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Fermions on curved backgrounds of matrix models
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We discuss the propagation of fermions on generic, curved branes in Ishibashi-Kawai-Kitazawa-
Tsuchiya-type matrix models. The Dirac operator can be understood either in terms of a Weitzenbock
connection, or in terms of the Levi-Civita connection with an extra torsion term. We discuss in detail the
coupling of spin to the background geometry using the Jeffreys-Wentzel-Kramers-Brillouin approximation.
Despite the absence of local Lorentz invariance in the underlying Ishibashi-Kawai-Kitazawa-Tsuchiya
framework, our results agree with the expectations of Einstein-Cartan theory, and differ from general
relativity only by an extra coupling to the totally antisymmetric part of the torsion. The case of Friedmann-
Lemaitre-Robertson-Walker cosmic background solutions is discussed as a special case.
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I. INTRODUCTION

Reconciling gravity with quantum mechanics remains
one of the outstanding problems in theoretical physics. One
of the proposed approaches towards this goal is provided by
the Ishibashi-Kawai-Kitazawa-Tsuchiya (IKKT) matrix
model, which was introduced in the context of string
theory [1]. In this framework, spacetime arises as a
branelike solution, with intrinsic quantum structure. The
description of the effective metric in this framework is by
now well understood [2,3]. However, the coupling of
fermions to such a background geometry has not yet been
studied in detail. This paper is dedicated to fill this gap.

From a formal point of view, the fermions in the IKKT
model are governed by an action which is completely fixed
by supersymmetry, and which is not equivalent to the
coupling of fermions to gravity in general relativity.
However the distinction turns out to be subleading and
rather subtle, and a proper assessment requires a careful
analysis going beyond the level of point particles.

The relativistic description of elementary particles and
extended objects in a given gravitational field has a long
history. The dynamics of a spin-1/2 fermion can be
addressed by generalizing the Dirac equation to curved
spacetimes, as was first carried out by Fock, Ivanenko, and
Weyl in 1929 in the framework of general relativity (see
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Ref. [4] for a modern approach to this topic). The analysis in
the case of the FEinstein-Cartan theory and the related
Riemann-Cartan spacetime was performed afterwards. In
this context, it is found that the spin of the fermion couples
to (the totally antisymmetric part of) the contorsion, i.e., the
non-Riemannian part of the connection representing the
geometric counterpart of the spin [5,6]. On the other hand,
the classical motion of a finite-size body endowed with a
macroscopic angular momentum (usually referred to as
“spin,” despite its completely classical nature) in general
relativity is ruled, in the so-called pole-dipole approxima-
tion, by the Mathisson-Papapetrou-Dixon equations [7-9].
The main consequence brought in by the underlying spin-
gravity coupling is that the particle orbit differs from a
geodesic and its spin undergoes a precession motion. For
more details about the modern applications of Mathisson-
Papapetrou-Dixon equations in gravity theories we refer the
reader to Ref. [10] and references therein.

Due to the formal analogy between the macroscopic
angular momentum of an extended object and the quantum
spin of an elementary particle, a link between the classical
and quantum dynamics can be established when a certain
semiclassical limit is invoked. Indeed, the main features
of the former can be recovered from the relativistic
Dirac equation, framed either in general relativity or
Einstein-Cartan theory, by exploiting either the Jeffreys-
Wentzel-Kramers-Brillouin (JWKB) approximation or the
Foldy-Wouthuysen approach [11-17]. This scheme can be
further enlarged by considering higher-spin fields and, in
particular, it turns out that the spin precession depends on
the magnitude of the spin vector [18].

In this paper, we evaluate the propagation of a spin-1/2
particle in a generic curved background provided by the
IKKT matrix model. The ensuing motion is investigated
starting from a Dirac-like action and by exploiting a
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semiclassical particle limit, which is worked out by means
of the JWKB approximation. First, we show that the
fermionic action in the matrix model differs from the
standard form in general relativity only by an extra coupling
to the dilaton and to the totally antisymmetric part of the
Weitzenbock connection associated with the effective frame
defined by the matrix model background. Based on this
action, we show that the dynamics of the fermion at the first
nontrivial order of the JWKB approximation does not
contradict the standard expectations of gravity theories
(i.e., general relativity or Einstein-Cartan model). In fact,
in the most general setting, the IKKT pattern predicts that
both the translation and the rotational motion of the Dirac
particle have the same form as the dynamical equations of a
spin-1/2 fermion in a Riemann-Cartan spacetime. This is a
nontrivial result, because local Lorentz invariance is not
manifest in the IKKT framework.

The plan of the paper is as follows. After having outlined
in Sec. II the properties of the general geometric framework
employed, the semiclassical Dirac-like action for fermions
evolving on a generic curved background of the IKKT
matrix model is analyzed in Sec. III. Then, the dynamics of
the Dirac fermion is evaluated in Sec. IV by means of the
JWKB approach. The particular background represented by
the cosmological Friedmann-Lemaitre-Robertson-Walker
(FLRW) spacetime is considered in Sec. V. Last, we draw
our conclusions in Sec. VI. Supplementary information is
provided in the appendices.

Notations.—We use metric signature (—, +, 4, +) and
units G = ¢ = i = 1. However, for the sake of clarity, in

some cases we write explicitly 7 terms. a, f, ... =0,...,3
and i,j,...=1,2,3 are coordinate indices, whereas
a,b,...= O, ...,3 and a,b, ... = i,ﬁ,g are tetrad indices.

