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We show that the scalar-tensor theory that arises in a rigorous D → 3 limit of Lovelock gravity up to
cubic order admits a holographic c-theorem and verify that the value of the c-function at the UV fixed point
matches with the Weyl anomaly coefficient (up to an irrelevant factor). The constructed c-function is the
same as one that follows from the “naive limit,” which is obtained by scaling the couplings by a factor of
1

D−3, and then setting D ¼ 3.
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I. INTRODUCTION

Given that gravity should have a geometrical interpre-
tation due to the principles of equivalence and general
covariance, it is possible to show the uniqueness of
Einstein’s theory in D ¼ 4 as follows [1]: The structure
of nongravitational theories suggest that the metric tensor
should be related to matter variables by a second-order
differential equation. Therefore, the consistent coupling to
a covariantly conserved energy-momentum tensor requires
a symmetric, covariantly conserved tensor with at most
second-derivatives of the metric tensor. Lovelock showed
that the most general form of such a tensor inD-dimensions
follows from the variation of an action functional

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
L; L ¼

X
m

cmLm; ð1:1Þ

where the mth order Lovelock Lagrangian is given by [2]

Lm ¼ 1

2m
δμ1ν1���μmνmρ1σ1���ρmσm R

ρ1σ1
μ1ν1 � � �Rρmσm

μmνm: ð1:2Þ

In addition to satisfying these basic requirements, Lovelock
gravity has a unitary massless spin-2 graviton around any
of its constant curvature vacua [3] and is singled out
among theories derived from a Lagrangian of the form
L½gμν; Rμνρσ� as the unique theory with equivalent metric
and Palatini formulations [4]. However; Lm vanishes when

D < 2m because of the antisymmetrization in the gener-
alized Kronecker delta symbol, and it is a topological
invariant in D ¼ 2m, i.e., the variation of the action yields
a total derivative. Hence, a richer structure can only be
achieved for D > 2m, which leaves the Einstein-Hilbert
action as the only possibility for having the above-
mentioned properties in D ¼ 4.
Although this is somewhat disappointing for gravita-

tional phenomenology, it is hard to overemphasize the
importance of Lovelock gravity in testing theoretical ideas
beyond Einstein’s theory and the applications of the
AdS=CFT correspondence [5], our holographic framework
to probe the properties of strongly coupled gauge theories,
are no exception (see [6] for examples). In this work, our
focus will be the holographic c-theorem of [7], where it
was shown for Einstein’s theory in D-dimensions that it is
possible to construct a monotonic function along an
renormalization group (RG) flow induced by matter fields
satisfying the null-energy condition (NEC). In the UV
(r → ∞), the value of the function is proportional to the
Weyl anomaly coefficients of the boundary field theory, and
as a result, one obtains a holographic generalization of
Zamolodchikov’s celebrated c-theorem for 2D quantum
field theories (QFTs) (cUV > cIR in any RG-flow connecting
two fixed points) [8] to arbitrary (even) dimensions.
For a better understanding, a natural question needs to be

answered: Although it is possible to construct a monotonic
function along an RG-flow in generic D-dimensions, only
even-dimensional conformal field theories (CFTs) have a
Weyl anomaly. What should be the interpretation of the
value of the function at the UV in the case of odd-
dimensional CFTs? By studying quasitopological gravity
(QTG) [9], a particular higher-curvature gravity theory that
allows distinguishing the type-A and type-B anomaly
coefficients (associated with the Euler density and the
independent Weyl invariants of weight −d respectively),
Myers and Sinha formulated a c-theorem in arbitrary
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dimensions [10,11]: Considering a d-dimensional CFT on
Sd−1 × R, one can calculate the entanglement entropy of the
ground state between two halves of the sphere, and find a
universal contribution. At the fixed points, the monotonic
function is associated with this universal contribution
(a�UV > a�IR) and for even d, as expected, it precisely
matches with the A-type anomaly coefficient (a� ¼ a,
and therefore aUV > aIR),

