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We analytically compute the out-of-equilibrium direct photon-production rate and electric conductivity,
in a strongly coupled and expanding Bjorken plasma, from holography. Our results are valid at late times
where the expanding plasma asymptotes Bjorken hydrodynamics. The out-of-equilibrium rates are
substantially harder and larger, early on in the Bjorken expansion phase.
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I. INTRODUCTION

Thermalization in heavy-ion collisions happens ultrafast
(∼1–2 fm=c) producing the strongly coupled quark gluon
plasma (sQGP). Once produced, the sQGP undergoes
transverse and longitudinal expansion which cools it, until
the eventual chemical freeze-out. The time evolution in the
expansion phase is described by relativistic hydrodynam-
ics. This evolution uses an equation of state and transport
coefficients (shear and bulk viscosities) which may be
extracted from flow data.
One interesting set of observables is related to the

electromagnetic emissivities (photons and dileptons),
which are emitted through the plasma and subsequent
hadronic phase, all the way to the thermal freeze-out. These
direct photons and dileptons are accessible experimentally,
after the subtraction of the emissions from the late decays in
the hadronic cocktail (see for example [1–5]). In contrast
to the photons produced by hadronic decays in the cocktail,
the direct photons—produced in all stages—give us valu-
able information about the time evolution of the produced
matter in the collision, since they can escape the medium
basically unaffected due to their substantially smaller
interaction. For a snapshot of the state of the theory and
currently used hydrodynamic models and parameters
see [6,7] (and references therein). Nonequilibrium photon
emission rates and conductivities were studied in [8–11].
In thermal equilibrium, the electromagnetic emission is

controlled by e2 at leading order in perturbation theory and

decouples from the emitting and strongly coupled matter.
Specifically, the photon rate is given by [12,13]

dΓ ¼ d3k
ð2πÞ3

e2

2jkj η
μνG<

μνðkÞ
����
k0¼jkj

; ð1Þ

where k≡ ðk0; kÞ is a null 4-vector which we put on-shell
k0 ¼ jkj and

G<
μνðkÞ ¼

Z
d4xeiðk0t−k·xÞhJEMμ ð0ÞJEMν ðxÞi ð2Þ

is the Wightman function for the electric current decorre-
lation. In thermal equilibrium, the Wightman function
G<

μν is related to the spectral density χμν using the Bose-

Einstein distribution nbðk0Þ ¼ 1=ðeβk0 − 1Þ:

G<
μνðkÞ ¼ nbðk0ÞχμνðkÞ ð3Þ

¼ −
2

eβk
0 − 1

ImGR
μνðkÞ; ð4Þ

Here GR
μνðkÞ is the retarded electric current correlator in

Fourier space.
While the emission of prompt photons can be assessed

perturbatively, the photon production from a medium
consisting of strongly coupled quarks and gluons in
QCD is challenging [14,15]. The challenge becomes even
greater, when the medium is out of equilibrium. It is
therefore useful to consider this production from analogous
gauge theories with gravity dual in terms of the AdS=CFT
correspondence, where strong coupling calculational tech-
niques exist. At finite temperature, supersymmetry is
broken anyway, and the thermal medium densities can
be used to normalize to a QCD-like medium, albeit at
strong coupling. Both the equilibrated electromagnetic
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thermal emissivities for N ¼ 4 super-Yang Mills (SYM)
were assessed in [13] and compared to the weakly coupled
emissivities from QCD, with much in sight on the role
played by the strong coupling. In this spirit, we will extend
the analysis to the nonequilibrium regime, where much less
is known from QCD, even at weak coupling. The non-
equilibrium results of our study will show that the photon
equilibrium rate in [13] is recovered in the long time limit,
thereby providing a measure of the out-of-equilibrium
effects at strong coupling. We will suggest that these
effects are substantial in the photon rates in the low-mass
region, with possible relevance to the photon rates currently
assessed at collider energies.
Modeling the nonequilibrium dynamics of strongly

coupled field theories from first principles is a notoriously
difficult problem. In this context, holography proved to
be a valuable framework to study the real-time evolution
and transport properties of certain strongly coupled field
theories (see [16,17] for a discussion in the context of
heavy-ion collisions). Within holography, the dynamics of
the strongly coupled field theory is captured by general
relativity in asymptotically anti–de Sitter space. In this
language, thermalization is described by the formation of
a black hole [18], whose horizon is moving away from a
boundary observer [19]. We will rely on the picture of the
falling black hole, to extract the out-of-equilibrium photon
production during the cooling process.
Bjorken [20] suggested a highly successful model for