The flat metric is indicated by #*” =n,, =diag(—1,1,1,1).
Round (respectively, square) brackets around tensor indi-
ces stand for the usual symmetrization (respectively,
antisymmetrization) procedure, e.g. A;;) =1 (A; +Aj)
[respectively, A = (A=A

II. THE GENERAL GEOMETRIC FRAMEWORK

In this section, we provide the essential details of our
geometrical framework. We consider Yang-Mills matrix
models such as the IKKT model [1], defined by an action of
the structure

S[T,¥] = glzTr([TA, T[T 4, Tg) +PTA[TA, ¥]). (1)

Here the 74 (A = 0, ..., D — 1) are Hermitian matrices and
Y are fermionic matrices described below. We want to study
the propagation of fermions on some given background
{T} in the semiclassical regime, where the backgrounds
can be described as symplectic manifolds M embedded in
target space via

TA: M < RP (2)

and all commutators are replaced by Poisson brackets
[.,.] ~i{.,.}. Moreover, we restrict ourselves for simplic-
ity to 3 4+ 1-dimensional branes embedded along the first
four matrix directions labeled by a = 0, ..., 3, setting the
remaining matrices to zero. An introduction and motiva-
tion for this framework can be found in Refs. [2,19], see
also e.g. [20-29] for related work in this context.

In the semiclassical regime, the effective metric on such a
background is determined by the kinetic term for fluctua-
tions in the matrix model, which can be written as!

S[g] ~ - /M dyo...dys pyy™o,hd,
—- /M *91/1G, G 0,40, 3)
Here

1
P EYE Gt ()

define an auxiliary and the effective metric on M,
respectively, in terms of the “Poisson” frame

E = {T, Y} (5)

in local coordinates y*. The conformal factor or dilaton p is
defined by

p* = pu 1], (6)

where p,, is the symplectic density on M. This motivates
one to define the effective frame &% by absorbing the
dilaton p,

gan = ptgan, (7)
G = £y, ®)

as well as the inverse frames £, and E“, through

£9,E0 = 58 = E9 By (9)

so that
G;w = nabgaﬂgbw (10)
Yuw = ”ahEaﬂEbU' (11)

'"This action applies directly to transversal fluctuations
TA - T4 4 @4 for A =4,...,9 of the background, which are
interpreted as scalar fields on M. However the same metric G**
also governs tangential fluctuations 7% — T“ + A“ of the back-
ground, which describe gauge fields on M [2].
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The Weitzenbock connection I',)# associated with the
frame E,* is defined by the condition

0=V,E} =0,E +T,/Ep. (12)

This connection has a vanishing curvature, but nonvanish-
ing torsion and contorsion tensors, which are given by

T, =T, =T,%, (13)
o 1 o (o3 (o2
K,MD :E v +T pw_Tv ul (14)

Due to the specific form (5) of the frame, their traces are
given by [30]

2
Kﬂo’” = T;mﬂ :; P+ (15)

The Levi-Civita connection ') w’ for the metric y** is

1
r(y)/wo— = E}/Gp(aﬂ}/pu + al/ypﬂ - ap}//w) = F/wa - K;wg’ (16)

and it permits one to write

V= VIV K,V (17)

where Vv = 0,VV + T, vye.
The Levi-Civita connection F<G>W" for the effective
metric G* is obtained as

c 1 ol
re o= 5G7(0,Gp +0,Gpu = 9,Gp)
1
= /_) (556/4,0 + 5Zavp - }//wyapapp)
1
+ zy(’p(auypv + az/}/py - apy/w)’ (18)

which together with Eq. (16) gives

re o=r,°"-K,°. (19)

(o2 o 1 (e
B = u” + 280, (20)

1
Kﬂug = E <Tﬂua + Taﬂu - Tvﬂ;t)
1
=K,° +; (GWG"/’app — 5;0,,p> = —/CM”U (22)

are the Weitzenbock connection, the torsion, and the con-
torsion tensors of the effective frame, respectively [30].
Hereafter, calligraphic fonts or a tilde indicate quantities
related to the effective frame £,#. The Weitzenbock con-
nection associated with the effective frame

V,E4 =0 (23)

is given explicitly using Eq. (20) by
Tve =V, v+ (Lo )ve = VOve 1k, Ve
p’ =V Vet P uP = Vu + RV
= ! (G) x
VV,=V,V, - o Vo = ViV, —KVe,  (24)

where V,(,G) VY =9,V" 4T rye.

III. FERMIONS IN IKKT MODEL

In this section, we study the semiclassical geometric
form of the Dirac-like action for fermions in the IKKT
matrix model on a generic curved background. The
discussion applies to generic noncommutative branes
embedded through the first 3 + 1 matrices as described
in Sec. IL? This setup includes the case of covariant
quantum spaces [24,30], which, in turn, encompass the
special FLRW cosmic background which will be consid-
ered in Sec. V.

A. Preliminaries

We first establish the relation between the Cartan
formulation of Riemannian geometry and the present
framework based on the Weitzenbock connection. Let
Dy = Wyapdy” = —dyp, be the torsion-free Levi-Civita
spin connection associated with the effective metric G,,,.
Starting from the first Cartan structure equation [31]

A& = -t A EP, (25)
we obtain

T, = @, — @,% . E0, = »,%, — @,° (26)
where we have used the fact that the torsion of the
Weitzenbock connection is given by the exterior derivative
of the vielbein, which yields

’It turns out that the results also apply to 3 + 1-dimensional
branes with generic embedding in matrix models.
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1 1
T = ETW“dy” Ady’ = 3 <0ﬁ5"y - ayé"’”) dy* A dy*.

(27)

The above relation represents the torsion two-form of the
Weitzenbock connection of the effective frame. Performing
a cyclic permutation of the indices in Eq. (26), we obtain

’C/mh = Cb/mbﬂ (28)

which provides the relation between the Levi-Civita spin
connection and the contorsion tensor of the Weitzenbdck
connection of the effective frame. This is easily seen to be
consistent with the standard expression for the Levi-Civita
spin connection

i, = Evv9eb, (29)

Of course, Eq. (28) holds only for the effective frame &
underlying the Weitzenbock connection and does not allow
local Lorentz transformations; the extension to general
frames will be discussed in the next section.

