
Toward a twistor action for chiral higher-spin gravity

Tung Tran
Service de Physique de l’Univers, Champs et Gravitation, Université de Mons,
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A covariant twistor action for chiral higher-spin theory in anti–de Sitter and flat space is constructed in
term of a holomorphic Chern-Simons theory on twistor space. The action reproduces all known cubic
vertices of chiral higher-spin theory in flat space. The spacetime action of the holomorphic Chern-Simons
theory in flat space is also obtained.
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I. INTRODUCTION

The idea of constructing viable interacting higher-spin
theories that can avoid no-go theorems/results in flat space
[1–3] and anti–de Sitter (AdS) [4–6] has been going on for
the past few decades. However, only a few higher-spin
models can overcome the barriers posed by the no-go
theorems [7]. They are the 3D topological higher-spin
theories [9–16], conformal higher-spin gravity [17–21],
chiral higher-spin gravity (chiral HSGRA) [22–28] and its
contractions [29–31], as well as higher-spin theories
induced by the IKKT-matrix model [32–35]. In order to
retain locality, which is one of the crucial features of field
theories, one often has to give up unitarity. As a conse-
quence, local higher-spin theories with propagating degrees
of freedom tend to be “chiral” in nature. It is, therefore, not
surprising that twistor theory [36] is one of ideal frame-
works for constructing local higher-spin theories. See, e.g.,
[37] for an expedition in this direction. We note, however,
that the chiral higher-spin theories are consistent trunca-
tions of some hypothetical complete theories, which are
unitary but are usually nonlocal.
There are two main reasons why chiral HSGRAs can

avoid no-go theorems/results. Firstly, chiral theories are
higher-spin extensions or at least closed cousins of self-
dual theories [38–40]. Note that higher-spin extensions
of self-dual Yang-Mills (SDYM), and self-dual gravity
(SDGR) theories have been obtained recently in [29,30].
Secondly, constraints from higher-spin symmetry force all
possible interactions to cancel each other out in the physical
amplitudes in flat space. For instance, both conformal
higher-spin gravity and chiral HSGRA have been shown to

have vanishing tree-level amplitudes [41–47]. Furthermore,
the chiral HSGRA was shown to be UV-finite at one-loop
[45–47].
In this work, we propose a covariant twistor action for

the chiral HSGRA in AdS in response to the quest of
covariantizing the light cone action of chiral HSGRA. Note
that the proposed twistor action for chiral HSGRA is not
fully determined as we do not know the explicit expression
of what we call Sc—the correction accounts for the higher-
spin diffeomorphism of twistor coordinates. However, the
twistor Chern-Simons action allows us to compute all
three-point scattering amplitudes of chiral HSGRA. We
also present the spacetime action of the holomorphic
Chern-Simons theory in flat space. As a consistency check,
we find that its cubic vertices, after projecting to the light
cone gauge, match with the ones in [48,49]. This partly
solves a long-standing problem between the incompatibi-
lity of cubic interactions between higher-spin fields in
Fronsdal’s approach [50–54] and the light cone formalism
[48,49]. The twistor origin of chiral HSGRA indicates that
it must be integrable and one-loop exact.

II. THE TWISTOR THEORY

A. Twistor geometry/correspondence

Let PT be the twistor space associated with a con-
formally flat Euclidean spacetime M with cosmological
constant Λ,

ds2 ¼ dxμdxμ

ð1þ Λx2Þ2 ¼ Ω2dxμdxμ; μ ¼ 1; 2; 3; 4: ð1Þ

PT is defined as an open subset of P3 [55],

PT ¼ fZA ≔ ðλα; μ _αÞjIABZAẐB ≠ 0g: ð2Þ

Here, ZA are homogeneous coordinates of P3. On PT ,
there is a quaternionic conjugation that maps ZA to its dual
twistor ẐA ¼ ðλ̂α; μ̂ _αÞ, where
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λ̂α ¼ ð−λ1; λ0Þ; μ̂ _α ¼ ð−μ_1; μ_0Þ: ð3Þ

Note that λ1 is simply the complex conjugation of λ1.
Furthermore, IAB is known as the infinity twistor that
specifies the conformal factor Ω in (1). The infinity twistor
is a skew bitwistor satisfying [60]

1

2
IABϵABCD ¼ ICD; IACIBC ¼ ΛδAB: ð4Þ

The infinity twistor has the following representatives:

IAB ¼
�
Λϵαβ 0

0 ϵ _α _β

�
; IAB ¼

�
ϵαβ 0

0 Λϵ _α _β

�
; ð5Þ

which induces a Poisson structure [61,62],

Π̃ ¼ IAB ∂A
 � ∧ ∂B

�! ¼ Λ
∂⃖

∂λα
∧ ∂⃗

∂λα
þ ∂⃖

∂μ _α
∧ ∂⃗

∂μ _α
; ð6Þ

on PT . The above Poisson structure also induces the
following star product on PT [20,21]:

f⋆g ≔ felpΠ̃ ∧ g ¼
X∞
k¼0

lk
p

k!
fΠ̃kg; ð7Þ

where lp is some natural length scale that plays the role of
a deformation parameter. At k ¼ 1, we recover the standard
Poisson bracket,

ff; ggPT ¼ fΠ̃g: ð8Þ

Note that we will sometime suppress the ∧-products to
shorten our expressions.

B. The twistor action

In constructing the twistor action for chiral HSGRA, it is
useful to define the following Euler operator [20,21]:

Σ̂ ¼ ZA ∂

∂ZA ; ð9Þ

to measure the weight in Z of any twistor expression. For
instance, Σ̂D3Z ¼ 4, where

D3Z ¼ ϵABCDZAdZB ∧ dZC ∧ dZD ð10Þ

is the canonical measure on PT . Then, our proposed
twistor action for chiral HSGRA in anti–de Sitter space is

S½A� ¼ ShCS þ Sc ¼
Z

D3ZL½A� þ Sc: ð11Þ

Here,

L½A� ¼ Tr

�
A⋆Aþ 2

3
A⋆A⋆A

�

¼ Tr

�X
h∈Z

A−h⋆∂̄Ah þ
2

3

X
hi∈Z

Ah1⋆Ah2⋆Ah3

�
ð12Þ

is the Lagrangian that obeys the constraint,

Σ̂L½A� ¼ −4; ð13Þ

so that we have a well-defined integral on PT [63]. Note
that on PT ,

∂̄ ¼ dẐA ∂

∂ẐA ; and A ¼
X
h∈Z

Ah; ð14Þ

where Ah ∈ Ω0;1ðPT ;EndðEÞ ⊗ Oð2h − 2ÞÞ is a twistor
field corresponding to a spacetime matrix-valued higher-
spin fields of helicity h, and E is some rank-N vector
bundle that is locally trivial on the restriction to any twistor
line X ⊂ PT .
Lastly, the term Sc in (11) is the correction to the

holomorphic Chern-Simons action ShCS that accounts for
higher-spin diffeomorphism of the coordinates ZA [66],

δZA ¼
X
h∈Z
fZA; ξhg; ξh ∈ ΓðPT ;Oð2h − 2ÞÞ; ð15Þ

which results in a nongauge-invariant measure [67].

III. SCATTERING AMPLITUDES

All three-point tree-level amplitudes of chiral HSGRA in
AdS can be computed as follows. By doing integration by
parts, we observe that IAB∂A∂Bf ¼ 0. Hence, we can reduce
the number of the star-products by one in each term of the
action ShCS. Therefore, (11) can be cast into the following
form:

S ¼
Z

Tr

�X
h

A−h∂̄Ah þ
2

3

X
hi

Ah1Ah2⋆Ah3

�
þ S0c; ð16Þ

where S0c accounts for Sc in (11) and the remnants of ∂=∂ZA

when acting on the holomorphic measureD3Z. The twistor
representative of the (0,1)-form connection Ah on PT is
chosen to be [20,21]

Ahi ¼
Z
C

dti
t2hi−1i

δ̄2ðtiλ − λiÞeti½μλ̃i�; ð17Þ

in terms of the on shell four-momentum kα _αi ¼ λαi λ̃
_α
i , which

is a null vector on the tangent space of AdS4. Here,

δ̄ðaz − bÞ ¼ 1

2πi
dz̄

∂

∂z̄

�
1

az − b

�
ð18Þ
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is a (0,1)-form holomorphic delta function [68].
Parametrizing λα ¼ ð1; zÞ and λ0α ¼ ðb; aÞ, we define

δ̄ðhλλ0iÞ ¼ 1

2πi
dλ _α

∂

∂λ _α
1

hλλ0i : ð19Þ

Finally, the projective version of the holomorphic delta
function is defined by [20]