the central rapidity region of heavy-ion reactions, based
on boost invariant hydrodynamics. The holographic dual
gravity model, which is based on the idea of the falling
black hole in [19], was constructed in [21,22]. The main
idea is to map the falling black hole onto a frame where the
horizon is static and we can define (a time-dependent)
temperature [22]. The static frame provides a well-defined
framework for linear response theory. For example,
Refs. [23,24] used this idea to compute the diffusion of
heavy quarks in these expanding backgrounds.
Within holography, the equilibrium: photon and

dilepton production in N ¼ 4 super Yang-Mills plasma
was calculated in [13]. In holographic models for QCD (in
the Veneziano limit) the photon production was derived
in [25–27]. The authors in [28] extended the holographic
discussion to anisotropic plasmas with magnetic fields. The
authors of [29] computed the plasma photoemission at
strong coupling and [30] computed the gradient corrections
to the photon emission rate at strong coupling. Out of
equilibrium, the prompt photon and dilepton production
was discussed in [31,32], using the holographic model of a
falling shell. However, in the context of the falling shell the
background metric is not explicitly time dependent and
connects smoothly to the equilibrium case which allows the
authors to rely on Fourier transformations. In this work, we
will compute the out-of-equilibrium photon production in a
time-dependent background corresponding to a strongly

coupled, Bjorken expanding plasma. Correlation functions
of the Bjorken flow in the context of the holographic
Schwinger-Keldysh approach were discussed in [33].
The organization of the paper is as follows: In Sec. II we

briefly review the holographic setup for a falling black hole
in bulk, dual to boost invariant Bjorken hydrodynamics on
the boundary. We analyze the evolution of a U(1) vector
gauge field and derive the on-shell boundary action from
which the pertinent retarded propagator on the boundary
can be extracted. In Sec. III, we use the holographic result
to derive the photon emission rate in a Bjorken expanding
and strongly coupled plasma. In Sec. IV we derived a
closed form result for the U(1) electric conductivity out of
equilibrium. Our conclusions are in Sec. V.

II. HOLOGRAPHIC SETUP

In the following, we study a strongly coupled SU(Nc)
N ¼ 4 SYM theory at finite temperature and zero density.
In order to study the photon-production rate and conduc-
tivity, we couple a U(1) gauge field in terms of a Maxwell
term to gravity where we assume the electromagnetic
coupling to be small. To be more precise, the U(1) group
is a subgroup of the global SU(4) R symmetry.
The metric describing the asymptotic expanding fluid

geometry is given by [21,22]

ds2¼R2

z2

�
−
ð1−v4Þ2
1þv4

dτ2þð1þv4Þðτ2dη2þdx2⊥Þþdz2
�
;

ð5Þ

where x⊥¼fx1;x2g are the transverse directions, z ∈ f0; 1g
is the radial coordinate of AdS5, τ is the proper time, η
the rapidity related to the longitudinal directions by
x0 ¼ τ cosh η and x3 ¼ τ sinh η, where x0 is the time
coordinate. Moreover, we set the radius of AdS and the
horizon to unity. The scaling variable v is given by

v ¼ z

ðτ=τ0Þ1=3
ϵ1=40 ; ϵ0 ≡ 1

4
ðπT0Þ4; ð6Þ

where ϵ0 is the initial energy density and T0 the initial
temperature. Note that the horizon is located at v ¼ 1 or
z ∼ τ1=3. Following Ref. [23], we can transform the metric
into a more canonical form, which resembles a static black
hole. Introducing uðz; τÞ≡ 2v2=ð1þ v4Þ yields

ds2 ¼ π2T2
0R

2

uðτ=τ0Þ2=3
½−fðuÞdτ2 þ τ2dη2 þ dx2⊥�

þ R2

4fðuÞ
du2

u2
þ R2

9τ2
dτ2 −

R2

3

τ−1

u
ffiffiffiffiffiffiffiffiffi
fðuÞp dτdu; ð7Þ

with f ¼ 1 − u2. At late times where the perfect fluid
geometry is valid (i.e. τ → ∞ and v; u ¼ const), the last
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two terms are suppressed and can be ignored. Finally,
rescaling the time coordinate by t=t0 ¼ 3=2ðτ=τ0Þ2=3 yields

ds2 ¼ π2T2
0R

2

u

�
−fðuÞ τ

2
0

t20
dt2 þ 4

9
t2
τ20
t20
dη2 þ 3

2

t0
t
dx2⊥

�

þ R2

4fðuÞ
du2

u2
: ð8Þ

The field content ofN ¼ 4 SYM theory consists of SUðNcÞ
gauge bosons, four Weyl fermions ψp, and six real scalars
ϕpq in the adjoint representation of SUðNcÞ. The theory has
an SU(4) R symmetry, under which the fermions transform
as 4 and the scalars as 6. To model electromagnetic
interactions, a U(1) gauge field is added to the theory,
which is coupled to the conserved current of aU(1) subgroup
of the R symmetry [13]. The electromagnetic interaction is
treated as being linear in the U(1) gauge field for the purpose
of calculating the emission rates. Using the background
in Eq. (8), we now consider the vector perturbations
δa ¼ ðδat; 0; δax⊥ ; δaηÞ of the electromagnetic U(1) gauge
field in radial gauge ðx⊥ ¼ fx1; x2gÞ which is captured by
the bulk action

