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Coleman–de Luccia transitions are spontaneous processes of nucleation of bubbles within metastable
gravitational vacua including in their interior a true stable vacuum. From the perspective of lower-
dimensional gauged supergravities obtained by truncating type II and M theory, these instantonic processes
are represented by smooth domain walls featured by de Sitter foliations. These geometries must connect
two different anti–de Sitter (AdS) vacua in such a way that the wall is defined by an interior and an exterior.
We propose a first-order formulation for such radial flows and present two fully backreacted examples of
gravitational instantons obtained through this technique, beyond the thin-wall approximation. In the first,
we consider minimal 7D supergravity describing the truncation of M theory over a squashed four-sphere
and admitting two AdS7 vacua, one supersymmetric and the other not. Second, we apply the same strategy
to 6D Romans supergravity obtained with consistent truncation of massive IIA supergravity. Also in this
case we derive a de Sitter domain wall interpolating between the Brandhuber-Oz vacuum and the
nonsupersymmetric AdS6 vacuum of the theory.
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I. INTRODUCTION

Ever since the very birth of string theory as a candidate
UV complete description of gravitational interactions, it has
passed a number of nontrivial theoretical tests that provide a
compelling evidence for its UV consistency. These include
crucial facts such as black hole microstate counting [1], as
well as the AdS=CFT correspondence [2]. Moreover, a few
preliminary investigations carried out in some controlled
setups even seem to suggest that string theory might actually
comprise the entirety of all field theory constructions that
are consistent in the UV. This statement is usually referred to
as the string universality principle [3,4].
However, all of the above features seem to crucially rely

on supersymmetry as a protection mechanism, or at least
one could say that we have only been able to draw concrete
conclusions within supersymmetric settings. This may be
due to the fact that the presence of supersymmetry often
allows for analytic treatment and plays a crucial role in
making things calculable. In this context, it should not
sound surprising that the biggest challenge posed by the

string theory paradigm is that of providing a satisfactory
mechanism for spontaneous supersymmetry breaking.
Needless to say, this is of utmost importance when it comes
to connecting our UV consistent theory with a low-energy
effective model possessing the desired phenomenological
properties to describe the world we observe.
In the last two decades, the string universality principle

has been addressed by adopting a complementary bottom-
up approach, i.e., by trying to assess which seemingly
consistent field theoretical constructions can actually be UV
completed to fully consistent quantum theories. This way,
one might think of coming up with a set of consistency
criteria that a low-energy description must comply with in
order for it to be related to string theory in an appropriate
limit. This approach, also known as the string swampland
program [5], has been developing in the last few years, in
particular, and has delivered a lot of interesting connections
among different desirable IR properties of a given model.
We refer the reader to [6,7] for a nice review of the recent
developments in this field.
The prototypical string swampland conjecture appeared

back in the mid-2000s [8], where it is argued that a sensible
quantum theory describing the interaction between gravity
and gauge fields should always retain gravity as the weakest
force in the game. The practical criterion proposed there is
that there should always exist a microscopic particle in the
spectrum, i.e., a particle whose mass is smaller than its
charge in Planck units. The authors of [8] are able to relate
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this to the common lore that continuous global symmetries
should not exist in quantum gravity.
It is worth noting that, contrary to microscopic particles

predicted by the weak gravity conjecture (WGC), macro-
scopic particles always satisfy a Bogomol’nyi-Prasad-
Sommerfield (BPS) bound instead, i.e., M ≥ QMPl. In
particular, BPS states happen to saturate this inequality,
thus being in some sense microscopic and macroscopic
objects at the same time. Indeed, the presence of BPS
states in the spectrum is protected by supersymmetry all
the way from weak to strong coupling. This feature is at
the basis of the stability arguments for supersymmetric
configurations [9].
More recently, in [10], a stronger version of the WGC

was proposed, according to which only BPS particles can
saturate the BPS bound, this implying that in the absence of
supersymmetry there must exist microscopic objects with
mass strictly smaller than their charge. Note that, in the
context of higher-dimensional gravitational theories, the
aforementioned objects need not even be particles. These
might be extended charged membranes, and their mass
should be replaced by the tension. The authors of [10] infer
the nonperturbative instability of nonsupersymmetric anti–
de Sitter (AdS) vacua in string theory as a direct implication
of this. Such a nonsupersymmetric d-dimensional vacuum
would then be destroyed by spontaneous nucleation of
charged microscopic (d − 2) membranes that eventually
discharge the flux supporting the original vacuum.
It is worth stressing that this instability may result in the

absence of a holographic conformal field theory (CFT)
dual. From a gravitational viewpoint, this may be seen as a
consequence of the fact that any local instability occurring
somewhere in the bulk would take a finite global time to
reach the boundary of AdS, where its dual CFT is supposed
to live [11]. If one has the underlying brane picture in mind,
what prevents taking the conformal limit in a nonsuper-
symmetric setting is the impossibility to pile up the branes
into a stack, as they would feel a force repelling each other
due to the WGC. As a consequence, checking nonpertur-
bative stability of AdS vacua is crucial for their holographic
interpretation to hold. However, this is, in general, not easy
a task within the full stringy description of the given
vacuum. We refer to [12] as an example where the proper
stringy treatment has been illustrated.
On the other hand, nonperturbative decay processes

such as gravitational tunneling events have been widely
studied since the beginning of the 1980s [13,14] within the
framework of semiclassical Euclidean path integrals in 4D
gravity. The tunneling process between two classical vacua
is seen as a bubble nucleation event for observers living in
the false vacuum geometry. Enclosed within the bubble
wall, there is the true vacuum geometry. Viable decay
channels correspond to local extrema of the Euclidean
action. In the thin shell limit, these are identified by
junctions respecting the so-called Coleman–de Luccia