B. The Lagrangian

The semiclassical action for a spinor in Yang-Mills
matrix models can be written in arbitrary local coordinates
y* as [cf. Eq. (1)]

S = TR, (1 ¥] ~ [ dypuly) Bira %0, (30)

Here T is the background solution of the matrix model,
and the symbol ~ indicates the semiclassical limit, where
commutators are replaced by Poisson brackets. Moreover,
¥ is a matrix-valued spinor of SO(D) (ignoring possible

non-Abelian gauge fields to simplify the notation), ¥ =

¥y (¥ being the flat Oth Dirac matrix, see Appendix A
for the conventions regarding Dirac matrices used in this
paper), and p,,d*y is the symplectic volume form.

In the special case of the IKKT model with D =9 + 1,
the gamma matrices are those of SO(9,1). We can then
realize the aforementioned 3 + 1-dimensional spacetime in
terms of the first 3+ 1 components 7¢, setting the
remaining T4 =0 for A = 4, ...,9. The matrix model then
reduces to noncommutative N'=4 SYM on a 3+ 1-
dimensional spacetime brane M3>!, The transversal direc-
tions will accommodate fuzzy extra dimensions, which are
important for introducing mass terms (see Appendix B for
further details), as well as an induced Einstein-Hilbert
action for gravity [26].

We note that the action (30) is written in the case of
Minkowski signature, whereas the Euclidean version
involves the obvious replacement ¥ — W' The (semiclass-
ical) Lagrangian in Eq. (30) can also be written as

i _ _ ]
L=pul¥r'Ef0,¥~(0,¥)r ES Y] +ippym¥¥, (31)

where we have also introduced a mass term following the
line of reasoning of Appendix B.

The most striking feature of this fermionic action is that
the spin connection seems to be “missing” in the matrix
Dirac operator

7alT% W] ~ iy E%0,¥ = iy"E,"0,P. (32)

However, we can rewrite the Lagrangian (31) in terms of
the standard covariant derivative for spinors, which reads as
(see e.g. Refs. [6,31,32])

Dw = <aﬂ - %aﬂbczbc> W, (33)

where &)ﬂ”“ is the torsion-free Levi-Civita spin connection
associated with the effective metric G, [see Eq. (29)], and

i
z:ab = Z [}/av }/b] (34)

is the spinor representation of the generators of the Lorentz
group. Bearing in mind Egs. (7), (28), and (33), we find

y'E/0,¥ =p (y“é’a”ﬁﬂ‘l’ + élCﬂbCy"Ea”Zbc‘I‘). (35)

Using this expression, we can rewrite the Lagrangian (31)
in the form

L= [5 (Yy*D,¥ — (D, ¥)y"¥) + imP¥

RS

- 2, )| (36)
where we have defined
= EL (37)
and
& =det(E%,) = V=G = pyp*. (38)

with G = det(G,,). In terms of the Lagrangian (36), the
action of the spinor field reads

S= / d*y L. (39)

It is worth noting that the Eq. (36) mirrors, up to the
factor 1/p, the Dirac Lagrangian in a Riemann-Cartan
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spacetime [6]. In fact, upon working out the anticommu-
tator {y#,%,.}, it can be written as

ETi = a - L
L= , [5 (Yy*D,¥Y — (D,P)y"¥) + imP¥

i _
-1 Kty Wr " y“P} . (40)

Moreover, the totally antisymmetric contorsion term can
be written on-shell [i.e., for backgrounds (2) which satisfy
the equations of motion of the matrix model] in terms of a
gravitational axion p as [33]

1 ~
Kiap7r’y" = ‘ahnns"”""p‘zaaﬂ- (41)

At this stage, it is useful to admit general (non-parallel)
frames e“, via

nabea/lebu = G/u/ (42)

so that the spinor W is allowed to transform as usual under
local Lorentz transformations (we note that this step is
only possible in the effective semiclassical description of
the matrix model under consideration here, and allows a
more convenient description of the fermionic action,
similar as in teleparallel gravity [34]). Correspondingly,
we can introduce the following spin connection

ab _ ,avNy ,b __ » ab _
=e"V,e’, = a, K.

@, ab, (43)
where &, = e@V\% et is the Levi-Civita spin connec-
tion associated with the general frame e, and ICM‘”’ the
contorsion tensor of the Weitzenbock connection l:ﬂ,/1
[note that we are employing for the Levi-Civita spin
connection the same symbol as in Eq. (29); this should not
cause confusion, as henceforth we will always refer to the
newly introduced d)ﬂab]. The associated spinor covariant

derivative is
- i, o i,
DﬂlP = <0ﬂ - Ewﬂ bZab) Y= D’ulP +§IC,I bzab‘l’, (44)

where ﬁM‘P can be read off from Eq. (33). This is nothing
but the extension of the Weitzenbdck connection to
arbitrary frames; note that the spin connection (43)
vanishes in the physical frame due to Eq. (23), i.e., when
we make the replacement

e’ = &, (45)

By means of the formulas (42)-(44), the Lagrangian
function (40) assumes, in the general frame e s the form

where, similarly to Eqs. (37) and (38),

r= eyl (47a)

e :=det(e?,) = V-G.