Smatter ¼ −
1

4e2

Z
d5x

ffiffiffiffiffiffi
−g

p
FμνFμν; ð9Þ

where the U(1) field strength tensor is

Fμν ¼ ∂μaν − ∂νaμ

with the U(1) gauge field a → δa. For now we will set the
electromagnetic coupling e ¼ 1 and recover it when we
compute the transport quantities. At late times, there is no
dependence on the transverse directions, and therefore we
will only consider the dependence on the longitudinal
direction. The equation of motion for the transverse fluc-
tuations reads ax⊥ ≡ ax⊥ðt; η; uÞ

4π2T̃2
0ufðuÞðf0ðuÞ∂uax⊥ þ fðuÞ∂2uax⊥Þ − ∂

2
t ax⊥

−
∂tax⊥
t

þ 9fðuÞ∂2ηax⊥
4t2

¼ 0; ð10Þ

where we defined T̃0 ≡ T0τ0=t0. The dependence on the
longitudinal direction η is suppressedwith 1=t2 at late times,
and we can neglect it in an expansion up to orderOð1=tÞ for
large t. Our starting point is the geometry in Eq. (5), which is
only valid at late times. This justifies neglecting theOð1=t2Þ
contributions in the large t limit we areworking in. Since the
last term in Eq. (10) is the only term containing derivatives
with respect to η, we hence can drop the dependence on
the longitudinal direction ax⊥ðt; η; uÞ≡ ax⊥ðt; uÞ. Since the
equation ofmotion explicitly depends on timewe cannot use
a simple Fourier transform but have to perform a separation
of variables by making the ansatz

ax⊥ ¼ cg1ðtÞg2ðuÞ; ð11Þ

wherewe find thatwe can separate the time dependencewith

g1ðtÞ ¼ c1J0

�
1

2

ffiffiffi
3

2

r
t

ffiffiffi
λ

p �
þ c2Y0

�
1

2

ffiffiffi
3

2

r
t

ffiffiffi
λ

p �
: ð12Þ

Here λ, c1, and c2 are independent of t and u, and J0
and Y0 refer to Bessel functions of first and second
kind, respectively. The Bessel functions are related to

the Hankel functions by JnðtÞ → 1
2
ðHð1Þ

n ðzÞ þHð2Þ
n ðtÞÞ and

YnðtÞ ¼ − 1
2
iðHð1Þ

n ðzÞ −Hð2Þ
n ðtÞÞ. We now set ω ¼ ffiffiffiffiffiffiffiffiffiffi

3λ=8
p

.
For positive “frequencies” ω, the solution that is ingoing at

the horizon is the Hankel function of second kindHð2Þ
n [34].

Expressing the Bessel functions in terms of the Hankel
functions and choosing the constants c1 ¼ 1=2 and
c2 ¼ −i=2, we eventually arrive at the expression

g1ðtÞ ¼
1

2
ððc1 − ic2ÞHð1Þ

0 ðωtÞ þ ðc1 þ ic2ÞHð2Þ
0 ðωtÞÞ

¼ Hð2Þ
0 ðωtÞ; ð13Þ

which satisfies the ingoing boundary condition at the
horizon. We now define a Fourier-like transform using

ax⊥ðt; uÞ ¼
Z

∞

−∞

dω
2π

ffiffiffiffiffiffiffiffi
iπω
2

r
Hð2Þ

0 ðωtÞψωðuÞãx⊥ðωÞ; ð14Þ

where ψωð0Þ ¼ 1. This Fourier-like transformation is math-
ematically based on the generalizedHankel transformwhich
can be defined in terms ofBessel functions. Since theHankel
functions are related to theBessel functions,wemaydefine a
Fourier-like transformation in terms of the Hankel functions
of second kind. As we explain below Eq. (22), following
Ref. [23], theHankel functions do not satisfy a completeness
relation, due to their singularity near zero. So restrictions on
the range of validity of the transform apply.Wewill drop the
subscript of ψ ≡ ψω in the following. With g2 ¼ ψ , we find
for the spatial part

4uπ2

T̃−2
0

ðu2 − 1Þððu2 − 1Þψ 00ðuÞ þ 2uψ 0ðuÞÞ þ ω2ψðuÞ ¼ 0;

ð15Þ
which we will solve in the following.

