
Gauge reduction with respect to simplicity constraint in
all dimensional loop quantum gravity

Gaoping Long 1,2,* and Xiangdong Zhang 1,†

1Department of Physics, South China University of Technology, Guangzhou 510641, China
2Department of Physics, Beijing Normal University, Beijing 100875, China

(Received 12 September 2022; revised 8 January 2023; accepted 3 February 2023; published 27 February 2023)

In this paper, we discuss the gauge reduction with respect to the simplicity constraint in both classical
and quantum theory of all dimensional loop quantum gravity. With the gauge reduction with respect to the
edge-simplicity constraint being processed and the anomalous vertex simplicity constraint being imposed
weakly in holonomy-flux phase space, the simplicity reduced holonomy can be established. However, we
find that the simplicity reduced holonomy cannot capture the degrees of freedom of intrinsic curvature,
which leads to its failure to construct a correct scalar constraint operator in all dimensional loop quantum
gravity (LQG) following the standard strategy. To tackle this problem, we establish a new type of holonomy
corresponding to the simplicity reduced connection, which captures the degrees of freedom of both intrinsic
and extrinsic curvature properly. Based on this new type of holonomy, we propose three new strategies to
construct the scalar constraint operators, which serve as valuable candidates to study the dynamics of all
dimensional LQG in the future.
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I. INTRODUCTION

Loop quantum gravity (LQG) [1–4] as a candidate
theory of quantum gravity provides a possibility of unify-
ing general relativity (GR) and quantum mechanics.
Especially, the quantum spacetime geometry is concealed
in some gauge variables and described in a discrete
formulation in LQG, and it is an important aspect to derive
GR from the foundation of plank-scale quantum geometry.
Indeed, in a broader context, LQG provides a concrete
platform for exploring the relation between the continuum
classical geometric variables of GR and the discretized
geometric quantum data, such as the twistor theory and
twisted geometry [5,6]. It has been shown that the corre-
spondence between the field variables of GR and the
quantum discrete variables of the geometry of LQG is
far beyond the issue of merely taking the continuum limit
and semiclassical limit, since the Hamiltonian formulation
of GR is governed by a constraint system, and the
correspondence could be fully revealed only for the
physical degrees of freedom. By this we mean that all
the constraints in LQG should be properly imposed to
ensure that only all of the physical degrees of freedom
remain. From the opposite direction of this view, the
concrete goal of recovering the familiar Arnowitt-Deser-
Misner (ADM) [7] data from LQG could provide useful

instructions in tackling the abstract issues of quantum
reductions with respect to the constraints in the theory.
A series of illuminating studies in this direction has been

carried out in the case of the SUð2Þ formulation of (1þ 3)-
dimensional LQG. Based on the loop quantization of
SUð2Þ connection formulation of (1þ 3)-dimensional
GR, the kinematic structure of LQG contains the kinematic
Hilbert space spanned by the spin-network states and the
well-defined SUð2Þ holonomy-flux operators. Under the
actions of holonomy-flux operators, the representations of
SUð2Þ-valued holonomies indicate the quanta of the fluxes
as the area elements dual to the graph’s edges, while the
intertwiners relating these representations indicate the
intersection angles among these fluxes at the vertices.
This discretized distribution of the two-dimensional spatial
area elements with their intersection angles leads to a
specific notion of quantum geometry in LQG. The classical
constraints—the scalar, vector, and SUð2Þ Gaussian con-
straints—can be represented via the holonomy-flux oper-
ators for the quantum theory. More explicitly, it has been
shown that the imposition of the quantum Gauss constraints
on the spin-network states gives rise to a proper quantum
gauge reduction, which leads to the reduced state space
constituted by the gauge invariant spin-network states.
Remarkably, the gauge invariant spin-network states not
only describe the intrinsic spatial geometry built from the
polyhedra cells dual to the network, but also carry precisely
the right data to specify the extrinsic curvature of the
three-hypersurface partitioned by these polyhedra [6,8,9].
Through this first stage of the gauge reduction with respect
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to the Gaussian constraint, a notion of discrete kinematic
ADM data appears in the formulation of Regge geometry,
upon which the further reductions with respect to the vector
and scalar constraints should be carried out. However, the
quantum vector and scalar constraints take much more
complicated forms and the quantum algebra between them
becomes no longer of first class. At least for now, since the
quantum anomaly hinders the standard Dirac procedure
from mirroring the classical gauge reduction, the treatment
of these loop quantized vector and scalar constraints
remains a crucial challenge for LQG tackled by many
ongoing projects [10–12].
As we mentioned above, LQG was first established as a

quantum theory of GR in four-dimensional spacetime.
Nevertheless, various classical and quantum gravity theo-
ries in higher-dimensional spacetimes (e.g., Kaluza-Klein
theory, supergravity and superstring theories) are explored
from many different kinds of perspectives. The results of
these higher-dimensional theories show remarkable poten-
tials in unifying the gravity and matter fields at the energy
scale of quantum gravity. Thus, by extending the frame-
work of loop quantum gravity to higher-dimensional
spacetime, one may get a novel approach toward the
higher-dimensional ideas of unification, upon the back-
ground-independent and nonperturbative construction of
the discretized quantum geometry. Pioneered by
Bodendorfer, Thiemann, and Thurn, the basic framework
of loop quantum theory for GR in all dimensions has been
developed [13–16]. The (1þD)-dimensional LQG takes
the similar framework as the standard (1þ 3)-dimensional
SUð2Þ LQG, i.e., the formulation of Yang-Mills gauge
theory and the loop quantization strategy. The key
differences between these two theories include two points.
The first one is that the gauge group of (1þD)-dimen-
sional LQG is taken as SOðDþ 1Þ, while that of the
standard (1þ 3)-dimensional LQG is SUð2Þ. The second
key difference is that the (1þD)-dimensional LQG
contains the simplicity constraint, while the standard
(1þ 3)-dimensional SUð2Þ LQG does not. Because of
the appearance of the simplicity constraint, the challenge of
loop quantum anomaly already exists at the kinematic level
before the accounts of the quantum ADM constraints in all
dimensional LQG. More explicitly, the all dimensional
LQG is based on the connection formulation of (1þD)-
dimensional GR in the form of the SOðDþ 1Þ Yang-Mills
theory, with the phase space coordinatized by the canonical
pairs ðAaIJ; πbKLÞ, consisting of the spatial soðDþ 1Þ
valued connection fields AaIJ and the vector fields πbKL.
In this formulation, the theory is governed by the first class
constraint system composed by the SOðDþ 1Þ Gaussian
constraint, the ADM constraints of (1þD)-dimensional
GR, and an additional constraint called the simplicity
constraint. The simplicity constraint takes the form
SabIJKL ≔ πa½IJπjbjKL� [13,15], which generates extra gauge
symmetries in the SOðDþ 1Þ connection phase space.

It has been shown that the SOðDþ 1Þ connection phase
space correctly reduces to the familiar ADM phase space
by proceeding with the symplectic reductions with respect
to the Gaussian and simplicity constraints. Similar to the
SUð2Þ LQG, the loop quantization of the SOðDþ 1Þ
connection formulation leads to the Hilbert space com-
posed by the spin-network states of the SOðDþ 1Þ
holonomies, where the quantum numbers labeling these
states carry the quanta of the flux operators representing the
flux of πbKL over (D − 1)-dimensional surfaces. Following
the previous study for SUð2Þ LQG, it is expected to look for
all the dimensional Regge ADM data encoded in the
SOðDþ 1Þ spin-network states, through a gauge reduction
procedure with respect to both of the quantum SOðDþ 1Þ
Gaussian constraint and simplicity constraint.
However, the challenge arises in the gauge reduction

procedures with respect to the quantum simplicity con-
straint—the quantum algebra among simplicity constraints
in all dimensional LQG carries serious quantum anomaly.
More explicitly, the commutative Poisson algebra among
the classical simplicity constraints becomes the deformed
quantum algebra among the quantum simplicity constraint
which is not even close [17]. Besides, it has been shown
that the “gauge” transformations induced by these anoma-
lous quantum simplicity constraints can connect the states
that are supposed to be physically distinct in terms of the
semiclassical limit. Thus, strong imposition of the anoma-
lous quantum simplicity constraint leads to overconstrained
state space that are not able to capture correct physical
degrees of freedom. Indeed, based on the network discre-
tization, the quantum simplicity constraints in all dimen-
sional LQG are divided into two kinds of local constraints,
including the edge-simplicity constraint and the vertex-
simplicity constraint. Specifically, the anomaly of quantum
algebra only appears for the vertex-simplicity constraint,
while the edge-simplicity constraint remains anomaly free
in the sense of taking a weakly commutative quantum
algebra. To deal with the quantum anomaly of the vertex
simplicity constraint, one can focus on the discrete phase
space coordinatized by SOðDþ 1Þ holonomy-flux varia-
bles, in which the Poisson algebras of simplicity constraint
are isomorphic to quantum algebras of simplicity con-
straint, and thus the anomaly of vertex-simplicity constraint
already exists in the classical holonomy-flux phase space.
Previously, based on the so-called generalized twisted
geometric parametrization of the edge-simplicity constraint
surface, we have proceeded with the gauge reduction with
respect to the simplicity constraint in the holonomy-flux
phase space [18]. Our result shows that the discretized
classical Gaussian, edge-simplicity constraints and vertex-
simplicity constraint which catches the anomaly of quan-
tum vertex simplicity constraint define a constraint surface
in the holonomy-flux phase space of all dimensional LQG,
and the kinematical physical degrees of freedom are given
by the gauge orbits in the constraint surface generated by
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the first class system consisting of discretized Gaussian and
edge-simplicity constraints. We found that the reduced
twisted geometry describes the degrees of freedom
of the D-polytopes which partition the D-hypersurface,
i.e., the (D − 1)-faces’ areas, the shape of each single
D-polytope and the extrinsic curvature between arbitrary
two adjacent D-polytopes. Finally, the discrete ADM data
of the D-hypersurface in the form of Regge geometry can
be identified as the degrees of freedom of the reduced
generalized twisted geometry space, up to an additional
condition called the shape matching condition of (D − 1)-
dimensional faces. Following this result, these gauge
reduction procedures can be realized in quantum theory
by imposing the quantum Gaussian and edge-simplicity
constraint strongly, and imposing the vertex-simplicity
constraint weakly. It leads to the physical kinematic
Hilbert space spanned by the spin-network states labeled
by simple representations at edges and gauge invariant
simple coherent intertwiners at vertices [19].
Nevertheless, the gauge reduction with respect to the

simplicity constraint has not been accomplished yet, since
new issues arise when one constructs the gauge invariant
operators to describe the kinematic physical observables.
Similar to the construction of the gauge invariant oper-
ators with respect to the Gaussian constraint, by proceed-
ing with the regularization and quantization procedures in
LQG, one may expect that a gauge invariant variable with
respect to the simplicity constraint in the connection phase
space can be promoted as an operator acting in the
physical kinematic Hilbert space, with the gauge degrees
of freedom being eliminated and the physical meaning
being remained correctly. Unfortunately, these procedures
fail to give a correct scalar constraint operator in all
dimensional LQG. As we will show in the main part of
this article, though the edge simplicity constraints only
transform the pure gauge components in holonomy, the
gauge reduction with respect to the simplicity constraint
destroys the structure of holonomies, and it leads to the so-
called simplicity reduced holonomy which cannot capture
the degrees of freedom of intrinsic curvature. In other
words, the simplicity reduced holonomy is not able to
inherit the property of connection while the scalar con-
straint operator is given by regularizing and quantizing the
connection formulation of scalar constraint. Hence, the
appearance the simplicity reduced holonomy leads this
scalar constraint operator does not have the expected
geometric interpretation.
In fact, this issue arises from the inconsistency of the

geometric meanings of the simplicity reduced connections
and the simplicity reduced holonomies. More explicit
discussions in this article will show that, by considering
the matrix elements of some constraint operators in the
solution space of the quantum edge simplicity constraint,
one finds that the simplicity reduced holonomy operator
appears inevitably. Hence, to ensure the constructed

operators possess correct geometric interpretations, it is
necessary to study the specific geometric interpretation of
the simplicity reduced holonomies in the holonomy-flux
phase space, so that the simplicity reduced holonomies can
be used as a proper building block to construct operators,
e.g., the scalar constraint operator. Besides, by following
the geometric interpretation of each component of holon-
omy given by the twisted geometry parametrization, we
will introduce another type of gauge invariant holonomies
with respect to the simplicity constraint, which captures the
degrees of freedom of intrinsic and extrinsic curvature
properly. We will show that the scalar constraint in
connection formulation can be regularized and quantized
based on this new type of gauge invariant holonomy, with
the intrinsic and extrinsic curvatures being captured in the
resulting scalar constraint operator correctly.
This paper is organized as follows. After our brief review

of the classical theory of all dimensional LQG in Sec. II, we
will introduce the simplicity constraint in both of the
connection and holonomy-flux phase spaces. Especially,
we will analyze the gauge degrees of freedom with respect
to the simplicity constraint in Secs. II A and II B. Then, the
simplicity reduced holonomy will be constructed, and we
will also propose a new choice of the gauge (with respect to
the simplicity constraint) invariant holonomy in Sec. II C.
In Sec. III, we will turn to consider the gauge reduction with
respect to the simplicity constraint in quantum theory of all
dimensional LQG. The solution space of the quantum
simplicity constraint will be introduced first, and then the
simplicity reduced holonomy operator and a new choice of
the gauge (with respect to simplicity constraint) invariant
holonomy operator will be considered in our discussions.
These operators helps us to consider the construction of the
quantum scalar constraint in all dimensional LQG in
Sec. IV. We will first point out that the standard strategy
is problematic to construct the quantum scalar constraint in
Sec. IVA, and then propose three new strategies for this
construction in Sec. IV B. Finally, we will finish with a
summary and discussion in Sec. V.

