
Dynamical emergence of SUqð2Þ from the regularization
of ð2 + 1ÞD gravity with a cosmological constant

Niels Gresnigt,1,* Antonino Marcianò ,2,3,† and Emanuele Zappala 4,‡

1Department of Physics, Xi’an Jiaotong-Liverpool University, 215123 Suzhou, China
2Center for Field Theory and Particle Physics and Department of Physics, Fudan University,

200433 Shanghai, China
3Laboratori Nazionali di Frascati INFN, 00044 Frascati (Rome), Italy

4Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA

(Received 3 January 2022; accepted 18 January 2023; published 23 February 2023)

The quantization of the reduced phase-space of the Einstein-Hilbert action for gravity in ð2þ 1ÞD has
been shown to bring about the emergence, at the quantum level, of a topological quantum field theory
endowed with an SUqð2Þ quantum group symmetry structure. We hereby tackle the same problem, but start
from the kinematical SUð2Þ (quantum) Hilbert space of the theory of ð2þ 1ÞD gravity with a nonzero
cosmological constant in the Palatini formalism, and subsequently impose the constraints. We hence show
the dynamical emergence of the SUqð2Þ quantum group at the quantum level within the spin-foam
framework. The regularized curvature constraint is responsible for the effective representations of SUqð2Þ
that are recovered for anyWilson loop evaluated at the SUð2Þ group element that encodes the discretization
of the spacetime curvature induced by the cosmological constant. The extension to the spin-network basis,
and consequently to any transition amplitude between its generic states, enables us to derive in full
generality the recoupling theory of SUqð2Þ. We provide constructive examples for the scalar product of two
loop states and spin networks encoding trivalent vertices. We further comment on the diffeomorphism
symmetry generated by the implementation of the curvature constraint, and finally we derive explicitly the
partition function amplitude of the Turaev-Viro model.
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I. INTRODUCTION

The quantization of gravity in ð2þ 1ÞD is notoriously a
solvable problem [1], as it has been emphasized over the
past four decades in the literature on topological quantum
field theory. There are two fundamental directions to
achieve this goal in reduced spacetime dimensions.
Focusing on the Euclidean SUð2Þ symmetric version of
ð2þ 1ÞD gravity, it is possible either to accomplish the
quantization of the reduced phase-space of the classical
theory, imposing classical constraints before quantiza
tion [1], or to achieve directly the quantization of the
kinematical Hilbert space of the theory, on which only the
gauge constraint has been imposed.
Having the cosmological constant involved in the analy-

sis allows for a novel symmetric structure to arise,
expressed in terms of the axioms of Hopf algebras.
These axioms in turn can be cast resorting to the versatility
of the Reidemeister moves [2,3]. Jones polynomials are
crucial in recovering the link to quantum Hopf algebras,

and to show how these latter ones provide link invariants
via solutions to the Yang-Baxter equations. Relevant
topological invariants, including the Jones polyno-
mials [4], are defined in terms of their properties under
Reidemeister moves. This in general characterizes a wide
field of studies, encoding topological quantum field theory.
In particular, the novel symmetric structures that emerge

are called quantum groups. These are nontrivial Hopf
algebras, characterized by the deformation of the product
rules in the algebraic sector and the deformation of the
Leibnitz rule at the level of the co-algebra, which in turn
enters the bi-algebra structure of Hopf algebras. On the side
of the quantization of the reduced phase-space of gravity in
ð2þ 1ÞD with cosmological constant, it was proven by
Witten [4] that the path-integral quantization of the theory,
equivalent to the quantization of two uncoupled Chern-
Simons theories, provides the Turaev-Viro topological
invariant [5]. Nonetheless, it has remained unclear hitherto
whether a different procedure of quantization, accounting
for the imposition at the quantum level of the curvature
constraint on the states of the kinematical Hilbert space,
would entail the same theory.
Although several other authors have likewise considered

the canonical quantization of ð2þ 1ÞD gravity with a
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cosmological constant, the approach taken here differs
substantially from earlier works. The novelty of our study
lies in the fact that we have shown that the recoupling
theory of quantum groups appears at the quantum level as a
by-product of the quantization procedure, due to the
implementation of the quantum constraints at the dynami-
cal level, using the undeformed phase-space of the BF
formulation of gravity with a cosmological constant in
ð2þ 1ÞD. In Refs. [6–8], a grasping procedure was
implemented on the holonomies in order to derive the
quantum group recoupling theory in a theory of gravity
with a cosmological constant. Reference [9] utilized the
connections of the two Chern-Simons theories in which
gravity can be reformulated. This solution to the problem
still leaves unanswered the link between the quantization of
the Palatini formulation of gravity with cosmological
constant and the Turaev-Viro model. As far as the present
work is concerned, we moved from the issue raised by
Witten in the 1980s [1], in turn elaborating on related work
by Atiyah and Bott [10], of whether it is possible to derive
the quantum group recoupling theory for gravity with a
nontrivial cosmological constant by imposing constraints at
the quantum level. We tackled this question from the
Palatini/BF-like formulation of gravity, without invoking
the Chern-Simons theory, finding a positive answer.
As an advantage, our procedure does not require any

restriction on either the sign of the cosmological constant or
on its (discretized) value, and hence holds in full generality.
Other studies that have considered the aforementioned
perspective suggested in [1], although following different
approaches, are the following: Ref. [11], which introduced
recoupling theory of quantum groups based on an algebrai-
cally motivated Poisson-Lie deformation procedure of the
discretized topological BF theories developed in [12];
Ref. [13], which used a canonical transformation that
deforms the gauge invariance and the boundary symmetries
of the theory, introducing a dependence on the cosmological
constant, and realized a discretization procedure that induces
a truncation of the degrees of freedom in the continuum.
The plan of the paper is the following. In Sec. II we review

the canonical Palatini formulation of gravity with a cosmo-
logical constant in 3D. Section III introduces the quantiza-
tion of the theory at the level of the kinematical Hilbert
space, without imposing yet the constraints. In Sec. IV we
comment on the physical relevance of the quantum sym-
metrizer and prove that the quantum dynamics of the SUð2Þ
theory induces the quantum recoupling of the Turaev-Viro
model. In Sec. V we recall the spin-foam dynamics
formalism, complemented with a cosmological constant,
and then we extend the Noui-Perez physical projector to
encode the cosmological constant in the Palatini formalism.
In Sec. VI we perform the regularization of the curvature
constraint of the Palatini formulation of gravity with a
cosmological constant. In Sec. VII we apply the extended
and regularized physical projector to the study case of the

scalar product of two loops. Section VIII deals with the
diffeomorphism invariance of the extended and regularized
physical projector. Finally, Sec. IX explicitly shows the
emergence of the Turaev-Viro model from the classical
theory started from. In Sec. X we spell out our conclusions.