A. Analytical solution

The solution to the equation of motion Eq. (15) should
behave as an ingoing wave at the horizon. Since the horizon
is a regular singular point, we can expand the near-horizon
solution in a power series

ψðuÞ ∼ ð1 − uÞαð1þ � � �Þ; ð16Þ
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where α ¼ � iω
4πT̃0

. We can recast Eq. (15) formally as a Heun differential equation which is solved by the hypergeometric

functions

ψωðuÞ ¼ −ic2
�
−
1

2

� iω
2πT̃0ðu − 1Þ iω

4πT̃0ðuþ 1Þ ω
4πT̃0u

−
ð1
4
þi
4
Þω

πT̃0
2 F1

�ð1
4
þ i

4
Þω

πT̃0

;
ð1
4
þ i

4
Þω

πT̃0

þ 1;
iω

2πT̃0

þ 1;
u − 1

2u

�

− ic1ðu − 1Þ− iω
4πT̃0ðuþ 1Þ ω

4πT̃0u
−
ð1
4
−i
4
Þω

πT̃0
2 F1

�ð1
4
− i

4
Þω

πT̃0

;
ð1
4
− i

4
Þω

πT̃0

þ 1; 1 −
iω

2πT̃0

;
u − 1

2u

�
: ð17Þ

The solution satisfying the ingoing boundary condition at
the horizon is the one proportional to c1, which implies
c2 ¼ 0. Demanding that ψωð0Þ ¼ 1 (since we are interested
in the two-point function) determines the second integra-
tion constant c1, and we find

ψωðuÞ ¼ 2
−
ð1
4
−i
4
Þω

πT̃0 e
− ω
4T̃0Γ

�
1 −

ð1
4
þ i

4
Þω

πT̃0

�
Γ
�ð1

4
− i

4
Þω

πT̃0

þ 1

�

× ðu − 1Þ− iω
4πT̃0u

−
ð1
4
−i
4
Þω

πT̃0 ðuþ 1Þ ω
4πT̃0 ð18Þ

×2F̃1

�ð1
4
− i

4
Þω

πT̃0

;
ð1
4
− i

4
Þω

πT̃0

þ 1; 1 −
iω

2πT̃0

;
u − 1

2u

�
;

ð19Þ

where 2F̃1ða; b; c; dÞ is the regularized hypergeometric
function 2F̃1ða; b; c; dÞ=ΓðcÞ.
In our ansatz, the on-shell action gives rise to the

boundary term

Son−shell ¼
π4R5τ20T

4
0

4t0u3

Z
d3xdtAnFun

����
u¼1

u¼0

ð20Þ

¼
Z

dω
2π

ãx⊥ð−ωÞ
�
−
2π2

3
RT̃2

0fðuÞψ−ωψ
0
ω

�
u¼1

u¼0

× ãx⊥ðωÞ; ð21Þ

where we assumed

−
1

4

Z
∞

−∞
dttHð2Þ

0 ðωtÞHð2Þ
0 ð−ω0tÞ ≃ 1

ω
δðω − ω0Þ; ð22Þ

which is valid for small ω. As noted above, the Hankel
functions can be expressed as a combination of Bessel
functions. We can establish a completenesslike relation for
the Hankel transform, which is inherited from its relation to
Bessel functions given by

Z
∞

0

dttJνðωtÞJνðω0tÞ ¼ 1

ω
δðω − ω0Þ:

This equation originates from the asymptotic form of a
Bessel function as an exponential function over

ffiffi
t

p
.

However, this is not true for the Hankel function Hð1;2Þ

due to a singularity near zero. Despite this, using the
completenesslike relation for the Hankel function is still
valid for small values of ω or large times t, as the dominant
integral contribution comes from the large time region [23].
Furthermore, the perfect fluid Bjorken expanding geometry
is only justified asymptotically (at late times) anyway, and
the validity of our calculation is restricted to this limit.
Additionally, using Hankel functions instead of Bessel
functions is necessary to match the incoming boundary
condition at the black hole horizon [34]. To first order in u
the asymptotic expansion at the conformal boundary reads

ψ ∼ ψ ðsÞ þ u

�
ψ ðvÞ −

ψ ðsÞω2 logðuÞ
4π2T̃2

0

�
:

To extract the expectation value, we have to subtract the
divergent logarithmic contribution by adding the appro-
priate counterterm, but this comes at the cost of breaking
conformal invariance [35]. This means that a renormaliza-
tion scale must be chosen when regulating the action. The
prefactor of the logarithmic contribution enters the expect-
ation value of the current as

hJx⊥i ∼ ðψ ðvÞ − ω2ψ ðsÞ=ð8π2T̃2
0ÞÞ:

This contact term does not affect the photon-production
rate or the real part of the conductivity, since they are
related to the imaginary part of the retarded Green’s
function. However, it contributes to the imaginary part
of the conductivity, which is thus dependent on our choice
of the renormalization scale.
From Eq. (21), we can then read off the renormalized

retarded Green’s function GRðωÞ as

GRðωÞ ¼ 4π2

3
RT̃2

0½fðuÞψ−ωðuÞψ 0
ωðuÞ�u¼0

¼ −
R
3
ω

�
ω

�
Hð1

4
−i
4
Þω

πT̃0

þ ψ ð0Þ
�
−
ð1
4
þ i

4
Þω

πT̃0

�

þ γ þ logð2Þ
�
− 2πT̃0

�
; ð23Þ

where γ is the Euler number, HðnÞ is the nth harmonic
number Hn, and ψ ðnÞðzÞ is the nth derivative of the
digamma function. In general, the symmetrized
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Wightman function GðωÞ in momentum space is related to
the imaginary part of the retarded Green’s function via
GðωÞ ¼ − cothðω=ð2T̃0ÞÞImGRðωÞ [34]. On the one hand,
we find for the electric conductivity at small frequencies
ω ≪ T̃0

σ ¼ 1

iω
GRðωÞ ¼ 2πR

3
T̃0 þ

1

3
iR logð2Þωþ Rπω2

36T̃0

þ Rπω4

4320T̃3
0

þOðω5Þ: ð24Þ

On the other hand, for large frequencies ω ≫ T̃0, we find

σ ¼ 1

iω
GRðωÞ ¼−

16iπ4RT̃4
0

45ω3
þ 2

3
iRωð− logðπT̃0Þþ logðωÞ

þ γ− iπ=2− logð2ÞÞþO
�

1

ω6

�
: ð25Þ

These results are obtained in the frame where the black hole
is static and are, in general, in agreement with the
conductivity of the Schwarzschild AdS5 black hole in
Ref. [35] (see the Appendix). Note that the normalization of
the metric differs compared to the Schwarzschild case.

B. Connecting to the boosted frame

So far, we worked with the frequency ω with respect to
the time t, in the frame where the black hole is static, and
given by the metric in Eq. (8). However, the time coordinate
t in this frame does not correspond to the proper time in the
Bjorken frame since we rescaled it. Moreover, we defined
our frequency with respect to this time coordinate t instead
of the proper time τ. In order to compute the photon-
production rate and conductivity as seen by a physical
observer, we have to convert our result to frequencies with
respect to the proper time in the Bjorken frame. More
specifically, this means that we need to transform the frame
where the black hole is static in Eq. (8), to the original
Bjorken geometry Eq. (5) by considering the inverse
coordinate transformation. We may define an inverse
Fourier transform using Eq. (22):

Gðt1; t2Þ ¼ −
1

4

Z
∞

−∞
dωωHð2Þ

0 ðωt1ÞHð2Þ
0 ð−ωt2ÞGðωÞ: ð26Þ

The same remarks regarding the range of validity discussed
in Sec. II A carry to the inverse Fourier transform. If we
introduce the relative and c.m. coordinates

s ¼ t1 − t2; T ¼ t1 þ t2
2

; ð27Þ

we find that for t1, t2 ≫ 1

G ¼ −
1

2π
ffiffiffiffiffiffiffi
t1t2

p
Z

∞

0

dωe−iðt1−t2ÞωGðωÞ ð28Þ

¼ −
1

T
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − s2

4T 2

q
Z

dω
2π

e−iωsGðωÞ: ð29Þ

The relative time is related to the proper time by the relation
we introduced above Eq. (8):

s ¼ 3=2s0ðτ=τ0Þ2=3 ¼ τ̃0τ
2=3; ð30Þ

with τ̃0 ¼ 3=2s0τ
−2=3
0 . With this in mind, we can replace the

relative time s in Eq. (29) by τ as defined in Eq. (30) and
find

G ¼ −
1

T
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − s2

4T 2

q
Z

dω
2π

e−i
τ̃0

τ1=3
τGðωÞ ð31Þ

¼ −
1

T
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − s2

4T 2

q
Z

dq0

2π

2T̃0

3TðτÞ e
−iq0τG

�
2T̃0q0

3T

�
; ð32Þ

where we introduced

q0 ¼ ωτ̃0τ
−1=3; dω ¼ τ1=3=τ̃0dq0

and used T ¼ T0=ðτ=τ0Þ1=3 [23]. Note that we introduced
the proper time-dependent temperature TðτÞ which is
related to the proper time with scaling exponent 1

3
[20,21].