II. SIMPLICITY CONSTRAINT IN CLASSICAL
THEORY OF (1 +D)-DIMENSIONAL LQG

A. Simplicity constraint in connection phase
space of (1 +D)-dimensional GR

The connection dynamics of (1þD)-dimensional GR is
based on the phase space coordinatized by the canonical
field variables ðAaIJ; πbKLÞ on a spatial D-dimensional
manifold σ, which is equipped with the kinematic con-
straints—Gauss constraint GIJ ≈ 0 and simplicity constraint
Sab½IJKL� ≈ 0 inducing the gauge transformation of this
theory, and the dynamics constraints—vector constraint
Ca ≈ 0 and scalar constraint C ≈ 0. More explicitly, the
only nontrivial Poisson bracket between the conjugate pair
is given by [13]
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fAaIJðxÞ; πbKLðyÞg ¼ 2κβδbaδ
K
½Iδ

L
J�δ

ðDÞðx − yÞ; ð1Þ

where κ is Newton’s gravitational constant, β is the
Barbero-Immirzi parameter, and we used the notation
a; b;… ¼ 1; 2;…; D for the spatial tensorial indices and
I; J;… ¼ 1; 2;…; Dþ 1 for the soðDþ 1Þ Lie algebra
indices in the definition representation. The Gaussian
constraint and simplicity constraint are given by

GIJ ≔ ∂aπ
aIJ þ 2A½I

aKπ
ajKjJ� ≈ 0 ð2Þ

and

Sab½IJKL� ≔ πa½IJπjbjKL� ≈ 0; ð3Þ

respectively. It is easy to verify that

fG;Gg ∝ G; fG; Sg ∝ S; fS; Sg ¼ 0;

which means that the Gaussian and simplicity constraints
obey a first class constraint algebra. It has been shown that
the symplectic reduction with respect to the Gaussian and
simplicity constraints reduces the connection phase space
to the ADM phase space of geometry dynamics of all
dimensional GR. In details, the ADM variables ðqab; PcdÞ
can be defined as the functionals [13]

qab ≔ qab½π�; Pcd ≔ Pcd½A; π�

in the connection phase space. It has been verified that
qab½π� and Pcd½A; π� are weak Dirac observables with
respect to Gaussian and simplicity constraints, and they
obey the standard ADM Poisson brackets [13]

fqabðxÞ; PcdðyÞg ¼ κδcðaδ
d
bÞδ

ðDÞðx − yÞ;
fqabðxÞ; qcdðyÞg ¼ fPabðxÞ; PcdðyÞg ¼ 0

on the constraint surface defined by simplicity and
Gaussian constraints. The vector constraint and scalar
constraint in the connection phase space can be defined by

Ca½A; π� ≔ Caðqcd½π�; Pef½A; π�Þ

and

C½A; π� ≔ Cðqcd½π�; Pef½A; π�Þ;

respectively, wherein Caðqcd; PefÞ and Cðqcd; PefÞ are the
vector constraint and scalar constraint in the ADM phase
space. Since qcd½π� and Pef½A; π� are weak Dirac observ-
ables with respect to S and are invariant under G, one can
immediately get that

fS;Cag∝ S; fS;Cg∝ S; fG;Cag¼ 0; fG;Cg¼ 0:

Next, notice the fact that the Poisson algebra between qcd½π�
and Pef½A; π� is the same as that of the ADM variables
modulo S, G terms, and therefore the Poisson algebra of the
vector constraint and scalar constraint in the ADM phase
space can be reproduced by that in the connection phase
space modulo S, G terms, which means that

fCa; Cbg ∝ Cc; S;G; fCa; Cg ∝ C; S;G;

fC;Cg ∝ Ca; S;G:

Then, one can conclude that theGaussian, simplicity, vector,
and scalar constraints form a first class constraint system in
the connection phase space.
As one expected, the Gaussian constraint induces the

SOðDþ 1Þ gauge transformation of the connection AaIJ

and its momentum πbKL, while the simplicity constraint
restricts the degrees of freedom of πaIJ to that of a D-frame
EaI to describe the spatial internal geometry and generates
some other gauge transformation. To clarify the gauge
transformation induced by simplicity constraint, let us first
give the explicit relations between the connection variables
and the geometric variables on the constraint surface of
both Gaussian and simplicity constraints. Specifically, the
solution of the simplicity constraint is given by
πaIJ ¼ 2n½IEjajJ�, with EaI being the densitized D-frame
related to double densitized dual metric by ˜̃qab ¼ EaIEb

I
and nI being a unit internal vector defined by nIEaI ¼ 0.
Also, one can define the spin connection ΓaIJ satisfying
∂aeIb − Γc

abe
I
c þ ΓIJ

a ebJ ¼ 0 as

ΓaIJ½π� ≔
2

D − 1
TaIJ þ

D − 3

D − 1
T̄aIJ þ Γb

acTc
bIJ ð4Þ

on the simplicity constraint surface, where TaIJ ≔
πbK½I∂aπbK J�, T

c
bIJ ≔ πbK½IπcK J�, T̄aIJ ≔ η̄KI η̄

L
J TaKL, η̄JI ¼

δJI − nInJ, Γc
ab is the Levi-Civita connection of qab and eaI

is the D-bein defined by EaIebI ¼ ffiffiffi
q

p
δab. Based on these

conventions, the densitized extrinsic curvature of the spatial
manifold σ can be given by

K̃a
b ¼ KaIJπ

bIJ ≡ 1

β
ðAaIJ − ΓaIJÞπbIJ ð5Þ

on the constraint surface of both Gaussian and simplicity
constraints. Now, it is ready to clarify the gauge trans-
formation induced by the simplicity constraint. One can
check that AaIJ transforms with respect to the simplicity
constraint asZ

σ
dDxfab½IJKL�ðxÞfSabIJKL; AcMNðyÞg

¼ 2βκfac½IJMN�ðyÞπaIJðyÞ ¼ 4βκfac½IJMN�ðyÞn½IEjajJ�ðyÞ
ð6Þ
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on the simplicity constraint surface. By decomposing the
connection AaIJ ¼ 2n½IAjajJ� þ ĀaIJ, it is easy to see that on
the simplicity constraint surface, only the component
ĀIJ
a transforms while the component 2n½IAjajJ� is

gauge invariant with respect to the simplicity constraint.
Similarly, KaIJ ≔ 1

β ðAaIJ − ΓaIJÞ can be decomposed as

KaIJ ¼ 2n½IKjajJ� þ K̄aIJ. One can also check that on the
simplicity constraint surface, the component 2n½IKjajJ� is
invariant and only K̄IJ

a transforms under the gauge trans-
formation induced by simplicity constraint. Hence, we see
that the simplicity constraint fixes both K̃b

a and qab so that it
exactly introduces extra gauge degrees of freedom. In fact,
to give the gauge invariant variables with respect to the
simplicity constraint, one can construct the simplicity
reduced connection

AS
aIJ ≔ AaIJ − βK̄aIJ: ð7Þ

Then, the symplectic reduction with respect to the sim-
plicity constraint in the connection phase space can be
illustrated as

ðAaIJ; πbKLÞ !reductionðAS
aIJ; π

bKLÞjSabIJKL¼0;

which gives the gauge invariant variables ðAS
aIJ; π

bKLÞ with
respect to simplicity constraint on the constraint surface
defined by SabIJKL ¼ 0.

B. Simplicity constraint in discrete phase space
of (1 +D)-dimensional GR

Apart from the different gauge group which, however, is
compact and the additional simplicity constraint, the
SOðDþ 1Þ connection formulation of (1þ D)-dimensional
GR is precisely the same as the SUð2Þ connection formu-
lation of (1þ 3)-dimensional GR, and the quantization of
the SOðDþ 1Þ connection formulation is therefore in
complete analogy with (1þ 3)-dimensional SUð2Þ LQG
[1–4,20]. By following any standard text on LQG such as
[3,4], the loop quantization of the SOðDþ 1Þ connection
formulation of (1þ D)-dimensional GR leads to a kinemati-
cal Hilbert spaceH [15], which can be regarded as a union of

the Hilbert spaces Hγ ¼ L2ððSOðDþ 1ÞÞjEðγÞj; dμjEðγÞjHaar Þ on
all possible graphs γ embedded in σ, whereEðγÞ denotes the
set composed by the independent edges of γ and dμjEðγÞjHaar
denotes the product of the Haar measure on SOðDþ 1Þ. In
this sense, on each given γ there is a discrete phase space
ðT�SOðDþ 1ÞÞjEðγÞj, which is coordinatized by the elemen-
tary discrete variables—holonomies and fluxes. The hol-
onomy of AaIJ along an edge e ∈ γ is defined by

he½A�≔P exp

�Z
e
A

�

¼1þ
X∞
n¼1

Z
1

0

dtn

Z
tn

0

dtn−1 � � �
Z

t2

0

dt1Aðt1Þ���AðtnÞ;

ð8Þ

where AðtÞ ≔ 1
2
_eaAaIJτ

IJ, _ea is the tangent vector field of e,

τIJ is a basis of soðDþ 1Þ given by ðτIJÞdef:KL ¼ 2δ½IKδ
J�
L in

definition representation space of SOðDþ 1Þ, and P
denotes the path-ordered product. The flux FIJ

e of πaIJ

through the (D − 1)-dimensional face dual to edge e is
defined by

FIJ
e ≔ −

1

4
tr

�
τIJ

Z
e⋆
ϵaa1…aD−1

hðρseðσÞÞ

πaKLðσÞτKLhðρseðσÞ−1Þ
�
; ð9Þ

where e⋆ is the (D − 1)-face traversed by e in the dual lattice
of γ, ρsðσÞ∶½0; 1� → Σ is a path connecting the source
point se ∈ e to σ ∈ e⋆ such that ρseðσÞ∶½0; 12� → e and
ρseðσÞ∶½12 ; 1� → e⋆. Similarly, we can define the dimension-
less flux XIJ

e as

XIJ
e ¼ −

1

4βaD−1 tr

�
τIJ

Z
e⋆
ϵaa1…aD−1

hðρseðσÞÞ

πaKLðσÞτKLhðρseðσÞ−1Þ
�
; ð10Þ

where a is an arbitrary but fixed constant with the dimension
of length. Since SOðDþ 1Þ × soðDþ 1Þ ≅ T�SOðDþ 1Þ,
this new discrete phase space ×e∈γðSOðDþ 1Þ×
soðDþ 1ÞÞe, called the phase space of SOðDþ 1Þ loop
quantum gravity on the fixed graph γ, is a direct product of
SOðDþ 1Þ cotangent bundles. Finally, the complete phase
space of the theory is given by taking the union over the
phase spaces of all possible graphs. In the discrete phase
space associated with γ, the constraints are expressed by the
smeared variables. The discretized Gauss constraints are
given by