Note the Lagrangian (46) reduces to Eq. (31) for the
parallel frame £¢ u» Where &)ﬂ“b vanishes. Furthermore, it is
worth pointing out that we have used for the Dirac matrices
the same notation as in Eq. (37); no confusion should arise
since from now on we will consider the matrices defined in
Eq. (47a). As a consequence of Eq. (46), the equations of
motion read as

(47b)

A 1 P _
v"D,¥ +m¥ —ZK[aﬂy]y”yﬂyY‘P —1—5 (0up Dyw =0, (48)

where the last terms breaks the local Lorentz invariance on
nontrivial backgrounds.
It follows from the Dirac equation (48) and the equality3

D=0, (49)
that the effective current p~! J# is conserved, i.e.,

Vi (pm'ar) =0, (50)

where J# := WyHW.

IV. THE PARTICLE LIMIT OF THE DIRAC FIELD

In this section, we will work out the particle limit of the
Dirac field by applying the JWKB approximation to the
quantum-mechanical Dirac equation (48). This means that
we assume the validity of the semiclassical limit, where the
particle is characterized by a worldline and its spin by a
polarization vector, and the gravitational field is supposed
to be slowly varying.

The classical motion of the fermionic field is dealt with
in Sec. IVA, while Sec. IV B is devoted to the study of the
quantum dynamics.

A. The classical trajectory

Following the recipe of the JWKB scheme (see e.g.
Refs. [11-15,35,36]), we adopt the ansatz; where the

*It is worth pointing out that also the relation Dﬂy“ = 0 holds.
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solution ¥ of the Dirac equation can be written as a phase
factor and a spinor amplitude via the following series:

¥ =exp (g W00) Y w61
n=0

where W (x) is a real-valued function and y ") (x) a spinor.
If we insert the above formula in Eq. (48) and equate the
coefficients involving the same powers of 7, we obtain at
leading order and to next-to-leading order

(ir'o,W —m)yl® =0, (52a)
. A 1
(l}/”a”W - m) l//U) = yﬂDﬂW(O) - ZK[aﬂy]yayﬁ}/yW(o)
P _
+5 (007 )y, (52b)

2

respectively. Note that in order to obtain the above equations
it is necessary to replace the mass m in Eq. (48) by m/h.

The solvability condition det(iy*9,W —m) =0 of
Eq. (52a) implies the Hamilton-Jacobi equation for a
relativistic nonspinning particle

Gﬂypypy = _m2’ (53)
where p, = —d,W. The normalized timelike vector
-0, 1
5 Pa: (54a)

u, - — = —
“ |G, Wo, W[V m

G"u,u, = —1, (54b)
represents the tangent vector (i.e., the four-velocity) to the
worldlines orthogonal to the family of spacelike hyper-
surfaces W = constant having constant phase. By standard
arguments [37], one can prove that these trajectories form a
congruence of timelike geodesics

u VO =0, (55)
which is rotation free

Q= v(wc) g = 0. (56)
Therefore, to zero order in #, we obtain the completely
classical result according to which the motion of the Dirac
fermion is not influenced by the spin, i.e., the particle
follows a geodesic trajectory of the background geometry.
The remaining kinematical properties of the geodesic
congruence are embodied by

G 1, .
V[(j )Ma = ggpaﬂ + O-aﬂ’ (57)

where
Bop = V|5t - %ép,lﬂ, (58a)
0=V, (58b)
Poy = Gop + ugig, (58¢)

represent the shear tensor, the expansion scalar, and the
transverse metric (fulfilling the role of a projector onto the
space orthogonal to u“), respectively.

It follows from Eq. (52a) that the spinor y(?) describes
the positive-energy solutions of the flat-space Dirac equa-
tion and hence it assumes the general form

w0 (x) =B (x)uV (x) + po(x)u? (x),  pi(x).Ba2(x) €C,

(59)

where the spin-up and spin-down spinors are, in the Dirac
basis,” [38]

1

u) = (p() t m) " R 0
2m P’/ (p° +m) ’

(P +ip?)/(p° + m)

(60a)

0

0 1/2
u<z>:<P°+’">/ b
2m (p'=ip?)/ (P +m) |’

—p*/(p® + m)

(60b)

respectively, and p“ = e, p*.

The condition for the existence of a nontrivial solution
w(D of Eq. (52b) is that all solutions of the corresponding
transposed homogeneous equation are orthogonal to the
inhomogeneity (Fredholm alternative, see Refs. [11,12,39]
for further details). Therefore, the solvability conditions of
Eq. (52b) yield

()| f ! « Py
B\ Dy = 2 Kiapr v v w420~ )y | =0,

(61a)

“Here the § 0(9, 1) spinors of the matrix model are decom-
posed in terms of 3 + I-dimensional spinors, as explained in
Appendix B.
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_ A 1 « Py -
i | Dy =2 Kiapgr v vw'® 450,07 )y | =0,
(61b)

where we have exploited Eq. (59).

At this stage, we restrict our attention to an arbitrary but
fixed worldline of the geodesic congruence admitting u® as
the tangent vector field [cf. Eq. (55)]. In this setting, we can
write on the worldline

ey’ = u”, (62a)
wV\Pea 20, (62b)
@,% =0, (62¢)

the star symbol standing for an equality valid on the
worldline (we will omit the star if an equation is valid in
any frame). In Eq. (62), we have adjusted the vector ey*
parallel to the velocity u*; in Eq. (62b), we have parallelly
propagated the tetrad along the chosen u* direction so that,
consistently with Eq. (55), the covariant derivative (with
respect to the Christoffel symbols (@) }w’l) of e,* vanishes
on the worldline; lastly, Eq. (62¢) stems from Eq. (62b). It is
thus clear that the choice (62) amounts to introducing the
particle’s rest frame and the related Fermi normal coordi-
nates [40,41].