The 4-momentum of the photon is given by

qμ ¼ ðmT coshðy − ηÞ; mT;mT sinhðy − ηÞÞ; ð33Þ

where y is the photon rapidity in the Bjorken frame with
rapidity η. The number of photons per unit volume, unit
rapidity and mass in the Bjorken frame is given by

q0
dΓ

½dττdηdx⊥�½d3q�
¼ dΓ

dVBjdydm2
T=2

: ð34Þ

It is related to the frame where the black hole horizon is
fixed by

q0
dΓ

½dττdηdx⊥�½d3q�
¼ ω

dΓ
dVbh½d3k�

: ð35Þ

In this subsection, we connected the frequency with respect
to the time coordinate in which the black hole is static to the
physical frequency with respect to the Bjorken frame. In
particular, Eq. (32) outlines how we can translate our
analytical result for the Green’s function Eq. (23) to the
Bjorken frame. From Eq. (35) it follows that the number of
photons per invariant spatial and phase space volume is a
frame-independent quantity (since it is an experimental
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observable). Our result for the photon-production rate, that
we computed in the frame where the black hole is static
(right-hand side of the equation), is thus directly related to
the photon-production rate in the Bjorken frame (left-hand
side of the equation), which we want to compute.
Combining this with our prescription to express our
quantities in terms of variables in the Bjorken frame, we
arrive at the main result of our paper: the out-of-equilibrium
direct photon-production rate to follow in Eq. (38).

III. OUT-OF-EQUILIBRIUM DIRECT PHOTON-
PRODUCTION RATE

In the following, we elaborate how our solution for the
retarded Green’s function of the transverse gauge field
fluctuations is connected to the photon-production rate
Eq. (2). We can decompose the spectral function of the R
current according to [13]

GR
μνðkÞ ¼ PT

μνðkÞΠTðk0; kÞ þ PL
μνðkÞΠLðk0; kÞ; ð36Þ

with the transverse and longitudinal projector

PT
00 ¼ 0 ¼ PT

0i; PT
ijðkÞ ¼ δij − kikj=k2;

PL
μνðkÞ ¼ PμνðkÞ − PT

μνðkÞ:

Taking the trace yields

χμμðk0; kÞ ¼ −4ImΠTðk0; kÞ − 2ImΠLðk0; kÞ: ð37Þ

In general, the transverse and the longitudinal parts
contribute to the spectral function. However, we are
interested in on-shell photons. For lightlike momenta,
the longitudinal part vanishes, and the photon-production
rate is totally determined by the transverse part. Therefore,
the rate of photon production per unit rapidity and mass is
given by integrating over the fluid spatial evolution:

dΓ
dydm2

T=2
¼
Z

dτðτdηÞdx⊥
dΓ

dVBjdydm2
T=2

¼ 2πR2
T

T

Z
τf

τi

dτ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− s2

4T 2

q τ

×
Z

ηmax

ηmin

dη
2T̃0nbðwðτ;ηÞÞ

3TðτÞ ImGR
ax⊥ax⊥

ðwðτ;ηÞÞ;

ð38Þ

wðτ; ηÞ≡ 2T̃0mT

3T
coshðy − ηÞ; ð39Þ

where nb is the Bose-Einstein distribution discussed in
Eq. (4). In Fig. 1, we display the dimensionless integrand of
Eq. (38), multiplied by the transverse momentum mT :

δΓ≡ mT

ðeπT̃0Þ3
dΓ

dVdydm2
T=2

: ð40Þ

The integrand in Eq. (38) encodes the photon-production
rate per unit volume and unit rapidity, for a medium at a
given proper time and rapidity η. In Fig. 1 (top), we note
that the photon-production rate peaks in the central rapidity
region and falls off symmetrically for increasing rapidity y.
At lower momentamT , the photon-production rate stretches
over a larger rapidity range, which is significantly narrow
for larger momenta. The real part of the electric conduc-
tivity is related to the photon-production rate displayed in
the upper panel of Fig. 1. The imaginary part of the electric
conductivity is displayed in the bottom. For very small
momenta, the imaginary part of the electric conductivity
vanishes in the central rapidity region. The conductivity
then builds up linearly in the momentum and peaks before
falling off toward large momenta. While at very small
momenta mT , the larger rapidities y are the main contri-
bution to the imaginary part of the electric conductivity, the
imaginary part of the conductivity is mainly centered in the
zero rapidity region after its peak. We discuss the zero
rapidity region in more detail in Figs. 2 and 4. If we were to

FIG. 1. τ ¼ 5=ðπT̃0Þ, T̃0 ¼ 1=π, η ¼ 0, τ0πT̃0 ¼ 1, R ¼ 1.
Top: produced photons δΓ≡ mT

ðeπT̃0Þ3
dΓ

dVdydm2
T=2

as a function of

the photon transverse momentummT and rapidity y. For smallmT
and y the data are proportional to the real part of the out-of-
equilibrium electrical conductivity. Bottom: the imaginary part of
the out-of-equilibrium electrical conductivity.
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integrate over the history say of a fireball, from initial to
final proper time including the rapidity range, we arrive at
the total number of produced photons from a medium in a
given collision process.
For w ≪ T̃0, we find