Gv ≔
X

bðeÞ¼v

Xe −
X

tðe0Þ¼v

h−1e0 Xe0he0 ≈ 0: ð11Þ

The discretized simplicity constraints are separated as two
sets. The first one is the edge-simplicity constraint SIJKLe ≈ 0
which takes the form [15,16]

SIJKL
e ≡ X½IJ

e XKL�
e ≈ 0; ∀ e ∈ γ; ð12Þ

and the second one is the vertex-simplicity constraint
SIJKLv;e;e0 ≈ 0 which is given by [15,16]
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SIJKLv;e;e0 ≡ X½IJ
e XKL�

e0 ≈ 0; ∀ e; e0 ∈ γ; sðeÞ ¼ sðe0Þ ¼ v:

ð13Þ

The symplectic structure of the discrete phase space can be
expressed by the Poisson algebra between the elementary
variables ðhe; XIJ

e Þ, which reads

fhe;he0g ¼ 0; fhe;XIJ
e0 g ¼ δe;e0

κ

aD−1
d
dt
ðeλτIJheÞjλ¼0;

fXIJ
e ;XKL

e0 g ¼ δe;e0
κ

aD−1 ðδIKXJL
e þ δJLXIK

e

− δILXJK
e − δJKXIL

e Þ: ð14Þ

Based on these Poisson algebras, one can check that the
Gaussian constraint generates the SOðDþ 1Þ gauge trans-
formation in SOðDþ 1Þ Yang-Mills theory, and the edge
simplicity constraint induces the transformation

fX½IJ
e XKL�

e ; heg ¼ 2X½IJ
e fXKL�

e ; heg ¼ −
2κ

aD−1 X
½IJ
e ðτKL�heÞ:

ð15Þ

Besides, one can evaluate the algebra among the discretized
Gauss constraints, edge-simplicity constraints, and vertex-
simplicity constraints. It turns out that Gv ≈ 0 and Se ≈ 0
form a first class constraint system, with the algebra

fSe; Seg ∝ Se; fSe; Svg ∝ Se; fGv;Gvg ∝ Gv;

fGv; Seg ∝ Se; fGv; Svg ∝ Sv; bðeÞ ¼ v; ð16Þ

where the brackets within Gv ≈ 0 are isomorphic to the
soðDþ 1Þ algebra, and the ones involving Se ≈ 0 weakly
vanish. Especially, since the commutative momentum
Poisson algebra in connection phase space is instead by
the noncommutative flux Poisson algebra in the holonomy-
flux phase space, the simplicity constraint becomes anoma-
lous at the vertex of the graphs in the holonomy-flux phase
space. In other words, the algebras among the vertex-
simplicity constraint are the problematic ones, with the
open anomalous brackets [17]

fSv;e;e0 ; Sv;e;e00 g ∝ anomaly terms; ð17Þ

where the anomaly terms are not proportional to any of the
existing constraints in the phase space.
The anomalous Poisson algebra of the vertex simplicity

constraint in discrete phase space destroys the first class

constraint system in continuum phase space. Thus, the
gauge reduction in discrete phase space cannot be a simple
copy of the corresponding reduction in continuum phase
space. The main obstacle to explore the gauge reduction in
discrete phase space is how to deal with the anomaly of the
vertex simplicity constraint to reduce correct gauge degrees
of freedom. This problem is solved based on the general-
ized twisted geometric parametrization of the discrete
phase space, where the twisted geometry covers the degrees
of freedom of the Regge geometries so that it can get
back to the connection phase space in some continuum
limit [18]. Let us give a brief introduction of this para-
metrization as follows.
From now on, let us focus on a graph γ whose dual lattice

gives a partition of σ constituted by D-dimensional poly-
topes, and the elementary edges in γ refer to such a kind of
edges that only pass through one (D − 1)-dimensional
face in the dual lattice of γ. The discrete phase space
related to the give graph γ is given by ×e∈γT�SOðDþ 1Þe
with e being the elementary edges of γ. Then, the edge
simplicity constraint surface that we are interested in can be
given as [18]

×e∈γT�
sSOðDþ 1Þe ≔ fðhe; XeÞ ∈ ×e∈γT�SOðDþ 1Þe

jX½IJ
e XKL�

e ¼ 0g: ð18Þ

Without loss of generality, we can focus on the edge
simplicity constraint surface T�

sSOðDþ 1Þe related to
one single elementary edge e ∈ γ. This space can be
parametrized by using the generalized twisted-geometry
variables

ðVe; Ṽe; ξe; ηe; ξ̄
μ
eÞ ∈ Pe ≔ Qe

D−1 ×Qe
D−1 × T�Se

× SOðD − 1Þe; ð19Þ

where ηe ∈ R, Qe
D−1≔SOðDþ1Þ=ðSOð2Þ×SOðD−1ÞÞ

is the space of unit bivectors Ve or Ṽe where SOð2Þ ×
SOðD − 1Þ is the maximum subgroup fixing the bivector

τo ≔ 2δ½I1 δ
J�
2 in SOðDþ 1Þ, ξe ∈ ½−π; πÞ, eξ̄

μ
e τ̄μ ≔ ūe,

and τ̄μ where μ ∈ f1;…; ðD−1ÞðD−2Þ
2

g is the basis of the
Lie algebra of the subgroup SOðD − 1Þ fixing both δI1; δJ2 in
SOðDþ 1Þ. To capture the intrinsic curvature, we specify
one pair of the SOðDþ 1Þ valued Hopf sections
ue ≔ uðVeÞ and ũe ≔ ũðṼeÞ which satisfies Ve ¼ ueτou−1e
and Ṽe ¼ −ũeτoũ−1e . Then, the parametrization associated
with each edge is given by the map

ðVe; Ṽe; ξe; ηe; ξ̄
μ
eÞ ↦ ðhe; XeÞ ∈ T�

sSOðDþ 1Þe∶ Xe ¼ 1
2
ηeVe ¼ 1

2
ηeuðVeÞτouðVeÞ−1;

he ¼ uðVeÞeξ̄
μ
e τ̄μeξeτo ũðṼeÞ−1:

ð20Þ
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Now we can get back to the discrete phase space of all
dimensional LQG on the whole graph γ. Notice that the
discrete phase space on γ is just the Cartesian product of
the discrete phase space on each single edge of γ; thus the
twisted geometry parametrization of the discrete phase
space on one copy of the edge can be generalized to that
of the whole graph γ directly. One should note that the
twisted geometry parameters ðVe; Ṽe; ξe; ηeÞ take the inter-
pretation of the discrete geometry describing the dual
lattice of γ, which can be explained explicitly as follows.
First, 1

2
ηeVe and 1

2
ηeṼe represent the area-weighted

outward normal bivectors of the (D − 1)-face dual to
e in the perspective of source and target points of e,
respectively, with 1

2
ηe being the dimensionless area of the

(D − 1)-face dual to e. Second, the holonomy he ¼
ueðVeÞeξ̄

μ
e τ̄μeξeτo ũ−1e ðṼeÞ takes the interpretation that it

rotates the inward normal − 1
2
ηeṼe of the (D − 1)-face dual

to e in the perspective of the target point of e, into the
outward normal 1

2
ηeVe of the (D − 1)-face dual to e in the

perspective of the source point of e, wherein ueðVeÞ and
ũeðṼeÞ capture the contribution of intrinsic curvature, and
eξeτo captures the contribution of extrinsic curvature to this
rotation. Moreover, ūe ¼ eξ̄

μ
e τ̄μ are some redundant

degrees of freedom for the reconstruction of the discrete
geometry, and it also captures the gauge degrees of
freedom with respect to edge-simplicity constraint. Now,
beginning with the twisted geometry parameter space Pγ ¼
×e∈γPe;Pe≔Qe

D−1×Qe
D−1×T�

eS×SOðD−1Þe, the gauge
reduction with respect to the kinematic constraints—Gauss
constraint and simplicity constraints—can proceed by fol-
lowing the guiding of the geometric interpretation of the
twisted geometry parameters in the subset ofPγ with ηe ≠ 0.
Up to a double-covering symmetry, we first reduce the
SOðD − 1Þe fibers for each edge e to get the phase space
P̌γ ≔ ×e∈γP̌e with P̌e ≔ Qe

D1
×Qe

D−1 × T�S1e. Then, the
discretized Gauss constraint (11) can be imposed to give
the reduced phase space

Ȟγ ≔ P̌γ==SOðDþ 1ÞjVðγÞj ¼ ð×e∈γT�S1eÞ × ð×v∈γPη⃗vÞ
ð21Þ

with jVðγÞj being the number of the vertices in γ and

Pη⃗v ≔fðVIJ
e1 ;…;VIJ

env
Þ∈×e∈fevgQ

e
D−1jGv¼0g=SOðDþ1Þ;

ð22Þ

wherewe reoriented the edges linked to v to be outgoing at v
without loss of generality, fevg represents the set of edges
beginning at vwithnv being the number of elements in fevg,
and Gv ¼

P
fevg ηevV

IJ
ev here. Further, we solve the vertex

simplicity constraint equation (12) in the reduced phase
space Ȟγ and get the final reduced twisted geometric space

Ȟs
γ ¼ ð×e∈γT�S1eÞ × ð×v∈γPs

η⃗v
ÞwithPs

η⃗v
≔ Pη⃗v jSv¼0. It has

been shown that the generalized twisted geometry in the
space Ȟs

γ is consistent with the Regge geometry on
the spatial D-manifold σ if the shape match condition in
theD-polytopes’ gluing process is considered, whichmeans
the gauge reduction scheme in the parametrization space
captures the correct physical degrees of freedom of all
dimensional LQG in the kinematical level. Thus, based on
this twisted geometry parametrization, one can conclude
that, to get correct kinematical physical degrees of freedom,
the anomalous vertex should be treated as a second class
constraint while the Gauss constraint and edge simplicity
constraint are treated as a first class constraint in discrete and
quantum theory of all dimensional LQG. The reduction
procedures can be roughly illustrated as follows [18];

×e∈γT�SOðDþ 1Þe!ðiÞ ×e∈γP̌e!ðiiÞ Ȟγ!ðiiiÞ Ȟs
γ; ð23Þ

where the symplectic reductions with respect to edge
simplicity constraint and Gaussian constraint are proceeded
in step (i) and (ii), respectively, and in step (iii) the vertex
simplicity constraint equation is solved.
The reduction of the holonomy-flux phase based on

twisted geometry parametrization can be related to the
reduction of the connection phase space by taking the
continuum limit [18]. Observe that the choice for the Hopf
sections is clearly nonunique, and the twisted geometric
parametrization is given under one fixed choice of fue; ũeg
for every edge e, under which the Levi-Civita holonomy hΓe
can be expressed in the form

hΓe ðVe0 ; Ṽe0 Þ≡ ueðeζ̄
μ
e τ̄μeζeτoÞũ−1e ;

e0 ∈ ffEðbðeÞÞg; fEðtðeÞÞgg; ð24Þ

where fEðbðeÞÞg and fEðtðeÞÞg are the collections of
edges linked to the beginning point bðeÞ of e and the target
point tðeÞ of e, respectively, eζ̄

μ
e τ̄μ takes value in the

subgroup SOðD − 1Þ ⊂ SOðDþ 1Þ preserving both δI1
and δI2. Note that the functions ζe and ζ̄μe are well-defined
via the given hΓe and the chosen Hopf sections. Then, let us
take the continuum limit that makes the coordinate length
of each edge of γ tends to 0, and we get

he ¼ ueeξeτoeξ̄
μ
e τ̄μ ũ−1e ≃ I þ Ae; ð25Þ

Xe0 ≃ πe
0
; ð26Þ

and

hΓe ¼ ueðeζ̄
μ
e τ̄μeζeτoÞũ−1e ≃ I þ Γe: ð27Þ

Furthermore, let us factor out hΓe from he through the
expressions
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he ¼ hΓe
�
e−ζ̄