δ̄mðλ; λ0Þ ¼
� hξλi
hξλ0i

�
m
δ̄ðhλλ0iÞ ¼

Z
C

dt
tm

δ̄2ðtλ − λ0Þ; ð20Þ

which explains the origin of the twistor representative (17).
Here, the degree of ti (or the helicity hi) essentially defines
the weight in λ of Ahi . Furthermore, the crucial difference
between our setup and the setup in [20,21] is that there is a
scalar field corresponding to h ¼ 0, which is essential for
quantum consistency of chiral HSGRA.
It was shown in [69] that the plane wave solutions for

higher-spin fields have the same structures with the ones in
flat space. This explains why we can use the momentum
eigenstates (17) in AdS.
A simple computation shows that

Ah2⋆Ah3 ∼
lk
p

k!
t
dk;h2
2 t

dk;h3
3

�
½23� þ Λ

�
∂

∂λ2

∂

∂λ3

��
k
; ð21Þ

where dk;hi ¼ kþ 1 − 2hi. Following the steps in [21], we

rewriteD3Z as d4Z
VolC�, which allows us to integrate out μ and

λ variables to obtain four-dimensional momentum delta
function δ4ðPÞ. Note that�

∂

∂λ2

∂

∂λ3

�
δ4ðPÞ ¼ −½23�□Pδ

4ðPÞ;

where □P ¼
1

2

∂

∂Pα _α

∂

∂Pα _α
: ð22Þ

Furthermore, we use the conventions where habi ¼ aαbα
and ½ab� ¼ a _αb _α. From (13), we can read off the constraint
between the number of derivatives in (21) and helicities of
the external states,

k ¼ h1 þ h2 þ h3 − 1: ð23Þ

Integrating over μ, we obtain

MΛ
3 ðh1; h2; h3Þ ¼

lk
p

k!

Z
d2λdt1dt2dt3t

1−2h1
1 t

dk;h2
2 t

dk;h3
3

×

�
½23� þ Λ

�
∂

∂λ2

∂

∂λ3

��
k

× δ̄2ðt1λ̃1 þ t2λ̃2 þ t3λ̃3Þ
× δ̄2ðt1λ − λ1Þδ̄2ðt2λ − λ2Þδ̄2ðt3λ − λ3Þ:

ð24Þ

The integrals over λ and ti variables can be performed
trivially as in [20,21]. For instance, we can use VolC� to fix
t1 ¼ 1. Then, the integration over λ gives us delta functions
on the support at

t2 ¼
h23i
h31i ; t3 ¼

h32i
h12i : ð25Þ

From here, it is a simple computation to integrate over t2
and t3. After a few more steps of manipulating spinors
using momentum conservation, we arrive at

MΛ
3 ðh1; h2; h3Þ ¼

½lpð1 − Λ□PÞ�h1þh2þh3−1
Γ½h1 þ h2 þ h3�

δ4ðPÞ

× ½12�h1þh2−h3 ½23�h2þh3−h1 ½31�h3þh1−h2 :
ð26Þ

Note that we do not need to fix the kinetic part of the
above three-point amplitudes by symmetry as in [69,70].
Furthermore, in the flat limit where Λ → 0, we obtain the
standard MHV3 amplitudes, which enables us to read off
the cubic coupling constants,

Ch1;h2;h3 ¼
lh1þh2þh3−1
p

Γ½h1 þ h2 þ h3�
; h1 þ h2 þ h3 > 0: ð27Þ

A nice feature about our twistor construction is that the
coupling constant Ch1;h2;h3 is built in, and there is no need to
derive it dynamically as in [22–24].
Using the map between the spinor-helicity formalism

and the light cone formalism, see, e.g., [71,72] where

i� ¼ 21=4
�
p̄iβ

−1=2
i

−β1=2i

�
; ii ¼ 21=4

�
piβ

−1=2
i

−β1=2i

�
; ð28Þ

we can express the square and angle brackets as

½ij� ¼
ffiffiffiffiffiffiffiffi
2

βiβj

s
P̄ij; hiji ¼

ffiffiffiffiffiffiffiffi
2

βiβj

s
Pij: ð29Þ

Note that P̄ij ¼ p̄iβj − p̄jβi with pi ¼ ðβi; p−
i ; pi; p̄iÞ is the

momentum of the external field that has helicity hi. Then,
we can show that the above three-point amplitudes in the
flat limit reduce to