II. CANONICAL 3D GRAVITY WITH
COSMOLOGICAL CONSTANT

The (first order formalism) three-dimensional
Riemannian theory of gravity with cosmological constant
Λ that we are considering is defined on a spacetime M,
which we assume to be a three-dimensional oriented
smooth manifold, through the expression for the action

S½e;ω� ¼
Z
M

Tr½e ∧ FðωÞ� þ Λ
3
Tr½e ∧ e ∧ e�; ð1Þ

where e stands for the triad, which is an suð2Þ-valued
1-form, ω is an SUð2Þ three-dimensional connection, FðωÞ
is the curvature of ω, and the trace “Tr” denotes the Killing
form on suð2Þ. With no loss of generality, we can adopt the
usual decomposition and assume the spacetime topology to
be M ¼ Σ ×R, where Σ is a Riemann surface of arbi-
trary genus.
Suppose now we pull back to Σ the spin connection ω

and the triad e, and then we can express the new variables
in the local coordinates to be the two-dimensional con-
nection Ai

a and the triad field ejb, in which a ¼ 1, 2 are
space coordinate indices and i, j ¼ 1, 2, 3 are suð2Þ
indices. The Poisson brackets among these variables now
provide the symplectic structure

fAi
aðxÞ; ejbðyÞg ¼ ϵabδ

ijδð2Þðx; yÞ: ð2Þ

The phase-space of the theory can also be parametrized in
terms of the densitized triad Eb

j ¼ ϵbcekcηjk, i.e.,

fAi
aðxÞ; Eb

j ðyÞg ¼ δbaδ
i
jδ

ð2Þðx; yÞ: ð3Þ

Varying the action in terms of the pullback of the fields, i.e.,
with respect to the independent fields Ai

aðxÞ and ejbðxÞ, we
get the first class local constraints DAe ≃ 0—here ≃
denotes the validity on the constraints surface, namely
weak equality—and FðAÞ þ Λe ∧ e ≃ 0. In terms of the
components, we find

Db
Ae

j
b ¼ 0; Fi

abðAÞ þ Λϵijke
j
aekb ¼ 0: ð4Þ

These constraints generate local symmetries. In particular,
smearing out Db

Ae
j
b with the test field αj we get the Gauß

constraint

G½α; A; e� ¼
Z
Σ
αjDb

Ae
j
b ¼ 0; ð5Þ
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which generate infinitesimal SUð2Þ gauge transformations

δαAi
a ¼ fAa

i ; G½α; A; e�g ¼ ðDaαÞi;
δαeia ¼ feia; G½α; A; e�g ¼ αkeajϵijk: ð6Þ

Smearing out Fi
abðAÞ þ Λϵijke

j
aekb with the test function βj,

we get the curvature constraint CΛ½β; A�, which reads

CΛ½β; A; e� ¼
Z
Σ
βiðFi

abðAÞ þ Λϵijke
j
aekbÞ ¼ 0 ð7Þ

and generates transformations that contain diffeomor-
phisms, namely

δβAi
a ¼ fAi

a; CΛ½β; A; e�g ¼ Λϵijkejaβk;

δβeia ¼ feia; CΛ½β; A; e�g ¼ Dcβ
i; ð8Þ

provided that the triad fields eia are assumed to be
nondegenerate.
Indeed, if we consider the vector field v ¼ va∂a on the

surface Σ and hence define the parameters αi ¼ vaAi
a and

βi ¼ eiavb, the previous transformations become1

ðLvAÞia ≃ δαðvÞAi
a; ðLveÞia ≃ δαðvÞeia þ δβðvÞeia; ð9Þ

where Lv is the Lie derivative along the vector field v.

III. SUð2Þ KINEMATICAL HILBERT SPACE

The theory above can be quantized à la loop by a way
[14,15] that follows the Dirac’s procedure. Indeed, we can
first construct an auxiliary Hilbert space on which we
provide a representation of the basic variables we are going
to deal with and on which constraints will be represented. In
our scheme, connections are represented in terms of hol-
onomies hγ½A� along path γ ∈ Σ that are in turn defined by
hγ½A� ¼ P exp

R
γ A, where P denotes here path ordering.

Thus the functional of connections will be represented in
terms of the functionals of holonomies. Triad fields eia,
associated with the densitized electric field Ea

i , will be
smeared, as usual, along codimension one surfaces. These
canonical variables are then promoted to operators acting on
the auxiliary Hilbert space of the functionals of holonomies.
The physical Hilbert space corresponds to those states that
are annihilated by the constraints. These states are distri-
butional, as they are not normalizable with respect to the
auxiliary Hilbert space and hence no more in it.
The auxiliary Hilbert space Haux is the Cauchy com-

pletion of the space of cylindrical functions Cyl. These

latter ones are defined on the space of generalized con-
nections A, which provide in turn a map from the set of
paths γ ∈ Σ to SUð2Þ, and hence represent an extension of
the notion of holonomy hγ½A�. Elements ΨΓ;f½A� of the
space Cyl are defined as follows:

ΨΓ;f½A� ¼ fðhγ1 ½A�; · · ·hγl ½A�; · · ·hγL ½A�Þ: ð10Þ
Consequently, these states are functionals of A labeled
by a finite graph Γ ∈ Σ and a continuous function
f∶SUð2ÞL → C, where L denotes the number of links γl
of Γ. Therefore, the inner product adopted in order to define
the completion of the auxiliary Hilbert space is that one
used for any two cylindrical functions ΨΓ1;f1 ½A� and
ΨΓ2;f2 ½A�, namely the Ashtekar-Lewandowski measure μAL

μALðΨΓ1;f1 ½A�ΨΓ2;f2 ½A�Þ≡hΨΓ1;f1 ½A�;ΨΓ2;f2 ½A�i

¼
Z ỸL

l̃¼1

dhl̃f̃1ð· · ·hγ l̃ ½A�; · · ·hγL̃ ½A�Þ

· f̃2ð· · ·hγ l̃ ½A�; · · ·hγL̃ ½A�Þ;

in which l̃ labels links of Γ̃ ¼ Γ1 ∪ Γ2 (whose total number
of links is L̃) and f̃1 and f̃2 denote the extension of the
functions f1 and f2, defined, respectively, on Γ1 and Γ2, on
Γ̃, and dhl̃ stands for the invariant SUð2Þ-Haar measure.
Quantization on Haux of generalized connections is

achieved by promoting holonomies to act as operators
on Haux, namely

dhγ½A�Ψ½A� ¼ hγ½A�Ψ½A�; ð11Þ

whose procedure defines a self-adjoint operator in Haux.
In a similar way, the triad eia is promoted to a self-adjoint
operator valued distribution acting as a derivative with
respect to A, i.e.,

êai ¼ −iLP
∂

∂Ai
a
; ð12Þ

and equivalently the densitized Ashtekar electric field
becomes

Êi
a ¼ −iLPϵabη

ij ∂

∂Aj
b

; ð13Þ

in which LP ¼ ℏG (G being the Newton constant) is the
Planck length in three dimensions.
Imposition of the Gauß constraint corresponds to the

selection of elements of Cyl invariant under SUð2Þ gauge
transformations. Concretely, gauge transformations act on
the cylindrical functions by acting on the holonomies as

hl½A� → gsðlÞhl½A�g−1tðlÞ; ð14Þ

1We recall that spatial diffeomorphisms along a vector field va

are defined by δvAi
a ¼ fAi

a; VðvaÞg ¼ LvAi
a and δveia ¼

feia; VðvaÞg ¼ Lveia, where V is the canonical vector constraint
of general relativity.
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in which gsðlÞ; gtðlÞ ∈ SUð2Þ are group elements associated,
respectively,with the source and target nodes of the link l. The
kernel of the Gauß constraint, namely the projection into the
SUð2Þ gauge invariant subspace of the auxiliary Hilbert
space, defines the kinematical Hilbert space Hkin ⊂ Haux.
Harmonic analysis on SUð2Þ, and specifically the Peter-

Weyl theorem, enables us to expand any square integrable
function f∶SUð2Þ → C in terms of unitary irreducible
representations of SUð2Þ

fðhÞ ¼
X
j

fjΠ
j
ðhÞ; with fj ¼

Z
dhΠ

j
ðhÞfðhÞ; ð15Þ

in which fj can be seen as an element of the tensor product
vector space H�

j ⊗ Hj (where Hj denotes the vector space
in the j representation and H�

j represents its complex
conjugated copy), and magnetic indices contraction is
understood.
This procedure clearly enables one to introduce an

orthonormal basis of states in Haux. Any element of Cyl
can now be expressed as a linear combination of the tensor
product of L SUð2Þ-irreducible representations. Ortho-
gonality of such elements of Cyl is checked by using the
physical inner product (11). The action of the SUð2Þ gauge
transformations generator, i.e., the Gauß constraint, on
Fourier modes is given by

Π
j
ðhÞ → Π

j
ðgsðlÞÞΠ

j
ðhlÞΠ

j
ðg−1tðlÞÞ; ð16Þ

and allows one to construct a basis of gauge invariant
functions by contraction of Wigner representation matrices
with suð2Þ-invariant tensor or suð2Þ intertwiners.
Intertwiners that are suð2Þ-invariant admit an orthomormal
basis {n ∈ Inv½Hj1 ⊗ Hj2 ⊗ · · · ⊗ HjL � and are labeled by
n. Once we have introduced such a notation, we are able to
define a basis of gauge-invariant elements of Cyl that
corresponds to the spin-network basis, whose elements are
labeled by a graph Γ, a set of spin fjlg for each link l ∈ Γ
and a set of intertwiners {n labeling nodes n ∈ Γ,

ψΓ;fjlg;f{ng½A� ¼ ⊗
n∈Γ

{n⊗
l∈Γ

Π
jγ ðhl½A�Þ: ð17Þ

IV. THE QUANTUM SYMMETRIZER IN THE
LOOP BASIS

Historically, the loop basis was introduced by Rovelli and
Smolin in [16,17], in order to implement the Wilsonian
quantization of the Einstein-Hilbert theory of gravity, recast
in terms of the gauge “Ashtekar” variables [18]. The
elements of this basis are the Wilson loops, which are traces
of closed holonomies of the gravitational SUð2Þ gauge
connection. These are automatically gauge invariant due to
the properties of traces. It was then shown in [19] that the

same basis is equivalent to the spin-network basis. Roughly
speaking, the equivalence of the two bases is obtained by
undoing the symmetrizer at the edges of given spin-network
basis elements, therefore projecting each bundle of strands
onto the Temperley-Lieb algebra with the same number of
strands. This same principle will be used below as well, as
we shall see. Loops introduced in this way are kinematical
objects—they do not account for the imposition of the space
diffeomorphism and time reparametrization constraints that
implement the dynamics of theEinstein-Hilbert action—and
apply to the quantization of theHilbert space of the ð2þ 1ÞD
reduction of the same theory, which reduces to a topological
quantum field theory.
The building block for our considerations is the loop in

the fundamental representation (rep) of SUð2Þ. This is
expressed by the Wigner matrix ΠðgÞ, which provides the
fundamental representation of an element g ∈ SUð2Þ.
When the dependence on the group element is frozen by
setting it equal to the unit element g ¼ e, the trace of the
Wigner matrix, namely the Wilson loop of the fundamental
rep, provides the dimension of this latter one.
We may introduce for convenience graphical notations

for the irreducible representations (irreps) of SUð2Þ. Spinor
indices are denoted as A; B ∈ f0; 1g. The trivial (identity)
intertwiner δAB is graphically denoted as a straight line,
while the Levi-Civita tensors ϵAB and ϵAB are denoted,
respectively, as bottom-up and bottom-down arches. Within
this notation, a Wilson loop reads