(CdL) bound [13]. Going beyond the thin limit means
being able to dynamically source the jumps in the fields
across the aforementioned junction by employing extra
scalar fields. This procedure generically results in a smooth
interpolating geometry called a domain wall (DW).
DW solutions have been extensively explored in the

context of lower-dimensional supergravity theories. In
particular, when supersymmetry is preserved, these turn
out to obey first-order flow equations determined by the
corresponding Killing spinors. This often allows one to
analytically determine the corresponding dynamical pro-
files. In this paper, we will show how positively curved
DWs are directly related to the aforementioned CdL bubbles
and are intrinsically nonsupersymmetric. Despite this, we
will make use of the Hamilton-Jacobi (HJ) formalism in
order to provide a first-order formulation thereof [15]. This
will allow us to overcome the problem of sensitivity to the
choice of initial data, which the second-order formulation
suffers from.
Similar techniques were recently used in [16], where

positively curved domain wall solutions connecting differ-
ent AdS vacua were explicitly found. The setup there is a
generic Einstein-scalar theory with the addition of a
negative cosmological constant, though the explicit choices
of scalar potentials are not directly linked to a specific
higher-dimensional origin. Besides discussing in detail their
interpretation on the gravity side as CdL bubbles, the
authors of [16] also identify their holographic description
to be a CFT on a cylinder R × Sd−1, rather than on flat
space.
In our work, we want to take a further step and connect

our lower-dimensional solutions to string and M theory.
The crucial ingredient to achieve this will be the existence
of consistent truncations [17]. To this end, we will apply
the aforementioned technique to lower-dimensional super-
gravity models in dimension six and seven, which are
known to arise from consistent truncations of massive type
IIA supergravity [18] and 11D supergravity [19] on a
(squashed) four-sphere, respectively. At this point, any
lower-dimensional solution (including our CdL bubbles)
have a natural higher-dimensional interpretation. A much
harder task would then be that of understanding these
bubbles as composite objects made out of fundamental
stringy or M-theoretical building blocks, such as strings
and membranes. For the moment, we will leave this out for
future investigation.
The paper is organized as follows. In Sec. II, we briefly

review the basics of CdL bubbles and their relation to the
general classification of DWs by [20]. In Sec. III, we review
the consistent truncation of 11D supergravity on a squashed
S4. Subsequently, within the truncated 7D supergravity
theory, we present the numerical solution of interest
describing a CdL instanton within the nonsupersymmetric
AdS7 vacuum of the theory. In Sec. IV, we apply the same
machinery within Romans supergravity in 6D, which stems
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from massive type IIA supergravity on S4. In the Appendix,
we present some general facts and introduce some notation
concerning the HJ formalism.

II. COLEMAN–DE LUCCIA DECAYS
AND DS DOMAIN WALLS

The process of gravitational tunneling can be seen as
the spontaneous nucleation of a true vacuum bubble within
a false vacuum geometry, and it can be studied within a
semiclassical regime by Euclidean path integral techniques.
This was done already in the early 1980s [13] by adopting
the thin-wall approximation, where an infinitely thin
bubble wall separates two different regions, each one
characterized by a different value of the cosmological
constant, say Λ�. In [13], it was found that in 4D a critical
value for the tension of the bubble wall (expressed in
Planck units)

σ≤
!
σCdL ≡ 2ffiffiffi

3
p ð−

ffiffiffiffiffiffiffiffiffi
jΛþj

p
þ

ffiffiffiffiffiffiffiffiffi
jΛ−j

p
Þ; ð1Þ

is an upper bound in order for the Euclidean action to admit
a local extremum. This is usually referred to as the
Coleman–de Luccia bound. Later, in [14], it is shown that
the mechanism of extremization for the Euclidean action
can be physically understood as imposing energy conser-
vation during the nucleation process. In this context, the
CdL bound represents the allowed range of wall tensions
admitting a finite bubble radius guaranteeing energy con-
servation. For a wall tension exactly saturating the CdL
bound, the bubble radius becomes infinite, thus yielding a
flat static wall rather than an actual bubble. For values larger
than this critical value, no real bubble size turns out to be
compatible with energy conservation. Once the Euclidean
action is extremized at some finite value, the corresponding
instanton configuration contributes to the decay rate of the
vacuum through

Γdecay ∼ e−SEðinstantonÞ: ð2Þ

Back in Lorentzian signature, these instanton geometries
correspond to DWs connecting two different vacuum
solutions. Within the thin-wall approximation, these DWs
are obtained by gluing two different maximally symmetric
vacuum solutions with different values of the cosmological
constant to each other, across a certain interface. Such DWs
were studied and classified in [20]. The general form of the
metric reads

ds2dþ1 ¼ dr2 þ e2AðrÞL2ds2d; ð3Þ

where the metric for the d-dimensional slices ds2d is chosen
to be maximally symmetric, and the asymptotic behavior of
the warp factor A must be specified in such a way that the

asymptotic geometries on the two sides of the wall are
(dþ 1)-dimensional maximally symmetric vacua.1 Let us
now explore in detail all the possible features that fully
characterize DW solutions.

A. Domain wall zoology

Once denoted by Λ� the cosmological constants on each
side, and by κ the curvature parameter of the wall, solving
the Einstein equations in the thin-wall limit turns out to be
equivalent to solving the so-called Israel junction con-
dition [21]. This essentially fixes the DW tension as to
compensate for the jump in extrinsic curvature across the
wall. As a result, the DW tension in Planck units2 can be
expressed as [20]

σ ¼ ηþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ

L2
− Λþ

r
þ η−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ

L2
− Λ−

r
; ð4Þ

where η� ∈ f�1g represent the orientations of the normal
vector on the two sides of the wall. In particular, −1
indicates an exterior, while þ1 indicates an interior.
In order then to fully characterize a DW, it turns out to be

sufficient to specify its thin-wall data, i.e.,
(i) the signs of Λ� (0 allowed),
(ii) the DW curvature parameter κ ¼ 0;�1,
(iii) the signs of η�.

The first choice selects the case of interest out of a list of six
possibilities [20]: dS/dS, dS/Mkw, dS/AdS, Mkw/Mkw,
Mkw/AdS, and AdS/AdS. It is worth noting that the first
three involving dS space never admit the extreme limit, i.e.,
taking L → ∞. This applies to some extent to Mkw/Mkw
DWs as well, as extremal ones have vanishing tension. The
remaining two choices, which do admit an extreme limit,
were studied in detail in [22] in the supersymmetric BPS
case, where extremality is guaranteed. There the analysis is
performed even beyond thin wall, thanks to first-order flow
equations implied by the existence of Killing spinors.
Of particular interest to our scope is the case of AdS/AdS

DWs, since we will see that, under certain circumstances,
they will precisely describe CdL bubbles. In [22], the key
feature distinguishing different AdS/AdS DWs is whether
or not the superpotential W vanishes somewhere along the
flow. This identifies a nonmonotonic flow (dubbed type II),
or rather a monotic one (dubbed type III), respectively. In
the thin-wall limit, this is directly related to the choice of
orientation (η�) on the two sides, determining if the wall

1Note that the constant L just represents some reference length
that makes ds2d dimensionless. For (A)dS, it just represents the
(A)dS radius, while in Minkowski it is completely irrelevant, as it
can reabsorbed into a redefinition of the spacetime coordinates.

