduce the classical simplicity reduced variables
(hs, X,) in the semiclassical limit, thus it is

reasonable to regard (hAi)A(e) with domain H? as the
quantization of (A}, X,) 1_o- This confirms our argu-

|XL” x5—g

o
ment proposed in Sec. III B.

It is worthwhile to clarify the reason why the standard
holonomy operator fze, as a gauge variant (with respect to
both of the Gaussian and simplicity constraints) variable,
has a nonvanishing expectation value in the gauge (with
respect to the simplicity constraint) invariant state, while it
only has a vanishing expectation value in the gauge (with
respect to the Gaussian constraint) invariant state. Indeed,
the reason can be seen from the following two facts, which
read

PGi’\lePG|¢y> = 07 v |¢y> € HY’ (63)

and
[ﬁ)Sile[ﬁ)S|¢y> 75 0’ 3 |¢y> € Hy’ (64)

where Pg is the projection operator which project a state in
H, to the gauge invariant (with respect to the Gauss
constraint) state space. This result also reflects the differ-
ence between the simplicity constraint and the Gaussian
constraint in another perspective.

IV. ON THE CONSTRUCTION OF QUANTUM
SCALAR CONSTRAINT IN ALL
DIMENSIONAL LQG

The simplicity reduced holonomy /4 takes a different
geometric interpretation from the original holonomy #,.
Hence, the operators whose constructions involve holon-
omies should be considered carefully, to ensure that they
take the correct geometric interpretations. In this section,
we will consider the construction of the scalar constraint
operator. As we will see, since the appearance of the
simplicity reduced holonomy /3, the standard strategy fails
to give a correct scalar constraint operator in all dimen-
sional LQG. To overcome this problem, we will propose
three new strategies to construct the scalar constraint
operator, which point out the directions of further research
on the dynamics of all dimensional LQG. Notice that our
discussions focus only on the factors involving holonomies
in the scalar constraint; thus the analyses of the factors
composed by fluxes are omitted in our study, and one can
find the related research in Refs. [15,23].

A. The problematic standard strategy

Recall that we have introduced the scalar constraint
CJ|A, ] in the connection phase space by substituting g,.,|[7]
and P¢/[A, z] into the scalar constraint C(q,,, P¢/) in the
ADM phase space in Sec. II. To simplify our further
analysis, we will consider an equivalent formulation of the
scalar constraint in the connection phase space in this
section. Similar to the analog in the SU(2) connection
formulation of (1 + 3)-dimensional GR, one can establish
the scalar constraint in SO(D + 1) connection formulation
of (1 + D)-dimensional GR with two terms—the so-called
Euclidean term Cg and Lorentzian term Cp [15]. The
Euclidean term Cg reads

1
V/det(q)

with F17:=0,Ap17—0pA 11y +05" Ay Apr ;=5 F Ay Apr .
Define

Cg = Fapryn®®ay’ (65)

Cull] = [ aCuly). (66)
and then the Lorentzian term C; reads

c o S0+A)
- \/det(q)
AP (k- k7, (67)

\/det(q)

where  K(x) := K ,;(x)E* (x)

K[a‘I‘Kb]]EalEbj

and K, := K, EY are

given by

K = 3o (G Vwe) (@)
and
K (1) B (3) = =22 () { A, (9. {Ce 1],V (x.0)}}

- 8K2ﬂ3

(69)
on the constraint surface of both Gaussian and simplicity
constraints, with R(x, ¢) © x being a D-dimensional hyper-
cube with coordinate scale ¢ and V(x, €¢) being the volume

of R(x,€). One can check that Cg contains the pure gauge
component K ,;; through the identity

1

V/det(q)
__Jasgr- L

det(q)
+ (KpikET) (K /¥ E™)), (70)

— alK b J
CE = g

Fopiyr

(4[K, K, - K7
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which holds on the constraint surface of both Gaussian and
simplicity constraints, where R is the scalar curvature of
I',;; defined by

1

R ﬂ.aIK bJ
det(q) abl]

g

(71)

with R 15 7=00 1y =0 a1y +65 ToyxUpr s = ToyxTprs-
Thus, to get the correct gauge invariant ADM
scalar constraint on the constraint surface of both
Gaussian and simplicity constraints, the scalar constraint
in the SO(D + 1) connection formulation of (1 + D)-

dimensional GR must contain an additional term
2

i
det(q)
in Cg, and the final scalar constraint reads

(KpixEY) (KX, EP) to cancel the gauge variant term

2
V/det(q)
Comparing with the SU(2) loop quantum gravity in
%@(KMKEGI)
(K ,,XE") introduces a huge obstacle to regularize and

quantize the scalar constraint in all dimensional LQG. By
projecting the covariant derivation of 7%’ properly, the

