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We discuss the propagation of fermions on generic, curved branes in Ishibashi-Kawai-Kitazawa-
Tsuchiya-type matrix models. The Dirac operator can be understood either in terms of a Weitzenböck
connection, or in terms of the Levi-Civita connection with an extra torsion term. We discuss in detail the
coupling of spin to the background geometry using the Jeffreys-Wentzel-Kramers-Brillouin approximation.
Despite the absence of local Lorentz invariance in the underlying Ishibashi-Kawai-Kitazawa-Tsuchiya
framework, our results agree with the expectations of Einstein-Cartan theory, and differ from general
relativity only by an extra coupling to the totally antisymmetric part of the torsion. The case of Friedmann-
Lemaître-Robertson-Walker cosmic background solutions is discussed as a special case.
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I. INTRODUCTION

Reconciling gravity with quantum mechanics remains
one of the outstanding problems in theoretical physics. One
of the proposed approaches towards this goal is provided by
the Ishibashi-Kawai-Kitazawa-Tsuchiya (IKKT) matrix
model, which was introduced in the context of string
theory [1]. In this framework, spacetime arises as a
branelike solution, with intrinsic quantum structure. The
description of the effective metric in this framework is by
now well understood [2,3]. However, the coupling of
fermions to such a background geometry has not yet been
studied in detail. This paper is dedicated to fill this gap.
From a formal point of view, the fermions in the IKKT

model are governed by an action which is completely fixed
by supersymmetry, and which is not equivalent to the
coupling of fermions to gravity in general relativity.
However the distinction turns out to be subleading and
rather subtle, and a proper assessment requires a careful
analysis going beyond the level of point particles.
The relativistic description of elementary particles and

extended objects in a given gravitational field has a long
history. The dynamics of a spin-1=2 fermion can be
addressed by generalizing the Dirac equation to curved
spacetimes, as was first carried out by Fock, Ivanenko, and
Weyl in 1929 in the framework of general relativity (see

Ref. [4] for a modern approach to this topic). The analysis in
the case of the Einstein-Cartan theory and the related
Riemann-Cartan spacetime was performed afterwards. In
this context, it is found that the spin of the fermion couples
to (the totally antisymmetric part of) the contorsion, i.e., the
non-Riemannian part of the connection representing the
geometric counterpart of the spin [5,6]. On the other hand,
the classical motion of a finite-size body endowed with a
macroscopic angular momentum (usually referred to as
“spin,” despite its completely classical nature) in general
relativity is ruled, in the so-called pole-dipole approxima-
tion, by the Mathisson-Papapetrou-Dixon equations [7–9].
The main consequence brought in by the underlying spin-
gravity coupling is that the particle orbit differs from a
geodesic and its spin undergoes a precession motion. For
more details about the modern applications of Mathisson-
Papapetrou-Dixon equations in gravity theories we refer the
reader to Ref. [10] and references therein.
Due to the formal analogy between the macroscopic

angular momentum of an extended object and the quantum
spin of an elementary particle, a link between the classical
and quantum dynamics can be established when a certain
semiclassical limit is invoked. Indeed, the main features
of the former can be recovered from the relativistic
Dirac equation, framed either in general relativity or
Einstein-Cartan theory, by exploiting either the Jeffreys-
Wentzel-Kramers-Brillouin (JWKB) approximation or the
Foldy-Wouthuysen approach [11–17]. This scheme can be
further enlarged by considering higher-spin fields and, in
particular, it turns out that the spin precession depends on
the magnitude of the spin vector [18].
In this paper, we evaluate the propagation of a spin-1=2

particle in a generic curved background provided by the
IKKT matrix model. The ensuing motion is investigated
starting from a Dirac-like action and by exploiting a
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semiclassical particle limit, which is worked out by means
of the JWKB approximation. First, we show that the
fermionic action in the matrix model differs from the
standard form in general relativity only by an extra coupling
to the dilaton and to the totally antisymmetric part of the
Weitzenböck connection associated with the effective frame
defined by the matrix model background. Based on this
action, we show that the dynamics of the fermion at the first
nontrivial order of the JWKB approximation does not
contradict the standard expectations of gravity theories
(i.e., general relativity or Einstein-Cartan model). In fact,
in the most general setting, the IKKT pattern predicts that
both the translation and the rotational motion of the Dirac
particle have the same form as the dynamical equations of a
spin-1=2 fermion in a Riemann-Cartan spacetime. This is a
nontrivial result, because local Lorentz invariance is not
manifest in the IKKT framework.
The plan of the paper is as follows. After having outlined

in Sec. II the properties of the general geometric framework
employed, the semiclassical Dirac-like action for fermions
evolving on a generic curved background of the IKKT
matrix model is analyzed in Sec. III. Then, the dynamics of
the Dirac fermion is evaluated in Sec. IV by means of the
JWKB approach. The particular background represented by
the cosmological Friedmann-Lemaître-Robertson-Walker
(FLRW) spacetime is considered in Sec. V. Last, we draw
our conclusions in Sec. VI. Supplementary information is
provided in the appendices.
Notations.—We use metric signature ð−;þ;þ;þÞ and

units G ¼ c ¼ ℏ ¼ 1. However, for the sake of clarity, in
some cases we write explicitly ℏ terms. α; β;… ¼ 0;…; 3
and i; j;… ¼ 1; 2; 3 are coordinate indices, whereas
a; b;… ¼ 0̂;…; 3̂ and â; b̂;… ¼ 1̂; 2̂; 3̂ are tetrad indices.
The flat metric is indicated by ηab¼ηab¼diagð−1;1;1;1Þ.
Round (respectively, square) brackets around tensor indi-
ces stand for the usual symmetrization (respectively,
antisymmetrization) procedure, e.g. AðijÞ ¼ 1

2
ðAij þ AjiÞ

[respectively, A½ij� ¼ 1
2
ðAij − AjiÞ].

II. THE GENERAL GEOMETRIC FRAMEWORK

In this section, we provide the essential details of our
geometrical framework. We consider Yang-Mills matrix
models such as the IKKTmodel [1], defined by an action of
the structure

S½T;Ψ� ¼ 1

g2
Trð½TA; TB�½TA; TB� þ Ψ̄ΓA½TA;Ψ�Þ: ð1Þ

Here the TA ðA ¼ 0;…; D − 1Þ are Hermitian matrices and
Ψ are fermionic matrices described below. We want to study
the propagation of fermions on some given background
fTAg in the semiclassical regime, where the backgrounds
can be described as symplectic manifolds M embedded in
target space via

TA∶ M ↪ RD ð2Þ

and all commutators are replaced by Poisson brackets
½:; :� ∼ if:; :g. Moreover, we restrict ourselves for simplic-
ity to 3þ 1-dimensional branes embedded along the first
four matrix directions labeled by a ¼ 0;…; 3, setting the
remaining matrices to zero. An introduction and motiva-
tion for this framework can be found in Refs. [2,19], see
also e.g. [20–29] for related work in this context.
In the semiclassical regime, the effective metric on such a

background is determined by the kinetic term for fluctua-
tions in the matrix model, which can be written as1

S½ϕ� ∼ −
Z
M

dy0…dy3 ρMγμν∂μϕ∂νϕ

¼ −
Z
M

d4y
ffiffiffiffiffiffiffiffiffiffi
jGμνj

q
Gμν

∂μϕ∂νϕ: ð3Þ

Here

γμν ¼ EaμEbνηab; Gμν ≔
1

ρ2
γμν; ð4Þ

define an auxiliary and the effective metric on M,
respectively, in terms of the “Poisson” frame