1 providing further evidence for
Cardy’s conjecture in d ¼ 4 [12] that was later proven
in [13].
Based on the importance of higher-curvature interactions

in establishing these results, in [14], Sinha investigated the
analog of Lovelock Lagrangians (1.2) that naturally admit a
c-function but vanish in 3D except the Einstein-Hilbert
term (m ¼ 1). He showed that demanding the existence of a
simple holographic c-theorem up to quadratic curvature
invariants leads to new massive gravity (NMG), a nonlinear
completion of the Fierz-Pauli theory describing a unitary
excitation of massive spin-2 gravitons around the constant
curvature vacua [15]. In [14], cubic and quartic invariants
admitting a c-function were also found and a prescription
for obtaining such curvature invariants of arbitrary order
was given in [16]. Despite having higher-derivative field
equations unlike Lovelock gravity, NMG and its extensions
exhibit many similar properties especially in holography,
and later a limit relating these three- and higher-
dimensional theories at the Lagrangian level was discov-
ered [17]. Due to these similarities and also their own
interesting properties, there has been an ongoing inves-
tigation of the holographic properties of 3D higher-
curvature gravities [18–20].
In this paper, we will take a different route motivated by

the recent developments over the past two years that started
with a proposal for obtaining lower-dimensional (D ≤ 2m)
versions of Lovelock gravity by Glavan and Lin, which can
be summarized as follows [21]: inserting a D-dimensional
metric ansatz into field equations of Lovelock gravity gives
terms that are proportional to D − p with p ≤ 2m so that
they vanish when D ¼ p. However; by scaling the relevant
couplings in (1.1) as cm → cm

D−p and then settingD ¼ p, one
can obtain nontrivial solutions. In their paper, they studied
D → 4 limit of Einstein-Gauss-Bonnet theory (m ¼ 1, 2
and c2 is scaled by 1

D−4) and obtained various novel
solutions (constant curvature spacetimes, the cosmological
spacetimes, the spherically symmetric black holes, and the
linearized fluctuations around maximally symmetric
vacua). Although this “naive limit” was later shown to

be inconsistent on different grounds [22–24], it led to the
realization that rigorous procedures giving rise to well-
defined theories exist [24–28] and they result in scalar-
tensor theories with two-derivative field equations, i.e.,
examples of Horndeski gravity [29] or generalized
Galileons [30]. Properties of this special class of scalar-
tensor theories have been investigated in [31–35].
Here we aim to find out whether the 3D scalar-tensor

theory arising in a rigorous limit of Lovelock gravity up to
cubic order, which we will refer to as 3D Lovelock gravity,
admits a holographic c-theorem, and therefore constitutes
an alternative to NMG and its extensions in this context.
Although, as we show in Sec. II, the naive limit suggests the
existence of a monotonic c-function along an RG-flow, it is
known that some solutions do not survive in the well-
defined scalar-tensor theories. For example, it was shown in
[28] that 4D static black holes with spherical and hyper-
bolic horizons are excluded in 4D cubic Lovelock gravity.
Therefore, this is a nontrivial check that needs to be
performed for the evaluation of this theory in the holo-
graphic context.
The outline of this paper is as follows: In Sec. II, we

construct the holographic c-function and find its value at
the UV fixed point of Lovelock gravity inD > 6. Then, we
present the results obtained from the naive limit. Section III
is devoted to the study of holographic c-theorem in 3D
Lovelock gravity up to cubic term. We show that the theory
admits a holographic c-function, and this function and its
value at the UV fixed point match with the ones obtained
from the naive limit. We also make a comparison with an
earlier study of Horndeski gravity involving up to only
linear curvature terms [36]. In Sec. IV, we comment on
some important relations discovered in the study of 3D
higher-derivative theories and their applicability in 3D
Lovelock gravity. We end our paper with a summary of
our results in Sec. V.

II. c-THEOREM IN LOVELOCKGRAVITY IND > 6
AND ITS NAIVE LIMIT TO D= 3

We will construct a holographic c-function for the cubic
Lovelock gravity in D > 6 by the method of [37]. The
action that we consider is as follows:

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
R − 2Λ0 þ αL2Lm¼2

þ βL4Lm¼3 −
1

2
∂μχ∂

μχ

�
; ð2:1Þ

where the Lagrangians Lm¼2;3 can be found from the
general expression (1.2), and the free-scalar χ is introduced
to impose the NEC in a practical way. Considering the
following domain-wall ansatz

ds2 ¼ e2AðrÞηabdxadxb þ e2BðrÞdr2; ð2:2Þ

1Note that the anomaly coefficient related to the Euler density
is denoted by c and a for d ¼ 2 and d ≥ 4 respectively. There-
fore, the monotonic function is denoted by cðrÞ and aðrÞ, and the
theorem is named as c-theorem and a-theorem accordingly.
Throughout this paper, we keep using the former terminology
even when we discuss the higher-dimensional cases since our
main focus at the end will be 3D gravity theories with 2D CFT
duals.
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where ηab is the Minkowski metric and the Latin indices
run from 0 to (D − 2), and assuming a radial profile for the
free-scalar, χ ¼ χðrÞ, one can show that the NEC reduces to
the positivity of the radial kinetic energy of the scalar field,
i.e., 1