2We also drop here Oð1Þ constant factors that are not crucial
for the sake of our conceptual treatment. Besides, these would
make it harder to provide a general discussion in arbitrary d, as
they explicitly depend on the number of spacetime dimensions.
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has two insides (I/I), two outsides (O/O), or an inside and
an outside (I/O).
If we now compare the CdL critical tension in (1)

with (4), we immediately see that they exactly coincide
for κ ¼ 0 and ηþ ¼ −1, η− ¼ þ1, i.e., an extremal (flat)
I/O DW. For I/O walls with general κ, the tension reads

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ

L2
−Λ−

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ

L2
−Λþ

r
→

8><
>:
> σCdL; κ¼−1;
¼ σCdL; κ¼ 0;

< σCdL; κ¼þ1:

ð5Þ

This implies that actual gravitational instantons such as
CdL bubbles are represented by I/O DWs with dS
slices [23].
On the other hand, for a ð−1;−1Þ choice of orientation

(corresponding with a wall with two outsides), one has an
object with negative tension. The effect of placing this wall
at some finite r in DW coordinates is that of cutting out a
portion of infinite volume from spacetime, thus rendering
the total effective volume finite. This is exactly a Randall-
Sundrum (RS) brane, which was used in [24] in order to
produce an effective 4D braneworld within AdS5 in such a
way that 4D gravity be localized on the brane. While
locally such a spacetime looks like AdS on both sides,
globally it has no boundaries, since they have been
removed on both sides.
Finally, if one considers the situation with two insides,

the tension overcomes the CdL bound. This means that such
an object would not be spontaneously created, but it is rather
an exotic extended source that formally solves the junction
condition. The local geometric structure still looks like AdS
on both sides, but globally, unlike the RS brane, it has two
boundaries placed at finite proper distance. In this sense, we
qualify this object as a wormhole. The physically inequi-
valent AdS/AdS positively curved DWs are illustrated
in Table I.
In the following sections, we will consider two examples

of lower-dimensional supergravity theories with a known
higher-dimensional origin and we will show how to
construct I/O AdS/AdS positively curved DWs. As we
have just been arguing, these correspond with CdL bubbles
describing nonperturbative decays of an AdS false vacuum
into an AdS true one. The technique we will make use of is

the HJ formalism, which allows us to recast the original
second-order differential problem into a first-order one.
Thanks to this, we will get rid of the fine-tuning problem
related to the choice of initial data, as it will be completely
hidden into the correct choice of HJ generating functional.
Upon numerical integration, we will obtain the desired
solutions.

III. BUBBLE GEOMETRIES IN M THEORY

In this section, we derive a smooth bubble geometry
connecting two different AdS7 vacua, one supersymmetric
and the other not. Our framework will be N ¼ 1 7D
supergravity obtained by truncating M theory on a
squashed four-sphere using the compactification formulas
of [19]. Our aim is to consider domain walls driven by one
single scalar field and featured by a dS6 slicing.
For such geometries, we construct the quantities needed

in order to cast the second-order problem of the equations of
motion into a first-order one, supplemented with one single
extra partial differential equation (PDE), the Hamilton-
Jacobi equation. The HJ formulation of classical systems,
summarized in the Appendix, allows us to formulate the
problem of finding the dynamics of the aforementioned
domain walls in terms of a set of first-order ordinary
differential equations (ODEs) whose solutions turn out to
automatically satisfy the field equations.
The key of this procedure is finding the fake super-

potential (the HJ generating functional) solving the
Hamilton-Jacobi equation and defining the first-order
system. In this section, we discuss various strategies to
solve this problem for domain walls interpolating between
the two AdS7 vacua of the theory. Finally, we obtain an
explicit numerical solution for this fake superpotential
using a perturbative method whose efficiency perfectly
suits this particular situation. Once we obtain the solution
for the fake superpotential, we derive the radial flow of the
interpolating domain wall.

A. Supergravity setup and AdS7 vacua

It is well known that M theory can be consistently
reduced over four-spheres (see, e.g., [19,25,26]). In this
section, we are interested in the minimal truncation of 11D
supergravity, namely, the truncation retaining only the 7D
fields belonging to the supergravity multiplet (i.e., no
matter couplings). The compactification reproducing such
a theory is a warped compactification over a squashed S4

and it has been worked out in [19]. Apart from the 7D
gravitational field, this dimensional reduction yields one
real scalar field X, three SU(2) vectors Ai, and a 3-form
Bð3Þ [27].
For the aim of this paper, we can focus on the case where

the vectors and the 3-form are vanishing. The 11D
truncation ansatz takes then the simplified form [19]

TABLE I. The inequivalent AdS/AdS spherical (κ ¼ þ1)
domain walls. CdL bubbles are positively curved DWs with
an inside and an outside. The remaining two situations, corre-
sponding to exotic objects such as wormholes and RS branes, do
not create spontaneously.

ðη−; ηþÞ Orientation Tension Physical interpretation

ðþ1;þ1Þ I=I σ > σCdL Wormhole
ðþ1;−1Þ I=O 0 < σ < σCdL CdL bubble
ð−1;−1Þ O=O σ < 0 RS brane
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ds211 ¼ Δ1=3ds27 þ 2g−2Δ−2=3ds24;

ds24 ¼ ΔX3dξ2 þ X−1c2ds2S3 ; with

Δ ¼ Xc2 þ X−4s2; ð6Þ

where, for simplicity of notation, s ¼ sin ξ and c ¼ cos ξ.
With the assumption of vanishing 7D form fields, the 11D
4-form boils down to [19]

Gð4Þ ¼ −2
ffiffiffi
2

p
g−3c3Δ−2ðX−8s2 − 2X2c2

þ 3X−3c2 − 4X−3Þdξ ∧ volS3

− 10
ffiffiffi
2

p
g−3Δ−2X−4c4sdX ∧ volS3 : ð7Þ

The above truncation defines a gauged supergravity with
Rþ × SOð3Þ symmetry and features two gauge couplings g
and h. The first is associated with the R-symmetry SUð2ÞR
group that is gauged in this theory and the second is a
Stückelberg mass for the 3-form. The scalar potential for
the scalar X has the form

V ¼ 2h2X−8 − 16h2X−3 − 16h2X2; ð8Þ

where the explicit truncation of [19] has fixed g ¼ 2
ffiffiffi
2

p
h.

The Lagrangian of this theory is thus given by

ffiffiffiffiffiffi
−g

p −1L ¼ R − 5X−2
∂μX∂μX − V; ð9Þ

leading to the equations of motion

Rμν − 5X−2
∂μX∂νX −

1

5
Vgμν ¼ 0;

∂μð
ffiffiffiffiffiffi
−g

p
X−1gμν∂νXÞ −

ffiffiffiffiffiffi−gp
10

X∂XV ¼ 0: ð10Þ

This theory has two AdS7 vacua, a supersymmetric (SUSY)
and a nonsupersymmetric one. Let us now consider them
separately.