Eaμ ¼ fTa; yμg ð5Þ
in local coordinates yμ. The conformal factor or dilaton ρ is
defined by

ρ2 ¼ ρM
ffiffiffiffiffiffiffiffiffi
jγμνj

p
; ð6Þ

where ρM is the symplectic density on M. This motivates
one to define the effective frame Eaμ by absorbing the
dilaton ρ,

Eaμ ¼ ρ−1Eaμ; ð7Þ

Gμν ¼ EaμEbνηab; ð8Þ

as well as the inverse frames Ea
μ and Ea

μ through

Ea
μEb

μ ¼ δab ¼ Ea
μEb

μ ð9Þ

so that

Gμν ¼ ηabEa
μEb

ν; ð10Þ

γμν ¼ ηabEa
μEb

ν: ð11Þ

1This action applies directly to transversal fluctuations
TA → TA þΦA for A ¼ 4;…; 9 of the background, which are
interpreted as scalar fields on M. However the same metric Gμν

also governs tangential fluctuations Ta → Ta þAa of the back-
ground, which describe gauge fields on M [2].
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The Weitzenböck connection Γνρ
μ associated with the

frame Ea
μ is defined by the condition

0 ¼ ∇νEa
μ ¼ ∂νEa

μ þ Γνρ
μEa

ρ: ð12Þ

This connection has a vanishing curvature, but nonvanish-
ing torsion and contorsion tensors, which are given by

Tρσ
μ ¼ Γρσ

μ − Γσρ
μ; ð13Þ

Kμν
σ ¼ 1

2

�
Tμν

σ þ Tσ
μν − Tν

σ
μ

�
: ð14Þ

Due to the specific form (5) of the frame, their traces are
given by [30]

Kμσ
μ ¼ Tμσ

μ ¼ 2

ρ
∂σρ: ð15Þ

The Levi-Civita connection ΓðγÞ
μν

σ for the metric γμν is

ΓðγÞ
μν

σ ¼ 1

2
γσρð∂μγρνþ ∂νγρμ− ∂ργμνÞ ¼ Γμν

σ −Kμν
σ; ð16Þ

and it permits one to write

∇μVν ¼ ∇ðγÞ
μ Vν þ Kμρ

νVρ; ð17Þ

where ∇ðγÞ
μ Vν ¼ ∂μVν þ ΓðγÞ

μρ
νVρ.

The Levi-Civita connection ΓðGÞ
μν

σ for the effective
metric Gμν is obtained as

ΓðGÞ
μν

σ ¼ 1

2
Gσρð∂μGρν þ ∂νGρμ − ∂ρGμνÞ

¼ 1

ρ
ðδσν∂μρþ δσμ∂νρ − γμνγ

σρ
∂ρρÞ

þ 1

2
γσρð∂μγρν þ ∂νγρμ − ∂ργμνÞ; ð18Þ

which together with Eq. (16) gives

ΓðGÞ
μν

σ ¼ Γ̃μν
σ −Kμν

σ: ð19Þ

Here

Γ̃μν
σ ≔ Γμν

σ þ 1

ρ
δσν∂μρ; ð20Þ

T μν
σ ¼ Γ̃μν

σ − Γ̃νμ
σ ¼ Tμν

σ þ 1

ρ
ðδσν∂μρ − δσμ∂νρÞ; ð21Þ

Kμν
σ ¼ 1

2

�
T μν

σ þ T σ
μν − T ν

σ
μ

�

¼ Kμν
σ þ 1

ρ

�
GμνGσρ

∂ρρ − δσμ∂νρ

�
¼ −Kμ

σ
ν ð22Þ

are the Weitzenböck connection, the torsion, and the con-
torsion tensors of the effective frame, respectively [30].
Hereafter, calligraphic fonts or a tilde indicate quantities
related to the effective frame Ea

μ. The Weitzenböck con-
nection associated with the effective frame

∇̃νEa
μ ¼ 0 ð23Þ

is given explicitly using Eq. (20) by

∇̃μVσ ¼ ∇μVσ þ
�
1

ρ
∂μρ

�
Vσ ¼ ∇ðGÞ

μ Vσ þKμκ
σVκ;

∇̃μVσ ¼ ∇μVσ −
�
1

ρ
∂μρ

�
Vσ ¼ ∇ðGÞ

μ Vσ −Kμσ
κVκ; ð24Þ

where ∇ðGÞ
μ Vν ¼ ∂μVν þ ΓðGÞ

μρ
νVρ.

III. FERMIONS IN IKKT MODEL

In this section, we study the semiclassical geometric
form of the Dirac-like action for fermions in the IKKT
matrix model on a generic curved background. The
discussion applies to generic noncommutative branes
embedded through the first 3þ 1 matrices as described
in Sec. II.2 This setup includes the case of covariant
quantum spaces [24,30], which, in turn, encompass the
special FLRW cosmic background which will be consid-
ered in Sec. V.

A. Preliminaries

We first establish the relation between the Cartan
formulation of Riemannian geometry and the present
framework based on the Weitzenböck connection. Let
ω̂ab ¼ ω̂μabdyμ ¼ −ω̂ba be the torsion-free Levi-Civita
spin connection associated with the effective metric Gμν.
Starting from the first Cartan structure equation [31]

dEa ¼ −ω̂a
b ∧ Eb; ð25Þ

we obtain

T μν
a ¼ ω̂ν

a
bEb

μ − ω̂μ
a
bE

b
ν ¼ ω̂ν

a
μ − ω̂μ

a
ν; ð26Þ

where we have used the fact that the torsion of the
Weitzenböck connection is given by the exterior derivative
of the vielbein, which yields

2It turns out that the results also apply to 3þ 1-dimensional
branes with generic embedding in matrix models.
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T a ¼ 1

2
T μν

adyμ ∧ dyν ¼ 1

2

�
∂μEa

ν − ∂νEa
μ

�
dyμ ∧ dyν:

ð27Þ

The above relation represents the torsion two-form of the
Weitzenböck connection of the effective frame. Performing
a cyclic permutation of the indices in Eq. (26), we obtain

Kμab ¼ ω̂μab; ð28Þ

which provides the relation between the Levi-Civita spin
connection and the contorsion tensor of the Weitzenböck
connection of the effective frame. This is easily seen to be
consistent with the standard expression for the Levi-Civita
spin connection

ω̂μ
ab ¼ Eaν∇ðGÞ

μ Eb
ν: ð29Þ

Of course, Eq. (28) holds only for the effective frame E
underlying the Weitzenböck connection and does not allow
local Lorentz transformations; the extension to general
frames will be discussed in the next section.