MΛ→0
3 ¼ Ch1;h2;h3

P̄h1þh2þh3
23

βh11 βh22 βh33
; ð30Þ

which are the correct cubic vertices obtained previously in
[22,23,48]. As a remark, it would be interesting to establish
the map between (26) and the cubic vertices in (A)dS found
by Metsaev in [25].
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IV. SPACETIME ACTION IN FLAT SPACE

In this section, we obtain the spacetime action of the
holomorphic Chern-Simons action in flat space whereM ≔
limΛ→0 M from the action (11). To simplify the problem,
we assume that all deformations are sufficiently small so
that they will not affect the complex structures on twistor
space to avoid the complication that arises from Kodaira’s
theory; see details in [73].
First of all, notice that the twistor space in this case

reduces to the usual flat/undeformed twistor space where

PT ¼ fZA ¼ ðλα; μ _α ≔ F _αðλ; xÞÞjλα ≠ 0g: ð31Þ

Here, λα are coordinates on the Riemann sphere X ≅ P1

base of the fibration π∶PT → P1, and μ _α up the fibers of
the normal bundle

NX ≔ TðPTÞjP1=TðP1Þ ≃Oð1Þ ⊕ Oð1Þ: ð32Þ

The correspondence between PT and M is given by the
incidence relations,

μ _α ¼ F _αðx; λÞ ¼ xα _αλα; ð33Þ

where x are complexified spacetime coordinates [74,75].
The inverse of the above reads

xα _α ¼ λαμ̂ _α − λ̂αμ _α

hλλ̂i : ð34Þ

Thus, each point x ∈ M corresponds to a holomorphic,
linearly embedded Riemann sphere X ≅ P1 ⊂ PT , and any
point Z ∈ PT corresponds to a self-dual null α-plane in M.
It is convenient to define the following basis [76] on the

corresponding space PS, which is a projectivization of
undotted spinor bundle,

∂̄0 ¼ hλλ̂iλα
∂

∂λ̂α
; ∂̄ _α ¼ −λα∂α _α; ð35aÞ

ē0 ¼ hλ̂dλ̂ihλλ̂i2 ; ē _α ¼ −
λ̂αdxα _α

hλλ̂i ; ð35bÞ

where ∂̄0 and ∂̄ _α are (0,1)-vector fields, and ē0, ē _α are their
dual (0,1)-forms, respectively. Note that the above basis can
be defined according to the fact that TðP1Þ ≅ Oð2Þ and
T�ðP1Þ ≅ Oð−2Þ with λ being our reference of weight.
Since,

∂̄ ≔ ē0∂̄0 þ ē _α
∂̄ _α where ∂̄

2 ¼ 0; ð36Þ

we will take ∂̄ to be our definition of integrable complex
structure on PS ≅ P1 ×M. Using (33), we can check that

∂̄ ¼ dλ̂α
∂

∂λ̂α
þ dμ̂ _α ∂

∂μ̂ _α
¼ dẐA ∂

∂ẐA ; ð37Þ

which is the usual definition of the Dolbeault operator on
PT . Note that we will use the Dolbeault operator ∂̄ to define
twistor “background”.
The analog of the Euler operator (9) on PS is

Σ̂λ ¼ λα
∂

∂λα
; ð38Þ

where the constraint (13) becomes

Σ̂λL½A� ¼ −4: ð39Þ

For later convenience, we also define the following (1,0)-
vector fields and their dual (1,0)-forms on PS:

∂0 ≔
λ̂α
hλλ̂i

∂

∂λα
; ∂ _α ≔ −

λ̂α

hλλ̂i ∂α _α; ð40aÞ

e0 ≔ hλdλi; e _α ≔ λαdxα _α: ð40bÞ

Here, e0 is the holomorphic top-form of the fiber P1. The
following relations are useful:

½∂̄0; ∂ _α� ¼ ∂̄ _α; ½∂̄ _α; ∂0� ¼ ∂ _α: ð41Þ

To obtain spacetime action of the chiral HSGRA, it is
more convenient to work on PS that has the following
Poisson structure:

fΠg ¼ ϵ _α _β
∂ _αf ∧ ∂ _βg: ð42Þ

When ∂ _α-vector field acting on any ðp; qÞ-form, we must
promote the above Poisson structure to