In the particle’s rest frame, the four-momentum p¢ is such
that p® = (m, 0) and hence Eq. (60) reduces to the rest-frame
positive-energy Dirac spinors

, (63a)

(63b)

0 1 ) _ p _
w0,y = =3B = 7 Kiapy (u(”y"y”ﬂﬂlu“) + u(‘)y”yﬁﬂﬂzu(2>> - <0,,p 1) Bru,

~

4 1 () —(2)a P -
u”a,,ﬁz — _Eﬁz _ZKWY] (u(2>7 yﬂyrﬂlum + u(2)y },ﬂyrﬁzum) -5 (6,,/) 1) Pou,

Furthermore, bearing in mind Egs. (55) and (57) jointly with
Egs. (62) and (63), we obtain the following relations:

ey"0,p° = 0, (64a)
eﬁaaap& L 0, (64b)
€;%0,p" = m e e, <6’€a + %9P€a> . (64c)
Moreover, from Eq. (63) (hereafter, A, B = 1,2)
AW (A Ly (65a)
aWyru® =0, (A#B), (65b)
and
aVyro,ut) = —9)2, (66a)
Wy, u® = 0, (A # B). (66b)
Lastly, owing to Eqgs. (64a) and (64b),
u*D,ut = —%u“/Caﬁyyﬂy}’u(A), (67)
which leads to the generally valid relation
uDou® =0, (68)

upon taking into account Eq. (62c).

B. The quantum dynamics

At this stage, we have all the ingredients to evaluate the
quantum corrections to the fermionic dynamics, i.e., the
corrections due to the wavelike nature of the fermions. After
some preliminary calculations, the spin precession equation
and the translation motion will be worked out in Secs. [V B 1
and IV B 2, respectively. Lastly, we evaluate the magnetic
dipole moment of the Dirac particle in Sec. IV B 3.

Upon using Egs. (59), (62¢), (65), and (66), the solv-
ability condition (61) leads to generally valid equations

5 (69a)

(69b)

describing the propagation of the scalar functions f;, f, along the geodesic trajectory. Therefore, the propagation equation
for the spinor 1//(0) can be obtained starting from Egs. (67) and (69), and reads as
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uD ) = _gw(o) _ % Kiapy Pty ) — g ( a,,p—l ) wiy©),
(70)

where [cf. Eq. (34)]
o =23, (71)

In deriving Eq. (70), we have also taken into account that

“p, +im
Mz 4 @@ — _VPeT_ 4 72
u\“u\ +u\u m +5 ( )
with
A = iy, (73)

At this stage, let us introduce the normalized spinor
b (x) via the relations

ibOp0) =1, (74)
where the real-valued function f(x) satisfies [cf. Eq. (59)]

) =8P + 1B2(x) . (75)

Then, if we employ Egs. (69) and (75), we find for the
function f(x) the propagation equation

o
w9, f = =2 f =5 @ . (76)

whereas for the normalized spinors b(®) and () we can
write

uD b0 = — %/C[(,,,]ya"ﬂ b, (77a)

~ - i _
uDyb\ = E’C[aﬂ}rb(o) oPur, (77b)
once Egs. (70) and (76) have been exploited.

1. The spin precession equation

It will prove to be useful the introduction of a new
connection. Following Ref. [12], we define the new

*

.. * ab
affinities I",, and w,  as

177%

* A ~

F,w = Flwll + 2]C[D€]”G€]L = F(G),w/l + 3K[}4pe] G, (78)
g)ﬂab _ beab _ ZICW’]” — é)ﬂ“b _ 3]C[abe] Ge’“ (79)

with
S AP e Ay a 154 b
I, =e/Dye’, =e, (0, +w, e°,), (80)
* * k]
a)ﬂab = e"V,el, = e™(0,e’, - T, ¢,). (81)

The new connection is compatible with the effective metric,

as V,G,, = 0, and satisfies the following relations:

Vev,ve = yevi9ya, (82a)
v, ve = vya, (82b)
D,y =0, (82¢)

V% being a generic vector.
Bearing in mind Egs. (70) and (79), we find for the
spinor y(*)

A

* 0 P,y
u Doy = =Sy =2 (,p~ury®, (83)

which, in turn, implies that

u*D, b =0, (84)

upon exploiting the propagation equation (76). In other
words, the normalized spinors »© and 5 are parallelly
propagated along the geodesic path, which represents the
trajectory followed by the particle in the completely
classical limit [see Eq. (52a)], provided that we employ

A *
the new connections I',, and a)/,ab.
The spin vector of the Dirac particle can be written via
the JWKB approximation as (see e.g. Refs. [11,12] for

further details)
S* = S?o) + O(n), (85)

the lowest-order correction being
a 1 apys,, 1,(0) (0)
S(O) = 58 Mﬁb Gyb‘b s (86)

with

1

P = e % Pe Ve Petbd, (87)

where the totally antisymmetric Levi-Civita symbol e**<¢
is such that, in our conventions, €°'?*> =1. The spin
vector (86) satisfies
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uaS?O) =0,
a ﬁ J—

and is characterized by the propagation equation

w'V, 5% =0, (89)

which can be established by means of Egs. (55), (82a),

(82¢), and (84), jointly with the identity V,e%"° = 0.
Therefore, through the new connections (78) and (79),
the lowest-order spin vector (86) is parallelly transported
along the particle’s classical geodesic trajectory. In terms of
the Levi-Civita connection [see Eq. (78)] and the axial-
vector part of the contorsion tensor