ð18Þ

where χðgÞ denotes the character of the irrepΠðgÞ of a group
element g ∈ SUð2Þ. Furthermore, taking into account this
diagrammatics, we can construct the Jones-Wenzl projector
moving from the realization of the symmetrizer for two
fundamental reps, so as to realize an irrep of spin 1. The
coefficients on the right-hand side of Eq. (18) are determined
by the properties of the Wigner matrices [instantiating the
irreps ofSUð2Þ] with g ¼ e, once the symmetrizer of the two
fundamental reps is required to be a projector—by iteration
for n > 2 fundamental reps, the Jones-Wenzl projector for a
generic irrep of spin j ¼ n=2 is recovered.
We observe that setting g ¼ e is equivalent to imposing

the curvature flatness condition on the elements of the
kinematical Hilbert space of the theory that is considered.
In particular, in ð2þ 1ÞD this corresponds to imposing
the curvature constraint of the Einstein-Hilbert action.
Technically, this is realized by considering the action of
the Dirac delta function δðgÞ on loops, or equivalently on
holonomies. The dimension of the fundamental represen-
tation of SUð2Þ reads in this case

d ¼ δðgÞ⊳ χ1
2
ðgÞ; ð19Þ
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where the action ⊳ of δðgÞ is normalized by integration
with respect to the Haar measure dg. From now on, we
focus on the ð2þ 1ÞD Einstein-Hilbert action with cos-
mological constant Λ. The imposition of the curvature
constraint to the loops, in the fundamental representation,
entails calculating the trace of the holonomy of the
Ashtekar connection in a SUð2Þ group element HΛ that
represents the spacetime curvature induced by Λ.
The action of the curvature constraint when a non-

vanishing Λ is added to the Einstein-Hilbert theory can be
derived applying a discretization procedure. Consequently,
the curvature group element HΛ can be written as in
Eq. (39), where the dependence on the square root of
the cosmological constant is specified—see Sec. VI for
details. At the quantum level, the curvature constraint
amounts to the multiplication of the Hilbert space elements
by the Dirac delta function δðgH−1

Λ Þ, namely

ð20Þ

χ
1
2ðHΛÞ ¼ Tr1

2
ðe

ffiffiffi
Λ

p
τ3n3Þ ¼ 2 cosð

ffiffiffiffi
Λ

p
n3=2Þ; ð21Þ

with τ3 an anti-Hermitian basis element of suð2Þ in the
fundamental representation. This immediately provides the
fundamental representation

dq ¼ χ1
2
ðHΛÞ ð22Þ

of SUqð2Þ, i.e., the Chebyschev polynomial of degree one in

which the parameter q is a function of
ffiffiffiffi
Λ

p
. Projecting two

strands on the loop basis, i.e., projecting two open strands
on the Temperley-Lieb algebra, along with the value of the
trace just computed provides the Jones-Wenzl projector at
q ≠ −1. In fact, in the Temperley-Lieb algebra we have

ð23Þ

Imposing that the symmetrizer is a projector (i.e., it is
idempotent) fixes the coefficients to be a ¼ 1 and
b ¼ −d−1q , which shows the claim. We consider now the
symmetrizer on a number of strands larger than two, showing
an iterative version of the reasoning given in Eq. (23). In fact,
using the symmetrizer to project on Temperley-Lieb algebra
elements, along with the value of the “fundamental loop”
computed in Eqs. (20) and (21), automatically forces the
Kauffman smoothing relations where the smoothing factor is
provided by the quantum dimension. This is essentially a
consequence of the fact that the Kauffman bracket is unique,

and the value as computed in Eq. (21) fixes the value of the
coefficients to be the quantum dimension. We want to prove
that using the symmetrizer with the group element corre-
sponding to the cosmological constant necessarily satisfies
the following inductive equation, found at the end of Sec. 3.2
of [20], which shows that this is the Jones-Wenzl projector
with arbitrary q:

ð24Þ

where μ1 ≔ 1
dq

and μnþ1 ¼ 1
dq−μn

. We proceed inductively,

using as a base for induction the result already displayed for
two strands. Suppose that the statement holds for some k > 2.
Applying the symmetrizer on kþ 1 strandswe find two types
of elements of the Temperley-Lieb algebra. Those where the
ðkþ 1Þth-strand is straight, and those where it is not. We
depict this situation diagrammatically as

ð25Þ

where the rectangles are still to be determined, as in the step
with k ¼ 2. Also, the rectangles that symmetrize the k strands
are in principle not necessarily equal to the symmetrizer
obtained from the inductive step at k. Let us now apply the
symmetrizer twice, to obtain the diagrammatic equation