ωΠη ≔ fω; ηgh ¼ ϵ _α _βL∂ _α
ω ∧ L∂_β

η: ð43Þ

The holomorphic Poisson structure (43) then induces

ω � η ≔ ωelpΠ ∧ η ¼
X∞
k¼0

lk
p

k!
ωΠkη: ð44Þ

For simplicity, we will set lp ¼ 1 from now and require
any ω ∈ Ωp;qðPT ;OðnÞÞ to satisfy

Σ̂λ
⌟ω ¼ 0; LΣ̂λ

ω ¼ nω: ð45Þ

Here, the notation Σ̂λ
⌟ ≡ ιΣ̂ is the interior product with

respect to the Σ̂λ vector field. Furthermore, the Lie
derivative L∂ _α

acting on OðnÞ-valued ðp; qÞ forms can
be defined via the Cartan’s magic formula as
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L∂ _α
ω ¼ ∂ _α

⌟ ðωþ ðð∂ _α ⌟ωÞ; ð46Þ

where we denote the usual exterior derivative on PS by
dPS ≡ ð. Note that ð is defined via a unique Chern
connection on the bundle OðnÞ → P1 where [77]

ð ≔ ∂þ ∂̄ ¼ dS þ n
hλ̂dλi
hλλ̂i ∧ : ð47Þ

Here,

dS ≔ e0∂0 þ ē0∂̄0 þ dxα _α
∂

∂xα _α
ð48Þ

is the exterior derivative on the unprojective spinor bundle
S. It is easy to check that

ðe0 ¼ ðē0 ¼ 0; ðe _α ¼ e0 ∧ ē _α; ðē _α ¼ e _α ∧ ē0:

ð49Þ

This is the “frame-dragging” effect caused by the Lie
derivative when it acts on vielbeins. In addition, since
ð ≔ ∂þ ∂̄, we get

∂ē0 ¼ 0; ē _α ¼ e _α ∧ ē0: ð50Þ

Using the basis (35), we decompose each twistor field as

A ¼ A0ē0 þ A _αē _α: ð51Þ

Furthermore, we have the following rules:

∂0
⌟ e0 ¼ 1; ∂̄0

⌟ ē0 ¼ 1; ð52aÞ

∂ _α
⌟ e_β ¼ δ _α

_β; ∂̄ _α
⌟ ē_β ¼ δ _α

_β: ð52bÞ

Note that to reduce the number of � product by one as in
the case of holomorphic Chern-Simons action on PT , we
need to assume that [78]

L∂ _α
A _α ¼ ∂ _αA _α ¼ 0: ð53Þ

This will be our gauge condition. In this particular gauge,
we can check that

L∂ _α
L
∂
_αA ¼ 0: ð54Þ

As a consequence, the origin Chern-Simons twistor action
can be written as

S½A� ¼
Z
PS

Tr

�X
h∈Z

A−h∂̄Ah þ
2

3

X
hi∈Z

Ah1Ah2 � Ah3

�
: ð55Þ

This is, indeed, a crucial fact since we want to have only
one derivative, i.e., ∂̄, in the kinetic term. Furthermore, we
must have at least one positive-helicity field in (55) so that
the constraint (39) can be implemented.
A simple computation results in

L∂ _α
A ¼ ð∂ _αA0 þ A _αÞē0 þ ∂ _αA_βē

_β; ð56Þ

where ∂ _α ⌟A ¼ 0. Then, it can be shown, albeit with some
tedium, that

A �A ¼ 1

k!
½∂ _αðkÞA_β; ∂

_αðkÞA_γ�ē _βē_γ

þ 1

k!
½∂ _αðkÞA0; ∂ _αðkÞA_β�ē0ē_β

þ ē0ē _α
∂_γðk−1ÞA_γ∂

_γðkÞA _α − ∂_γðkÞA _α∂
_γðk−1ÞA_γ

ðk − 1Þ! ; ð57Þ

where we used the convention ∂ _αðkÞ ≡ ∂ _α1…∂ _αk to shorten
our expressions.
Unlike the case of SD HS-YM [31], where we can gauge

fix A0 ∈ Ω0;1ðP1;OðnÞÞ ¼ 0 for n ≥ −1 in Woodhouse
gauge [79]. The situation here is significantly different
since the deformation of twistor geometry is related to
derivatives along the horizontal direction with respect to
TxM. In particular, there is an in-homogeneous contribution
to the ē0 ∧ ē _α component of the equation,