B. The Lagrangian

The semiclassical action for a spinor in Yang-Mills
matrix models can be written in arbitrary local coordinates
yμ as [cf. Eq. (1)]

S ¼ TrΨ̄γa½Ta;Ψ� ∼
Z

d4y ρMðyÞ Ψ̄iγaEaμ
∂μΨ: ð30Þ

Here Ta is the background solution of the matrix model,
and the symbol ∼ indicates the semiclassical limit, where
commutators are replaced by Poisson brackets. Moreover,
Ψ is a matrix-valued spinor of SOðDÞ (ignoring possible
non-Abelian gauge fields to simplify the notation), Ψ̄ ¼
Ψ†γ0̂ (γ0̂ being the flat 0th Dirac matrix, see Appendix A
for the conventions regarding Dirac matrices used in this
paper), and ρMd4y is the symplectic volume form.
In the special case of the IKKT model with D ¼ 9þ 1,

the gamma matrices are those of SOð9; 1Þ. We can then
realize the aforementioned 3þ 1-dimensional spacetime in
terms of the first 3þ 1 components Ta, setting the
remaining TA ¼ 0 for A ¼ 4;…; 9. The matrix model then
reduces to noncommutative N ¼ 4 SYM on a 3þ 1-
dimensional spacetime brane M3;1. The transversal direc-
tions will accommodate fuzzy extra dimensions, which are
important for introducing mass terms (see Appendix B for
further details), as well as an induced Einstein-Hilbert
action for gravity [26].
We note that the action (30) is written in the case of

Minkowski signature, whereas the Euclidean version
involves the obvious replacement Ψ̄ → Ψ†. The (semiclass-
ical) Lagrangian in Eq. (30) can also be written as

L¼ i
2
ρM½Ψ̄γaEa

μ
∂μΨ− ð∂μΨ̄ÞγaEa

μΨ�þ iρρMmΨ̄Ψ; ð31Þ

where we have also introduced a mass term following the
line of reasoning of Appendix B.
The most striking feature of this fermionic action is that

the spin connection seems to be “missing” in the matrix
Dirac operator

γa½Ta;Ψ� ∼ iγaEaμ
∂μΨ ¼ iγaEa

μ
∂μΨ: ð32Þ

However, we can rewrite the Lagrangian (31) in terms of
the standard covariant derivative for spinors, which reads as
(see e.g. Refs. [6,31,32])

D̂μΨ ¼
�
∂μ −

i
2
ω̂μ

bcΣbc

�
Ψ; ð33Þ

where ω̂μ
bc is the torsion-free Levi-Civita spin connection

associated with the effective metric Gμν [see Eq. (29)], and

Σab ¼
i
4
½γa; γb� ð34Þ

is the spinor representation of the generators of the Lorentz
group. Bearing in mind Eqs. (7), (28), and (33), we find

γaEa
μ
∂μΨ ¼ ρ

�
γaEa

μD̂μΨþ i
2
Kμ

bcγaEa
μΣbcΨ

�
: ð35Þ

Using this expression, we can rewrite the Lagrangian (31)
in the form

L ¼ E
ρ

�
i
2
ðΨ̄γμD̂μΨ − ðD̂μΨ̄ÞγμΨÞ þ imΨ̄Ψ

−
1

4
Kμ

bcΨ̄fγμ;ΣbcgΨ
�
; ð36Þ

where we have defined

γμ ≔ Ea
μγa; ð37Þ

and

E ≔ detðEa
μÞ ¼

ffiffiffiffiffiffiffi
−G

p
¼ ρMρ

2; ð38Þ

with G ≔ detðGμνÞ. In terms of the Lagrangian (36), the
action of the spinor field reads

S ¼
Z

d4yL: ð39Þ

It is worth noting that the Eq. (36) mirrors, up to the
factor 1=ρ, the Dirac Lagrangian in a Riemann-Cartan
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spacetime [6]. In fact, upon working out the anticommu-
tator fγμ;Σbcg, it can be written as

L ¼ E
ρ

�
i
2
ðΨ̄γμD̂μΨ − ðD̂μΨ̄ÞγμΨÞ þ imΨ̄Ψ

−
i
4
K½αβγ�Ψ̄γαγβγγΨ

�
: ð40Þ

Moreover, the totally antisymmetric contorsion term can
be written on-shell [i.e., for backgrounds (2) which satisfy
the equations of motion of the matrix model] in terms of a
gravitational axion ρ̃ as [33]

K½αβγ�γαγβγγ ¼ −
1

6
γμγνγκε

μνκσρ−2∂σρ̃: ð41Þ

At this stage, it is useful to admit general (non-parallel)
frames eaμ via

ηabeaμebν ¼ Gμν ð42Þ

so that the spinor Ψ is allowed to transform as usual under
local Lorentz transformations (we note that this step is
only possible in the effective semiclassical description of
the matrix model under consideration here, and allows a
more convenient description of the fermionic action,
similar as in teleparallel gravity [34]). Correspondingly,
we can introduce the following spin connection

ω̃μ
ab ¼ eaν∇̃μebν ¼ ω̂μ

ab −Kμ
ab; ð43Þ

where ω̂μ
ab ¼ eaν∇ðGÞ

μ ebν is the Levi-Civita spin connec-
tion associated with the general frame eaν and Kμ

ab the
contorsion tensor of the Weitzenböck connection Γ̃μν

λ

[note that we are employing for the Levi-Civita spin
connection the same symbol as in Eq. (29); this should not
cause confusion, as henceforth we will always refer to the
newly introduced ω̂μ

ab]. The associated spinor covariant
derivative is

D̃μΨ¼
�
∂μ −

i
2
ω̃μ

abΣab

�
Ψ¼ D̂μΨþ i

2
Kμ

abΣabΨ; ð44Þ

where D̂μΨ can be read off from Eq. (33). This is nothing
but the extension of the Weitzenböck connection to
arbitrary frames; note that the spin connection (43)
vanishes in the physical frame due to Eq. (23), i.e., when
we make the replacement

eaμ → Ea
μ: ð45Þ

By means of the formulas (42)–(44), the Lagrangian
function (40) assumes, in the general frame eaμ, the form

L ¼ e
ρ

�
i
2
ðΨ̄γμD̃μΨ − ðD̃μΨ̄ÞγμΨÞ þ imΨ̄Ψ

�

¼ e
ρ

�
i
2
ðΨ̄γμ∂μΨ − ð∂μΨ̄ÞγμΨÞ þ imΨ̄Ψ

þ i
4
ω̃½αβγ�Ψ̄γαγβγγΨ

�
; ð46Þ

where, similarly to Eqs. (37) and (38),

γμ ≔ eaμγa; ð47aÞ

e ≔ detðeaμÞ ¼
ffiffiffiffiffiffiffi
−G

p
: ð47bÞ

Note the Lagrangian (46) reduces to Eq. (31) for the
parallel frame Ea

μ, where ω̃μ
ab vanishes. Furthermore, it is

worth pointing out that we have used for the Dirac matrices
the same notation as in Eq. (37); no confusion should arise
since from now on we will consider the matrices defined in
Eq. (47a). As a consequence of Eq. (46), the equations of
motion read as

γμD̂μΨþmΨ−
1

4
K½αβγ�γαγβγγΨþρ

2
ð∂μρ−1ÞγμΨ¼ 0; ð48Þ

where the last terms breaks the local Lorentz invariance on
nontrivial backgrounds.
It follows from the Dirac equation (48) and the equality3

D̂μγ
α ¼ 0; ð49Þ

that the effective current ρ−1 Jμ is conserved, i.e.,

∇ðGÞ
μ ðρ−1JμÞ ¼ 0; ð50Þ

where Jμ ≔ Ψ̄γμΨ.