1. SUSY AdS7 vacuum: X = 1

This vacuum is preserving 16 real supercharges and it is
realized for X ¼ 1. The 11D background takes the form of a
direct product of AdS7 and a round S4,

ds211 ¼ ds2AdS7 þ 2g−2ds2S4 ;

Gð4Þ ¼ 6
ffiffiffi
2

p
g−3c3dξ ∧ volS3 ; ð11Þ

with the radius of AdS7 given by LSUSY ¼ 2
ffiffiffi
2

p
g−1 ¼ h−1.

The brane interpretation of the above solution is clear. In
fact, it can be viewed as the Freund-Rubin vacuum
associated with the near-horizon geometry of a stack of

M5 branes.3 Alternatively one can also view (11) as the
half-supersymmetric 11D vacuum arising from M5 branes
on an A-type singularity.

2. Non-SUSY AdS7 vacuum: X = 2− 1=5

A nonsupersymmetric AdS7 vacuum can be obtained by
setting X ¼ 2−1=5. In this case, the geometry is warped

ds211 ¼ 2−1=15ð2 − c2Þ1=3½ds2AdS7 þ 22=5g−2dξ2

þ 27=5g−2ð2 − c2Þ−1c2ds2S3 �;
Gð4Þ ¼ 8

ffiffiffi
2

p
g−3c3ð2 − c2Þ−2dξ ∧ volS3 ; ð12Þ

with the radius of AdS7 given by LSU=SY ¼ 27=10
ffiffiffi
3

p
g−1 ¼ffiffi

3
p
24=5

h−1. Unlike the supersymmetric case, the brane inter-
pretation of this vacuum is not clear as well as its derivation
as near-horizon limit of some 11D brane solution.

B. First-order formulation for dS6 domain walls

Let us now take the 7D theory (9) as the operative
framework and study domain walls of the following type:

ds27 ¼ e2AðrÞL2ds2dS6 þ dr2;

X ¼ XðrÞ: ð13Þ

As it is manifest, the worldvolume of these domain walls is
curved by a dS6 space described by the element ds2dS6 with
radius L. The two functions AðrÞ and XðrÞ specify the
(11D) geometry. This class of backgrounds is what we need
in order to study an expanding bubble within a given
vacuum. Of course also some global aspects are crucial in
order to describe gravitational instantons and the false
vacuum decay [28]. At the current stage of analysis, we
may say that the search of such domain walls connected to
AdS7 vacua implies a particular choice of boundary con-
ditions on the vacuum geometry at infinity, namely, foliating
the vacua with dS. This parametrization is, in fact, the one in
which the topology of an expanding bubble is manifest. The
field equations (10) split into two second-order nonlinear
ODEs for A and X,

A00 þ 6A02 −
5e−2A

L2
þ 1

5
V ¼ 0;

X00 þ 6A0X0 −
X02

X2
−

1

10
X2

∂XV ¼ 0; ð14Þ

and a first-order differential constraint

3This maximally supersymmetric interpretation appears by
considering this solution within the maximal SO(5) gauged
theory. There a SUSY enhancement to 32 supercharges becomes
manifest.
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30A02 −
5X02

X2
−
30e−2A

L2
þ V ¼ 0; ð15Þ

where 0 denotes the derivative with respect to r. The
condition (15) is the analog of the first Friedman equation
(for real time cosmology) and is usually called the
“Hamiltonian constraint” in this context. This condition
must be dynamically satisfied by any solution of (14). The
vacuum geometry can be obtained by choosing

A ¼ log

�
sinh

�
r
L

��
; ð16Þ

and imposing X ¼ 1 and LSUSY ¼ h−1 or X ¼ 2−1=5 and

LSU=SY ¼
ffiffi
3

p
24=5h

, respectively, for SUSYand non-SUSY cases
discussed in Sec. III A.
Following the general discussion of the Appendix, we

can look at the second-order problem (14) and (15) as a
classical constrained system with dynamical variables A
and X. Our aim is to recast the second-order problem into a
first-order one by using the standard Hamilton-Jacobi
formulation of classical dynamics. First of all, we point
out that the second-order equations (14) can be obtained
from the effective Lagrangian,

Leff ¼ 30e6AA02 − 5e6A
X02

X2
þ 30e4A

L2
− e6AV: ð17Þ

From this expression, we can extract the corresponding
Hamiltonian by introducing the conjugate momenta
πA ¼ 60e6AA0 and πX ¼ −10e6AX−2X0 following the gen-
eral expression (A2). Taking the Legendre transformation
of (17) leads to the Hamiltonian

Heff ¼
1

120
e−6Aπ2A −

1

20
e−6AX2π2X −

30e4A

L2
þ e6AV: ð18Þ

We can now introduce the fake superpotential F ¼ FðA;XÞ
associated with the system (14) as the real function such
that πA ¼ ∂AF and πX ¼ ∂XF satisfying the Hamilton-
Jacobi equation

1

120
e−6Að∂AFÞ2 −

1

20
e−6AX2ð∂XFÞ2 −

30e4A

L2
þ e6AV ¼ 0;

ð19Þ

where the constant E appearing in the general expression
(A3) must be zero in order to satisfy the Hamiltonian
constraint (15). We thus reduced the constrained the system
of ODEs (14) and (15) to a single PDE that has to be
satisfied by a suitable solution for the superpotential F. The
radial dependence of the functions describing the domain
walls (13) can be thus obtained by specifying the first-order
constraints (A5) to our particular case, namely,

A0 ¼ 1

60
e−6A∂AF and X0 ¼ −

1

10
e−6AX2

∂XF: ð20Þ

As explained in the Appendix, the solutions of the above
first-order equations automatically solve also the equations
of motion, since imposing the conditions (20) is equivalent
to extremizing the action (17).

C. Strategies of integration

Let us consider domain wall geometries of type (13)
interpolating between two different AdS7 vacua (16),
namely, smooth solutions that, on one side, asymptotically
reproduce the supersymmetric vacuum with X ¼ 1 and on
the other side the nonsupersymmetric one with X ¼ 2−1=5.
In the last section, we showed how to cast the second-order
problem of the equations of motion (14) in terms of a single
PDE (19) for a superpotential FðA; XÞ. We want now to
discuss possible strategies in solving the dynamics for this
particular domain wall geometry.
The presence of the de Sitter foliation and our particular

requirement on the asymptotic behavior make the search
for explicit solutions for the superpotential a hard task. In
fact, the contribution to the stress-energy tensor associated
with the curvature of the dS6 foliation does not allow one
to formulate a separable ansatz for FðA; XÞ and this forces
us to approach the problem with numerical methods. This
can be clearly seen by looking at the Hamilton-Jacobi
equation (19),