∂̄Aþ A � A ¼ 0: ð58Þ

From (58), we deduce that (57)

0 ¼ ∂̄0A _α − ∂̄ _αA0 þ
1

2
∂̄0

⌟ ∂̄ _α ⌟ ð57Þ; ð59aÞ

0 ¼ ∂̄ _αA_β þ
1

k!
∂_γðkÞA _α∂

_γðkÞA_β: ð59bÞ

Using the fact that ∂̄0∂ _α ¼ −∂̄ _α, we obtain the following
solution for (59a):

∂ _αA0 ¼ −A _α: ð60Þ

From (60), we can further show that

∂̄0A0 ¼ 0; ∂̄0A _α ¼ 0: ð61Þ
Namely, A _α;A0 must be holomorphic in λ when they have
positive weight. We can now consider

Ah; _αē _α ¼ λαð2h−1ÞAαð2h−1Þ; _αē _α: ð62Þ
This can be used to solve for the zero component of A as

Aþh;0ē
0 ¼ −

∂̄
_α

□
A _αē0; h > 0; ð63aÞ
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A−
h;0ē

0 ¼ λ̂αð2jhjÞ
hλλ̂i2jhj B

αð2jhjÞē0; h ≤ 0; ð63bÞ

where λαðsÞ ¼ λðα1…λαsÞ, λ̂αðsÞ ¼ λ̂ðα1…λ̂αsÞ. Note that while
the nonlocal □−1 may look “dangerous” at the moment, it
will disappear after we integrating out all fiber coordinates
(see below).
To include the scalar field in the spectrum of chiral

HSGRA, we can consider the following twistor field:

Ah¼0þ ≔ ϑ ¼ λ̂α
hλλ̂i ϑ

α
_αē _α: ð64Þ

Here, ϑα _α is the auxiliary field associated with the scalar
field, which can be integrated out by its own equation of
motion as observed in [80]. It is not hard to show that

ϑα _α ¼ ð∂α _α þAα
_α�ÞA0 þ

1

k!
∂_γ1…_γkþ1A _α∂

ð_γ1…∂
_γkA_γkþ1Þ;

ð65Þ

where Aα _α ∈ f⊕s ΓðPT ;EndðEÞ ⊗ Oð2s − 2ÞÞjs ≥ 1g.
The twistor action (55) reads

S¼
Z
PS

℧Tr

�
A0ð∂̄ _αþA _α�ÞA _αþλγλ̂β

hλλ̂iϑα _αϑβ
_α

�
þSc; ð66Þ

where the measure ℧ is [76]

℧ ¼ D3Zē0½ē _αē _α� ¼ d4x
hλdλi ∧ hλ̂dλ̂i
hλλ̂i2 ¼ d4xK; ð67Þ

and K is the top form on P1. The spacetime action for chiral
HSGRA on a flat background can be obtained by integrat-
ing out fibre coordinates using [56,79,80],

Z
P1

K
λ̂αðmÞλβðmÞ

hλλ̂im ¼ −
2πi
ðmþ 1Þ ϵ

β
α…ϵβα; ð68Þ

where we adopted the same convention in [31].
The resulting spacetime action [after substituting (65) to

(66) and do some suitable rescaling] is the following action:

S ¼ hBααjDα
_αA

α _αi − 1

2
hDα _αΦ̃jDα _αΦ̃i

þ hΦ̃j⟦A _α;A _α⟧i − 1

2
h⟦A_γ; ∂_γAα _α⟧j⟦A _β; ∂

_βAα _α⟧i;
ð69Þ

where we define

hXjYi ≔
Z

dx4XαðnÞYαðnÞ: ð70Þ

To understand the above angled bracket notation, it is
convenient to introduce

Aα _α ≔
X
s≥1

Aαð2s−1Þ; _αyαð2s−2Þ; yαðnÞ ¼ yα…yα ð71aÞ

A _α ≔
X
s≥1

Aαð2s−1Þ; _αyαð2s−1Þ; ð71bÞ

as the generating function for positive-helicity fields, and

Bαα ≔
X
s≥1

Bαð2sÞỹαð2s−2Þ; ỹαðnÞ ¼ ỹα…ỹα; ð72Þ

as generating functions for nonpositive helicity fields.
Lastly, the field Φ̃ contains both positive and negative
helicity fields since its originated from A0,