μ
eũe τ̄μũ−1e eξ̄

μ
eũe τ̄μũ−1e e−ðξe−ζeÞṼe

�
¼

�
eξ̄

μ
eue τ̄μu−1e e−ζ̄

μ
eue τ̄μu−1e eðξe−ζeÞVe

�
hΓe : ð28Þ

Recall the splitting

AIJ
a ¼ ΓIJ

a ðπÞ þ βKIJ
a ð29Þ

with ΓIJ
a ðπÞ being a function of πbKL satisfying ΓIJ

a ðπÞ ¼
ΓIJ
a ðeÞ on the simplicity constraint surface, and notice

Eqs. (25) and (27), where we have the continuum limit

Ke ≃
1

β
ueðξoeτo þ ξ̌μe τ̄μÞu−1e ; ð30Þ

where ξoe ≔ ξe − ζe and eξ̌
μ
e τ̄μ ≔ eξ̄

μ
e τ̄μe−ζ̄

μ
e τ̄μ . Denote K⊥

e ≔
1
β ueðξoeτoÞu−1e and K==

e ≔ 1
β ueðξ̌μe τ̄μÞu−1e , and we can clearly

see that despite the anomaly in the vertex-simplicity
constraints, our reduction procedure correctly removes
the component K==

e , while it preserves the component
K⊥

e that contributes to the extrinsic curvature as expressed
in the same form as in the classical connection formulation.
In other words, we have

trðKeπ
e0 Þ ≃ 1

β
trðueðξoeτo þ ξ̌μe τ̄μÞu−1e Xe0 Þ

¼ 1

β
trðueðξoeτoÞu−1e Xe0 Þ ¼ trðK⊥

e Xe0 Þ;

bðeÞ ¼ bðe0Þ ð31Þ

in the continuum limit. Indeed, on the constraint surface of
both edge-simplicity and vertex-simplicity constraints, the
component K==

e has no projection on the bivector πe
0 ≃

Xe0 ¼ 1
2
ηe0Ve0 satisfying V ½IJ

e VKL�
e0 ¼ 0 with bðeÞ ¼ bðe0Þ,

thus it provides no contribution to the extrinsic curvature as it
showed in Eq. (31). Then, recall the pure gauge component
K̄aIJ for nonanomalous simplicity constraint in continuum
phase space, and one can conclude that the degrees of
freedom of ξ̌μe are consistent with that of K̄aIJ in the con-
tinuum limit, so that the components ξ̌μe are regarded as the
pure gauge (with respect to simplicity constraint) compo-
nent in discrete phase space, which can be illustrated as [18]

K̄aIJ ← − − − − − − − − − − − − −− →
correspondence of gauge degrees of freedom

in continuum limit
ξ̌μe: ð32Þ

C. Classical gauge reduction with respect
to simplicity constraint

To construct the gauge invariant variables with respect to
the edge-simplicity constraint in the holonomy-flux phase
space, one needs to reduce the holonomy and flux

variables, respectively. Let us focus on the constraint
surface defined by the edge-simplicity constraint in the
phase space T�SOðDþ 1Þ associated with one single
elementary edge e of γ. Based on the twisted geometry
parametrization, the gauge transformation induced by the
edge-simplicity constraint on the edge-simplicity constraint
surface can be given by

fX½IJ
e XKL�

e ; heg ¼ 2X½IJ
e fXKL�

e ; heg
∝ ηeV

½IJ
e ðτKL�ueeξ̄

μ
e τ̄μeξeτo ũ−1e Þ

¼ ηeðueðτ̄IJKLe eξ̄
μ
e τ̄μÞeξeτo ũ−1e Þ ð33Þ

and

fX½IJ
e XKL�

e ; XMN
e g ¼ 0; ð34Þ

where we defined τ̄IJKLe ≔ V ½IJ
e ðu−1e τKL�ueÞ ∈ soðD − 1Þ. It

is easy to see that the edge simplicity constraint induces the
transformation of the component eξ̄

μ
e τ̄μ ∈ SOðD − 1Þ in the

parametrization of he, and the flux is gauge invariant with
respect to the edge-simplicity constraint on the constraint
surface defined by the edge-simplicity constraint. Thus, we
only need to focus on the reduction of holonomy. Let us
introduce the averaging operation PS with respect to the
gauge transformation induced by the edge-simplicity con-
straint in the discrete phase space, whose infinitely small
transformation is generated by the edge-simplicity con-
straint as Eq. (33). Then, the action of PS on the constraint
surface defined by the edge-simplicity constraint can be
given as

PS∘he ≔
Z
SOðD−1Þ

dḡðueeξeτoðḡeξ̄
μ
e τ̄μÞũ−1e Þ ¼ hse; ð35Þ

PS ∘Xe ¼ Xe; ð36Þ

where we used that he ¼ ueeξeτoeξ̄
μ
e τ̄μ ũ−1e , ḡ ∈ SOðD − 1Þ ⊂

SOðDþ 1Þ, and hse is the simplicity reduced holonomy
defined by

hse ≔ ueeξeτo Isũ−1e ; ð37Þ

where ðIsÞIJ ≔ ðδ1ÞIðδ1ÞJ þ ðδ2ÞIðδ2ÞJ. Now, the classical
gauge invariant elementary variables with respect to the
simplicity constraint are given by ðhse; XeÞjX½IJ

e XKL�
e ¼0

. Notice

that they give a pair of gauge invariant functionals with
respect to the simplicity constraint, instead of giving a point
on the simplicity constraint surface. In details, the gauge
transformation with respect to the simplicity constraint on
the constraint surface is given by

he → h0e; Xe → Xe;
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wherein he ¼ ueeξeτoðeξ̄
μ
e τ̄μÞũ−1e and h0e ¼ ueeξeτoðeξ̄0

μ
e τ̄μÞũ−1e .

It is easy to see that only the component eξ̄
μ
e τ̄μ in he is

changed along the gauge orbits with respect to thsimplicity
constraint. Since this component does not appear in the
simplicity reduced holonomy hse ¼ ueeξeτo Isũ−1e , one can
conclude that ðhse; XeÞjX½IJ

e XKL�
e ¼0

are a pair of gauge invari-

ant functionals with respect to simplicity constraint on the
constraint surface. Now, by recalling the simplicity reduced
connection AS

aIJ ≔ AaIJ − βK̄aIJ constructed in connection
phase space, we can establish the following correspondence
AS
aIJ and the simplicity reduced holonomy hse,

wherein the symplectic reductions with respect to simplic-
ity constraint are proceeded in steps (1) and (2).

It has been pointed out that only the factor eξ̄
μ
e τ̄μ in he is

changed along the gauge orbits with respect to simplicity
constraint, and thus the corresponding gauge degrees of
freedom in the holonomy are contained entirely in this
factor. However, it does not mean that the factor eξ̄

μ
e τ̄μ is

pure gauge. Notice that the edge simplicity constraint is a
monomial of the flux and it is transformed by the Gaussian
constraint in the adjoint transformation of soðDþ 1Þ.
Thus, the pure gauge component with respect to simplicity
constraint must also be transformed by the Gaussian
constraint in the adjoint transformation of SOðDþ 1Þ.
Nevertheless, it is not the case for the factor eξ̄

μ
e τ̄μ. Indeed,

by recalling the Levi-Civita holonomy given by Eq. (27),
one can factor out hΓe from he through the expressions [18]

he¼
�
ueeξ̄

μ
e τ̄μe−ζ̄

μ
e τ̄μeðξe−ζeÞτoe u−1e

�
hΓe ¼

�
ueeξ̌

μ
e τ̄μeξ

o
eτ

o
e u−1e

�
hΓe

ð38Þ

with ξoe ≔ ξe − ζe and eξ̌
μ
e τ̄μ ≔ eξ̄

μ
e τ̄μe−ζ̄

μ
e τ̄μ . Notice hΓe is

purely determined by flux, thus it is invariant under the
gauge transformation induced by edge simplicity constraint
on the simplicity constraint surface. Then, it is easy to see
that only the factor eξ̌

μ
e τ̄μ in the decomposition (38) of he is

changed along the gauge orbits with respect to the
simplicity constraint, and it transforms by the Gaussian
constraint in the adjoint transformation of some elements of
SOðDþ 1Þ [18]. Hence, the pure gauge component in he is
given by the factor eξ̌

μ
e τ̄μ. This result is consistency with that

of Sec. II B which is achieved by considering the con-
tinuum limit. In the following part of this paper, eξ̌

μ
e τ̄μ will

be called the pure gauge component, and it is distinguished
from the gauge component eξ̄

μ
e τ̄μ .

The simplicity reduced holonomy hse corresponds to the
simplicity reduced connection AS

aIJ in the sense of gauge
reduction, but hse is not the holonomy defined by AS

aIJ. This
can be seen by considering the continuous limit of hse,
which reads

hse ¼ ueeξeτoIsũ−1e ¼ ueeξ
o
eτo Isu−1e hΓe

≃ ðueIsu−1e þ βK⊥
e ÞðI þ ΓeÞ;

where the appearance of Is leads that hse is not the
holonomy defined by AS

aIJ. In fact, notice that the dis-
appearance of eξ̄

μ
e τ̄μ in hse reduces not only the gauge degrees

of freedom captured by ξ̌μe but also the degrees of freedom
of ζ̄μe which corresponds to some components of ΓaIJ. To
retain eζ̄

μ
e τ̄μ in the simplicity reduced holonomy, one may

proceed with the gauge reduction of he with respect to the
pure gauge component eξ̌

μ
e τ̄μ by substituting eξ̄

μ
e τ̄μ ¼

eξ̌
μ
e τ̄μeζ̄

μ
e τ̄μ into Eq. (35). However, the result of this gauge

reduction still gives hse. More explicitly, similar to Eq. (35),
one can take the averaging operation of he with respect to
the gauge transformation induced by the simplicity con-
straint, which gives

Z
SOðD−1Þ

dḡðueeξeτoðḡeξ̌
μ
e τ̄μeζ̄

μ
e τ̄μÞũ−1e Þ

¼ ueeξeτoðIseζ̄
μ
e τ̄μÞũ−1e ¼ ueeξeτoðIsÞũ−1e ; ð39Þ

where the gauge transformation only changes the pure
gauge component eξ̌

μ
e τ̄μ as eξ̌

μ
e τ̄μ → ḡeξ̌

μ
e τ̄μ , and we use the

fact that Is vanishes the factor eζ̄
μ
e τ̄μ by Iseζ̄

μ
e τ̄μ ¼ Is in the

second “¼.” Hence, the gauge reduction procedure of he
gives the simplicity reduced holonomy hse unavoidably,
which loses the structure of a holonomy, and it cannot catch
the degrees of freedom of ζ̄μe. Further, by using Eq. (39),
one can check that hsα constructed on a loop α cannot
capture the degrees of freedom of the intrinsic curvature,
while it is able to capture the degrees of freedom of the
extrinsic curvature properly; see more details in the
Appendix. Thus, the variables constructed based on hsα
have different interpretations from that based on hα.
Finally, we can conclude that the regularization of con-
nection variables is not commutative to the gauge reduction
with respect to the simplicity constraint in all dimensional
LQG, and this point can be regarded as another aspect of
the anomaly of the simplicity constraint.
Since the constructions of kinds of operators in all

dimensional LQG relies on the regularized formulation
of the simplicity reduced connection AS

aIJ, it is worthwhile
to construct the holonomy corresponding to AS

aIJ. Let us
define
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ðhSeÞIL ≔ ðhseÞIL þ ððIÞIJ þ VIK
e Ve;KJÞðhΓeÞJL

¼ ueeξeτoeζ̄
μ
e τ̄μ ũ−1e ð40Þ

on the gauge reduced holonomy-flux phase space with
respect to the edge-simplicity constraint. One can check
that

hSe ¼ ueeξ
o
eτou−1e hΓe ≃ ðI þ βK⊥

e ÞðI þ ΓeÞ ð41Þ

in the continuum limit. It is easy to see that hSe captures the
physical degrees of freedom of both intrinsic and extrinsic
curvature properly, and it can be regarded as the holonomy
of AS

aIJ. We conclude this point as

ðAS
aIJ; π

bKLÞjSabIJKL¼0!regularization ðhSe; XeÞjSe¼Sv¼0:

One should notice that the definition (40) of hSe only holds
for the elementary edges e of γ whose dual lattice gives a
D-polytope partition of σ. For a loop α ¼ e1∘e2∘ � � � ∘en
with e1; e2;…; en being elementary edges of γ, we have
hSα ≔ hSe1h

S
e2 � � � hSen . As we will see in Sec. IV, the proper-

ties of hse and hSe will be the key ingredients in the
construction of the scalar constraint operator.