IV. THE PARTICLE LIMIT OF THE DIRAC FIELD

In this section, we will work out the particle limit of the
Dirac field by applying the JWKB approximation to the
quantum-mechanical Dirac equation (48). This means that
we assume the validity of the semiclassical limit, where the
particle is characterized by a worldline and its spin by a
polarization vector, and the gravitational field is supposed
to be slowly varying.
The classical motion of the fermionic field is dealt with

in Sec. IVA, while Sec. IV B is devoted to the study of the
quantum dynamics.

A. The classical trajectory

Following the recipe of the JWKB scheme (see e.g.
Refs. [11–15,35,36]), we adopt the ansatz where the

3It is worth pointing out that also the relation D̃μγ
α ¼ 0 holds.
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solution Ψ of the Dirac equation can be written as a phase
factor and a spinor amplitude via the following series:

ΨðxÞ ¼ exp

�
−
i
ℏ
WðxÞ

� X∞
n¼0

ℏnψ ðnÞðxÞ; ð51Þ

where WðxÞ is a real-valued function and ψ ðnÞðxÞ a spinor.
If we insert the above formula in Eq. (48) and equate the
coefficients involving the same powers of ℏ, we obtain at
leading order and to next-to-leading order

ðiγμ∂μW −mÞψ ð0Þ ¼ 0; ð52aÞ

ðiγμ∂μW −mÞψ ð1Þ ¼ γμD̂μψ
ð0Þ −

1

4
K½αβγ�γαγβγγψ ð0Þ

þ ρ

2
ð∂μρ−1Þγμψ ð0Þ; ð52bÞ

respectively. Note that in order to obtain the above equations
it is necessary to replace the mass m in Eq. (48) by m=ℏ.
The solvability condition detðiγμ∂μW −mÞ ¼ 0 of

Eq. (52a) implies the Hamilton-Jacobi equation for a
relativistic nonspinning particle

Gμνpμpν ¼ −m2; ð53Þ

where pμ ¼ −∂μW. The normalized timelike vector

uα ¼
−∂αW

jGμν
∂μW∂νWj1=2 ¼

1

m
pα; ð54aÞ

Gμνuμuν ¼ −1; ð54bÞ

represents the tangent vector (i.e., the four-velocity) to the
worldlines orthogonal to the family of spacelike hyper-
surfaces W ¼ constant having constant phase. By standard
arguments [37], one can prove that these trajectories form a
congruence of timelike geodesics

uα∇ðGÞ
α uβ ¼ 0; ð55Þ

which is rotation free

Ωαβ ≔ ∇ðGÞ
½β uα� ¼ 0: ð56Þ

Therefore, to zero order in ℏ, we obtain the completely
classical result according to which the motion of the Dirac
fermion is not influenced by the spin, i.e., the particle
follows a geodesic trajectory of the background geometry.
The remaining kinematical properties of the geodesic
congruence are embodied by

∇ðGÞ
β uα ¼

1

3
θ̂Pαβ þ σ̂αβ; ð57Þ

where

σ̂αβ ¼ ∇ðGÞ
ðβ uαÞ −

1

3
θ̂Pαβ; ð58aÞ

θ̂ ¼ ∇ðGÞ
β uβ; ð58bÞ

Pαβ ¼ Gαβ þ uαuβ; ð58cÞ

represent the shear tensor, the expansion scalar, and the
transverse metric (fulfilling the role of a projector onto the
space orthogonal to uα), respectively.
It follows from Eq. (52a) that the spinor ψ ð0Þ describes

the positive-energy solutions of the flat-space Dirac equa-
tion and hence it assumes the general form

ψ ð0ÞðxÞ ¼ β1ðxÞuð1ÞðxÞþβ2ðxÞuð2ÞðxÞ; β1ðxÞ;β2ðxÞ∈C;

ð59Þ

where the spin-up and spin-down spinors are, in the Dirac
basis,4 [38]

uð1Þ ¼
�
p0̂ þm
2m

�1=2

2
666664

1

0

p3̂=ðp0̂ þmÞ
ðp1̂ þ ip2̂Þ=ðp0̂ þmÞ

3
777775
; ð60aÞ

uð2Þ ¼
�
p0̂ þm
2m

�1=2

2
666664

0

1

ðp1̂ − ip2̂Þ=ðp0̂ þmÞ
−p3̂=ðp0̂ þmÞ

3
777775
; ð60bÞ

respectively, and pa ¼ eaμpμ.
The condition for the existence of a nontrivial solution

ψ ð1Þ of Eq. (52b) is that all solutions of the corresponding
transposed homogeneous equation are orthogonal to the
inhomogeneity (Fredholm alternative, see Refs. [11,12,39]
for further details). Therefore, the solvability conditions of
Eq. (52b) yield

ūð1Þ
�
γμD̂μψ

ð0Þ−
1

4
K½αβγ�γαγβγγψ ð0Þ þ ρ

2
ð∂μρ−1Þγμψ ð0Þ

�
¼ 0;

ð61aÞ

4Here the SOð9; 1Þ spinors of the matrix model are decom-
posed in terms of 3þ 1-dimensional spinors, as explained in
Appendix B.
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ūð2Þ
�
γμD̂μψ

ð0Þ−
1

4
K½αβγ�γαγβγγψ ð0Þ þ ρ

2
ð∂μρ−1Þγμψ ð0Þ

�
¼ 0;

ð61bÞ

where we have exploited Eq. (59).
At this stage, we restrict our attention to an arbitrary but

fixed worldline of the geodesic congruence admitting uα as
the tangent vector field [cf. Eq. (55)]. In this setting, we can
write on the worldline

e0̂
α ¼⋆ uα; ð62aÞ

uμ∇ðGÞ
μ eaα ¼⋆ 0; ð62bÞ

ω̂μ
ab ¼⋆ 0; ð62cÞ

the star symbol standing for an equality valid on the
worldline (we will omit the star if an equation is valid in
any frame). In Eq. (62), we have adjusted the vector e0̂

α

parallel to the velocity uα; in Eq. (62b), we have parallelly
propagated the tetrad along the chosen uα direction so that,
consistently with Eq. (55), the covariant derivative (with
respect to the Christoffel symbols ΓðGÞ

μν
λ) of eaα vanishes

on the worldline; lastly, Eq. (62c) stems from Eq. (62b). It is
thus clear that the choice (62) amounts to introducing the
particle’s rest frame and the related Fermi normal coordi-
nates [40,41].
In the particle’s rest frame, the four-momentum pa is such

that pa ¼⋆ ðm; 0Þ and hence Eq. (60) reduces to the rest-frame
positive-energy Dirac spinors

uð1Þ ¼⋆

2
66664

1

0

0

0

3
77775; ð63aÞ

uð2Þ ¼⋆

2
66664

0

1

0

0

3
77775: ð63bÞ

Furthermore, bearing in mind Eqs. (55) and (57) jointly with
Eqs. (62) and (63), we obtain the following relations:

ebα∂αp0̂¼⋆ 0; ð64aÞ

e0̂
α
∂αpâ ¼⋆ 0; ð64bÞ

eb̂
α
∂αpâ ¼⋆ meâϵ eb̂

α

�
σ̂ϵα þ

1

3
θ̂Pϵα

�
: ð64cÞ

Moreover, from Eq. (63) (hereafter, A; B ¼ 1; 2)

ūðAÞγμuðAÞ ¼⋆ − uμ; ð65aÞ

ūðAÞγμuðBÞ ¼⋆ 0; ðA ≠ BÞ; ð65bÞ

and

ūðAÞγμ∂μuðAÞ ¼⋆ − θ̂=2; ð66aÞ

ūðAÞγμ∂μuðBÞ ¼⋆ 0; ðA ≠ BÞ: ð66bÞ

Lastly, owing to Eqs. (64a) and (64b),

uαD̃αuðAÞ ¼⋆ −
1

4
uαKαβγγ

βγγuðAÞ; ð67Þ

which leads to the generally valid relation

uαD̂αuðAÞ ¼ 0; ð68Þ

upon taking into account Eq. (62c).