ð26Þ
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Imposing the symmetrizer to be idempotent, it follows that the
term with coefficient A has idempotent boxes of degree k,
which automatically forces this to be the symmetrizer
obtained for k, since this is unique by induction hypothesis.
It also follows that A ¼ 1. Then, let us indicate by Φ and Ψ
the diagrams whose coefficients are A and B in Eq. (25),
respectively. Then, by equating the termswhere the last strand
is not straight, in the idempotence condition, we have the
equation BΨ ¼ ABðΦΨþ ΨΦÞ þ B2Ψ2; i.e., the second
term of Eq. (25) is equal to the last three terms of
Eq. (26). Using the idempotence in the known results for
the Jones-Wenzl projector for degree k, which hold true by
inductive hypothesis, it now follows that the symmetrizer
at degree kþ 1 coincides with the quantum Jones-Wenzl
projector, where the value of d is given by the quantum
dimension computed in Eq. (21). This shows that the value of
the fundamental loop with the group element being the first
Chebyschev polynomial, along with projecting onto the loop
basis, substantially determines our effective recoupling theory
to be the quantum recoupling theory of [20] at A ≠ −1.
Moreover,we observe thatwe have not assumedA to be a root
of unity at any step.
We therefore obtain a diagrammatics that implies an

effective recoupling, which is equivalent to the Kauffman-
Lins recoupling with A ≠ −1, namely to the recoupling
theory of SUqð2Þ that is implemented in the Turaev-Viro
model. Here strands with bullets indicate representations
with the insertion of the group element, and the symmetr-
izer on such strands is the quantum Wenzl-Jones symmetr-
izer, following the procedure given above.
We emphasize that this is entirely due to the dynamical

implementation of the curvature constraint at the quantum
level, and the assumption that projecting onto the loop basis
satisfies the idempotence condition. Thus the effective
quantum representations that are found within this scheme
are the by-product of the quantization of the Einstein-
Hilbert action with a cosmological constant in ð2þ 1ÞD.

V. SPIN-FOAM DYNAMICS

Quantum gravity in ð2þ 1ÞD could have been com-
pletely solved in [21] by regularizing the generalized
projector P. The projection operator P encodes the quan-
tum evolution due to the presence of the Hamiltonian
constraint and provides a physical scalar product in the
spin-foam representation, which produces the Ponzano-
Regge model. In this section we consider the procedure
of extending the regularization of the projector P in the
presence of nontrivial cosmological constant. We start
from the setting of [21], and we consider the dynamics
from the spin-foam perspective, as a covariant way to
implement the quantization of loop quantum gravity.
The extension of these results to the (3þ 1)D case
presents several difficulties that have not yet been over-
come [22–27].

The generalized projector P defining the generic physi-
cal scalar product hs; Ps0i (between spin-network states s
and s0 of the physical Hilbert space) implements the
curvature constraint in the spin-foam formalism represen-
tation of hs; Ps0i, and is expressed by

P ¼ “
Y
x∈Σ

δðF̂ðωÞ þ Λê ∧ êÞ”

¼
Z

D½N� exp i
Z
Σ
Tr½NðFðωÞ þ Λê ∧ êÞ�; ð27Þ

where N ¼ Niτi ∈ suð2Þ and τi are basis elements of
suð2Þ in the fundamental representation.
Following [21], we pick a cellular decomposition

ΣδðΓ;Γ0Þ of Σ depending on an infinitesimal parameter
δ ∈ R. The cellular decomposition ΣδðΓ;Γ0Þ consists of 0-
cells called vertices, 1-cells that consist of edges connecting
the 0-cells, and 2-cells called plaquettes, and denoted by p.
The latter are squares delimited by 1-cells between 0-cells.
The union of 0-cells and 1-cells contains the graphs Γ and
Γ0 on which the spin-networks s and s0 are supported,
respectively. Furthermore, we assume that there is a cover-
ing by open balls Bδ of radii δ such that each plaquette p is
contained in some Bδ. Therefore, as δ → 0, the plaquettes
shrink to points. This allows us to define a regularization
for the physical inner product as in [21]. Indeed, once
an ordering for the set of plaquettes pi ∈ ΣδðΓ;Γ0Þ with
i ¼ 1;…; Nδ

p has been introduced—Nδ
p being the total

number of plaquettes for an assigned value of the regulator
δ of the cellular decomposition—the physical inner product
between two spin-network states s and s0, respectively,
supported on Γ and Γ0, is

hs; s0iPhys ¼ hs; Ps0i

¼ limδ→0

X
jpi

dim jpi

�Y
pi

χjpi ðUpiH−1
Λ Þs; s0

�

¼
X
jpi

dim jpi

�Y
pi

χjpi ðUpiH−1
Λ Þs; s0

�
; ð28Þ

where dim jpi stands for the dimension of the irrep of spin
jpi , Upi for the holonomy around the plaquette pi, HΛ is a
SUð2Þ group element encoding spacetime curvature, and
χjpi ðUpiH−1

Λ Þ denotes the trace of the irrep Πj of spin j of

the SUð2Þ group element “UpiH−1
Λ .” The equality in Eq. (28)

follows from considering the property that any two adjacent
plaquettes UpiH−1

Λ that are integrated along the common
edge fuse into a single plaquette, up to numerical factors
(depending on the curvature element) that can reabsorbed by
the Haar measure. The existence of the limit in Eq. (28) can
be proven along the lines of the reasoning found in [28],
which gives an analog of Eq. (24) in Remark 1 of [21], which
in our setting reads
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jhs; Ps0ij ¼
����X
jpi

dim jpi

�
s;
Y
pi

χjpi ðUpiH−1
Λ Þs0

�����
¼
����X
jpi

dim jpiμAL

�Y
pi

χjpi ðUpiH−1
Λ Þss0

�����
≤ K

X
j

ðdimqjÞ2−2g; ð29Þ

where dimqj is the quantum dimension that is derived from
the imposition of the curvature constraint with a cosmo-
logical constant, as shown in Sec. IV. Here K is a constant
that is obtained from the majoration of the spin networks,
since cylindrical functions Cyl are bounded. We observe that
this is a different constant with respect to the one appearing
in Eq. (24) of [21]. The exponent in the last line of Eq. (29),
2 − 2g, is the Euler characteristic, recovered considering a
maximal cell-decomposition of the surface. WhenΛ is a root
of unity, the right-hand side of (29) converges independently
of the genus g of the surface, as the quantum compatibility
conditions implement a cutoff on the spin colors that works
as a regulator.