III. QUANTUM GAUGE REDUCTION WITH
RESPECT TO SIMPLICITY CONSTRAINT

A. The solution space of quantum simplicity constraint

The Hilbert spaceH of all dimensional LQG is given by
the completion of the space of cylindrical functions on the
quantum configuration space, which can be decomposed
into the sectors—the Hilbert spaces associated with graphs.
For a given graph γ with jEðγÞj edges, the related Hilbert

space is given by Hγ ¼ L2ððSOðDþ 1ÞÞjEðγÞj; dμjEðγÞjHaar Þ.
This Hilbert space associates with the classical phase space
×e∈γT�SOðDþ 1Þe aforementioned. A basis of this space
is given by the spin-network functions constructed on γ
which are labeled by (1) an SOðDþ 1Þ representation Λ
assigned to each edge of γ; and (2) an intertwiner iv
assigned to each vertex v of γ. Then, each basis state
Ψγ;Λ⃗;⃗iðh⃗Þ, as a wave function on ×e∈γSOðDþ 1Þe, can be
given by

Ψγ;Λ⃗;⃗iðh⃗ðAÞÞ≡⊗
v∈γ

iv ⊳⊗
e∈γ

πΛe
ðheðAÞÞ; ð42Þ

where h⃗ðAÞ ≔ ð…; heðAÞ;…Þ; Λ⃗ ≔ ð…;Λe;…Þ; e ∈ γ,
⃗i ≔ ð…; iv;…Þ; v ∈ γ, πΛe

ðheÞ denotes the matrix of hol-
onomy he associated with edge e in the representation
labeled by Λe, and ⊳ denotes the contraction of the
representation matrixes of holonomies with the inter-
twiners. Hence, the wave function Ψγ;Λ⃗;⃗iðh⃗ðAÞÞ is simply
the product of the functions on SOðDþ 1Þ, which are given

by specified components of the holonomy matrices
selected by the intertwiners at the vertices. The action of
the elementary operators—holonomy operator and flux
operator—on the spin-network functions can be given as

ĥeðAÞ ∘Ψγ;Λ⃗;⃗iðh⃗ðAÞÞ ¼ heðAÞΨγ;Λ⃗;⃗iðh⃗ðAÞÞ;
F̂IJ
e ∘Ψγ;Λ⃗;⃗iðh⃗ðAÞÞ ¼ −iℏκβRIJ

e Ψγ;Λ⃗;⃗iðh⃗ðAÞÞ; ð43Þ

where the holonomy operator acts by multiplying, RIJ
e ≔

trððτIJheÞT ∂

∂he
Þ is the right invariant vector fields on

SOðDþ 1Þ associated with the edge e, and T denoting
the transposition of the matrix. Then, the other operators in
all dimensional LQG, such as spatial geometric operators
and scalar constraint operators, can be constructed based on
these elementary operators [21–23].
Now one can proceed with the quantum gauge reduction

procedures to obtain the kinematic physical Hilbert space.
To achieve this goal, one needs to solve the kinematic
constraints, including the Gaussian constraint, edge-sim-
plicity constraint, and vertex-simplicity constraint in H.
Following the results given in Sec. II B, the Gaussian
constraint and edge-simplicity constraint are imposed
strongly and the corresponding solution space is spanned
by the edge-simple and gauge invariant spin-network states,
which are constructed by assigning simple representations
of SOðDþ 1Þ to edges and gauge invariant intertwiners to
vertices of the associated graphs. Besides, the anomalous
vertex simplicity constraints are imposed weakly and the
corresponding weak solutions are given by the spin-
network states labeled by the simple coherent intertwiners
at vertices [19]. Specifically, a typical spin-network state
labeled by the gauge invariant simple coherent intertwiners
at vertices is given by

Ψγ;N⃗;I⃗ s:c:
ðh⃗ðAÞÞ ¼ trð⊗e∈γ πNe

ðheðAÞÞ ⊗v∈γ I s:c:
v Þ; ð44Þ

where πNe
ðheðAÞÞ denotes the representation matrix of

heðAÞ with Ne being a non-negative integer labeling a
simple representation of SOðDþ 1Þ, and I⃗ s:c. is defined by
I⃗ s:c: ≔ ð…; I s:c:

v ;…Þ with I s:c
v . being the so-called gauge

invariant simple coherent intertwiner labeling the vertex
v ∈ γ [19]. More explicitly, the gauge invariant simple
coherent intertwiner is defined as

I s:c:
v ≔

Z
SOðDþ1Þ

dg ⊗e∶bðeÞ¼v hNe; Vejg; ð45Þ

where all the edges linked to v are reoriented to be outgoing
at v without loss of generality, the labels Ve satisfy the
classical vertex-simplicity constraint as

V ½IJ
e VKL�

e0 ¼ 0; ∀ bðeÞ ¼ bðe0Þ ¼ v; ð46Þ
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and jNe; Vei is the Perelomov type coherent state in
the simple representation space of SOðDþ 1Þ labeled by
Ne [24], which satisfies

hNe; VejτIJjNe; Vei ¼ iNeVIJ
e ; ð47Þ

where τIJ is a basis element of soðDþ 1Þ and it acts on
jNe; Vei as an operator.
It is ready to relate the procedures of classical reduction

with respect to simplicity constraint to the quantum case.
Notice that the quantum theory is based on the holonomy-
flux variables, so that we follow the reduction procedures
introduced by the twisted geometry parametrization of
holonomy-flux phase space. The key step in these proce-
dures is the weak imposition of the quantum vertex-
simplicity constraint. Such a treatment relies on the
spin-network states labeled by the simple coherent inter-
twiners at vertices, which give the expectation value of the
flux operator by their labels with minimal uncertainty [24].
Based on the fact that vertex simplicity constraint operators
are purely composed by flux operators, we construct the
simple coherent intertwiners labeled by the points on the
constraint surface of both edge and vertex-simplicity
constraints, which ensures that the spin-network states
labeled by these simple coherent intertwiners at vertices
weakly solve the quantum vertex simplicity constraints
with minimal uncertainty [19]. With this key step being
completed, we can realize the complete quantum reduction
procedures and give the correspondence between the
classical and quantum reductions, which can be illustrated
as follows:

ð48Þ

where the procedures on the left-hand side repeat the
classical reduction procedures of the holonomy-flux phase
space given in the flow chart (23), and the procedures on
the right-hand side are explained as follows. In step (i), the
edge-simplicity constraint is imposed strongly, and we get
the cylindrical function space Hs

γ spanned by the spin-
network functions whose edges are labeled by simple
representations of SOðDþ 1Þ. Then in step (ii), we impose
the quantum Gauss constraint that further restricts the state

space Hs
γ to the gauge (with respect to the Gaussian

constraint) invariant subspace Hs
γ;inv:. In the key step

(iii), we weakly impose the vertex-simplicity constraint
based on the spin-network basis labeled by the coherent
intertwiners, and it leads to the kinematical physical
Hilbert space HS

γ;inv: of all dimensional LQG. The
resulting space HS

γ;inv: is spanned by the spin-network

states Tγ;N⃗;I⃗ s:c:
ðh⃗eðAÞÞ defined by Eq. (44). Thus, the

quantum reduction procedures of the state space on the
right-hand side of (48) faithfully realize the quantum
version of the classical reduction procedures of the
holonomy-flux phase space, up to some quantum pertur-
bations of the weakly vanishing vertex-simplicity con-
straint operators.

B. Quantum gauge reduction of elementary operators
with respect to simplicity constraint

To realize the quantum gauge reduction with respect to
the simplicity constraint, let us introduce a new procedure
to establish the gauge (with respect to the simplicity
constraint) invariant holonomy and flux operators in this
subsection, and they will be referred to as simplicity
reduced holonomy and flux operators, respectively, in
the following part of this paper. Since the gauge trans-
formations with respect to simplicity constraint are gen-
erated by edge-simplicity constraint in holonomy-flux
phase space, let us consider the construction of simplicity
reduced holonomy and flux operators in the solution space
Hs

γ of quantum edge-simplicity constraint. It is easy to
check that the flux operator X̂e satisfies

½X̂MN
e ;X̂½IJ

e X̂KL�
e �∘fγ¼0; for fγ∈Hs

γ and e∈γ; ð49Þ

while the holonomy operator ĥe gives

½ĥe; X̂½IJ
e X̂KL�

e � ∘ fγ ≠ 0; for fγ ∈ Hs
γ and e ∈ γ ð50Þ

generally, where X̂½IJ
e X̂KL�

e is the edge simplicity constraint
operator which induces the gauge transformation with
respect to the simplicity constraint in quantum theory.
Thus, the flux operator X̂e is simplicity reduced inHs

γ while
the holonomy operator ĥe is not. To find the simplicity
reduced holonomy operator, let us define a projection
operator P̂S which projects an arbitrary quantum state in
Hγ into the solution spaceHs

γ of edge simplicity constraint.
Then, one can check that

½P̂SĥeP̂S;X̂
½IJ
e X̂KL�

e �∘fγ ¼0; for fγ ∈Hs
γ and e∈ γ: ð51Þ

Thus, the simplicity reduced holonomy operator bhse can be
defined as
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bhse ≔ P̂SĥeP̂S: ð52Þ

One should note that the action of P̂S on the quantum
state is distinguished with the action of PS on the
classical variables ðhe; XeÞ. To understand this point, notice
that the quantum edge-simplicity constraint generates the
infinitely small transformation of a cylindrical function
fγð…; he;…Þ as

X̂½IJ
e X̂KL�

e ∘ fγð…; he;…Þ ∝ fX½IJ
e ; fXKL�

e ; fγð…; he;…Þgg
∝ fγð…; τ½IJτKL�he;…Þ; ð53Þ

wherein the transformation of holonomy is not identical
with the transformation of holonomy induced by the
classical edge-simplicity constraint given in Eq. (15).
Finally, we conclude the gauge reduction with respect to
the simplicity constraint in both classical and quantum
theory with Table I. Note that the quantum simplicity
reduced variables ðĥse; X̂eÞ with domain Hs

γ are constructed
by projecting the action of holonomy and flux operators
ðĥe; X̂eÞ into Hs

γ, instead of quantizing the classical
simplicity reduced variables ðhse; XeÞjX½IJ

e XKL�
e ¼0

directly.

Thus, one may doubt whether ðĥse; X̂eÞ with domain Hs
γ

are the quantization of ðhse; XeÞjX½IJ
e XKL�

e ¼0
. In Sec. III D, we

will confirm that ðĥse; X̂eÞ with domain Hs
γ can be regarded

as the quantization of ðhse; XeÞjX½IJ
e XKL�

e ¼0
by showing that

ðĥse; X̂eÞ with domain Hs
γ reproduce ðhse; XeÞjX½IJ

e XKL�
e ¼0

in

the semiclassical limit.
However, as aforementioned in Sec. II C, since the

simplicity reduced holonomy hse is not able to capture
the degrees of freedom of the intrinsic curvature properly,
its quantum operator ĥse cannot be used to construct the
scalar constraint operator that involves the intrinsic curva-
ture. Thus, it is also worthwhile to construct the operator bhse
which corresponds to the holonomy hSe of AS

aIJ. Recall

ðhSeÞIL ≔ ðhseÞIL þ ððIÞIJ þ VIK
e Ve;KJÞðhΓeÞJL ð54Þ

defined on the reduce holonomy-flux phase space with
respect to the edge-simplicity constraint. It is easy to see
that we still need to construct the operators corresponding
to Ve and hΓe . Notice that VIJ ¼ 2XIJffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2XKLXKL
p holds on the

edge-simplicity constraint surface, and thus we have

VIK
e Ve;KJ ¼

2XIK
e Xe;KJ

Xe;MNXMN
e

; ð55Þ

and it can be quantized as a function of flux operator acting
in the space Hs

γ , which reads

V̂IK
e V̂e;KJ ¼ 2X̂IK

e X̂e;KJ

�
X̂e;MNX̂

MN
e

�
−1
; ð56Þ

where ðX̂e;MNX̂
MN
e Þ−1 is the inverse operator of X̂e;MNX̂

MN
e .