2
χ02 ≥ 0. Using this configuration in the action (2.1)

gives an effective action for the functions ½AðrÞ; BðrÞ; χðrÞ�.
After finding the corresponding Euler-Lagrange equations,
and then fixing the gauge by BðrÞ ¼ 0, an inequality of the
following form can be obtained by eliminating the bare
cosmological constant Λ0 from the equations:

1

2
χ02 ¼ F ðA0; A00;…Þ ≥ 0; ð2:3Þ

where F is a polynomial of the derivatives of the function
AðrÞ. If it does not contain more than second-order
derivatives of the function AðrÞ, and has the form

F ¼
X
n

anA02n A00 ≥ 0; ð2:4Þ

a monotonically increasing c-function can be defined as [19]

cðrÞ ≔ 1

ðlPA0ÞðD−2Þ
X
n

an
2ðnþ 1Þ −D

A02n: ð2:5Þ

While the monotonicity is evident for even D, it was also
shown to be the case by construction for odd D in [11]. For
the value of the c-function at the UV fixed point, we set
AðrÞ ¼ r

L and find

c ¼
�
L
lP

�ðD−2Þ XD−1

n¼0

an
2ðnþ 1Þ −D

: ð2:6Þ

The application of this procedure to cubic Lovelock gravity
in D-dimensions yields the following inequality

F ¼ ðD − 2Þ½−1þ 2αðD − 3ÞðD − 4ÞL2A02 − 3βðD − 3Þ
× ðD − 4ÞðD − 5ÞðD − 6ÞL4A04�A00 ≥ 0; ð2:7Þ

which leads to the monotonically increasing c-function

cðrÞ ¼ 1

ðlPA0ÞðD−2Þ ½1 − 2αðD − 2ÞðD − 3ÞL2A02 þ 3β

× ðD − 2ÞðD − 3ÞðD − 4ÞðD − 5ÞL4A04�; ð2:8Þ

whose value at the UV fixed point is given by

c ¼
�
L
lP

�ðD−2Þ
½1 − 2αðD − 2ÞðD − 3Þ þ 3βðD − 2Þ

× ðD − 3ÞðD − 4ÞðD − 5Þ�: ð2:9Þ

It is obvious that this whole structure allows a naive limit to
D ¼ 3 by scaling the couplings as ðα; βÞ → 1

D−3 ðα; βÞ and
then setting D ¼ 3. The resulting expressions are

F ¼ ½−1 − 2αL2 A02 þ 18βL4A04�A00 ≥ 0; ð2:10Þ

cðrÞ ¼ 1

lPA0 ½1 − 2αL2A02 þ 6βL4A04�; ð2:11Þ

c ¼ L
lP

½1 − 2αþ 6β�: ð2:12Þ

In the next section, we will show that these expressions are
indeed preserved in 3D Lovelock gravity up to the cubic
term. In 3D, the value of the c-function at the UV fixed point
c should be proportional to theWeyl anomaly coefficient and
the central charge of the boundary CFT.

III. c-THEOREM IN 3D LOVELOCK GRAVITY

3D cubic Lovelock gravity is described by the action

S ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
R − 2Λ0 þ αL2Lm¼2

þ βL4Lm¼3 −
1

2
∂μχ∂

μχ

�
; ð3:1Þ

where we again introduce the free-scalar χ to impose the
NEC and Lm¼2;3 terms arising after a rigorous limit read