1
AM = 68ﬂaﬂ7]c[aﬂ},}, (90)
Equation (89) implies the spin precession equation
G are
u"V,<, >S’<‘0) = 34 AL S o)tk (91)

2. The nongeodesic translational motion

Let us introduce the Gordon decomposition of the
effective Dirac current

p I = TN+ TE (92)

where the magnetization and convection currents can be
obtained starting from the Dirac equation (48) and the
identity (79). Explicitly, J4; and J¢ read as, respectively,

g ih A TP\ ] A\ AN
Im 2mp[ V(P ) + p(0,p~" ) Yot Y]
ih . (Po'¥
=—D
2m ( P > ®32)
w_ B DHP)Y — P DAY 3i/c Yo Gy
jc—zmp ( ) - _E [apy] YO
ho o ru- = *p
= — Y)Y —¥D VY.
3 (D) ) (93b)

By means of the commutation relations for the covariant
derivative operator D, and Eq. (50), it can be shown that
these quantities are conserved, i.e., they satisfy

v gh =0, (94a)
v T8 = 0. (94b)

In particular, the torsion-free condition featuring the
operator D, is essential for the evaluation of Eq. (94), as it

guarantees that [IA)”, D,)p~" = 0. Physically, J%, represents
the curl of the spin density and can be interpreted as a
magnetization current, while 7 ’é is a convection four-
current as its spacelike part resembles the three-vector
probability current of Schrodinger theory [11,12].

Due to its physical interpretation, the convection current
J ’(’: can be used to define the particle’s translational motion.
Thus, we can define a congruence of timelike curves having
tangent vector v“, which is given by

(23
v* = __Je (95)

NE

which upon exploiting Egs. (51), (54b), (74), and (84),
yields

= w4 (DB — B0 BT+ O (96)
The above formula shows that the spin forces the particle to
follow a quantum corrected trajectory which deviates from
the geodesic motion, which is pursued only at the classical
level [see Eq. (55)]. In fact, we can evaluate the non-
geodesic acceleration a,, of the fermion as follows. Let us
start with the following expression:

a, = UﬂVéG)va = 'V, = 2vﬁvwva}

h * % _ _ * *

= ZwPU(DiwD. . bNHO) — pO) (DD ,pO)
mu [( pHa ) ( p-a )]
x 2

- 2U/}F[/ja] u); + O(flz), (97)
where we have exploited Eqs. (54a), (82a), and (84) jointly
with the normalization condition »*v, = —1. The above

formula can be further simplified by exploiting Eq. (78) and
the commutation relations

* * 1 * ab * )%
[D”,DD]‘P = —ZRW/ Jab‘P—Zl—'Uw] D,{lp,
* * 1 * ab_ * Ax o
[Dﬂ’ DD]T = ZR”D ‘P(Fab - 2F[ﬂl’] D}L‘P, (98)
where
* b * * * * *
RH,,a = 6ﬂwyab - apw,,“b + a)ﬂacwwb - g)yacwﬂcb (99)

In this way, we end up with the final form of the
acceleration vector describing a nongeodesic motion to
first order in A

/ h * _
Ao = _% <ﬁ> Ra/iﬂvuﬂb(o) b + O(hz)’ (100)

where, in our conventions,
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* A b * q * ) * 1 x A% p
Rﬂl’ o =eqe O'RI”/ b = aﬂrl/ﬂ - aUFﬂO' + F[l/) Fz/r;
XAk p

_va F;w . (101)
By means of Eq. (78), we can write
¥

- el (y(0) (G)

R/,w o Rﬂvlg + 3G /1<V,4 K[uae] - VD IC[M“])

+ 9GAG® (IC[W)S]IC[MG,] - Ic[upe]lc[yaa]) , (102)

where RW‘G is the Riemann tensor for the Levi-Civita
connection associated with the effective metric G*
[cf. Eq. (C2)]. We note that the above equation shows

that the relation between R”/G and R}w’ld has the same
functional form as the formula relating the Riemann tensor
of Einstein-Cartan theory to the Riemann tensor of general
relativity (see e.g. Eq. (75) in Ref. [42]).

It is important to stress that, despite the presence of a
Lorentz violating term in the Dirac equation (48), our
model predicts a spin precession equation (91) and trans-
lational motion (100) having the same form as in standard
Einstein-Cartan theory (cf. Ref. [12]). Our analysis proves
that this is true in any background geometry, not only the
particular FLRW model discussed in Sec. V below. In
particular, an interesting consequence of Eq. (100) is that it
predicts a gyro-gravitational factor equal to one [as can be
seen from the numerical factor 5™ on the right-hand side of
Eq. (100)], as in the ordinary gravity theories [43], where
this result can be ascribed to the fact that the spinor field
describes particles having equal gravitational and inertial
masses. This assures that the intrinsic spin behaves as if the
particle was a gyroscope. Standard results can be obtained
also for the gyromagnetic factor, as will be pointed out in
the next section.

3. The magnetic dipole moment

The knowledge of the magnetization current permits the
evaluation of the magnetic dipole moment of the Dirac
particle (see e.g. Ref. [44] for the analogous flat-space
case). Let us indeed consider the “magnetization piece” of
the interaction Lagrangian

L =V-GITNyA,. (103)
where A, is an external electromagnetic field and hereafter
we set the electric charge e = 1; such a coupling J*A,
arises naturally in the appropriate setup, i.e., on a stack of

branes in the IKKT model. Bearing in mind Eq. (93a), we
can write

o [ Werw\  Wony
ﬁi\‘}fzzl—h\/—G{D,(A”TG T>—T” TDDA”]. (104)
m p p

Since Yo"V behaves as a tensor under general coordinate
transformations, we can define the vector

Yoy
_ Ty

BY: p "

(105)

and write Eq. (104) in terms of the torsion-free covariant

derivative VﬁG). In this way, we obtain the general
expression

. ] Pohv
=2 m(vi%v Yo vﬁ%)
2m p

ih h
= 2 9,(V=GB") + V=G ——Wsp
2m 2mp

1 )
X <§ F;w + 3’(:[,”6]146) s (106)
where we have exploited Eq. (78) and
F oV A.— o9 ¢
F,=2V,A, = ZVU/ A, —6K,qA (107)

is the electromagnetic field strength.