B. The quantum dynamics

At this stage, we have all the ingredients to evaluate the
quantum corrections to the fermionic dynamics, i.e., the
corrections due to the wavelike nature of the fermions. After
some preliminary calculations, the spin precession equation
and the translationmotion will be worked out in Secs. IV B 1
and IVB 2, respectively. Lastly, we evaluate the magnetic
dipole moment of the Dirac particle in Sec. IV B 3.
Upon using Eqs. (59), (62c), (65), and (66), the solv-

ability condition (61) leads to generally valid equations

uμ∂μβ1 ¼ −
θ̂

2
β1 −

1

4
K½αβγ�

�
ūð1Þγαγβγγβ1uð1Þ þ ūð1Þγαγβγγβ2uð2Þ

�
−
ρ

2

�
∂μρ

−1
�
β1uμ; ð69aÞ

uμ∂μβ2 ¼ −
θ̂

2
β2 −

1

4
K½αβγ�

�
ūð2Þγαγβγγβ1uð1Þ þ ūð2Þγαγβγγβ2uð2Þ

�
−
ρ

2

�
∂μρ

−1
�
β2uμ; ð69bÞ

describing the propagation of the scalar functions β1, β2 along the geodesic trajectory. Therefore, the propagation equation
for the spinor ψ ð0Þ can be obtained starting from Eqs. (67) and (69), and reads as
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uαD̃αψ
ð0Þ ¼ −

θ̂

2
ψ ð0Þ −

i
2
K½αβ�γσαβuγψ ð0Þ −

ρ

2
ð∂μρ−1Þuμψ ð0Þ;

ð70Þ

where [cf. Eq. (34)]

σαβ ¼ 2Σαβ: ð71Þ

In deriving Eq. (70), we have also taken into account that

uð1Þūð1Þ þ uð2Þūð2Þ ¼ −
γμpμ þ im

2m
≡ Aþ; ð72Þ

with

iAþAþ ¼ Aþ;

AþuðAÞ ¼ −iuðAÞ: ð73Þ

At this stage, let us introduce the normalized spinor
bð0ÞðxÞ via the relations

ψ ð0ÞðxÞ ¼ fðxÞbð0ÞðxÞ;
ib̄ð0Þbð0Þ ¼ 1; ð74Þ

where the real-valued function fðxÞ satisfies [cf. Eq. (59)]

f2ðxÞ ¼ jβ1ðxÞj2 þ jβ2ðxÞj2: ð75Þ

Then, if we employ Eqs. (69) and (75), we find for the
function fðxÞ the propagation equation

uμ∂μf ¼ −
θ̂

2
f −

ρ

2
ð∂μρ−1Þuμf; ð76Þ

whereas for the normalized spinors bð0Þ and b̄ð0Þ we can
write

uαD̃αbð0Þ ¼ −
i
2
K½αβ�γσαβuγbð0Þ; ð77aÞ

uαD̃αb̄ð0Þ ¼
i
2
K½αβ�γb̄ð0Þ σαβuγ; ð77bÞ

once Eqs. (70) and (76) have been exploited.

1. The spin precession equation

It will prove to be useful the introduction of a new
connection. Following Ref. [12], we define the new

affinities Γ
�
μν

λ
and ω

�
μ
ab

as

Γ
�
μν

λ ¼ Γ̃μν
λ þ 2K½νϵ�μGϵλ ¼ ΓðGÞ

μν
λ þ 3K½μνϵ�Gϵλ; ð78Þ

ω
�
μ
ab ¼ ω̃μ

ab − 2K½ab�
μ ¼ ω̂μ

ab − 3K½abϵ�Gϵμ; ð79Þ

with

Γ
�
μν

λ ¼ eaλD
�
μeaν ¼ eaλð∂μeaν þ ω

�
μ
a
be

b
νÞ; ð80Þ

ω
�
μ
ab ¼ eaν∇� μebν ¼ eaνð∂μebν − Γ

�
μν

λ
ebλÞ: ð81Þ

The new connection is compatible with the effective metric,

as ∇� αGμν ¼ 0, and satisfies the following relations:

Vϵ∇� ϵVα ¼ Vϵ∇ðGÞ
ϵ Vα; ð82aÞ

∇� αVα ¼ ∇ðGÞ
α Vα; ð82bÞ

D
�
μγ

α ¼ 0; ð82cÞ

Vα being a generic vector.
Bearing in mind Eqs. (70) and (79), we find for the

spinor ψ ð0Þ

uαD
�
αψ

ð0Þ ¼ −
θ̂

2
ψ ð0Þ −

ρ

2
ð∂μρ−1Þuμψ ð0Þ; ð83Þ

which, in turn, implies that

uαD
�
αbð0Þ ¼ 0;

uαD
�
αb̄ð0Þ ¼ 0; ð84Þ

upon exploiting the propagation equation (76). In other
words, the normalized spinors bð0Þ and b̄ð0Þ are parallelly
propagated along the geodesic path, which represents the
trajectory followed by the particle in the completely
classical limit [see Eq. (52a)], provided that we employ

the new connections Γ
�
μν

λ
and ω

�
μ
ab
.

The spin vector of the Dirac particle can be written via
the JWKB approximation as (see e.g. Refs. [11,12] for
further details)

Sα ¼ Sαð0Þ þ OðℏÞ; ð85Þ

the lowest-order correction being

Sαð0Þ ¼
1

2
εαβγδuβb̄ð0Þσγδbð0Þ; ð86Þ

with

εαβγδ ¼ eaαebβecγedδϵabcd; ð87Þ

where the totally antisymmetric Levi-Civita symbol ϵabcd

is such that, in our conventions, ϵ0123 ¼ 1. The spin
vector (86) satisfies
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uαSαð0Þ ¼ 0;

GαβSαð0ÞS
β
ð0Þ ¼ 1; ð88Þ

and is characterized by the propagation equation

uμ∇� μSαð0Þ ¼ 0; ð89Þ

which can be established by means of Eqs. (55), (82a),

(82c), and (84), jointly with the identity ∇� με
αβγδ ¼ 0.