It is easy to see that X̂e;MNX̂
MN
e acts as the Casimir operator

of SOðDþ 1Þ, and it has discrete eigenspectrum. Thus, the
inverse operator of X̂e;MNX̂

MN
e can be defined as�

X̂e;MNX̂
MN
e

�
−1

≔
X

E−1
k jkihkj; ð57Þ

where jki represents the eigenstate of X̂e;MNX̂
MN
e with Ek

being the corresponding eigenvalue, and the summation
takes over all of jki with Ek ≠ 0. Then, the major obstacle
to construct the operator corresponding to hSe is the
quantization of hΓe . Note that hΓe is the holonomy of the
spin connection ΓaIJ determined by πaIJ. Thus, it is
reasonable to define the smeared spin connection operator
Γ̂e ≔ ΓeðX̂Þ as a function of X̂e, and then the operator

corresponding to hΓe could be given by bhΓe ≔ expðΓ̂eÞ.
However, ΓaIJ is a rather complicated function of πbKL

so that the construction of Γ̂e ¼ ΓeðX̂Þ is a knotty issue (see
related research in Ref. [25]), and we will leave it to
future study.

C. Comparison between the gauge reductions with
respect to simplicity and Gaussian constraints

It is interesting to compare the gauge reduction with
respect to the simplicity constraint to that of the Gaussian
constraint. In fact, the gauge reduction with respect to the
Gauss constraint is quite different from that of the sim-
plicity constraint, so that the gauge reduction procedure
used in this article cannot be applied to the Gaussian
constraint. Let us explain it explicitly as follows.
As shown in Eqs. (6) and (33), the key character of

simplicity constraint is that the induced gauge transforma-
tions only transform some specific components of con-
nection or holonomy, thus the gauge degrees of freedom
can be eliminated by trimming these gauge components.
More explicitly, in the discrete phase space, the simplicity

TABLE I. Gauge reduction with respect to the edge-simplicity constraint.

Edge-simplicity constraint Gauge invariant state Simplicity reduced variables

Classical X½IJ
e XKL�

e ≈ 0 ðhse; XeÞjX½IJ
e XKL�

e ¼0
ðhse; XeÞjX½IJ

e XKL�
e ¼0

Quantum X̂½IJ
e X̂KL�

e ∘fγ ¼ 0 fγ ∈ Hs
γ ð bhse; X̂eÞ with domain Hs

γ
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constraint induces such gauge transformations he → h0e,
where he ¼ ueeξeτoðeξ

μ
e τ̄μÞũ−1e and h0e ¼ ueeξeτoðeξ̄0

μ
e τ̄μÞũ−1e .

One can see that only the components eξ̄
μ
e τ̄μ in he are

transformed by the simplicity constraint. Specifically, the
gauge degrees of freedom with respect to the simplicity
constraint in holonomy he are purely contained in the gauge
component eξ̄

μ
e τ̄μ [see Eq. (33)]. The gauge reduction with

respect to the simplicity constraint in discrete phase space
proceeds by taking the average with respect to gauge
transformation, which gives the simplicity reduced holon-
omy hse on the edge-simplicity constraint surface defined by

X½IJ
e XKL�

e ¼ 0 [see Eqs. (35) and (36), and Table II]. By
recalling the twisted geometry interpretation of each
component of the holonomy-flux variables introduced in
Sec. II. 2, it is easy to see that the gauge components eξ̄

μ
e τ̄μ

are trimmed in hse, so that the gauge degrees of freedom in
he are eliminated correctly and the resulting reduced
variables ðhse; XeÞjX½IJ

e XKL�
e ¼0

capture the physical geometric

degrees of freedom properly. Then, by introducing the
projection operator P̂S and defining the simplicity reduced
holonomy operator bhse, the gauge averaging projection with
respect to the gauge transformation induced by the sim-
plicity constraint is generalized to quantum theory, which
leads to the simplicity reduced holonomy and flux oper-
ators ð bhse; X̂eÞ with domain Hs

γ .
The situation of the gauge reduction with respect to the

Gaussian constraint is quite different from that of the
simplicity constraint. Usually, the Gaussian constraint
induces the gauge transformations he → gsðeÞheg−1tðeÞ,
Xe → gsðeÞXeg−1sðeÞ. Compared with that of the simplicity

constraint, there is no guarantee that one can specify some
gauge components of holonomy-flux variables transformed
by the Gaussian constraint, with the physical degrees of
freedom being contained in the remaining components.
Thus, it is not valid to eliminate the gauge degrees of
freedom with respect to the Gaussian constraint by trim-
ming the gauge components. This result is concluded in
Table II.

D. Realization of quantum gauge reduction based on
twisted geometry coherent state

To show the semiclassical property of the simplicity
reduced operators with respect to the twisted geometry
coherent state, let us consider the phase space and the
Hilbert space associated with a single edge e in all

dimensional LQG. Then, we have the simplicity reduced
operators ð bhse; X̂eÞ with domain Hs

e and the twisted geom-
etry coherent state Ψ̆Ho

e
∈ Hs

e labeled by the twisted
geometry parameters Ho

e ≔ ðηe; ξe; Ve; ṼeÞ on the edge
e, where the semiclassicality parameter t is defined by

t ≔ κℏ
aD−1. Denoted by ϕt

Ho
e
≔

Ψ̆Hoe

jjΨ̆Hoe
jj the normalized twisted

geometry coherent state and then the semiclassical property
of bhse and X̂e can be shown by evaluating their expectation
values and matrix elements in the twisted geometry
coherent state basis. These calculations have been done
in Refs. [26–28], and it has been shown that the expectation
values and matrix elements of bhse and X̂e are well-estimated
by their classical correspondence ðhse; XeÞjX½IJ

e XKL�
e ¼0

. More

explicitly, one notices that

hϕt
Ho
e
j bhsejϕt

Ho
e
i ¼ hϕt

Ho
e
jP̂SĥeP̂Sjϕt

Ho
e
i ¼ hϕt

Ho
e
jĥejϕt

Ho
e
i; ð58Þ

and then the expectation values of bhse and X̂e are
evaluated by

hϕt
Ho
e
jX̂IJ

e jϕt
Ho
e
i ¼large ηe ηe

2
VIJð1þOðtÞÞ ð59Þ

and

hϕt
Ho
e
j du−1e heũejϕt

Ho
e
i ¼large ηeu−1e hseũeð1þOðtÞÞ; ð60Þ

respectively. Moreover, the matrix elements of bhse and X̂e
are evaluated by����hϕt

Ho
e
jX̂IJ

e jϕt
H0o

e
i − η0e

2
V 0IJhϕt

Ho
e
jϕt

H0o
e
i
����

≲large ηe
tjfXðHo

e;H0o
e Þj · jhϕt

Ho
e
jϕt

H0o
e
ij ð61Þ

and

jhϕt
Ho
e
j du0−1e heũ0ejϕt

H0o
e
i − u0−1e h0seũ0ehϕt

Ho
e
jϕt

H0o
e
ij

≲large ηe
tjfhðHo

e;H0o
e Þj · jhϕt

Ho
e
jϕt

H0o
e
ij; ð62Þ

respectively, where fXðHo
e;H0o

e Þ and fhðHo
e;H0o

e Þ are func-
tions that are always suppressed by the exponentially
decayed factor jhϕt

Ho
e
jϕt

H0o
e
ij for Ho

e ≠ H0o
e , and u0e; ũ0e in

TABLE II. Comparison between the gauge reductions with respect to simplicity and Gaussian constraints.

Gauge transformation Gauge components Reduced variables

Simplicity constraint ðhe → h0e; Xe → XeÞjX½IJ
e XKL�

e ¼0 expðξμe τ̄μÞ ðhse; XeÞjX½IJ
e XKL�

e ¼0

Gaussian constraint he → gsðeÞheg−1tðeÞ; Xe → gsðeÞXeg−1sðeÞ N/A N/A
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the holonomy operator du0−1e heũ0e act on the basis vectors
that select a specific matrix element of the holonomy in the
definition representation of SOðDþ 1Þ. As one can see, the
simplicity reduced operators ð bhse; X̂eÞ with domain Hs

e
reproduce the classical simplicity reduced variables
ðhse; XeÞjX½IJ

e XKL�
e ¼0

in the semiclassical limit, thus it is

reasonable to regard ð bhse; X̂eÞ with domain Hs
e as the

quantization of ðhse; XeÞjX½IJ
e XKL�

e ¼0
. This confirms our argu-

ment proposed in Sec. III B.
It is worthwhile to clarify the reason why the standard

holonomy operator ĥe, as a gauge variant (with respect to
both of the Gaussian and simplicity constraints) variable,
has a nonvanishing expectation value in the gauge (with
respect to the simplicity constraint) invariant state, while it
only has a vanishing expectation value in the gauge (with
respect to the Gaussian constraint) invariant state. Indeed,
the reason can be seen from the following two facts, which
read

PGĥePGjϕγi ¼ 0; ∀ jϕγi ∈ Hγ; ð63Þ

and

P̂SĥeP̂Sjϕγi ≠ 0; ∃ jϕγi ∈ Hγ; ð64Þ

where PG is the projection operator which project a state in
Hγ to the gauge invariant (with respect to the Gauss
constraint) state space. This result also reflects the differ-
ence between the simplicity constraint and the Gaussian
constraint in another perspective.

IV. ON THE CONSTRUCTION OF QUANTUM
SCALAR CONSTRAINT IN ALL

DIMENSIONAL LQG

The simplicity reduced holonomy hse takes a different
geometric interpretation from the original holonomy he.
Hence, the operators whose constructions involve holon-
omies should be considered carefully, to ensure that they
take the correct geometric interpretations. In this section,
we will consider the construction of the scalar constraint
operator. As we will see, since the appearance of the
simplicity reduced holonomy hse, the standard strategy fails
to give a correct scalar constraint operator in all dimen-
sional LQG. To overcome this problem, we will propose
three new strategies to construct the scalar constraint
operator, which point out the directions of further research
on the dynamics of all dimensional LQG. Notice that our
discussions focus only on the factors involving holonomies
in the scalar constraint; thus the analyses of the factors
composed by fluxes are omitted in our study, and one can
find the related research in Refs. [15,23].