At this stage, if we suppose that the vector B falls off
rapidly enough at infinity, then the total derivative occurring
in Eq. (106) can be ignored. Let us also consider the
geometric background provided by the FLRW cosmological
solution, which will be introduced in the next section. In this
geometry, we have K, = 0 [cf. Eq. (125) below]. Then,
Eq. (106) becomes

) ih - 1.
£i\r/llt|FLRW =V —Gmwgﬂvq’ <§ F}w> 5 (108)

with £, = ZVEMG)AD] [see Eq. (107)].

Due to the conservation law (50), the proper normali-
zation of the fermions is obtained by absorbing the factor
p~! in the spinor:

x=p" Y. (109)

Then the interaction with the electromagnetic field takes the
standard form

. ih _ 5 1.
E}\I/HFLRW =V _G%)ﬂ’” Z(EF’“’) (110)

and hence, upon working out the nonrelativistic limit of the
last formula, the magnetic dipole moment pp, of the Dirac
particle turns out to be (at tree level)

n

D =5~

o (111)
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yielding for the gyromagnetic ratio the same value as in flat
spacetime, i.e.,
gp = 2. (112)
In the case of a generic background, the interaction
Lagrangian (106) will include also the term Ky, and
hence the magnetic dipole moment will be influenced by
the contributions coming from the contorsion tensor. This
could lead to intriguing implications which might also
permit the detection of torsion effects.

V. A PARTICULAR COSMOLOGICAL
BACKGROUND SOLUTION

The analysis of Sec. IV applies to a generic curved
background provided by the IKKT matrix model. In this
section, we consider a particular background solution M3!
of the matrix model which describes a cosmological FLRW
spacetime [24]. It is worth recalling that we have evaluated
the propagation of a scalar field in this setup in Ref. [29].

The frame defined by the FLRW background is, in
Cartesian coordinates x*[(cf. Egs. (5) and (7)]

E,* = (sinh 1) 82, (113)

&4, = pE°,. (114)

Bearing in mind Eq. (4), the effective metric G,, can be
written in terms of the auxiliary metric

y* = (sinh®n) i, (115)
as
G =PV (116)
where
p* = | sinh g3, (117)

represents the dilaton. The symplectic volume form p,,d*y
can be written, in Cartesian coordinates x*, as [cf. Eq. (6)]

1
M |sinh 4|

(118)

Explicitly, the SO(3, 1)-invariant FLRW effective metric
reads [24]
dsg = G, dx"dx"

= —R?|sinh 5|3dn? + R?|sinh 5|cosh? n d=?

= —d + a?(1)dx2, (119)

where a(t) is the cosmic scale factor and

dx? = dy?* + sinh?y(d6? + sin’0dg?) (120)
the invariant length element on the spacelike hyperboloids
H? (with —c0o <y < 00,0<60 <7, 0< ¢ < 27).

The Weitzenbock connection I')* associated with the
frame E,* is obtained from Eq. (113) as

1

I, =-E*0,E}=—— 8,0, sinh 7, (121)
sinh
which, in turn, leads to
a av 2 1 a
I = r"rpl 0 :WT G- (122)

Here we have exploited Eqgs. (115)—(117), and we have
introduced the SO(3, 1)-invariant cosmic timelike vector
field = = a(r)0,, satisfying the relations [30,45,46]

(R? sinh 77) 9, sinh 5 = —n,, 7", (123a)

G,, 77" = —R?* cosh® 5| sinh | = —a?(1). (123b)

The torsion and contorsion tensors of the Weitzenbdck
connection (121) are given by, respectively,

1
Ty =T, =Tt = Rz—pz(%fﬂ —97,).  (124)
Ky = (1,7 7%, — 1,0
v _5 w' T =1,
— K= O ), (125)

where 7, := G,,7°. Further details on the geometry of the
cosmological background can be found in Appendix C.

As a consequence of Eq. (123a), the Dirac equation
becomes [cf. Eq. (48)]

7
p2R2

y"D,¥ + m¥ +§ ¥ =0, (126)

where we have taken into account that in the FLRW
geometry we have

,C[aﬂy] - O, (127)
owing to Eq. (125) [see also Eq. (22)]. The term involving
the cosmic vector field 7, is responsible for the breaking of
the local Lorentz invariance, which can be attributed to the
dilaton. It is thus clear that the investigation of Sec. IV can
be performed also within the geometrical setup (119).

However, in this case the analysis greatly simplifies due
to Eq. (127).
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VI. CONCLUSIONS

In this paper, we have examined the evolution of a Dirac
particle on a generic curved 3 4 1-dimensional background
brane within the IKKT matrix model. This is nontrivial due
to the nonstandard form of the fermionic action and the
absence of manifest local Lorentz invariance. We show that
despite the different origin, the fermionic action differs from
the one in general relativity only through a coupling to the
totally antisymmetric part of the Weitzenbock (con)torsion,
which is determined by the effective frame. This extra term
vanishes on a specific cosmological background [24], where
the propagation of scalar fields was studied in [29].