1

120
e−6Að∂AFÞ2 −

1

20
e−6AX2ð∂XFÞ2 þ Veff ¼ 0; ð21Þ

where we introduced the “effective” potential,

Veff ¼ −
30e4A

L2
þ e6AV: ð22Þ

The first term in (22) is associated with the curvature of the
dS6 slicing and it does not allow one to separate the
variables.4

In addition to this, the requirement of having different
AdS7 vacua in the two asymptotic regions does not mean
that we can treat them as equivalent initial conditions for
our integration. This can be seen by trying to perform a
direct numerical integration of second-order equations of
motion (14) by starting from a linearized expansion of the
supersymmetric vacuum. Such integrations generically
produce singular behaviors (connected with M5 sources)
at the other end of the flow. From these attempts, it is

4In the flat limit L → ∞, the dS6 foliation can be substituted by
6D Minkowski spacetime. In this case, the superpotential takes
the separable form F ¼ 4e6AfðXÞ with f ¼ − h

2
ðX−4 þ 4XÞ such

that V ¼ − 4
5
ð6f2 − X2

∂Xf2Þ.
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manifest that the particular solution for A and X converg-
ing to the non-SUSY vacuum is determined by a set of
initial parameters constituting a null measure set within the
parameter space describing the linearized expansion
around the SUSY vacuum. This can be rephrased by
observing that the SUSY vacuum plays the role of an
attractor point in the space of solutions (just like an M5
singularity does), while the non-SUSY one does not.
Given all of the above, we are led to approach the

problem of integrating the Hamilton-Jacobi equation (21)
by starting from a perturbative expansion of the fake
superpotential FðA; XÞ around the non-SUSY vacuum,
namely, the point X ¼ 2−1=5 in the moduli space. The idea
is to apply the perturbative method discussed in [29]5 to this
particular situation and to solve order-by-order the pertur-
bative tower of ODEs reproduced by the Hamilton-Jacobi
equation when the superpotential is expanded around
the non-SUSY vacuum. As it was pointed out in [29], in
the case of domain walls with a curved worldvolume, the
coefficients of the aforementioned expansion must depend
on the warp factor of the metric A; this constitutes the main
complication with respect to the case of domain walls with a
flat slicing.
This procedure turns out to perfectly suit the current

situation and we can test its effectiveness by comparing
the 7D scalar potential VðXÞ written in (8) with its
Taylor expansion VpertðXÞ around the non-SUSY vacuum
X ¼ 2−1=5 as in Fig. 1. For values of X included within the
two extrema X ∈ ½2−1=5; 1�, at sufficiently high order, the
scalar potential nicely coincides with its perturbative
expansion, up to a great level of accuracy.

D. The interpolating solution

Since we are going to solve the Hamilton-Jacobi
equation (21) with a perturbative expansion of the fake
superpotential, we need to specify boundary conditions for
F (or, more precisely, on its derivatives) that can be used to
generate the initial conditions for the integration at each
order. Such boundary data can be obtained by solving
the Hamilton-Jacobi equation (21) for small values of the
radius L. This regime is featured by a dominant contri-
bution of the dS6 curvature in the effective potential (22).
In particular, one can verify that the expression

F∞ ¼ 12

L
e5A −

L
7
e7AV ð23Þ

solves the equation (21) up to OðL2Þ as L ≪ lAdS. As
confirmed by the plot of Fig. 1, we can thus substitute V by
its Taylor expansion Vpert around the point X ¼ 2−1=5

provided that the expansion be sufficiently large to
reproduce a good matching of the curves in the interval
X ∈ ½2−1=5; 1�. In this way, we can produce a set of initial
conditions at each order in the expansion.
We can now write a perturbative ansatz of the form6

FðA;XÞ ¼ 4
X∞
k¼0

FðkÞðAÞ ðX − 2−1=5Þk
k!

; ð24Þ

where the coefficients FðkÞ crucially depend on A [29] in
order to take into account the nonseparability of the
effective potential (22). The Hamilton-Jacobi equation (21)
thus reproduces at X ¼ 2−1=5 a set of ODEs for the
coefficients FðkÞðAÞ, each for any order in k. First of all,
we observe that we need to impose thatFð1ÞðAÞ ¼ 0 in order
to keep each perturbative order decoupled. The zeroth-order
equation takes the form

2

15
e−6Að _Fð0ÞÞ2 − 30e4A

L2
−
30e6A

L2
¼ 0; ð25Þ

where we denoted with · the derivative with respect to A and
we expressed the scalar potential in terms of the radius of
non-SUSY vacuum through the relation h ¼ 24=5ffiffi

3
p L derived

in (12). This equation can be solved exactly,

Fð0ÞðAÞ ¼ 5

16L
eA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2A

p
ð−3þ 2e2A þ 8e4AÞ

þ 15

16L
arcsinhðeAÞ: ð26Þ

The subsequent step is to determine Fð2ÞðAÞ by integrating
the ODE appearing at order k ¼ 2 with Fð0ÞðAÞ given

FIG. 1. The comparison between the scalar potential VðXÞ
written in (8) and its expansion at 15th order around the non-
SUSY critical point X ¼ 2−1=5 ≃ 0.87. For values of X between
the two critical points X ∈ ½2−1=5; 1�, the scalar potential is
well approximated by its expansion. The plot is given for
h ¼ 2

ffiffiffi
2

p
g ¼ 1.

5The perturbative method discussed in this reference further
extends the one presented in [30].

6The factor of 4 is needed to reproduce the flat limit given by
large values of L.
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in (26). This is a nonlinear ODE and it can be integrated
numerically. Once this equation is solved (with a suitable
initial condition that we specify below), each perturbative
order in k can be solved iteratively in terms of the previous
ones, since each of these equations turns out to be linear in
FðkÞðAÞ. At each order in k ≥ 2we thus perform a numerical
integration evaluating the ðk − 1Þth solution of the previous
step in the kth ODE for FðkÞðAÞ. As initial conditions, we
choose

FðkÞ ¼ 4−1∂kXF
ðkÞ
∞ jX¼2−1=5 ; ð27Þ

where FðkÞ
∞ is given by (23) written in terms of the Taylor

expansion of the scalar potential V at the kth order. Iterating
the numerical integrations up to order k ¼ 15, we obtain the
solution plotted in Fig. 2. The relevant behavior can be
observed in the plot on the right side where an interpolating
behavior of F between the two vacua is manifest. This is the
key property allowing the existence of interpolating domain
walls. Given the numerical solution for the superpotential,
we can finally integrate the first-order equations (20). For
the sake of clarity, we rewrite them here as

A0 ¼ 1

60
e−6A∂AF and X0 ¼ −

1

10
e−6AX2

∂XF: ð28Þ

We perform the numerical shooting using as initial value the
non-SUSY vacuum placed at r ¼ 0. The result is plotted in
Fig. 3. We thus obtained a domain wall solution interpolat-
ing between the nonsupersymmetric and supersymmetric
AdS7 vacua.