Therefore, through the new connections (78) and (79),
the lowest-order spin vector (86) is parallelly transported
along the particle’s classical geodesic trajectory. In terms of
the Levi-Civita connection [see Eq. (78)] and the axial-
vector part of the contorsion tensor

Aμ ¼ 1

6
εμαβγK½αβγ�; ð90Þ

Equation (89) implies the spin precession equation

uρ∇ðGÞ
ρ Sμð0Þ ¼ 3εμαλϵAαSð0Þλuϵ: ð91Þ

2. The nongeodesic translational motion

Let us introduce the Gordon decomposition of the
effective Dirac current

ρ−1 Jμ ≡ J μ
M þ J μ

C; ð92Þ

where the magnetization and convection currents can be
obtained starting from the Dirac equation (48) and the
identity (79). Explicitly, J μ

M and J μ
C read as, respectively,

J μ
M ¼ iℏ

2mρ
½D̂νðΨ̄σμνΨÞ þ ρð∂νρ−1ÞΨ̄σμνΨ�

¼ iℏ
2m

D̂ν

�
Ψ̄σμνΨ

ρ

�
; ð93aÞ

J μ
C ¼ ℏ

2mρ

�
ðD̂μΨ̄ÞΨ − Ψ̄D̂μΨ −

3i
2
K½αβγ�Ψ̄σαβGγμΨ

�

¼ ℏ
2mρ

½ðD� μ
Ψ̄ÞΨ − Ψ̄D

� μ
Ψ�: ð93bÞ

By means of the commutation relations for the covariant
derivative operator D̂μ and Eq. (50), it can be shown that
these quantities are conserved, i.e., they satisfy

∇ðGÞ
μ J μ

M ¼ 0; ð94aÞ

∇ðGÞ
μ J μ

C ¼ 0: ð94bÞ

In particular, the torsion-free condition featuring the
operator D̂μ is essential for the evaluation of Eq. (94), as it

guarantees that ½D̂μ; D̂ν�ρ−1 ¼ 0. Physically, J μ
M represents

the curl of the spin density and can be interpreted as a
magnetization current, while J μ

C is a convection four-
current as its spacelike part resembles the three-vector
probability current of Schrödinger theory [11,12].
Due to its physical interpretation, the convection current

J μ
C can be used to define the particle’s translational motion.

Thus, we can define a congruence of timelike curves having
tangent vector vα, which is given by

vα ¼ J α
Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−GμνJ
μ
CJ

ν
C

q ; ð95Þ

which upon exploiting Eqs. (51), (54b), (74), and (84),
yields

vμ ¼ uμ þ ℏ
2m

½ðD� μ
b̄ð0ÞÞbð0Þ − b̄ð0ÞD

� μ
bð0Þ� þ Oðℏ2Þ: ð96Þ

The above formula shows that the spin forces the particle to
follow a quantum corrected trajectory which deviates from
the geodesic motion, which is pursued only at the classical
level [see Eq. (55)]. In fact, we can evaluate the non-
geodesic acceleration aα of the fermion as follows. Let us
start with the following expression:

aα ¼ vβ∇ðGÞ
β vα ¼ vβ∇� βvα ¼ 2vβ∇� ½βvα�

¼ ℏ
m
uβ½ðD� ½βD

�
α�b̄ð0ÞÞbð0Þ − b̄ð0ÞðD� ½βD

�
α�bð0ÞÞ�

− 2vβΓ
�
½βα�

λ
uλ þ Oðℏ2Þ; ð97Þ

where we have exploited Eqs. (54a), (82a), and (84) jointly
with the normalization condition vαvα ¼ −1. The above
formula can be further simplified by exploiting Eq. (78) and
the commutation relations

½D� μ; D
�
ν�Ψ ¼ −

i
4
R
�
μν

ab
σabΨ − 2Γ

�
½μν�

λ
D
�
λΨ;

½D� μ; D
�
ν�Ψ̄ ¼ i

4
R
�
μν

ab
Ψ̄σab − 2Γ

�
½μν�

λ
D
�
λΨ̄; ð98Þ

where

R
�
μν

ab ¼ ∂μω
�
ν
ab − ∂νω

�
μ
ab þ ω

�
μ
ac
ω
�
νc

b − ω
�
ν
ac
ω
�
μc

b
: ð99Þ

In this way, we end up with the final form of the
acceleration vector describing a nongeodesic motion to
first order in ℏ

aα ¼ −
i
2

�
ℏ
2m

�
R
�
αβμνuβb̄ð0Þ σμνbð0Þ þ Oðℏ2Þ; ð100Þ

where, in our conventions,
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R
�
μν

λ

σ ¼ eaλebσR
�
μν

a

b ¼ ∂μΓ
�
νσ

λ
− ∂νΓ

�
μσ

λ þ Γ
�
μρ

λ
Γ
�
νσ

ρ

− Γ
�
νρ

λ
Γ
�
μσ

ρ
: ð101Þ

By means of Eq. (78), we can write

R
�
μν

λ

σ ¼ Rμν
λ
σ þ 3Gϵλ

�
∇ðGÞ

μ K½νσϵ� −∇ðGÞ
ν K½μσϵ�

�

þ 9GϵλGαρ
�
K½μρϵ�K½νσα� −K½νρϵ�K½μσα�

�
; ð102Þ

where Rμν
λ
σ is the Riemann tensor for the Levi-Civita

connection associated with the effective metric Gμν

[cf. Eq. (C2)]. We note that the above equation shows

that the relation between R
�
μν

λ
σ and Rμν

λ
σ has the same

functional form as the formula relating the Riemann tensor
of Einstein-Cartan theory to the Riemann tensor of general
relativity (see e.g. Eq. (75) in Ref. [42]).
It is important to stress that, despite the presence of a

Lorentz violating term in the Dirac equation (48), our
model predicts a spin precession equation (91) and trans-
lational motion (100) having the same form as in standard
Einstein-Cartan theory (cf. Ref. [12]). Our analysis proves
that this is true in any background geometry, not only the
particular FLRW model discussed in Sec. V below. In
particular, an interesting consequence of Eq. (100) is that it
predicts a gyro-gravitational factor equal to one [as can be
seen from the numerical factor ℏ

2m on the right-hand side of
Eq. (100)], as in the ordinary gravity theories [43], where
this result can be ascribed to the fact that the spinor field
describes particles having equal gravitational and inertial
masses. This assures that the intrinsic spin behaves as if the
particle was a gyroscope. Standard results can be obtained
also for the gyromagnetic factor, as will be pointed out in
the next section.

3. The magnetic dipole moment

The knowledge of the magnetization current permits the
evaluation of the magnetic dipole moment of the Dirac
particle (see e.g. Ref. [44] for the analogous flat-space
case). Let us indeed consider the “magnetization piece” of
the interaction Lagrangian

Lint
M ¼

ffiffiffiffiffiffiffi
−G

p
J μ

MAμ; ð103Þ

where Aμ is an external electromagnetic field and hereafter
we set the electric charge e ¼ 1; such a coupling J μAμ

arises naturally in the appropriate setup, i.e., on a stack of
branes in the IKKT model. Bearing in mind Eq. (93a), we
can write

Lint
M ¼ iℏ

2m

ffiffiffiffiffiffiffi
−G

p �
D̂ν

�
Aμ

Ψ̄σμνΨ
ρ

�
−
Ψ̄σμνΨ

ρ
D̂νAμ

�
: ð104Þ

Since Ψ̄σμνΨ behaves as a tensor under general coordinate
transformations, we can define the vector

Bν ≔
Ψ̄σμνΨ

ρ
Aμ; ð105Þ

and write Eq. (104) in terms of the torsion-free covariant

derivative ∇ðGÞ
ν . In this way, we obtain the general

expression

Lint
M ¼ iℏ

2m

ffiffiffiffiffiffiffi
−G

p �
∇ðGÞ

ν Bν −
Ψ̄σμνΨ

ρ
∇ðGÞ

ν Aμ

�

¼ iℏ
2m

∂νð
ffiffiffiffiffiffiffi
−G

p
BνÞ þ

ffiffiffiffiffiffiffi
−G

p iℏ
2mρ

Ψ̄σμνΨ

×

�
1

2
F
�
μν þ 3K½μνϵ�Aϵ

�
; ð106Þ

where we have exploited Eq. (78) and

F
�
μν ¼ 2∇� ½μAν� ¼ 2∇ðGÞ

½μ Aν� − 6K½μνϵ�Aϵ ð107Þ

is the electromagnetic field strength.
At this stage, if we suppose that the vector Bν falls off

rapidly enough at infinity, then the total derivative occurring
in Eq. (106) can be ignored. Let us also consider the
geometric background provided by the FLRW cosmological
solution, which will be introduced in the next section. In this
geometry, we have K½μνϵ� ¼ 0 [cf. Eq. (125) below]. Then,
Eq. (106) becomes

Lint
M jFLRW ¼

ffiffiffiffiffiffiffi
−G

p iℏ
2mρ

Ψ̄σμνΨ
�
1

2
F̂μν

�
; ð108Þ

with F̂μν ¼ 2∇ðGÞ
½μ Aν� [see Eq. (107)].