Lm¼2 ¼ 4Gμνϕμϕν − 4X□ϕþ 2X2 ð3:2Þ

Lm¼3 ¼ −48Rμν ϕμνX − 48RμνϕμϕνX þ 24RX□ϕþ 6RX2

þ 96ϕμνϕ
μϕν□ϕþ 48ϕμνϕ

μν□ϕ − 24ϕμνϕ
μνX

− 144ϕμνϕ
μϕνX − 96ϕμϕνϕμρϕ

ρ
ν − 32ϕμνϕμρϕ

ρ
ν

− 16ð□ϕÞ3 þ 24Xð□ϕÞ2 − 24X3; ð3:3Þ

with the following definitions: ϕμ ≡ ∂μϕ, ϕμν ≡∇μ∇νϕ
and X ≡ ∂μϕ∂

μϕ. The Lm¼2 term is found in [24,27,32]
with the “Weyl trick” of [38] that was first used to obtain
the D → 2 limit of general relativity. A more general
version was obtained in [25] by a regularized Kaluze-
Klein reduction, where one gets additional terms breaking
the shift symmetry of the scalar ϕ that are proportional to
the curvature of the maximally symmetric internal space
considered in the reduction. When the internal space is
taken to be flat, these different approaches give the same
result up to field redefinitions. The Lm¼3 term is found in
[28] by using both methods. We prefer the version arising
from a flat internal space for simplicity.
In order to establish a holographic c-theorem for this

theory, we will use the method described in the previous
section by also assuming a radial profile for the scalar field
ϕ ¼ ϕðrÞ in addition the free-scalar χ and employ the
domain wall ansatz (2.2) in 3D, which lead to an effective
action for the functions ½AðrÞ; BðrÞ;ϕðrÞ; χðrÞ�. This time,
one arrives at the following inequality
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F ðA0; A00;ϕ0;ϕ00Þ
¼ −A00 þ αð4A02ϕ02 þ 4ϕ04 − 2ϕ02ðA00 − 2ϕ00Þ
− 4A0ϕ0ð2ϕ02 þ ϕ00ÞÞ ≥ 0; ð3:4Þ

which is not in the standard form (2.4). However; consid-
ering the Euler-Lagrange equation of the function ϕðrÞ,
which is given by

0 ¼ ðA0 − ϕ0Þ½A0ð2ϕ02ðαþ 27βϕ00Þ − αϕ00 − 36βϕ04Þ
þ ϕ0ð3ϕ00ðα − 30βϕ02Þ − 2A00ðα − 18βϕ02ÞÞ
þ A02ð36βϕ03 − 2αϕ0Þ�; ð3:5Þ

one sees that this equation has two branches, both of which
are solved by ϕ0 ¼ A0. Inserting this into the original
inequality (3.4), we find exactly the inequality suggested
by the naive limit (2.10). Therefore, the 3D cubic Lovelock
gravity admits a holographic c-function. The c-function
and its value at the UV boundary are as follows:

cðrÞ ¼ 1

lPA0 ½1 − 2αL2A02 þ 6βL4A04�; ð3:6Þ

c ¼ L
lP

½1 − 2αþ 6β�; ð3:7Þ

which are the same expressions obtained from the naive
limit (2.11) and (2.12).
The relation between the AdS3 radius L and the bare

cosmological constant Λ0 can be easily found by setting
ϕ0 ¼ A0 ¼ 1

L and χ ¼ 0 in the Euler-Lagrange equations
following from the effective action, which yields

Λ0 ¼ −
1

L2
ð1þ α − 6βÞ: ð3:8Þ

With this at hand, we can show the agreement with the
Weyl anomaly coefficient [39] of the boundary CFT by
considering the theory on S2 with the following Euclidean
metric [40]

ds2 ¼ dr2

1þ r2

L2

þ r2ðdθ2 þ sin2 θdϕ2Þ; ð3:9Þ

which is a solution when ϕðrÞ ¼ logðrLÞ. In the on-shell
action, we are interested in the logarithmic divergence since
other divergences are expected to be canceled by surface
terms and appropriately chosen counterterms. The relevant
part of the on-shell action is as follows:

S ∝
�
Λ0 þ

1

L2
ð3 − 3αþ 6βÞ

�
ln

�
2R
L

�
; ð3:10Þ

where R is the UV cutoff scale. Upon using the relation
between the bare cosmological constant Λ0 and the AdS3

radius L in (3.8), we see that the anomaly coefficient is
proportional to the value of the c-function at the UV
boundary (3.7), as expected.
Note that the c-theorem in Horndeski gravity involving

up to only linear curvature terms was investigated in [36].
With our conventions, the action that the authors consid-
ered is as follows:

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
L;