C=Cg+C.+ (KpixET) (K, XEY). (72)

(1 4 3)-dimension, the additional term

However, this term is a rather complicated function of A ;;
and 7%/ so that its regularization and quantization are full
of ambiguities [15]. Indeed, the key issue already appears
when one considers the quantization of the Euclidean term
in the scalar constraint. As we will see, the operator C’E
corresponding to the Euclidean term loses its original
geometric interpretation if one considers its matrix ele-
ments in the space @YHS, since the simplicity reduced

holonomy which will appear in the matrix elements of CE
cannot give the curvatures correctly. Let us explain this
point explicitly as follows.

Following the regularization and quantization proce-
dures introduced in [15], the Euclidean term Cg
and Lorentzian term Cp, can be quantized directly, which
leads to

=lim (73)

s—>0

=lim
6—»0

2 Ce 2 G

with

lalik| ”119(]1

W) =Moo < ) oy Dy (74)

Vdet(q) /.

term %{) (K pix ET)(K 4K EY) can be reformulated as a
et(q
term that is composed by the connection variables [13]. and
|
X 2(1+ 2 T e —
0 — € -1
M= a0 ()7 0% e 1601 V)

AL

where N(x) is the lapse function, [J denotes an elementary
cell of the hypercubic partition B of o, ¢ represents the
scale of [, v is a vertex of [, s, represents the edges of []
based at vy, a;, ,, represents the oriented loop based at v

J
> and
vg

—N /\

’ (hSh )J

—
alIK] D]
P Ty

€
and s, s, Besides, the operators <

[

the factors

det(q)

%) are constructed by regularizing and quantizing
etlg v

alK _bJ
”K

Vdet( ¢ det
regularization belng compatlble with the partition P at
v (see more details in Ref. [15]). Notice that the operator

e<
¥
izsa(V(vD,G))lﬂfzgal with x > —1; thus it iS commutative

> respectively, with the

e )
M is a polynomial of (V(vg,e))!™ and
det(q) /

|05 [Ce[1], V(0 )]

(75)

Now, let us show that the simplicity reduced holonomy
will appear in the matrix elements of Cg in @yH;
inevitably. Consider a state |¢p) € D, H; which satisfies

Bs|p) = o). (76)
and we have
($ICeIN]|¢) = (#IPsCelNIPsle') = (HICLINII). (77)
where we defined
BIN]=lim > Cpo[N] (78)

with
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lalTK| b1
T T -~
L) Ba i (09

V/det(q)

which is given by replacing the holonomy operator i/\lax . in

G = NG

O

Cg[N] by the simplicity reduced one s ., BY this we can

conclude that the matrix elements of C;[N] are identical to
that of C§[N] in the space D, H;. The key point of this

result is that, if one considers the matrix element of Cg[N]
in the space P ,H;, the holonomy operator IA1,,\_ is

Sp

reduced to the simplicity holonomy operator hASa . and

Cg[N] is reduced to C§[N]. Note that the physical inter-
pretation of this scalar constraint operator relies on the
geometric meaning of the standard holonomy 7, W while

the geometric interpretation of the simplicity reduced
holonomy hg, . is different from that of A, W Thus,

the action of Cg[N] in D, H, cannot reveal the physical
meaning of the classical scalar constraint Cg at quantum
level. Besides, Eq. (75) is also not the operator correspond-
ing to Cy, since its definition relies on the operator Cg[1].

The issue of the scalar constraint operator given above
can also be considered in another perspective. It is
reasonable to argue that the expectation value of the scalar
constraint operator for a coherent state in (P, would fail
to produce the correct semiclassical limit. Let us explain
this point explicitly as follows. Recalling the results
of Refs. [26-28] which have been briefly reviewed in
Sec. III D, it has been shown that the matrix elements of the
standard holonomy operator in the twisted geometry
coherent basis of H; are well evaluated by the simplicity
reduced holonomy given by the twisted geometry param-
eters. Thus, the expectation value of the standard holonomy
operator in the coherent state in H fails to reproduce the
degrees of freedom that should be contained in the
holonomy. Besides, the Ehrenfest property of the twisted
geometry coherent state proven in Ref. [27] ensures that the
expectation value of a function of the elementary operators
reproduce, to zeroth order in #, the value of the corre-
sponding classical function at the twisted geometry space
point where the coherent state is peaked. More specifically,
by using the Ehrenfest property of the twisted geometry
coherent state, the expectation value of Cg[N] in the
twisted geometry coherent state ¢, € H; can be
evaluated by