IV. BUBBLE GEOMETRIES IN MASSIVE IIA

In this section, we apply the same strategy of Sec. III to
the case of smooth dS5 domain walls in massive IIA
supergravity. In analogy to dS6 bubbles in M theory, we
will work within the consistent truncation of massive IIA
supergravity on a squashed four-sphere constructed in [18].
This truncation reproduces a very similar framework to the
7D supergravity used in Sec. III, especially if one considers
only the scalar sector. In fact, the lower-dimensional theory
is the minimal incarnation of half-maximal gauged super-
gravity in 6D and admits two AdS6 vacua associated with
two different values of a single scalar field. In analogy with
the 7D case, one vacuum is supersymmetric, while the other
is not.
In this section, we will adopt the Hamilton-Jacobi

formulation of classical dynamical systems in this 6D
setup with the purpose of searching for smooth dS5 bubbles
connecting the above two different vacua. To this aim, we
will apply the perturbative technique of Sec. III D to this
particular framework.

A. Romans supergravity

Let us recall the main features of the consistent trunca-
tion of massive IIA supergravity constructed in [18]. This is
a warped compactification defined by an internal squashed
four-sphere and retaining only the fields belonging to the
6D supergravity multiplet without any matter multiplet.
The isometry group is Rþ × SOð4Þ and preserves 16 real

FIG. 2. The profile of the fake superpotential FðA; XÞ obtained by iterating the perturbative integrations up to order k ¼ 15. The 3D
plot describes the full solution in the intervals A ∈ ½0; 3� and X ∈ ½0.86; 1.1�. On the right side, the same function is plotted for A0 ¼ 10.
Even if the variation of F is tiny, we observe an interpolating profile between the two AdS7 vacua, respectively, located at
X ¼ 2−1=5 ≃ 0.87 and X ¼ 1. The plots are given for L ¼ 1.

FIG. 3. The radial profile for the scalar X in the dS6-sliced
domain wall in comparison with those of the two AdS7 vacua.
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supercharges, namely, it is N ¼ ð1; 1Þ theory in 6D. In
addition to 6D gravity, the field content is given by one real
scalar field X, three SU(2) vectors Ai, one Abelian vector
A0, and a 2-form Bð2Þ. This 6D gauged supergravity is
usually called Romans supergravity [31]. We are interested
in the case where all the vectors and the 2-form are
vanishing. The ansatz for the metric and dilaton takes
the form [18]

ds210 ¼ X−1=2Δ1=2s−1=3½ds26 þ 2g−2X2ds24�;
ds24 ¼ dξ2 þ Δ−1X−3c2ds2S3 ; with

Δ ¼ Xc2 þ X−3s2;

eΦ ¼ s−5=6Δ1=4X−5=4; ð29Þ

and s ¼ sin ξ and c ¼ cos ξ. After imposing that the vectors
and the 2-form are vanishing, only the 4-form flux and the
Romans mass Fð0Þ ¼ m survive, namely [18],

Fð4Þ ¼ −
4

ffiffiffi
2

p

3
g−3Δ−2ðX−6s2 − 3X2c2

þ 4X−2c2 − 6X−2Þs1=3c3dξ ∧ volS3

− 8
ffiffiffi
2

p
g−3Δ−2X−3s4=3c4dX ∧ volS3 : ð30Þ

The deformations of the 6D theory produced by this
truncation are defined by two embedding tensor parame-
ters, g and m. As in the 7D case, the first one is associated
with the gauged R-symmetry group SUð2ÞR and the second
is a Stückelberg mass for the 2-form. The scalar potential
has the form [18,31]

V ¼ m2X−6 − 12m2X−2 − 9m2X2; ð31Þ

where we fixed g ¼ 3mffiffi
2

p as required by the truncation ansatz

of [18]. The 6D Lagrangian has the form

ffiffiffiffiffiffi
−g

p ;:−1L ¼ R − 4X−2
∂μX∂μX − V: ð32Þ

By taking the variation with respect to the metric and the
scalar X one can easily obtain the equations of motion,

Rμν − 4X−2
∂μX∂νX −

1

4
Vgμν ¼ 0;

∂μð
ffiffiffiffiffiffi
−g

p
X−1gμν∂νXÞ −

ffiffiffiffiffiffi−gp
8

X∂XV ¼ 0: ð33Þ

This theory admits two different AdS6 vacua, one super-
symmetric and one not. Let us now consider them separately
as in the case of 7D supergravity studied in Sec. III.

1. SUSY AdS6 vacuum: X = 1

This is the Brandhuber and Oz vacuum describing the
near-horizon geometry of the D4-D8 branes [32]. It is

realized for X ¼ 1 and preserves 16 real supercharges. The
10D geometry is defined by a warped product of AdS6 with
a four-sphere7 S4,

ds210 ¼ s−1=3½ds2AdS6 þ 2g−2ds2S4 �;
eΦ ¼ s−5=6;

Fð4Þ ¼
20

ffiffiffi
2

p

3
g−3s1=3c3dξ ∧ volS3 ; ð34Þ

with the radius of AdS6 given by LSUSY ¼ 3ffiffi
2

p
g
¼ m−1.

2. Non-SUSY AdS6 vacuum: X = 3− 1=4

The nonsupersymmetric AdS6 vacuum of Romans
supergravity is defined by X ¼ 3−1=4. The geometry of
this vacuum takes the following form:

ds210 ¼ s−1=3½ð3− 2c2Þ1=2ds2AdS6 þ 2g−23−1=2ð3− 2c2Þ1=2dξ2
þ 2g−231=2ð3− 2c2Þ−1=2c2d2S3 �;

eΦ ¼ 31=4s−5=6ð3− 2c2Þ1=4;
Fð4Þ ¼ 12

ffiffiffi
2

p
g−3ð3− 2c2Þ−2s1=3c3dξ∧ volS3 ; ð35Þ

with the radius of AdS6 given by LSU=SY ¼ 31=451=2

21=2g
¼

ffiffi
5

p
33=4m

.

As for the nonsupersymmetric AdS7 (12), the brane origin
of this vacuum is not clear.