Φ̃ ≔
X
s≥0

∂
β _α

□
Aαð2s−1Þ

_αyβαð2s−1Þ þ Bαð2sÞỹαð2sÞ; ð73Þ

where we note that the coefficients come with yα are
positive helicity fields and the coefficients come with ỹα are
negative helicity fields, and B0 ¼ ϕ the scalar field.
To proceed, we will treat the commuting auxiliary

variables yα; ỹα as creation and annihilation oscillators
with the property that each ỹ will consume one y and
give us a Kronecker delta for contraction. Therefore, at free
level, the second term in (69) reduces to the usual kinetic
term of free fields in spacetime. Furthermore,

Dα
_α• ≔ ∂

α
_α •þ⟦Aα

_α; •⟧; ð74Þ
where the double square bracket takes the following form
by virtue of the � product (44), e.g.,

⟦Aαð2s−1Þ;
_γ; Aαð2s0−1Þ;_γ⟧

≔
1

k!
½∂α _β1…∂α _βk

Aαð2s−1Þ;
_γ; ∂

_β1
α …∂

_βk
α Aαð2s0−1Þ;_γ�; ð75Þ

where we recall that we have set lp ¼ 1 in this section for
simplicity. Here, all undotted indices of the partial deriv-
atives are understood to contract with the ones of physical
fields in every possible way.
To this end, let us explain how the ðþ;þ;þÞ cubic

vertices come to be. Due to the contraction between
derivatives originated from the � product and the one in
Φ̃h≥0, we can form □ to cancel out the nonlocal □−1 in
(63a). To illustrate, let us look at the term hΦ̃j½½A _α;A _α��i.
Using the representatives (71) and (73), we obtain

∂
•_γ

□
Aαð2s1−1Þ

_γ½∂α _β…∂α _βA
αð2s2−1Þ

_∘; ∂•
_β…∂α

_βAαð2s3−1Þ_∘�: ð76Þ

Upon integrating by part and applying the identity
∂
•_γ
∂• _β ∼□ϵ_γ _β, we can cancel the □

−1 in (76). This leaves
us with the following ðþ;þ;þÞ vertices:
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Aαð2s1−1Þ
_•½∂α_γ…∂α_γAαð2s2−1Þ

_α; ∂α _γ…∂α
_γ
∂α

_•Aαð2s3−1Þ; _α�: ð77Þ

Notice that there must be at least one extra pair of
derivatives coming from the � product to generate the
ðþ;þ;þÞ vertices. In addition, the all-plus vertices have
maximal number of derivatives allowed by kinematics. As
such, ðþ;þ;þÞ vertices represent nonminimal couplings.

V. DISCUSSION

In this paper, we have constructed a covariant action for
chiral HSGRA in AdS from a Chern-Simons action on
twistor space. The twistor origin of chiral HSGRA indi-
cates that it must be integrable and one-loop exact. It is
intriguing to ask whether we can have a world sheet
description for the chiral HSGRA to gain control over
nonlocality issues the moment we step outside the self-dual
sectors. It will be a crucial step in finding a higher-spin
theory with unitary completion where we have total control
of nonlocal interactions.
One of the fundamental questions the results of this

paper can address is whether having a covariant form for
interacting higher-spin theories is an advantage. As in other
covariant formulations of higher-spin theories, the twistor
construction provides us a clear view about higher-spin
symmetry that governs the chiral HSGRA. The covariant
action of the chiral HSGRA also enable us to see some
vertices in terms of spacetime derivatives that can not be
obtained using Fronsdal’s approach. However, note that the

computation of scattering amplitudes of the action (69) is
more involved compared to the calculations in the light
cone gauge even at tree level.
Contrary to the old folklore, recent developments in

constructing higher-spin interactions by means of the light-
front formalism or free differential algebra show that there
exists a smooth deformation between the vertices in flat
space and AdS [25,28]. In this paper, we also confirm
that such deformation exists at the level of the twistor
action (11).
Lastly, chiral HSGRA is known to admit UðNÞ, OðNÞ

and USpðNÞ gaugings [22,23,46]; see also [81]. From this
perspective, it is plausible that chiral HSGRAwill become
the self-dual part of the HS-IKKT matrix model with
truncated higher-spin spectrum [32–35] in the deep quan-
tum regime where spacetime coordinates no longer com-
mute. We postpone the study of finding the connection
between chiral HSGRA and HS-IKKT for future work.
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