2T̃0nb
3T

ImGR ¼ 8πRT̃2
0

9

þwð−12TT̃2
0 þwðT2 þ 2T̃2

0ÞÞ
27T2=ðπRÞ þ � � � : ð41Þ

In order to compare with the scaling behavior of the
equilibrium calculation [13], we consider the small w
expansion of the spectral density [i.e. Eq. (41) without
the Bose-Einstein distribution]. We find that for w ≪ T̃0

2T̃0

3T
ImGR ¼ 4RπT̃2

0

9T
wþ Rπ

54T
w3 þOðw5Þ; ð42Þ

where w is given by Eq. (39). In this late time limit, the
scaling behavior reduces to the scaling behavior of the
equilibrium calculation given by Eq. (3.19) of [13]. Our
corrections are encoded in the proper time-dependent
temperature TðτÞ and the prefactors of subleading
contributions.
In Fig. 2, we illustrate the dependence of the photon

production on the proper time (and thus on the temperature
for a given energy density). Starting from the green curve
which corresponds to the smallest proper time τ ¼ 2, the
maximum shifts to lower momenta mT and decreases in
magnitude. The red curve corresponds to τ ¼ 10. As the
strongly interacting medium expands and cools, the photon
emissivities are reduced and shifted to lower momenta. For
typically πT0 ∼ 1 GeV, the shift down is from 3

4
to 1

4
GeV,

for a reduction in magnitude by about 1
2
. If we recall that for

long times our photon emissivities agree with the equilib-
rium rates in [13] as we noted earlier, we conclude that our
off-equilibrium results provide for additional enhancement
of the photon emissivities at strong coupling, in relation to
weak coupling. This enhancement and downshift of the
rates in the photon intermediate- and low-mass region
would amount to a larger contribution stemming from a
strongly coupled QGP, a welcome addition. Indeed the
detailed analysis of the photon emissivities in [36]
with their results reproduced in Fig. 3, using the weakly
coupled plasma rates for the QGP, show precisely a deficit
in this mass region. Finally, we note that in [31] the
authors investigated out-of-equilibrium photon-production
rates in a nonexpanding holographic plasma by considering
a radially falling shell [37,38]. In contrast to our results,
the absolute magnitude of the (dimensionless) photon-
production rate is not monotonically falling when
approaching equilibrium. However, the authors also
observe that the peak is moving toward lower momenta.

IV. OUT-OF-EQUILIBRIUM CONDUCTIVITY

The retarded current-current correlator also contains the
information about the electrical conductivity σ of the
expanding plasma, which is encoded in the zero frequency
limit. More specifically, we have by [13]

FIG. 2. τ ¼ f2; 3.25; 5; 10g=ðπT̃0Þ (green, blue, brown, and red
curves, respectively), T̃0 ¼ 1=π, η ¼ 0, τ0πT̃0 ¼ 1, R ¼ 1. Upper
panel: produced photons δΓ≡ mT

ðeπT̃0Þ3
dΓ

dVdydm2
T=2

as a function of the

photon momentum for different proper times indicated by
different colors. We set y ¼ 0. Lower panel: We set mT ¼ πT̃0

and study the dependence on the pseudorapidity y for different
proper times.

FIG. 3. Photon rates per invariant transverse momentum
mT ¼ qT at the SPS [36].
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σ ¼ − lim
k0→0

e2

4iT̃0

2

ek
0=T − 1

GR
x⊥x⊥ðkÞ

����
jkj¼k0

: ð43Þ

Thus, the real part of the conductivity is given by
Eq. (41). In summary, the out-of-equilibrium conductivity
is given by

σ

e2
¼ πRT

3
þ iRwðT logð2Þ þ iπT̃0Þ

6T̃0

þ Rw2ðπðT2 þ 2T̃2
0Þ − iTT̃0 logð64ÞÞ

72TT̃2
0

: ð44Þ

The conductivity has dimensions of temperature. In
Fig. 4, we illustrate the dependence of the real and
imaginary part of the conductivity on the proper time
(and thus on the temperature for a given energy density).
Starting from the green curve which corresponds to the
smallest proper time τ ¼ 2, the value of the real part at
mT ¼ 0 decreases for larger proper times. Furthermore, the
real part drops more rapidly as a function of the photon
momentum mT for increasing proper time. The maximum
in the imaginary part of the conductivity moves toward

lower frequencies and decreases in magnitude for increas-
ing proper time from green to red. We also note that the
peak is slightly more pronounced for τ ¼ 10.