We then examine the coupling of fermions in the present
model in more detail by means of the JWKB approximation
scheme. This permits one to analyze first-order nontrivial
quantum corrections characterizing the dynamics of the
fermion. Despite the different origin of the action, both the
spin precession and the translation motion assume the same
form as in Einstein-Cartan theory. More specifically, we
have shown that our Egs. (91) and (100) are analogous to the
equations of motion governing the dynamics of a Dirac
fermion in a Riemann-Cartan spacetime. As a consequence,
we find a gyro-gravitational factor in agreement with the
predictions of standard gravity models. On the other hand,
the gyromagnetic ratio assumes the usual (tree-level) value
only if we consider the particular case of the FLRW
background geometry (119), whereas in the most general
situations it receives contributions originating from the
(totally antisymmetric part of the) contorsion tensor of
the Weitzenbock connection. This should lead to observable
physical consequences on nontrivial backgrounds, which in
principle could be tested experimentally. We leave a detailed
assessment of such effects to future work.
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APPENDIX A: OUR CONVENTIONS
FOR THE DIRAC MATRICES

We employ the following conventions for the Dirac
matrices:
},u — 8{lﬂ}/ﬂ’
{r.v"} =211,
{},,M’ 7”} - ZGMD ﬂv
yt = 0y,
)P =1,

{r.ry=0={r.y}. (A1)

where the matrices y“ read as

. T 0 . 0 ol
0 — , a_— i ~ . (A2
Y l<0 _ﬂ> Y l(_ga 0> (A2)

the Pauli matrices being

ol V) B O R O
(A3)

Moreover, the fifth (flat) Dirac matrix reads as

7/5_<O 1]>.
10

Lastly, it is worth noting that with our conventions we have

(A4)

(P ¥)" = ¥ e,
(IPP)" = iPY,
(iPc¥)" = iPoY, (AS5)

where we recall ¥ = W70 and o9 = iylaytl.

APPENDIX B: MASS TERM FROM FUZZY
EXTRA DIMENSIONS

We briefly discuss the origin of mass terms for fermions in
the IKKT model. Since the fermions in this model are
(matrix-valued) Majorana-Weyl spinors of SO(9,1), no
mass term for the fermions is allowed in the action.
However, fermions may acquire a mass through the
Higgs effect in a nontrivial vacuum. This is where the six
“transversal” matrices 743, A =4, ...,9 enter the stage:
they play the role of scalar fields

P = TAS3,

in the (equivalent) formulation of the IKKT model as
noncommutative A =4 SYM on M?3>! [note that this is
a statement for the action; the background M3! need not
be supersymmetric or Bogomol'nyi-Prasad-Sommerfield
(BPS)] [47]. Now assume that these scalar fields acquire
nontrivial VEV’s

A=1,..6 (B1)

(") == KA £0, A=1,...6, (B2)
for K4 being generators of some fuzzy space K, such as
fuzzy S%, of fuzzy CP%. At the classical level, this can be
achieved e.g. by adding a suitable cubic term to the
potential, cf. Refs. [48,49]. At the quantum level, such
backgrounds might arise even without adding such terms by
hand. Assuming such a vacuum, the Yukawa couplings of
K* contained in the fermionic action (30) lead to terms of
the form

046021-12



FERMIONS ON CURVED BACKGROUNDS OF MATRIX MODELS PHYS. REV. D 107, 046021 (2023)

G A N 4 <. A the analysis of 3 + 1-dimensional fermions governed by the
§ = Tr¥y,[17.¥] /d yPu(y) ¥ibA K% %), (B3) Lagrangian (31) in the presence of an extra mass term.

APPENDIX C: MORE ON THE COSMOLOGICAL

We can then expand the fermions—and any other fields—in SOLUTION

terms of harmonics on K. Rewritten in terms of the 3 + 1- In this appendix, we give some further details regarding
dimensional fermions, it amounts to a mass term coupling  the cosmological background solution (119).

the four Weyl or Majorana fermions in A" = 4 SYM; for The torsion and contorsion tensors of the Weitzenbock

details we refer to the literature [49,50]. This is what we connection (121) have been given in Egs. (124) and (125),
have assumed in this paper, where we have proceeded with ~ respectively. They satisfy the following useful relations [30]:

1
T/)”,,—Tuﬂp = R4_p4 (_T()'Tl/ + GO’I/T”T ) T T(m ’

3
KﬂpyKl’”ﬂ = R4—/)4 T6,

1 1
_E (TP”GTWP + Tl’ﬂvTUﬂp) - KﬂpuKPHU - _R4—p4 (2TUTU + G"”Tﬂfﬂ)’

_ 9
2/) zaapaup :WTO'TIJ?
3 1 cosh?y
Ogp=——44+-——"7—], C1
p=ap 2R2< +2sinh211> (1)

where Ogp = —|G|7'/20,(|G|"/*G"0,p) and we recall 0=0,1,, -0, +1, T, —I,T,"
7, = G770 0=09,0,* -0+, —T,,'T," (C5)

The Riemann and Ricci tensors for the Levi-Civita
connection associated with the effective metric G*¥ are

defined, in terms of Christoffel symbols F(G>W’1, as

and obtain the tensorial equations

Rt = =VIK, ot + VIOK = I, Ko + Ky K

R, =00 4_9 0 *410) @) r o
o —MF(G>:;F(G):”/” " " " (CZ) va = _vflG>Kvg” + VL(/G)K - }C ”IC p + K ﬂKﬂé6,
R =R\, = aﬂr(G)mﬂ _ abr(c)wﬂ + r(G)Wﬂr(G)Wﬂ ' (€0
- F(G),,p”F(G)M/’, (C3) using
Ku” =T, atp. (C7)

respectively. In Riemann normal coordinates at p € M,

this simplifies using (19) as In particular, the explicit expression of the Ricci tensor

- reads as
R i a( _IC i)_a(ﬂﬂi_lc;mﬂ)a 3 1 1
- _ 2 2
Rus = 0,(C = Ko?) = 0,0 = K). (C4)  Roo =5 aga®fo t5 ap Gue (6 = cothy). (C8)
Now we exploit the fact that the curvature of the
Weitzenbdck connection vanishes, For further details we refer the reader to Ref. [30].
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