VI. REGULARIZATION OF THE HAMILTONIAN
CONSTRAINT IN LOOP BASIS

We can regularize the curvature constraint operator,
extending the ð2þ 1ÞD analysis for the Einstein-Hilbert
action developed in [21] to the case encoding the cosmo-
logical constant.
The main difference with respect to the previous liter-

ature is that we first smear at the classical level triads on the
edge of the lattice dual to the square tessellation of the
space surfaces, and then obtain an element of the suð2Þ
algebra. We then regularize the curvature constraint as the
product of two SUð2Þ group elements, and implement the
quantization in terms of holonomy operators in the funda-
mental representation. The effective (“quantum group”
like) recoupling theory that is induced by the quantum
dynamics, as previously commented, will then extend the
result to loops in any irrep of SUð2Þ.
In more detail, we can motivate Eq. (28) by considering

that, for a local patch X ∈ Σ in which the cellular decom-
position is made out of square cells of coordinate length δ,
the curvature constraint reads

FΛ½N� ¼
Z
X
Tr½NðFðωÞ þ Λe ∧ eÞ�

¼ lim
δ→0

X
pi

δ2Tr½NpiðFpi þ ΛnpiÞ�; ð30Þ

in which the suð2Þ algebra elements Npi , Fpi , and npi

stand, respectively, for the value of N ¼ Njτj and Fjτj ¼
τjϵ

abFj
abðωÞ and δ2njτj ¼ ϵabeiaekbϵ

j
ikτj at an interior point

pi of the ith plaquette. It was already noticed in [21] that the

holonomy Upi undergoes in the δ → 0 limit the approxi-
mation

UpiðωÞ ¼ 1þ δ2FpiðωÞ þOðδ2Þ; ð31Þ

and that as a consequence

F½N� ¼
Z
X
Tr½NFðωÞ� ¼ lim

δ→0

X
pi

Tr½NpiUpiðωÞ�: ð32Þ

We notice that a similar argument can be deployed to recast
the term Λϵijke

j
aekb, which amounts to the action of the triads

on the dual lattice, given that we perform the expansion of
triads around the base point pi positioned at the center of
the ith plaquette as it follows:

eiaðxÞjpi ≃ δia þOðδÞ: ð33Þ

This observation allows us to define a SUð2Þ group element
HΛ

pi , which expanding in the infinitesimal δ parameter reads

HΛ
pi ¼ 1þ δ2Λnpi þOðδ2Þ: ð34Þ

Within this expression the smeared [on the suð2Þ algebra
element N] flux of ϵabeiaekbϵ

j
ikτj appears. Indeed,

Λ
Z
X
Tr½Ne ∧ e� ¼ Λ

Z
X
ϵijkNiϵabejaekb

¼ lim
δ→0

X
pi

Tr½NpiHΛ
piðωÞ�; ð35Þ

provided that on the loop states

δ2njpi ∼ lim
δ→0

ΦXðẼjÞ ¼ lim
δ→0

Z
X
ϵabeiaekbϵ

j
ik: ð36Þ

In Eq. (36) we have used the definition Eb
i ¼ ϵabesaηis of the

Ashtekar electric field on the two-dimensional surface of
pullback Σ, we have performed the triadic projection with
respect to ekb, and finally we contracted the internal indices
with the Levi-Civita tensor ϵijk , namely Ẽj ¼ Eb

i e
k
bϵ

ij
k . Up to

multiplication by appropriate SUð2Þ group elements, which
do not change the scalar product due to the properties of the
Haar measure, we can rewrite the SUð2Þ group element
encoding the spacetime curvature as

HΛ
pi ¼ expðΛn3piτ3Þ: ð37Þ

At each plaquette we can renormalize Λ and rewrite
HΛ0

pi ¼ expðΛ0
piτ3Þ. For the regularization of the projector

on the loop basis we can write HΛ0
pi ¼ expðΛ0τ3Þ, where the

discretization is independent on the ith plaquette that has
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been chosen. We then notice that a rescaling on the
connection ω by 1=G, so to make it dimensionless, as
well as a rescaling of the coordinates by 1=

ffiffiffiffi
Λ

p
, allows

us to recast the action in terms of only dimensionless
quantities, as

S0 ¼ 1

G
ffiffiffiffi
Λ

p
Z
M

1

G
ffiffiffiffi
Λ

p Tr½e∧FðωÞ�þ1

3
Tr½e∧e∧e�: ð38Þ

The peculiarity of Eq. (38) now traces back at the level of
the spin-foam dynamics to the definition of a SUð2Þ group
element encoding spacetime curvature of the form
HΛ ¼ expðG ffiffiffiffi

Λ
p

τ3n3Þ. Finally, in Planck units, i.e., with
G ¼ 1, the curvature group element introduced in Eq. (21)
is recovered, i.e.,

HΛ ¼ e
ffiffiffi
Λ

p
τ3n3 : ð39Þ

For a generic “quantum-group effective” irrep j, using the
effectively induced Jones-Wenzl projector, the evaluation
of the trace ofHΛ provides the ChebyschevΔΛ

2j polynomial

of degree-2j, evaluated in
ffiffiffiffi
Λ

p
.

We finally comment that the curvature group elementHΛ
converges to the unity of the group U ¼ e in the vanishing
cosmological constant limit Λ → 0. Hence the standard flat
curvature constraint is recovered [21], which induces the
convergence of the recoupling theory of SUqð2Þ to the
standard recoupling theory of SUð2Þ.