(@) 440 | CENI| B! 4o) = (B! 330 | CE[N] (e X)) 140
= Cg[N](R. X.,) (80)

at zeroth order of 7, where /) and X, are determined by the
twisted geometry parameters H? = (1,.&,,V,.V,) on each

edge e, and we considered the hypercubic graph y and the
nongraph changing scheme of the action of Cg[N]. Notice
that we use the gauge (with respect to the Gaussian
constraint) variant coherent state in Eq. (80), and it is
reasonable to argue that the result of Eq. (80) still holds for
the gauge (with respect to the Gaussian constraint) invariant
coherent state in H; based on the peakedness property of
twisted geometry coherent state [26]. Now, one can con-
clude that the expectation value of the Euclidean term
Cg[N] of the scalar constraint operator in the twisted
geometry coherent state fails to produce the correct semi-
classical limit.

In fact, the twisted geometry coherent states are con-
structed in the space H3; thus their wave functions are
constants instead of peaks along a gauge orbit of the
simplicity constraint. In other words, the wave function of a
twisted geometry coherent state in H; does not peak at a
point but peaks at a gauge orbit of simplicity constraint.
This is the reason why the twisted geometry coherent state
in 'H; cannot produce the correct semiclassical limit of the
scalar constraint operator. Indeed, to eliminate the gauge
degrees of freedom with respect to the simplicity constraint,
one must impose the edge simplicity constraint strongly,
and it leads the solution space H; inevitably. More
specifically, the wave function of a state in H; must be
a constant along each of the gauge orbits of the simplicity
constraint. Hence, essentially, it is caused by the treatment
of strong imposition of the edge simplicity constraint
that the twisted geometry coherent state in H, can not
produce the correct semiclassical limit of scalar constraint
operator.

One may consider two schemes to deal with the issue
that the expectation value of the scalar constraint operator
given above in the coherent state in H; fails to produce the
correct semiclassical limit. In the first scheme, one can
construct the coherent states in the Hilbert space H,, by
requiring that the wave function of each of the coherent
states is peaked at a point instead of a gauge orbit.
Nevertheless, such a kind of coherent states must involve
the nonsimple representation of SO(D + 1), and thus the
edge simplicity constraint cannot be solved strongly. In the
second scheme, one can consider redefining the scalar
constraint operator to ensure that it has a correct geometric
meaning and semiclassical limit. We would like to discuss
the second scheme in the following part of this article, and
the first scheme will be left to future research.

B. New strategies

The failure of the previous construction of the scalar
constraint operator arises from what the simplicity reduced
holonomies cannot reveal about the geometric meanings
of the connections. Nevertheless, by analyzing the explicit
structure of the simplicity reduced holonomies, the quan-
tum gauge reduction with respect to the simplicity
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constraint introduced in the sections above provides us new
strategies to construct the scalar constraint operator in all
dimensional LQG. To simplify the discussions, we first
claim that the scalar constraint operators constructed in the
following subsections are defined in the space H* :=
D, H; which vanishes the edge-simplicity constraint
operator.

1. The first strategy

In the first strategy, let us recall the simplicity reduced
connection

hold on the constraint surface of both Gaussian and
simplicity constraints. Then, the scalar constraint can be
expressed as

C=C{+Cy. (85)
Now, let us consider the regularization and quantization of
C;. Notice that C§, takes the same formulation as Cg except
that the connection A,;; in Cg is replaced by A3,; in Cj.
Moreover, recall that the smearing version of A5, is given

by h3. Thus, following a similar regularization and quan-
tization procedures as that of Cg, we can give the operator

AS = Ay — PKay, (81)  corresponding to C3 as
and its curvature is defined by = lim Z cs SN (86)
e—0
Oep
Flpry = 0aAy = 0pAGy, + 88 AG Ay — SKPAG kA .
It is easy to check é’SD[N] N(oe) (ﬂ[ﬂllq;?] KJ> (hAS ) -
E =N(vp) | —F——=— W,
| Viet(q) /. o /1]
S 7};‘5‘ ﬂ.alKﬂbJ
E det(q) ablJ K A
) which is given by replacing the holonomy operator 4, . in
4 R N Sa-Sp
det(q)R — %() (K ., K — K?] (83)  Cg[N] by another holonomy operator hsaw corresponding
e to the classical holonomy h$ of A5, 7. Accordingly, the
and operator corresponding to Cy is given by
1 = lim CH 88
KB ()= =2 (0 Ao ({1 V ()} NI =lim 2 CEIN )
(84)  with
|
. 2(1+p%) ( K] ) AM[ S A }
CLN] =55 —~5N R e WY, L [CE, V(g
L[ ] <8K2f12ﬁ3) ( D) \/m N ( a)] ( p )MK [ E[ ] ( O )}
T, O e ]
=] - (h hy [CE V0, . 89
(o 0T €80 P (59)