A. The problematic standard strategy

Recall that we have introduced the scalar constraint
C½A; π� in the connection phase space by substituting qcd½π�
and Pef½A; π� into the scalar constraint Cðqcd; PefÞ in the
ADM phase space in Sec. II. To simplify our further
analysis, we will consider an equivalent formulation of the
scalar constraint in the connection phase space in this
section. Similar to the analog in the SUð2Þ connection
formulation of (1þ 3)-dimensional GR, one can establish
the scalar constraint in SOðDþ 1Þ connection formulation
of (1þD)-dimensional GR with two terms—the so-called
Euclidean term CE and Lorentzian term CL [15]. The
Euclidean term CE reads

CE ≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp FabIJπ
aIKπb JK ð65Þ

with FabIJ≔∂aAbIJ−∂bAaIJþδKLAaIKAbLJ−δKLAaJKAbLI.
Define

CE½1� ≔
Z
σ
dDyCEðyÞ; ð66Þ

and then the Lorentzian term CL reads

CL ≔ −
8ð1þ β2Þffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp K½ajIjKb�JEaIEbJ

¼ 4ð1þ β2Þffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ½Kb

aKa
b − K2�; ð67Þ

where KðxÞ ≔ KaIðxÞEaIðxÞ and Kb
a ≔ KbIEaI are

given by

KðxÞ ¼ −
1

4κβ2
fCEðxÞ; Vðx; ϵÞg ð68Þ

and

KaIðxÞEbIðxÞ¼−
1

8κ2β3
πbKLðxÞfAaKLðxÞ;fCE½1�;Vðx;ϵÞgg

ð69Þ
on the constraint surface of both Gaussian and simplicity
constraints, with Rðx; ϵÞ ∋ x being a D-dimensional hyper-
cube with coordinate scale ϵ and Vðx; ϵÞ being the volume
of Rðx; ϵÞ. One can check that CE contains the pure gauge
component KaIJ through the identity

CE ≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp FabIJπ
aIKπb J

K

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
R −

β2ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ð4½Kb

aKa
b − K2�

þ ðK̄bIKEaIÞðK̄aJ
KEbJÞÞ; ð70Þ
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which holds on the constraint surface of both Gaussian and
simplicity constraints, where R is the scalar curvature of
ΓaIJ defined by

R ≔ −
1

detðqÞRabIJπ
aIKπb JK ð71Þ

with RabIJ≔∂aΓbIJ−∂bΓaIJþδKLΓaIKΓbLJ−δKLΓaJKΓbLI.
Thus, to get the correct gauge invariant ADM
scalar constraint on the constraint surface of both
Gaussian and simplicity constraints, the scalar constraint
in the SOðDþ 1Þ connection formulation of (1þD)-
dimensional GR must contain an additional term

β2ffiffiffiffiffiffiffiffiffi
detðqÞ

p ðK̄bIKEaIÞðK̄K
aJE

bJÞ to cancel the gauge variant term
in CE, and the final scalar constraint reads

C ¼ CE þ CL þ
β2ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ðK̄bIKEaIÞðK̄aJ

KEbJÞ: ð72Þ

Comparing with the SUð2Þ loop quantum gravity in

(1þ 3)-dimension, the additional term β2ffiffiffiffiffiffiffiffiffi
detðqÞ

p ðK̄bIKEaIÞ
ðK̄aJ

KEbJÞ introduces a huge obstacle to regularize and
quantize the scalar constraint in all dimensional LQG. By
projecting the covariant derivation of πaIJ properly, the

term β2ffiffiffiffiffiffiffiffiffi
detðqÞ

p ðK̄bIKEaIÞðK̄aJ
KEbJÞ can be reformulated as a

term that is composed by the connection variables [13].

However, this term is a rather complicated function of AaIJ

and πbIJ so that its regularization and quantization are full
of ambiguities [15]. Indeed, the key issue already appears
when one considers the quantization of the Euclidean term
in the scalar constraint. As we will see, the operator ĈE
corresponding to the Euclidean term loses its original
geometric interpretation if one considers its matrix ele-
ments in the space ⨁γH

s
γ , since the simplicity reduced

holonomy which will appear in the matrix elements of ĈE
cannot give the curvatures correctly. Let us explain this
point explicitly as follows.
Following the regularization and quantization proce-

dures introduced in [15], the Euclidean term CE
and Lorentzian term CL can be quantized directly, which
leads to

ĈE½N� ¼ lim
ϵ→0

X
□∈P

Ĉ□

E ½N�; ĈL½N� ¼ lim
ϵ→0

X
□∈P

Ĉ□

L ½N� ð73Þ

with

Ĉ□

E ½N� ≔ Nðv□Þ ·ϵ
� d
π½ajIKjπb�JKffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp �
v□

· ðĥαsa;sb Þ½IJ� ð74Þ

and

Ĉ□

L ½N� ≔ 2ð1þ β2Þ
ð8κ2ℏ2β3Þ2 Nðv□Þ ·ϵ

� dπ½ajIKjffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ4

p �
v□

· dðhsaÞMI h dðh−1sa ÞMK; ½ĈE½1�; V̂ðv□; ϵÞ�
i

·ϵ
� dπb�JLffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞ4
p �

v□

· dðhsbÞNJ h dðh−1sb ÞNK; ½ĈE½1�; V̂ðv□; ϵÞ�
i
; ð75Þ

where NðxÞ is the lapse function, □ denotes an elementary
cell of the hypercubic partition P of σ, ϵ represents the
scale of□, v□ is a vertex of□, sa represents the edges of□
based at v□, αsa;sb represents the oriented loop based at v□

and sa, sb. Besides, the operators
ϵ
� dπ½ajIKjπb�JKffiffiffiffiffiffiffiffiffi

detðqÞ
p

�
v□

and

ϵ
� dπaIKffiffiffiffiffiffiffiffiffi

detðqÞ4
p

�
v□

are constructed by regularizing and quantizing

the factors πaIKπbJKffiffiffiffiffiffiffiffiffi
detðqÞ

p and πaIKffiffiffiffiffiffiffiffiffi
detðqÞ4

p , respectively, with the

regularization being compatible with the partition P at
v□ (see more details in Ref. [15]). Notice that the operator
ϵ
� dπ½ajIKjπb�JKffiffiffiffiffiffiffiffiffi

detðqÞ
p

�
v□

is a polynomial of ðV̂ðv□; ϵÞÞ1þx and

ĥsaðV̂ðv□; ϵÞÞ1þxĥ−1sa with x > −1; thus it is commutative
with P̂S.

Now, let us show that the simplicity reduced holonomy
will appear in the matrix elements of ĈE in ⨁γH

s
γ

inevitably. Consider a state jϕi ∈ ⨁γH
s
γ which satisfies

P̂Sjϕi ¼ jϕi; ð76Þ

and we have

hϕjĈE½N�jϕ0i ¼ hϕjP̂SĈE½N�P̂Sjϕ0i ¼ hϕjĈs
E½N�jϕ0i; ð77Þ

where we defined

Ĉs
E½N� ≔ lim

ϵ→0

X
□∈P

Ĉs;□
E ½N� ð78Þ

with
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Ĉs;□
E ½N� ≔ Nðv□Þ ·ϵ

� d
π½ajIKjπb�JKffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp �
v□

· ð bhsαsa;sb Þ½IJ�; ð79Þ

which is given by replacing the holonomy operator ĥαsa;sb in

ĈE½N� by the simplicity reduced one bhsαsa;sb . By this we can
conclude that the matrix elements of ĈE½N� are identical to
that of Ĉs

E½N� in the space ⨁γH
s
γ . The key point of this

result is that, if one considers the matrix element of ĈE½N�
in the space ⨁γH

s
γ , the holonomy operator ĥαsa;sb is

reduced to the simplicity holonomy operator bhsαsa;sb and

ĈE½N� is reduced to Ĉs
E½N�. Note that the physical inter-

pretation of this scalar constraint operator relies on the
geometric meaning of the standard holonomy hαsa;sb , while

the geometric interpretation of the simplicity reduced
holonomy hsαsa;sb is different from that of hαsa;sb . Thus,

the action of ĈE½N� in ⨁γH
s
γ cannot reveal the physical

meaning of the classical scalar constraint CE at quantum
level. Besides, Eq. (75) is also not the operator correspond-
ing to CL, since its definition relies on the operator ĈE½1�.
The issue of the scalar constraint operator given above

can also be considered in another perspective. It is
reasonable to argue that the expectation value of the scalar
constraint operator for a coherent state in⨁γH

s
γ would fail

to produce the correct semiclassical limit. Let us explain
this point explicitly as follows. Recalling the results
of Refs. [26–28] which have been briefly reviewed in
Sec. III D, it has been shown that the matrix elements of the
standard holonomy operator in the twisted geometry
coherent basis of Hs

γ are well evaluated by the simplicity
reduced holonomy given by the twisted geometry param-
eters. Thus, the expectation value of the standard holonomy
operator in the coherent state in Hs

γ fails to reproduce the
degrees of freedom that should be contained in the
holonomy. Besides, the Ehrenfest property of the twisted
geometry coherent state proven in Ref. [27] ensures that the
expectation value of a function of the elementary operators
reproduce, to zeroth order in ℏ, the value of the corre-
sponding classical function at the twisted geometry space
point where the coherent state is peaked. More specifically,
by using the Ehrenfest property of the twisted geometry
coherent state, the expectation value of ĈE½N� in the
twisted geometry coherent state ϕt

γ;Ho ∈ Hs
γ can be

evaluated by

hϕt
γ;Ho jĈE½N�jϕt

γ;Hoi ¼ hϕt
γ;Ho jCE½N�ðĥe; X̂eÞjϕt

γ;Hoi
¼ CE½N�ðhse; XeÞ ð80Þ

at zeroth order of ℏ, where hse and Xe are determined by the
twisted geometry parameters Ho

e ¼ ðηe; ξe; Ve; ṼeÞ on each

edge e, and we considered the hypercubic graph γ and the
nongraph changing scheme of the action of ĈE½N�. Notice
that we use the gauge (with respect to the Gaussian
constraint) variant coherent state in Eq. (80), and it is
reasonable to argue that the result of Eq. (80) still holds for
the gauge (with respect to the Gaussian constraint) invariant
coherent state in Hs

γ based on the peakedness property of
twisted geometry coherent state [26]. Now, one can con-
clude that the expectation value of the Euclidean term
ĈE½N� of the scalar constraint operator in the twisted
geometry coherent state fails to produce the correct semi-
classical limit.
In fact, the twisted geometry coherent states are con-

structed in the space Hs
γ; thus their wave functions are

constants instead of peaks along a gauge orbit of the
simplicity constraint. In other words, the wave function of a
twisted geometry coherent state in Hs

γ does not peak at a
point but peaks at a gauge orbit of simplicity constraint.
This is the reason why the twisted geometry coherent state
in Hs

γ cannot produce the correct semiclassical limit of the
scalar constraint operator. Indeed, to eliminate the gauge
degrees of freedomwith respect to the simplicity constraint,
one must impose the edge simplicity constraint strongly,
and it leads the solution space Hs

γ inevitably. More
specifically, the wave function of a state in Hs

γ must be
a constant along each of the gauge orbits of the simplicity
constraint. Hence, essentially, it is caused by the treatment
of strong imposition of the edge simplicity constraint
that the twisted geometry coherent state in Hs

γ can not
produce the correct semiclassical limit of scalar constraint
operator.
One may consider two schemes to deal with the issue

that the expectation value of the scalar constraint operator
given above in the coherent state in Hs

γ fails to produce the
correct semiclassical limit. In the first scheme, one can
construct the coherent states in the Hilbert space Hγ , by
requiring that the wave function of each of the coherent
states is peaked at a point instead of a gauge orbit.
Nevertheless, such a kind of coherent states must involve
the nonsimple representation of SOðDþ 1Þ, and thus the
edge simplicity constraint cannot be solved strongly. In the
second scheme, one can consider redefining the scalar
constraint operator to ensure that it has a correct geometric
meaning and semiclassical limit. We would like to discuss
the second scheme in the following part of this article, and
the first scheme will be left to future research.

B. New strategies

The failure of the previous construction of the scalar
constraint operator arises from what the simplicity reduced
holonomies cannot reveal about the geometric meanings
of the connections. Nevertheless, by analyzing the explicit
structure of the simplicity reduced holonomies, the quan-
tum gauge reduction with respect to the simplicity
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constraint introduced in the sections above provides us new
strategies to construct the scalar constraint operator in all
dimensional LQG. To simplify the discussions, we first
claim that the scalar constraint operators constructed in the
following subsections are defined in the space Hs ≔
⨁γH

s
γ which vanishes the edge-simplicity constraint

operator.