L ¼ R − 2Λ0 −
1

2
ðαX − γGμνϕμϕνÞ: ð3:11Þ

For an AdS vacuum solution characterized by the effective

cosmological constant Λeff ¼ − DðD−1Þ
2L2 where L is the AdS

radius, the effective kinetic term for the Horndeski scalarϕ is

Lϕ ¼ −
1

2
ðαþ γΛeffÞX: ð3:12Þ

They found that a monotonic c-function is admitted only at
the critical point where the effective kinetic term (3.12)
vanishes, i.e., the couplings are related by γ ¼ 2αL2

DðD−1Þ.
Therefore, having second-order field equations is indeed
not enough for the existence of a c-theorem. A particular
combination ofHorndeski couplings are required, andwe see
that 3D Lovelock gravity is such an example.

IV. COMMENT ON THE WALD FORMULA AND
THE CENTRAL CHARGE FORMULA OF [41]

Having shown the existence of a holographic c-theorem,
we will now briefly comment on two important relations
that appeared in the study of 3D higher-derivative theories
described by the Lagrangians of the form2 L½gμν; Rμν�. In
[14], an interesting relation between the c-function and the
Wald formula [42] was observed: Evaluation of the
integrand of the Wald formula for the metric ansatz (2.2)
in 3D with BðrÞ ¼ 0 yields

1

2
gttgrr

∂L
∂Rtrtr

¼ cðrÞA0ðrÞ: ð4:1Þ

Additionally, the central charge of the boundary CFT for
higher-derivative gravity theories, which is proportional to
the anomaly coefficient, canbe computed by the formula [41]

c ¼ L
3lP

∂L
∂Rμν

gμν; ð4:2Þ

2Note that this is the most general possibility for a pure gravity
theory since the Riemann tensor can be written in terms of the
metric, the Ricci tensor and the Ricci scalar in 3D due to the
vanishing of the Weyl tensor.
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where this quantity should be evaluated for the AdS3
solution. When these relations are applied to 3D Lovelock
gravity described by the action (3.1) (without the χ-term that
is introduced for imposing theNEC), they yield the following
expressions

cðrÞ ¼ 1

lPA0 ½1þ 6βL4A04�; ð4:3Þ

c ¼ L
lP

½1þ 6β�: ð4:4Þ

Although there is no reason to expect these relations to hold
for an arbitrary scalar-tensor theory, we see that the con-
tribution from the Lm¼3 term matches our previous results,
while the Lm¼2 term gives no contribution, which is
incorrect. Interestingly, the correct contribution arises from
the following Lagrangian

Lm¼2 ¼ 8Rμνϕμϕν þ 8Rμνϕμν þ 4ϕμνϕ
μν þ 8ϕμνϕ

μϕν

− 4R□ϕ − 2RX − 4ð□ϕÞ2 þ 2X2; ð4:5Þ

which is indeed the immediate result that is obtained after the
application of theWeyl trick or the regularized Kaluza-Klein
reduction to the Lm¼2 Lagrangian in D-dimensions. The
Lagrangian given in (3.2) is obtained after integration by
parts and the use of Bianchi identities. Recently, it was

observed in [34] that when the Lagrangian holographic
relation obeyed by Lovelock gravity in higher dimensions
is demanded to be realized in the resulting scalar-tensor
theories in lower dimensions, it requires introducing certain
boundary terms by hand. Together with this finding, our
results suggest that boundary terms play a crucial role in
comparing Lovelock gravity in lower dimensions with pure
gravity theories.

V. SUMMARY

In this paper, we studied the existence of a holographic
c-function in 3D Lovelock gravity described by the
Lagrangian (3.1), a scalar-tensor theory that arises after
a rigorous D → 3 limit of Lovelock gravity. Being an
example of a Horndeski theory, it has second-order field
equations. However, as shown in [36] before, this does not
guarantee the formulation of the holographic c-theorem.
We have shown that the theory admits a holographic
c-function and its value at the UV fixed point agrees with
the one predicted by the Weyl anomaly in (3.10). Moreover,
our findings match the results obtained by the naive limit
(2.10)–(2.12). By checking two important holographic
relations (4.1) and (4.2) of 3D higher-derivative gravity
theories, we also shed light on the important role that
boundary terms play in the comparison of lower-
dimensional Lovelock gravity and pure gravity theories.
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