VII. TWO LOOPS CALCULATION

As an instructive study case, we inspect the physical
scalar product of two loops, for the case without cosmo-
logical constant, as in the framework of [21], and sub-
sequently we repeat the calculation for the case with a
nonvanishing cosmological constant.
For two cylindrical functions ΨΓ1;f½A� and ΨΓ2;g½A�, the

inner product is defined by the AL measure

μALðΨΓ1;f½A�ΨΓ2;g½A�Þ ¼ hΨΓ1;f½A�;ΨΓ2;g½A�i ð40Þ

¼
Z

Πi¼1dhifðhγ1 ;…; hγNl
Þ

× gðhγ1 ;…; hγNl
Þ; ð41Þ

where dhi corresponds to the invariant SUð2Þ Haar
measure.
We calculate the inner product between two loops with

spin j and j0, inserting an extra loop corresponding to the
projector of [21]. Specifically, we compute

hOj;Oj0iPh ¼
Z

dUΣkΔkχ
�
jðUÞχj0 ðUÞχkðUÞ ð42Þ

¼ ΣkΔk

Z
dUΠ�j α

αðUÞΠ�j β
βðUÞΠ

j0
γ
γðUÞ: ð43Þ

Notice that such an integration can be directly solved
without expanding the Dirac delta on the group, but instead
imposing the curvature constraint. In the absence of a
cosmological constant, this latter reads U ¼ e, with a U
group element around the loop and e unit element of
SUð2Þ. In this case, using the composition rule
χ�jðUÞχj0 ðUÞ ¼ P

k χkðUÞ, where the sum is over the
compatible spin k such that jj − j0j < k < jþ j0, we can
immediately find

hOj;Oj0iPh ¼
Z

dUχ�jðUÞχj0 ðUÞδðUÞ

¼ Σk

Z
dUχkðUÞδðUÞ ¼ ΣkΔk: ð44Þ

We can now show that the same result can be recovered by
expanding the Dirac delta function, as in [21]. In this case,
integration over the three representations of the group
elements along each link of the squared loop provides
four pairs of trivalent intertwiners. This is shown on the
right-hand side of Fig. 1. We represent these intertwiners in
terms of Jones-Wenzl projectors and renormalize the
trivalent vertices by the θ-net evaluations. Specifically,
the internal gauge indices of these tensors are contracted
with one another according to a specific combinatorial path
of contractions that respect the symmetries of the Jones-
Wenzl projector, namely

Z
dUΠ�j α

αðUÞΠ
j0

β
βðUÞΠ

j00
γ
γðUÞ ¼ υαβγυαβγ

¼ υαβγffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θða; b; cÞp ῡαβγffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θða; b; cÞp ;

ð45Þ

where υ is the trivalent intertwiner among the j, j0, and j00
representations—assumed to be compatible to provide a non-
trivial nonvanishing result, namely jþ j0 þ j00 ¼ N—of the

FIG. 1. Diagrammatic definition of inner product on two loops
(left) and result of integration (right).
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spin-network basis, and ῡ denotes the trivalent intertwiner in
theKauffman-Lins formalism amonga,b, andc fundamental
representations, having introduced a ¼ 2j, b ¼ 2j0, and
c ¼ 2j00.
Finally, since a contraction over the indices provides

ῡαβγῡαβγ ¼ θða; b; cÞ; ð46Þ

we obtain the result

hOj;Oj0 iPh ¼ ΣkΔk; ð47Þ

where the sum is over all the k under the restrictions
imposed by the compatibility conditions. We observe that
these are finitely many; thus the result is finite.
We now repeat the same steps, accounting for a non-

vanishing cosmological constant.
We calculate the inner product between two loops with

spin j and j0

hOj;Oj0 iPh ¼
Z

dUΣkΔkχ
�
jðUÞχj0 ðUÞχkðUH−1

Λ Þ

¼ ΣkΔk

Z
dUΠ�j α1

β1
ðUÞΠ�j

0
β1
α1ðUÞΠ

j0
α2
β2
ðUÞ

× Π
j0

β2
α2ðUÞΠk α3

β3
ðUÞΠk β3

α3ðH−1
Λ Þ;

¼ ΣkΔk

Z
dUΠ�j α1

β1
ðUÞΠ

j0
β2
α2ðUÞΠk α3

β3
ðUÞ

× Π
k β3
α3ðH−1

Λ Þ δjj0
Δj

δβ1β2δα1α2 ; ð48Þ

where we have used

Π�j α
βðUÞΠ

j0
γ
δðUÞ ¼ δjj0

Δj
δαδδβγ ¼ δjj0 ¼ 1 ð49Þ

and

χ
jpðUpH−1

Λ Þ ¼ Π
jp

α
βðUpÞΠ

jp
β
αðH−1

Λ Þ: ð50Þ

The definition is represented diagrammatically in the right-
hand side of Fig. 2.
Among the four pairs of trivalent intertwiners, only one

of them will encapsulate the representations of the group
element implementing the curvature constraint, namely

υα1α2α3Π
j00

β3
α3ðH−1

Λ Þυα1α2β3
¼υα1α2α3Π

c
2 β3
α3ðH−1

Λ Þῡα1α2β3
1

θða;b;cÞ¼
θΛða;b;cÞ
θða;b;cÞ : ð51Þ

Making use of Lemma 7 in [20], by inserting the group
element corresponding to the cosmological constant, we

obtain the expression in Fig. 3, from which it is immediate
to compute the value of the θ-nets with one insertion of a
group element with a cosmological constant,HΛ. Therefore
it follows that

θΛða; b; cÞ
θða; b; cÞ ¼ χ

kðH−1
Λ Þ

Δk
: ð52Þ

Notice that contractions inside and outside an integral
follow, respectively, from

Z
dgΠα1

α2

j

ðg−1ÞΠβ1
β2

j0

ðgÞ ¼ δjj0

Δj
δα1β1δα2β2 ; ð53Þ

which diagrammatically recasts into

FIG. 2. Diagrammatic definition of inner product on two loops
(left) and result of integration (right), where the black dot
indicates the presence of the group element.