B. First-order formulation for dS5 domain walls

Let us focus on domain wall geometries of the following
form:

ds26 ¼ e2AðrÞL2ds2dS5 þ dr2;

X ¼ XðrÞ: ð36Þ

The equations of motion (33) take the form of two ODEs
and the Hamiltonian constraint,

A00 þ 5A02 −
4e−2A

L2
þ 1

4
V ¼ 0;

X00 þ 5A0X0 −
X02

X2
−
1

8
X2

∂XV ¼ 0;

20A02 þ 4X02

X2
−
20e−2A

L2
þ V ¼ 0; ð37Þ

where the derivative with respect to r has been denoted by 0.
The geometry of AdS6 vacua can be recovered by choosing

7More precisely the internal manifold is the upper hemisphere
of an S4 written as a foliation of S3 over a segment parametrized
by the coordinate ξ.
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A ¼ log

�
sinh

�
r
L

��
ð38Þ

and imposing X ¼ 1 and LSUSY ¼ m−1 or X ¼ 3−1=4 and

LSU=SY ¼
ffiffi
5

p
33=4m

, respectively, for supersymmetric and non-
supersymmetric vacua discussed in the previous section.
Let us construct the quantities needed in order to cast the

second-order problem (37) in a system of first-order ODEs.
We can follow the same strategy of Sec. III B and outlined
in general in the Appendix. It is easy to show that the
second-order equations for A and X written in (37) can be
obtained by taking the variation of the following 1D
effective Lagrangian:

Leff ¼ 20e5AA02 − 4e5A
X02

X2
þ 20e3A

L2
− e5AV: ð39Þ

From the expression (A2) we can derive the conjugate
momenta πA ¼ 40e5AA0 and πX ¼ −8e5AX−2X0. Taking
the Legendre transformation of (39) we easily obtain the
corresponding Hamiltonian

Heff ¼
1

80
e−5Aπ2A −

1

16
e−5AX2π2X −

20e3A

L2
þ e5AV: ð40Þ

We are now ready to write the Hamilton-Jacobi equation
for the superpotential F ¼ FðA; XÞ associated with the
system (37). By expressing the momenta as πA ¼ ∂AF and
πX ¼ ∂XF, one obtains

1

80
e−5Að∂AFÞ2 −

1

16
e−5AX2ð∂XFÞ2 −

20e3A

L2
þ e5AV ¼ 0;

ð41Þ

where the constant E appearing in (A3) must be zero
in order to satisfy the Hamiltonian constraint. As we did in
Sec. III B, we reduced the second-order problem (37) to a
single PDE. This equation needs to be satisfied by a suitable
solution for the superpotential F. Once the solution of the
Hamilton-Jacobi equation is found, the radial flow featuring
the domain wall (36) can be worked out easily through by
integrating the first-order equations (A5). In this specific
case, they have the form

A0 ¼ 1

40
e−5A∂AF and X0 ¼ −

1

8
e−5AX2

∂XF: ð42Þ

The solutions of (42) solve automatically also the equations
of motion since, as explained in the Appendix, they imply
the extremization of the action (39).

C. The interpolating solution

In this section, we will follow the same strategy of
numerical integration as in Sec. III C. The idea is to
solve perturbatively the Hamilton-Jacobi equation (41)

by expanding around the nonsupersymmetric AdS6
vacuum (35). Let us start by checking the reliability of
the perturbative analysis. To this aim, we may compare the
profile of the scalar potential VðXÞ given in (31) with its
Taylor expansion VpertðXÞ around the nonsupersymmetric
vacuum X ¼ 3−1=4. From Fig. 4, it is manifest that if the
perturbative order is sufficiently high then the scalar
potential can be substituted by its perturbative expansion
in the interval X ∈ ½3−1=4; 1�.
In order to solve the Hamilton-Jacobi equation, we need

to impose suitable boundary conditions on the derivatives
of the fake superpotential. It is easy to verify that the
expression

F∞ ¼ 10

L
e4A −

L
6
e6AV ð43Þ

solves Eq. (41) in small L limit, up to orders OðL2Þ. The
expression F∞ describes the highly curved regime of small
values of L in which the contribution of dS5 is dominant in
the stress-energy tensor. We can use (43) to produce the
initial conditions on the derivatives of FðA;XÞ at each order
of the perturbative expansion. Let us recall the ansatz (24)
for the fake superpotential expanded around the nonsuper-
symmetric vacuum,

FðA;XÞ ¼ 4
X∞
k¼0

FðkÞðAÞ ðX − 3−1=4Þk
k!

; ð44Þ

where the coefficients FðkÞ need to depend on A to take
into account the nonseparability of the effective potential
defining the Hamiltonian (40). With this ansatz, the
Hamilton-Jacobi equation (41) becomes a set of ODEs
for the coefficients FðkÞðAÞ, each for any order in k. As
for the 7D case, we impose Fð1ÞðAÞ ¼ 0 in order to keep
each perturbative order decoupled. At the zeroth order,
one obtains

FIG. 4. The comparison between the scalar potential VðXÞ
given in (31) and its expansion at 15th order around the
non-SUSY critical point X ¼ 3−1=4 ≃ 0.75. For values of X
between the two critical points X ∈ ½3−1=4; 1�, the scalar potential
is well approximated by its perturbative expansion. The plot is

given for m ¼
ffiffi
2

p
3
g ¼ 1.
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1

5
e−5Að _Fð0ÞÞ2 − 20e5A

L2
−
20e3A

L2
¼ 0; ð45Þ

where the derivative with respect to A has been denoted
by · and we expressed the scalar potential in terms of
the radius of the non-SUSY vacuum through the relation
m ¼ 33=4ffiffi

5
p L characterizing the non-SUSY vacuum (35).

This equation can be solved exactly; this procedure
leading to an expression similar to (26). After determining
the profile of Fð2ÞðAÞ numerically, one can integrate each
ODE belonging to the perturbative tower, finding the
coefficients FðkÞðAÞ. At each order in k ≥ 2 the numerical
integration one has to evaluate the ðk − 1Þth solution of
the previous step in the kth ODE for FðkÞðAÞ. As we did for
the initial conditions (27) for the 7D case, we impose the
following boundary conditions:

FðkÞ ¼ 4−1∂kXF
ðkÞ
∞ jX¼3−1=4 ; ð46Þ

where FðkÞ
∞ is given by (43) and it has been written in terms

of the perturbative expansion of the scalar potential V at

the kth order. The solution for FðA; XÞ obtained by
iterating the numerical integrations up to the order
k ¼ 15 is plotted in Fig. 5. Also in this case we observe
an interpolating flow of the superpotential between the
two vacua. The last step is integrating the first-order
equations (42) using the numerical solution for FðA;XÞ.
We perform this radial integration by taking as initial
value the nonsupersymmetric vacuum placed at r ¼ 0.
The result of this integration for A and X is plotted in
Fig. 6. We observe that the radial flow of the domain wall
smoothly connects the nonsupersymmetric AdS6 vacuum
to the Brandhuber-Oz vacuum of massive IIA.