1. The first strategy

In the first strategy, let us recall the simplicity reduced
connection

AS
aIJ ≡ AaIJ − βKaIJ; ð81Þ

and its curvature is defined by

FS
abIJ ≔ ∂aAS

bIJ − ∂bAS
aIJ þ δKLAS

aIKA
S
bLJ − δKLAS

aJKA
s
bLI:

ð82Þ

It is easy to check

CS
E ≔

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp FS

abIJπ
aIKπb JK

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
R −

4β2ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ½KabKab − K2� ð83Þ

and

KaIðxÞEbIðxÞ¼−
1

8κ2β3
πbKLðxÞfAaKLðxÞ;fCS

E½1�;Vðx;ϵÞgg

ð84Þ

hold on the constraint surface of both Gaussian and
simplicity constraints. Then, the scalar constraint can be
expressed as

C ¼ CS
E þ CL: ð85Þ

Now, let us consider the regularization and quantization of
CS
E. Notice that C

S
E takes the same formulation as CE except

that the connection AaIJ in CE is replaced by AS
aIJ in CS

E.
Moreover, recall that the smearing version of AS

aIJ is given
by hSe. Thus, following a similar regularization and quan-
tization procedures as that of CE, we can give the operator
corresponding to CS

E as

ĈS
E½N� ¼ lim

ϵ→0

X
□∈P

ĈS;□
E ½N� ð86Þ

with

ĈS;□
E ½N� ≔ Nðv□Þ ·ϵ

� d
π½ajIKjπb� J

Kffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp �

v□

· ð bhSαsa;sb Þ½IJ�; ð87Þ

which is given by replacing the holonomy operator ĥαsa;sb in

ĈE½N� by another holonomy operator bhSαsa;sb corresponding
to the classical holonomy hSe of AS

aIJ. Accordingly, the
operator corresponding to CL is given by

ĈL½N� ¼ lim
ϵ→0

X
□∈P

Ĉ□

L ½N� ð88Þ

with

Ĉ□

L ½N� ≔ 2ð1þ β2Þ
ð8κ2ℏ2β3Þ2Nðv□Þ ·ϵ

� dπ½ajIKjffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ4

p �
v□

· dðhsaÞMI
� dðh−1sa ÞMK; ½ĈS

E½1�; V̂ðv□; ϵÞ�
	

·ϵ
� dπb�JLffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞ4
p �

v□

· dðhsbÞNJ
� dðh−1sb ÞNK; ½ĈS

E½1�; V̂ðv□; ϵÞ�
	
: ð89Þ

Finally, one can conclude that the scalar constraint operator
in all dimensional LQG can be given as

Ĉ½N� ¼ ĈS
E½N� þ ĈL½N�; ð90Þ

where ĈS
E½N� and ĈL½N� are defined in Eqs. (86) and (88),

respectively.

2. The second strategy

In this strategy, we still consider the expression (85) of
the scalar constraint and keep the regularization and

quantization scheme for CS
E in (85). Then, let us consider

a new scheme of the regularization and quantization of CL
in (85). By using Eq. (A8) in the Appendix, one can
regularize CL by defining

C□

L;alt½N�≔8ð1þβ2Þ
β2

Nðv□Þ ·ϵ
�
π½ajIKjπb�JKffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp �
v□

·ðhsαsa;sb Þ½IJ�;

ð91Þ

and one can verify that
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CL½N� ¼ lim
ϵ→0

X
□∈P

C□

L;alt½N� ð92Þ

holds on the constraint surface defined by both Gaussian
and simplicity constraints. Then, the operator correspond-
ing to CL½N� can be given by

ĈL½N� ¼ lim
ϵ→0

X
□∈P

Ĉ□

L;alt½N� ð93Þ

with

Ĉ□

L;alt½N�≔8ð1þβ2Þ
β2

Nðv□Þ ·ϵ
� d
π½ajIKjπb�JKffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp �
v□

·ð bhsαsa;sb Þ½IJ�:
ð94Þ

Here one should notice that bhsαsa;sb can be substituted by

ĥαsa;sb when one consider the matrix elements of ĈL½N� in
Hs, since the matrix elements of bhsαsa;sb and bhαsa;sb inHs are

identical. Finally, in this strategy, the scalar constraint
operator in all dimensional LQG is given by Eq. (90) with
ĈS
E½N� and ĈL½N� being defined in Eqs. (86) and (93).

respectively.

3. The third strategy

Notice that the operator ĈS
E½N� which is involved in the

first and second strategies depends on the operator bhSe
corresponding to the holonomy hSe of AS

aIJ. However, the

explicit expression of bhSe involves another operator bhΓe
whose construction is still a difficult issue. In the third
strategy, we consider a new expression of scalar constraint
to avoid the difficulty of the operator ĈS

E½N�. One can
reexpress the scalar constraint as

C ¼ 1

ð1þ β2ÞCL −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
R: ð95Þ

By regularizing and quantizing Eq. (95), we could get a
new scalar constraint operator

Ĉ½N� ¼ 1

ð1þ β2Þ ĈL½N� − ˆ̃R½N�; ð96Þ

where ĈL½N� is given by Eq. (93) and ˆ̃R½N� is the operator
corresponding to

R̃½N� ≔
Z
σ
dDyNðyÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
RðyÞ: ð97Þ

Notice that the operator ˆ̃R½N� has not been constructed yet
in all dimensional LQG. Nevertheless, its analog in SUð2Þ

LQG has been constructed and studied in various
methods [25,29–31]. It is expected to extend these methods
to all dimensional LQG to give the explicit expression of
ˆ̃R½N�. We leave this task to further researches.

V. CONCLUSION

The gauge reduction with respect to the simplicity
constraint has been discussed in both classical and quantum
theory of all dimensional loop quantum gravity. In the
classical connection phase space, the symplectic reduction
with respect to simplicity and Gaussian constraints can
proceed without anomaly, which leads to the ADM phase
space correctly. Different with the continuum connection
theory, the simplicity constraints in the discrete holonomy-
flux phase space become anomalous. It has been shown
that, in order to gives the discrete twisted geometry
correctly, one should proceed with the gauge reduction
with respect to the edge simplicity constraint and then
impose the vertex simplicity constraint weakly, i.e., solving
the vertex simplicity constraint equations. However, once
we consider the gauge reduction with respect to the edge
simplicity constraint in holonomy-flux phase space, we
find that the simplicity reduced holonomy hse cannot
capture the degrees of freedom of intrinsic curvature, since
its continuum limit does not reproduce the simplicity
reduced connection AS

aIJ. Besides, the matrix elements of
holonomy operator ĥe are identical with that of the
simplicity reduced holonomy operator bhse ≔ P̂SĥeP̂S in
the space Hs spanned by the states vanishing edge
simplicity constraint, which means that the classical cor-
respondence of ĥe acting inHs is given by hse instead of he.
This result leads that the standard strategy fails to give a

correct scalar constraint operator in all dimensional LQG.
Our analysis shows that, in the twisted geometry coherent
state in Hs

γ , the expectation value of the scalar constraint
operator given by the standard strategy fails to produce the
correct semiclassical limit. Indeed, this issue is caused by
the fact that the wave function of a coherent state in Hs

γ

does not peak at a point but peak at a gauge orbit of
simplicity constraint. We have mentioned that two schemes
can be considered to deal with this issue. In the first
scheme, one can construct the coherent states in the Hilbert
spaceHγ , by requiring that the wave function of each of the
coherent states is peaked at a point instead of a gauge orbit.
Nevertheless, such a kind of coherent states must involve
the nonsimple representation of SOðDþ 1Þ, and thus the
edge simplicity constraint cannot be solved strongly. In the
second scheme, one can consider redefining the scalar
constraint operator to ensure that it has correct geometric
meaning and semiclassical limit. We have discussed the
second scheme in this article, and the first scheme remains
for future research.
Following the second scheme, we have proposed three

new strategies to construct the scalar constraint operator in

GAOPING LONG and XIANGDONG ZHANG PHYS. REV. D 107, 046022 (2023)

046022-18



Sec. IV B. In the first strategy, we establish the holonomy
hSe of the simplicity reduced connection AS

aIJ, which
captures degrees of freedom of the intrinsic and extrinsic

curvature correctly, and then the operator bhSe is used to
substitute ĥe to construct the scalar constraint operator. In
the second strategy, we consider an alternative of the
Lorentzian part of the scalar constraint operator based
on the simplicity reduced holonomy operator bhse. In the
third strategy, a new method is considered to treat the
spatial scalar curvature term in the scalar constraint.
Generally, the issues introduced by the gauge reduction
with respect to the simplicity constraint are discussed in this
paper, and several strategies are proposed to deal with
them. Nevertheless, these strategies still need further

studies. As we mentioned before, bhSe involved in first
and second strategies contains the operator that corresponds
to the holonomy of Levi-Civita connection, and this
operator has not been constructed yet in all dimensional
LQG. Besides, though the spatial scalar curvature
operator involved in the third strategy has been established
in SUð2Þ LQG, we still need to generalize it to all
dimensional theory. We leave these tasks for future
research.
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APPENDIX: THE INHERENT CURVATURE IN hsα

To clarify the inherent curvature in the simplicity
resolved holonomy hse, let us consider its behavior in a
continuum limit. Give a hypercubic graph γ embedded in σ
with the coordinate length of the elementary edges of γ
being ϵ. Then, we have the holonomy-flux phase space
×e∈EðγÞT�SOðDþ 1Þe associated with γ. One can proceed
with the gauge reduction with respect to the edge-simplicity
constraint in this phase space, which leads to the reduced
space composed by the elements ðhse; XeÞe∈EðγÞ, which are
parametrized by twisted geometry parameters as

hse ¼ ueeξeτo Isũ−1e ; Xe ¼
1

2
ηeVe; ðA1Þ

where ðIsÞIJ ≔ δI1δ
1
J þ δI2δ

2
J is a ðDþ 1Þ × ðDþ 1Þ matrix.

We can further solve the vertex simplicity constraint

equation, and our following analysis is restricted on the
constraint surface defined by the vertex simplicity con-
straint in reduced space composed by ðhse; XeÞe∈EðγÞ. Notice
that hse is a gauge (with respect to Gaussian constraint)
covariant holonomy. To simplify our analysis, we can
always proceed with a gauge transformation to ensure

VIJ
e ¼ 2δ½I1 v

J�
e ; ṼIJ

e ¼ 2δ½I1 ṽ
J�
e ; ∀ e ∈ EðγÞ: ðA2Þ

Then, we have ðhΓe ÞIJδJ1 ¼ δI1 and

ðΓeÞIJδJ1 ¼ ðOðϵ2ÞÞI ðA3Þ

with ϵ being small enough. To analyze the curvature
captured by hse, let us choose arbitrary minimal square
loop α ⊂ γ composed by α ¼ e1 ∘ e2 ∘ e3 ∘ e4 and consider
hsα ¼ hse1h

s
e2h

s
e3h

s
e4 . With the gauge conditions (A2) being

satisfied, we can further fix a gauge that ensures

vIe1 ¼ −vIe3 ; vIe2 ¼ −vIe4 and vIe1v
J
e2δIJ ¼ 0: ðA4Þ

By these conditions one has

ðue1 Isu−1e1 ue2 Isu−1e2 ÞIJ¼ðue2 Isu−1e2 ue3Isu−1e3 ÞIJ
¼ðue3 Isu−1e3 ue4Isu−1e4 ÞIJ¼δI1δ

1
J: ðA5Þ

Then, recall

hse ¼ ueeξeτo Isũ−1e

≃ ðueIsu−1e þ βK⊥
e þOðϵ2ÞÞðI þ Γe þOðϵ2ÞÞ; ðA6Þ

one can expand hsα as

ðhsαÞ½KL�ηKI η̄LJ ¼ ðhse1hse2hse3hse4Þ½KL�η̄KI η̄LJ
¼ β2ðK⊥

e1K
⊥
e4Þ½IJ� þOðϵ3Þ: ðA7Þ

In the continuum limit, it reads

lim
ϵ→0

ðhsαÞ½KL�η̄KI η̄LJ
ϵ2

¼ β2K̆a½IjKjK̆ K
b J� _e

a
1ðvÞ_eb4ðvÞ

¼ −β2Ka½IKbJ� _ea1ðvÞ_eb4ðvÞ; ðA8Þ

where K̆aIJ ≔ KaIJ − KaIJη̄
K
I η̄

L
J ¼ 2δ1½IKaJ� with η̄KI ≔

δKI − δ1Iδ
K
1 , v is the source point of e1 and the target point

of e4, and _ea1ðvÞ and _eb4ðvÞ are the tangent vectors of e1 and
e4 at v,respectively. Thus, we conclude that ðhsαÞ½KL�η̄KI η̄LJ
capture the degrees of freedom of extrinsic curvature
properly.
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