Due to the conservation law (50), the proper normali-
zation of the fermions is obtained by absorbing the factor
ρ−1 in the spinor:

χ ¼ ρ−1=2Ψ: ð109Þ

Then the interaction with the electromagnetic field takes the
standard form

Lint
M jFLRW ¼

ffiffiffiffiffiffiffi
−G

p iℏ
2m

χ̄σμνχ

�
1

2
F̂μν

�
; ð110Þ

and hence, upon working out the nonrelativistic limit of the
last formula, the magnetic dipole moment μD of the Dirac
particle turns out to be (at tree level)

μD ¼ ℏ
2m

; ð111Þ
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yielding for the gyromagnetic ratio the same value as in flat
spacetime, i.e.,

gD ¼ 2: ð112Þ

In the case of a generic background, the interaction
Lagrangian (106) will include also the term K½μνϵ� and
hence the magnetic dipole moment will be influenced by
the contributions coming from the contorsion tensor. This
could lead to intriguing implications which might also
permit the detection of torsion effects.

V. A PARTICULAR COSMOLOGICAL
BACKGROUND SOLUTION

The analysis of Sec. IV applies to a generic curved
background provided by the IKKT matrix model. In this
section, we consider a particular background solutionM3;1

of the matrix model which describes a cosmological FLRW
spacetime [24]. It is worth recalling that we have evaluated
the propagation of a scalar field in this setup in Ref. [29].
The frame defined by the FLRW background is, in

Cartesian coordinates xμ[(cf. Eqs. (5) and (7)]

Ea
μ ¼ ðsinh ηÞ δaμ; ð113Þ

Ea
μ ¼ ρEa

μ: ð114Þ

Bearing in mind Eq. (4), the effective metric Gμν can be
written in terms of the auxiliary metric

γμν ¼ ðsinh2 ηÞ ημν; ð115Þ

as

Gμν ¼ ρ2 γμν; ð116Þ

where

ρ2 ¼ j sinh ηj3; ð117Þ

represents the dilaton. The symplectic volume form ρMd4y
can be written, in Cartesian coordinates xμ, as [cf. Eq. (6)]

ρM ¼ 1

jsinh ηj : ð118Þ

Explicitly, the SOð3; 1Þ-invariant FLRW effective metric
reads [24]

ds2G ¼ Gμνdxμdxν

¼ −R2j sinh ηj3dη2 þ R2j sinh ηjcosh2 η dΣ2

¼ −dt2 þ a2ðtÞdΣ2; ð119Þ

where aðtÞ is the cosmic scale factor and

dΣ2 ¼ dχ2 þ sinh2χðdθ2 þ sin2θdφ2Þ ð120Þ

the invariant length element on the spacelike hyperboloids
H3 (with −∞ ≤ χ < ∞, 0 ≤ θ < π, 0 ≤ φ < 2π).
The Weitzenböck connection Γνρ

μ associated with the
frame Ea

μ is obtained from Eq. (113) as

Γνλ
μ ¼ −Ea

λ∂νEa
μ ¼ −

1

sinh η
δμλ∂ν sinh η; ð121Þ

which, in turn, leads to

Γα
λβ ¼ γανγβμΓνλ

μ ¼ 1

ρ2R2
ταGλβ: ð122Þ

Here we have exploited Eqs. (115)–(117), and we have
introduced the SOð3; 1Þ-invariant cosmic timelike vector
field τ ¼ aðtÞ∂t, satisfying the relations [30,45,46]

ðR2 sinh ηÞ ∂μ sinh η ¼ −ημντν; ð123aÞ

Gμντ
μτν ¼ −R2 cosh2 ηj sinh ηj ¼ −a2ðtÞ: ð123bÞ

The torsion and contorsion tensors of the Weitzenböck
connection (121) are given by, respectively,

Tρσ
μ ¼ Γρσ

μ − Γσρ
μ ¼ 1

R2ρ2
ðδμστρ − δμρτσÞ; ð124Þ

Kμν
σ ¼ 1

2

�
Tμν

σ þ Tσ
μν − Tν

σ
μ

�

¼ −Kμ
σ
ν ¼

1

R2ρ2
ðGμντ

σ − δσμτνÞ; ð125Þ

where τν ≔ Gνστ
σ . Further details on the geometry of the

cosmological background can be found in Appendix C.
As a consequence of Eq. (123a), the Dirac equation

becomes [cf. Eq. (48)]

γμD̂μΨþmΨþ 3

4

τμ
ρ2R2

γμΨ ¼ 0; ð126Þ

where we have taken into account that in the FLRW
geometry we have

K½αβγ� ¼ 0; ð127Þ

owing to Eq. (125) [see also Eq. (22)]. The term involving
the cosmic vector field τμ is responsible for the breaking of
the local Lorentz invariance, which can be attributed to the
dilaton. It is thus clear that the investigation of Sec. IV can
be performed also within the geometrical setup (119).
However, in this case the analysis greatly simplifies due
to Eq. (127).
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VI. CONCLUSIONS

In this paper, we have examined the evolution of a Dirac
particle on a generic curved 3þ 1-dimensional background
brane within the IKKT matrix model. This is nontrivial due
to the nonstandard form of the fermionic action and the
absence of manifest local Lorentz invariance. We show that
despite the different origin, the fermionic action differs from
the one in general relativity only through a coupling to the
totally antisymmetric part of the Weitzenböck (con)torsion,
which is determined by the effective frame. This extra term
vanishes on a specific cosmological background [24], where
the propagation of scalar fields was studied in [29].
We then examine the coupling of fermions in the present

model in more detail by means of the JWKB approximation
scheme. This permits one to analyze first-order nontrivial
quantum corrections characterizing the dynamics of the
fermion. Despite the different origin of the action, both the
spin precession and the translation motion assume the same
form as in Einstein-Cartan theory. More specifically, we
have shown that our Eqs. (91) and (100) are analogous to the
equations of motion governing the dynamics of a Dirac
fermion in a Riemann-Cartan spacetime. As a consequence,
we find a gyro-gravitational factor in agreement with the
predictions of standard gravity models. On the other hand,
the gyromagnetic ratio assumes the usual (tree-level) value
only if we consider the particular case of the FLRW
background geometry (119), whereas in the most general
situations it receives contributions originating from the
(totally antisymmetric part of the) contorsion tensor of
the Weitzenböck connection. This should lead to observable
physical consequences on nontrivial backgrounds, which in
principle could be tested experimentally. We leave a detailed
assessment of such effects to future work.
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APPENDIX A: OUR CONVENTIONS
FOR THE DIRAC MATRICES