V. FINAL COMMENTS

In this work, we presented the methodology to provide
the geometries describing gravitational instantons connect-
ing two different AdS vacua, one preserving SUSYand the
other not. The key feature of our solutions is that they are
fully backreacted in the sense that we did not have to make
use of probe calculations in order to study a tunneling
process, nor have we imposed the thin-wall approximation
at the interface between the two vacua.
Nevertheless, there are many features of our solutions that

still require a deeper understanding and this paper aims at
representing a first intermediate step in this research
direction. A quite mysterious element is related to the
brane interpretation of our 7D and 6D dS domain walls.
Interesting results regarding the microscopic origin of the
nonperturbative instability of the non-SUSY AdS vacua
considered in this paper have been obtained by looking at
the 7D supergravity as a compactification of massive IIA
string theory [33,34]. For what concerns the 6D case, in [35]
the analysis on the nonperturbative instability of the non-
SUSY AdS6 vacuum has been performed by embedding the
Romans supergravity in type IIB. An ambitious step forward
would be obtaining the aforementioned non-SUSY vacuum

FIG. 6. The smooth radial flows of the scalar X of the dS5-sliced
domain wall in comparison with those of the two AdS6 vacua.

FIG. 5. The profile of the superpotential FðA; XÞ obtained with perturbative integration up at order k ¼ 15. The 3D plot describes
the full solution in the intervals A ∈ ½0; 3� and X ∈ ½0.74; 1.1�. On the right side, the same function is plotted for A0 ¼ 10. Even if the
variation of F is tiny, we observe an interpolating profile between the two AdS6 vacua, respectively, located at X ¼ 3−1=4 ≃ 0.75 and
X ¼ 1. The plots are given for L ¼ 1.
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geometries as the near-horizon regime of a suitable brane
solution or, at least, to provide a clear understanding of the
microscopic objects underlying their nonperturbative decays
in the spirit of the analysis of the (singular) solutions of [36]
and, more recently, of [37].
Furthermore, a relevant aspect to investigate is the

possibility of applying our solutions to string cosmology.
In [38,39], a proposal of dS4 cosmology was formulated in
the context of type IIB starting from the imposition of Israel
junction conditions between two AdS5 vacua, one of which
is supersymmetric and the other not. The mechanism
identified in the aforementioned references as responsible
for the emergence of de Sitter geometry at the interface of
the two AdS vacua was exactly the Coleman–de Luccia
decay of the vacuum with broken SUSY. With the approach
outlined in this paper, it would be interesting to test this
proposal by deriving the fully backreacted solution describ-
ing this construction in type IIB.
Another interesting issue that seems to require further

clarifications and better understanding is the relation of our
work to positive energy theorems in string compactifica-
tions. Strictly speaking, the existence of our dS domain
walls may appear in contradiction to the analysis in [29,30],
where the existence of global fake superpotentials bounding
the scalar potential from below is argued to be a sufficient
condition for vacuum stability. Our present findings seem to
restrict the validity of such positive energy theorems in a
gauged supergravity to the set of solutions corresponding
to a given choice of branch for the superpotential. Other
flows associated with different fake superpotentials
belong to disconnected subsets of the space of solutions
to the Hamilton-Jacobi equations. Because of this, glob-
ally bounding superpotentials might, after all, have noth-
ing conclusive to say about nonperturbative (in)stabilities.
A decisive analysis one needs to go through in order to
assess the contribution of our bubbles to the Euclidean
path integral is to extract the effective wall tension and see
whether it respects the CdL bound. However, we should
also stress that this procedure for thick walls is not free of
subtleties and ambiguities. We hope to come back to this
issue in the future.
We would like to conclude by reflecting on a final aspect

concerning our present results. Back in the original
literature from the 1980s, a semiclassical Euclidean path
integral approach was used in order to come up with
physical predictions for false vacuum decay. We should
definitely stress that our 6D and 7D theories arising from
consistent truncations of string and M theory can never be
regarded as good effective theories in a Wilsonian sense.
We only used the truncation formulas as a technique to
produce 10D and 11D solutions involving expanding
bubbles within AdS. Hence, a proper estimation of the
nucleation probability should be directly performed within
the higher-dimensional description.
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APPENDIX: HAMILTON-JACOBI METHOD
FOR CLASSICAL SYSTEMS

In this appendix, we schematically review the Hamilton-
Jacobi formulation in studying the dynamics classical
systems.8 The power of this method is to allow one to
cast the equations of motion of a classical system in terms
of a set of first-order constraints, even in the absence of
supersymmetry.
The starting idea is to formulate the variational principle

for a given configuration by recasting the action into a sum
of various squares. Requiring that each of these squares
vanish separately determines a set of first-order ODEs. The
solutions of these first-order equations solve the equations
of motion by construction.
The general form of these first-order conditions can be

determined in generality as follows. Let us start by a
generic action of the form

Sðq; rÞ ¼
Z

drL with L ¼ 1

2
Mαβ _qα _qβ − VðqÞ: ðA1Þ

The “time” parameter has been called r since, for the cases
we are interested in, the aforementioned action is obtained
by reducting some (super)gravity system to one dimension.
Then the 1D time typically describes the radial flow of
some (super)gravity solution. The variables qαðrÞ turn out
to describe the dynamical functions associated with the
gravity background under study (e.g., the warp factors,
scalar fields, etc.). With a Legendre transformation, one can
derive the Hamiltonian,

H¼1

2
MαβpαpβþVðqÞwithpα¼∂ _qαL¼Mαβ _qβ: ðA2Þ

The core of this approach consists of the introduction of
a “superpotential” FðqÞ. This function includes all the
information to identify the dynamics of the system. The
superpotential can be defined through the so-called
Hamilton-Jacobi equation,

Hð∂qF; qÞ þ
∂S
∂r

¼ 1

2
Mαβ

∂αF∂βF þ V − E ¼ 0 with

pα ¼ ∂βF; ðA3Þ

where the action has been crucially interpreted as a function
of the dynamical variables with the form SðqÞ ¼ FðqÞ − rE

8See also appendixes of [40] and Ref. [29] for more details.
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with E constant. We can now use (A3) to cast the action
into a sum of squares. Expressing the potential VðqÞ in
terms of the superpotential by using (A3) and plugging the
expression in the action, we get up to total derivatives,

S ¼ 1

2

Z
drMαβð _qα −Mαγ

∂γFÞð _qβ −Mβδ
∂δFÞ: ðA4Þ

Setting to zero each of these squared produces the following
system of ODEs:

_qα ¼ Mαβ
∂βF: ðA5Þ

By construction, the solutions of the above differential
conditions extremize the action. As we mentioned at the
beginning of this appendix, this method does not rely on any
supersymmetry completion when it is applied on a given
supergravity background and, for this reason, it constitutes a
good method in searching for nonsupersymmetric solutions
characterized by nontrivial radial flows.
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