V. CONCLUSIONS

In this work, we derived the out-of-equilibrium direct
photon-production rate and electrical conductivity, for an
expanding Bjorken plasma. At late times, our results agree
with the literature; however, by deriving the quantities in
the time-dependent background our results incorporate the
history of the Bjorken expansion and are dependent on
the proper time and pseudorapidity. Since our metric is
explicitly time dependent, it is not possible to rely on
Fourier transforms. However, in the Bjorken limit, we were
able to recast the metric in the form of a static black
hole and factor out the time dependence with a Fourier-
like transform based on Hankel functions. This trick,
which is valid for moderate frequencies, allows us to
compute the out-of-equilibrium transport quantities
analytically.
We illustrated the dependence of the direct photon-

production rate on proper time, pseudorapidity, and photon
momentum. At fixed pseudorapidity the peak in the
production rate moves to lower momenta for increasing
proper time and is progressively suppressed. We observed a
similar behavior for the imaginary part of the electrical
conductivity. The real part of the conductivity for zero
momenta decreases toward larger proper times as we would
expect for an expanding plasma. Furthermore, it tends to
zero at larger momenta.
Our results provide quantitative insights into the out-of-

equilibrium transport of an expanding Bjorken plasma at
strong coupling. In particular, the enhancement of the
photon rates in equilibrium at strong versus weak coupling
noted in Ref. [13] carries to the out-of-equilibrium regime
presented here. Most notably, this enhancement is mostly
in the intermediate- and low-mass photon spectra. This
enhancement is welcome, since current estimates using the
equilibrium rates from a weakly coupled QGP plus hadrons
are still short in this mass range at the Super Proton
Synchrotron (SPS) energies [36].
It would be very interesting to extend our results to finite

density along the lines of Refs. [39,40] and eventually
strong background magnetic fields. Another interesting
direction is to study metric fluctuations in order to compute
transport quantities like the shear viscosity. Moreover, it
would be interesting to consider non-Abelian symmetries
to compute pion yields in heavy-ion collisions with holo-
graphic techniques. Furthermore, it would be interesting to
compute correction to our setup in the fluid-gravity
correspondence context. In the same vein, calculation of
the corrections coming from the violation of the fluc-
tuation-dissipation theorem at early times along the lines of
Refs. [41–43] is highly interesting. We leave these tasks for
future work.

FIG. 4. τ ¼ f2; 3.25; 5; 10g=ðπT̃0Þ (green, blue, brown, and red
curves, respectively), T0 ¼ 1=π, η ¼ 0, τ0πT̃0 ¼ 1, R ¼ 1. Real
and imaginary parts of the conductivity for different proper times
and y ¼ 0.
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Finally, the out-of-equilibrium conductivity was studied
in the AdS=CMT context in Refs. [44,45] and it would be
interesting to relate their results to those presented here.
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APPENDIX: CONDUCTIVITY IN
SCHWARZSCHILD AdS5

The metric of the AdS5 Schwarzschild black hole
reads

ds2 ¼ R2

u2

�
−fðuÞdt2 þ dx2 þ du2

fðuÞ
�
: ðA1Þ

To compute the conductivity, we consider gauge field
fluctuations about this background. The analytical solution
to the gauge field equations in Fourier space at zero wave
vector and finite frequency ω, is given by Ref. [35] and
reads

ax ¼
��

1

u

�
2

− 1

�
−iω=4

��
1

u

�
2

þ 1

�
−ω=4

× 2F1

�
1

4
ð−ð1þ iÞÞω; 1 − 1

4
ð1þ iÞω;

1 −
iω
2
;
1

2

�
1 −

1

u2

��
: ðA2Þ

The renormalized retarded Green’s function may be read
off from

GRðωÞ ¼ −lim
u→0

RfðuÞaxa0x
u

; ðA3Þ

after subtracting the logarithmic divergence. As we noted
earlier, the coefficient of the logarithm contributes a contact
term to the imaginary part of the conductivity. Thus, the
conductivity which is defined as σ ¼ GR=ðiωÞ (where we
have set Tc ¼ πT in Ref. [35]) is given by

σ ¼ −RπT þ iωR
�
1

2
ψ

�ð1 − iÞω
4πT

�
þ 1

2
ψ

�
−
ð1 − iÞω
4πT

�

þ 1

2
logð2Þ þ γ

�
; ðA4Þ

where ψðuÞ ¼ Γ0ðuÞ=ΓðuÞ is the digamma function. The
conductivity may be expanded in the limit of small and
large frequencies compared to the temperature. The small
frequency limit ω ≪ T reads [35]

σ ¼ T

�
π þ i logð2Þ ω

2T
þOðω2Þ

�
; ðA5Þ

while the large frequency limit ω ≫ T is given by [35]

σ ¼ Rω

�
π

2
þ i

�
log

ω

2πT
þ γ

�
þOðω−4Þ

�
: ðA6Þ
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