FIG. 3. Diagrammatic reformulation of Lemma 7 in [20], with
quantum group representation here induced by the cosmological
constant.
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ð54Þ

and follows from Eq. (49).
Finally, taking into account Eqs. (45) and (52), we are

able to recover the evaluation of the inner product, as in

hOj;Oj0 i ¼
Z

dUΣkΔkχ
�
jðUÞχj0 ðUÞχkðUH−1

Λ Þ

¼
X
k

Δk
υ · ῡ

θða; b; cÞ
χkðHΛÞ
Δk

¼
X
k

χkðHΛÞ: ð55Þ

We observe that this is formally the same as in the case
without a cosmological constant, where the classical
dimension has been replaced by the quantum dimension,
as calculated in Eq. (21). Furthermore, we observe that
this procedure, by expanding the Dirac delta function in
representations of SUð2Þ, retains a spurious dependence
on the SUð2Þ group elements that might eventually render
more difficult the interpretation of the results in terms of the
recoupling theory of SUqð2Þ.
A more intuitive path to recognize the emergence of the

recoupling theory of SUqð2Þ amounts to directly integrat-
ing out the SUð2Þ elements. This corresponds, from a
physical perspective, to imposing the constraints at the
quantum level on the loop elements.
As in the standard case, we may opt for imposing the

curvature constraint without expanding the Dirac delta
function. In this case,

hOj;Oj0 i ¼
Z

dUχ�jðUÞχj0 ðUÞδðUHΛÞ

¼
X
k

Z
dUχkðUÞδðUH−1

Λ Þ

¼
X
k

χkðHΛÞ; ð56Þ

see Fig. 4.

VIII. DIFFEOMORPHISM INVARIANCE

We can now check how the projector extended to include
the cosmological constant, namely Eq. (27), naturally
incorporates diffeomorphism invariance, as for the physical
projector introduced in [21].

A. Case without vertices involved

We shall first inspect the case in which spin-network
states, or their substates, enclose no intertwiners. In this
case, considering two holonomies with different shapes,
and using the spurious notation that arises from expanding
the Dirac delta functions imposing the curvature constraint,
we can easily convince ourselves that

ð57Þ

ð58Þ

ð59Þ

ð60Þ

ð61Þ

ð62Þ

B. Case with vertices involved

We now consider the case of diffeomorphism invariance
when spin-network states contain vertices. First, we
observe that due to the translation invariance of the Haar
measure, it follows that the following (diagrammatic)
equations hold:

FIG. 4. Two loops with only group element HΛ inserted, as
resulting from applying the Dirac delta function imposing the
curvature constraint.
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ð63Þ

ð64Þ

where the group element on the left-hand side of Eq. (64)
gives two copies of its inverse on the right-hand side.
Consider a transition of type

Now, by inserting the projector with a group element, we
compute

ð65Þ

ð66Þ

ð67Þ

ð68Þ

ð69Þ

ð70Þ

where we have used the gauge fixing identity (see
Appendix of [21]) in the first equality, and then we have
integrated to obtain the second equality. We observe that,
upon using Eq. (63), i.e., sliding the group elements
appropriately, we can indeed obtain a configuration where
we can draw loops intersecting the spin network only
through Haar integration boxes, where the group elements
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do not appear inside the loops; this ensures that we can
apply the gauge fixing identity even though the group
elements appear in the spin network. Finally, the double
integration on the left part of the last diagrammatic equality
provides a factor of ΔΛ

j =Δj that multiplies the result
without the cosmological constant derived in [21].

IX. RELATION TO THE TURAEV-VIRO MODEL

We now consider the relation between the present theory
and the Turaev-Viro model. In particular, we show that the
quantum group recoupling theory of Kauffman and Lins
[20] arises by introducing the cosmological constant in the
original computation of Noui and Perez in [21]. Explicitly,
we find that inserting the group element that arises from
the cosmological constant, the tetra-net corresponding to
certain transition amplitudes becomes the quantum 6j
symbol.
If we proceed by imposing the curvature constraint

through the Dirac delta function δðUH−1
Λ Þ, the result is

immediate (see Fig. 5), where the intertwiners are
now compatible with the recoupling theory of SUqð2Þ,
by assumption that the symmetrizer of irreps is a
projector.
To evaluate this tetra-net, we employ the chromatic

evaluation of [20], Theorem 4. Therefore, the value of
the tetrahedron coincides with the quantum 6j symbol, as
expected.

X. CONCLUSIONS

We have analyzed the Riemannian Einstein-Hilbert
theory of gravity in ð2þ 1ÞD, entailing SUð2Þ internal
symmetry, and shown that, when an additional cosmologi-
cal constant term is considered, imposing constraints at
the quantum level induces an effective recoupling theory
that is the one proper of the SUqð2Þ quantum group. This
amounts, at the quantum level, to replacing the standard
expressions for the amplitudes encoding elements of the
recoupling theory of SUð2Þwith elements of the recoupling
theory of SUqð2Þ. This has brought us to verify the
dynamical emergence of the Turaev-Viro model, as
expected by comparison with the different perspective of
quantization provided in [4].
Implementing the physical projector with a cosmological

constant, we have provided explicit computations of the
physical inner product of two loop states, showing in detail
the emergence of the deformed SUqð2Þ recoupling theory.
We have further discussed how the physical projector
implements the diffeomorphism invariance, and finally
described the emergence of the Turaev-Viro model in
the theory.
Instead of quantizing the reduced phase-space of the

theory, we have shown here that the action of the curvature
constraint at the quantum level induces the emergence of
the effective recoupling theory, both at the level of the
representation of the fundamental loop and at the level of
the higher spin loops representations. Switching from the
loop to the spin-network basis, adopting the very same
symmetrization of representations, finally entails the effec-
tive equivalent expression for the intertwiners of the theory.
This latter observation sheds light on the possible way to
deform the internal SLð2;CÞ symmetry of Lorentzian
theories of gravity in (3þ 1)D, providing a constructive
argument based on a physical insight.
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FIG. 5. Tetra-net where nonvanishing curvature has been
imposed homogeneously around the circles.
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