Finally, one can conclude that the scalar constraint operator
in all dimensional LQG can be given as

(90)

where CZ[N] and C; [N] are defined in Eqs. (86) and (88),
respectively.

2. The second strategy

In this strategy, we still consider the expression (85) of
the scalar constraint and keep the regularization and

quantization scheme for CfE in (85). Then, let us consider
a new scheme of the regularization and quantization of Ci,
in (85). By using Eq. (A8) in the Appendix, one can
regularize C; by defining

Moo

and one can verify that

8(1+4%)
ﬂZ

s
asa.xb

[alIK| Dl
v/ T
CFalN = )

g

o1
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CLIN] = lim >~ € [N] 92)

Oep

holds on the constraint surface defined by both Gaussian
and simplicity constraints. Then, the operator correspond-
ing to Cy [N] can be given by

éwL[N] = lina Z CEalt[N] (93)
e Oep
with
. 8(1+ﬂ2) (ﬂ.[aIKﬂb]J> R
CC [N :=——"LN(vg) - | ——=% hs, .
Lar[N] 7 (v0) Gea) ), o, 1]
(94)

Here one should notice that i?‘a ,, can be substituted by

B, ., When one consider the matrix elements of CL[N] in

and &,
identical. Finally, in this strategy, the scalar constraint
operator in all dimensional LQG is given by Eq. (90) with
CE[N] and Cp[N] being defined in Egs. (86) and (93).
respectively.

H?, since the matrix elements of A*,, N in H* are

3. The third strategy
Notice that the operator C§[N] which is involved in the

first and second strategies depends on the operator A5
corresponding to the holonomy hS of AS,,. However, the

explicit expression of hs involves another operator hr
whose construction is still a difficult issue. In the third
strategy, we consider a new expression of scalar constraint
to avoid the difficulty of the operator C3[N]. One can
reexpress the scalar constraint as

1
EEY A

By regularizing and quantizing Eq. (95), we could get a
new scalar constraint operator

det(q)R. (95)

A 1 A

qm=a¢?¢um—ﬁm, (96)

where C| [N] is given by Eq. (93) and IQQ[ N] is the operator
corresponding to

MM:lfwm ECRG).  (97)

Notice that the operator IQQ[N | has not been constructed yet
in all dimensional LQG. Nevertheless, its analog in SU(2)

LQG has been constructed and studied in various
methods [25,29-31]. It is expected to extend these methods
to all dimensional LQG to give the explicit expression of

R [N]. We leave this task to further researches.

V. CONCLUSION

The gauge reduction with respect to the simplicity
constraint has been discussed in both classical and quantum
theory of all dimensional loop quantum gravity. In the
classical connection phase space, the symplectic reduction
with respect to simplicity and Gaussian constraints can
proceed without anomaly, which leads to the ADM phase
space correctly. Different with the continuum connection
theory, the simplicity constraints in the discrete holonomy-
flux phase space become anomalous. It has been shown
that, in order to gives the discrete twisted geometry
correctly, one should proceed with the gauge reduction
with respect to the edge simplicity constraint and then
impose the vertex simplicity constraint weakly, i.e., solving
the vertex simplicity constraint equations. However, once
we consider the gauge reduction with respect to the edge
simplicity constraint in holonomy-flux phase space, we
find that the simplicity reduced holonomy #A{ cannot
capture the degrees of freedom of intrinsic curvature, since
its continuum limit does not reproduce the simplicity
reduced connection A3, ;. Besides, the matrix elements of
holonomy operator h, are identical with that of the
simplicity reduced holonomy operator hAg = Pgh, Py in
the space H* spanned by the states vanishing edge
simplicity constraint, which means that the classical cor-
respondence of fze acting in ‘H* is given by & instead of 4,.