We employ the following conventions for the Dirac
matrices:

γa ¼ Ea
μγ

μ;

fγa; γbg ¼ 2ηab1 ;

fγμ; γνg ¼ 2Gμν 1;

γa† ¼ γ0̂γaγ0̂;

ðγ5Þ2 ¼ 1;

fγ5; γag ¼ 0 ¼ fγ5; γμg; ðA1Þ

where the matrices γa read as

γ0̂ ¼ −i
�
1 0

0 −1

�
; γâ ¼ −i

�
0 σâ

−σâ 0

�
; ðA2Þ

the Pauli matrices being

σ1̂ ¼
�
0 1

1 0

�
; σ2̂ ¼

�
0 −i
i 0

�
; σ3̂ ¼

�
1 0

0 −1

�
:

ðA3Þ

Moreover, the fifth (flat) Dirac matrix reads as

γ5 ¼
�
0 1

1 0

�
: ðA4Þ

Lastly, it is worth noting that with our conventions we have

ðΨ̄γaΨÞ† ¼ Ψ̄γaΨ;

ðiΨ̄ΨÞ† ¼ iΨ̄Ψ;

ðiΨ̄σabΨÞ† ¼ iΨ̄σabΨ; ðA5Þ

where we recall Ψ̄ ¼ Ψ†γ0̂ and σab ¼ iγ½aγb�.

APPENDIX B: MASS TERM FROM FUZZY
EXTRA DIMENSIONS

We briefly discuss the origin of mass terms for fermions in
the IKKT model. Since the fermions in this model are
(matrix-valued) Majorana-Weyl spinors of SOð9; 1Þ, no
mass term for the fermions is allowed in the action.
However, fermions may acquire a mass through the
Higgs effect in a nontrivial vacuum. This is where the six
“transversal” matrices TAþ3; A ¼ 4;…; 9 enter the stage:
they play the role of scalar fields

ϕA ≔ TAþ3; A ¼ 1;…; 6 ðB1Þ

in the (equivalent) formulation of the IKKT model as
noncommutative N ¼ 4 SYM on M3;1 [note that this is
a statement for the action; the background M3;1 need not
be supersymmetric or Bogomol'nyi-Prasad-Sommerfield
(BPS)] [47]. Now assume that these scalar fields acquire
nontrivial VEV’s

hϕAi ≔ KA ≠ 0; A ¼ 1;…; 6; ðB2Þ

for KA being generators of some fuzzy space K, such as
fuzzy S2N of fuzzy CP2

N. At the classical level, this can be
achieved e.g. by adding a suitable cubic term to the
potential, cf. Refs. [48,49]. At the quantum level, such
backgrounds might arise even without adding such terms by
hand. Assuming such a vacuum, the Yukawa couplings of
KA contained in the fermionic action (30) lead to terms of
the form
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S ¼ TrΨ̄γA½TA;Ψ� ∼
Z

d4y ρMðyÞ Ψ̄iΔA½KA;Ψ�: ðB3Þ

We can then expand the fermions—and any other fields—in
terms of harmonics on K. Rewritten in terms of the 3þ 1-
dimensional fermions, it amounts to a mass term coupling
the four Weyl or Majorana fermions in N ¼ 4 SYM; for
details we refer to the literature [49,50]. This is what we
have assumed in this paper, where we have proceeded with

the analysis of 3þ 1-dimensional fermions governed by the
Lagrangian (31) in the presence of an extra mass term.

APPENDIX C: MORE ON THE COSMOLOGICAL
SOLUTION

In this appendix, we give some further details regarding
the cosmological background solution (119).
The torsion and contorsion tensors of the Weitzenböck

connection (121) have been given in Eqs. (124) and (125),
respectively. They satisfy the following useful relations [30]:

Tρ
μ
σTνμ

ρ ¼ 1

R4ρ4
ð−τστν þ Gσντ

μτμÞ ¼ Tρ
μ
νTσμ

ρ;

Kμ
ρ
νKρ

μ
σ ¼

3

R4ρ4
τντσ;

−
1

2
ðTρ

μ
σTνμ

ρ þ Tρ
μ
νTσμ

ρÞ − Kμ
ρ
νKρ

μ
σ ¼ −

1

R4ρ4
ð2τστν þ Gσντ

μτμÞ;

2ρ−2∂σρ∂νρ ¼ 9

2R4ρ4
τστν;

ρ□Gρ ¼ 3

2R2

�
4þ 1

2

cosh2 η
sinh2 η

�
; ðC1Þ

where □Gρ ¼ −jGj−1=2∂μðjGj1=2Gμν
∂νρÞ and we recall

τν ≔ Gνστ
σ.

The Riemann and Ricci tensors for the Levi-Civita
connection associated with the effective metric Gμν are
defined, in terms of Christoffel symbols ΓðGÞ

νρ
λ, as

Rμν
λ
σ ¼ ∂μΓðGÞ

νσ
λ − ∂νΓðGÞ

μσ
λ þ ΓðGÞ

μρ
λΓðGÞ

νσ
ρ

− ΓðGÞ
νρ

λΓðGÞ
μσ

ρ; ðC2Þ

Rνσ ¼ Rμν
μ
σ ¼ ∂μΓðGÞ

νσ
μ − ∂νΓðGÞ

μσ
μ þ ΓðGÞ

μρ
μΓðGÞ

νσ
ρ

− ΓðGÞ
νρ

μΓðGÞ
μσ

ρ; ðC3Þ

respectively. In Riemann normal coordinates at p ∈ M,
this simplifies using (19) as

Rμν
λ
σ ¼ ∂μðΓ̃νσ

λ −Kνσ
λÞ − ∂νðΓ̃μσ

λ −Kμσ
λÞ;

Rνσ ¼ ∂μðΓ̃νσ
μ −Kνσ

μÞ − ∂νðΓ̃μσ
μ −Kμσ

μÞ: ðC4Þ

Now we exploit the fact that the curvature of the
Weitzenböck connection vanishes,

0 ¼ ∂μΓ̃νσ
λ − ∂νΓ̃μσ

λ þ Γ̃μρ
λΓ̃νσ

ρ − Γ̃νρ
λΓ̃μσ

ρ;

0 ¼ ∂μΓ̃νσ
μ − ∂νΓ̃μσ

μ þ Γ̃μρ
μΓ̃νσ

ρ − Γ̃νρ
μΓ̃μσ

ρ; ðC5Þ

and obtain the tensorial equations

Rμν
λ
σ ¼ −∇ðGÞ

μ Kνσ
λ þ∇ðGÞ

ν Kμσ
λ −Kμρ

λKνσ
ρ þKνρ

λKμσ
ρ;

Rνσ ¼ −∇ðGÞ
μ Kνσ

μ þ∇ðGÞ
ν Kμσ

μ −Kμρ
μKνσ

ρ þKνρ
μKμσ

ρ;

ðC6Þ

using

Kμν
σ ¼ Γ̃μν

σ at p: ðC7Þ

In particular, the explicit expression of the Ricci tensor
reads as

Rνσ ¼
5

2

1

ρ4R4
τντσ þ

1

2ρ2R2
Gνσ ð6 − coth2 ηÞ: ðC8Þ

For further details we refer the reader to Ref. [30].
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