This result leads that the standard strategy fails to give a
correct scalar constraint operator in all dimensional LQG.
Our analysis shows that, in the twisted geometry coherent
state in 'Hy, the expectation value of the scalar constraint
operator given by the standard strategy fails to produce the
correct semiclassical limit. Indeed, this issue is caused by
the fact that the wave function of a coherent state in H;
does not peak at a point but peak at a gauge orbit of
simplicity constraint. We have mentioned that two schemes
can be considered to deal with this issue. In the first
scheme, one can construct the coherent states in the Hilbert
space H,,, by requiring that the wave function of each of the
coherent states is peaked at a point instead of a gauge orbit.
Nevertheless, such a kind of coherent states must involve
the nonsimple representation of SO(D + 1), and thus the
edge simplicity constraint cannot be solved strongly. In the
second scheme, one can consider redefining the scalar
constraint operator to ensure that it has correct geometric
meaning and semiclassical limit. We have discussed the
second scheme in this article, and the first scheme remains
for future research.

Following the second scheme, we have proposed three
new strategies to construct the scalar constraint operator in
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Sec. IV B. In the first strategy, we establish the holonomy
hS of the simplicity reduced connection AS,,, which
captures degrees of freedom of the intrinsic and extrinsic

curvature correctly, and then the operator A5 is used to
substitute /1, to construct the scalar constraint operator. In
the second strategy, we consider an alternative of the
Lorentzian part of the scalar constraint operator based

on the simplicity reduced holonomy operator A4j. In the
third strategy, a new method is considered to treat the
spatial scalar curvature term in the scalar constraint.
Generally, the issues introduced by the gauge reduction
with respect to the simplicity constraint are discussed in this
paper, and several strategies are proposed to deal with
them. Nevertheless, these strategies still need further

studies. As we mentioned before, i3 involved in first
and second strategies contains the operator that corresponds
to the holonomy of Levi-Civita connection, and this
operator has not been constructed yet in all dimensional
LQG. Besides, though the spatial scalar curvature
operator involved in the third strategy has been established
in SU(2) LQG, we still need to generalize it to all
dimensional theory. We leave these tasks for future
research.
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APPENDIX: THE INHERENT CURVATURE IN £,

To clarify the inherent curvature in the simplicity
resolved holonomy #4J, let us consider its behavior in a
continuum limit. Give a hypercubic graph y embedded in ¢
with the coordinate length of the elementary edges of y
being ¢. Then, we have the holonomy-flux phase space
Xeek(y)T"S O(D + 1), associated with y. One can proceed
with the gauge reduction with respect to the edge-simplicity
constraint in this phase space, which leads to the reduced
space composed by the elements (4, Xe)eeEm, which are

parametrized by twisted geometry parameters as

1
hi = ueegeto]lsﬁzlv Xe = _nevev

. (A1)

where (I)!, == 616} + 8563 isa (D + 1) x (D + 1) matrix.
We can further solve the vertex simplicity constraint

equation, and our following analysis is restricted on the
constraint surface defined by the vertex simplicity con-
straint in reduced space composed by (A, X, ) (). Notice
that 4 is a gauge (with respect to Gaussian constraint)
covariant holonomy. To simplify our analysis, we can
always proceed with a gauge transformation to ensure

[ J 1.J]

vii =28l V=283, VeeE(). (A2)
Then, we have (h})!,5/ = &1 and
(T)',81 = (O(e?))! (A3)

with e being small enough. To analyze the curvature
captured by hf, let us choose arbitrary minimal square
loop @ C y composed by @ = e 0 e, 0 e3 0 ¢4 and consider
hg, = hg b, he hy,. With the gauge conditions (A2) being
satisfied, we can further fix a gauge that ensures

1 1 1 1 1

_ _ s _
Uy, = —Vp, vy, = —v,, and v, v,,6;; =0. (A4)

By these conditions one has

— (B, Bz =65} (AS)
Then, recall
hS = u,e I ii;!
~ (u L u;' + PKE+ O@)I+T, + O(e?)),  (A6)
one can expand A}, as
(he)iguyir ity = (g R, e ) ki iy
= P(K KL ) +O(E). (A7)
In the continuum limit, it reads
i P ok el
= _ﬁzKa[leJ]é?(U)éZ(v)7 (A8)

where K,y = Koy — Koiikifh = 25[11Ka,] with 77K ==
5K — 516K, v is the source point of e; and the target point
of e4, and ¢¢(v) and é5(v) are the tangent vectors of e; and
ey at v,respectively. Thus, we conclude that (h3,) ki 77
capture the degrees of freedom of extrinsic curvature
properly.
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