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An alternative quantization of the gravitational Hamiltonian constraint of the k = —1 Friedmann-
Robertson-Walker model is proposed by treating the Euclidean term and the Lorentzian term independ-
ently, mimicking the treatment of full-loop quantum gravity. The resulting Hamiltonian constraint operator
for the k = —1 model with a massless scalar field is successfully constructed, and it is shown to have the
corrected classical limit. Compared to the former quantization schemes in the literature where only the
Euclidean term is quantized, the new quantum dynamics of the k = —1 model with a massless scalar field
indicates that the classical big bang singularity is replaced by an asymmetric quantum bounce.
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I. INTRODUCTION

How to quantize general relativity (GR) in a consistent
manner is a great challenge to theoretical physics. One of
the promising candidates is the so-called loop quantum
gravity (LQG), which is a nonperturbative approach to
quantum GR [1-4]. In the past three decades, LQG has
made remarkable progress, such as making natural pre-
dictions of the discretized geometries and providing the
microscopic interpretation of BH entropy [5-12]. The
nonperturbative quantization procedure of LQG has been
successfully applied to the metric f(R) theories [13,14],
scalar-tensor theories [15,16], higher-dimensional gravity
[17], and so on [18]. Despite these achievements, the
dynamics of full LQG is still an unsolved issue. To gain a
certain level of understanding of the dynamics, the quan-
tization ideas and technologies developed in LQG have
also been applied to its symmetry-reduced models, such as
the Friedmann-Robertson-Walker (FRW) models and the
spherically symmetric black hole models, leading to loop
quantum cosmology (LQC) and loop quantum black hole
models [19,20]. The most successful feature of LQC is that
it can resolve the classical big bang singularity by a
quantum bounce due to the quantum geometry effects.
We refer to Refs. [19,21-23] for more complete reviews
on LQC.

In full LQG, the gravitational Hamiltonian constraint is a
combination of the so-called Euclidean term and the
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Lorentzian term. In the spatially flat, K = 0 FRW model,
the Lorentzian term and the Euclidean term are propor-
tional to each other. Thus, one often combines these two
terms into one term proportional to the Euclidean term,
and then quantizes the Euclidean term to obtain the well-
defined gravitational Hamiltonian constraint operator
[19,22]. It turns out that in this quantization scheme the
classical big bang singularity is replaced by a symmetric
quantum bounce for the kK = 0 FRW model with a massless
scalar field in the framework of LQC [22]. Note that in
full LQG, the Lorentzian term is quantized independently
by employing Thiemann’s trick [24]. Thus, to mimic the
full LQG quantization procedure in the k = 0 model of
LQC, the Euclidean term and the Lorentzian term are
treated independently [25-27]. This alternative quantiza-
tion scheme leads to an asymmetric quantum bounce,
which relates the spatially flat FRW model with an
asymptotic de Sitter universe, and thus an effective cos-
mological constant and an effective Newtonian constant
can be obtained [28-30].

As in the k = 0 model, the quantization technologies for
the gravitational Hamiltonian constraint developed in LQG
have been extended to the k = —1,+1 models [31-38].
Compared to the k = 0 model, where the spin connection
vanishes and hence the Ashtekar connection equals the
extrinsic curvature multiplied by the Immirzi parameter, the
Lorentzian term is not proportional to the total Euclidean
term, but is proportional to the part of the Euclidean term
involving the extrinsic curvature due to the nonvanishing
spin connection for both the k = —1 model and the k = +1
model. Hence, in the literature one often absorbs the
Lorentzian term into a part of the Euclidean term, and
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then quantizes the two parts of the Euclidean term. It turns
out that, as it does for the k =0 model with similar
treatment, the resulting k = —1 LQC model also predicts
a vacuum repulsion in the high-curvature regime that would
lead to a symmetric bounce [31]. Moreover, the k = —1
model of LQC also possesses some new features that never
appear in the k = 0 model; for example, due to a vacuum
repulsion in the high-curvature regime, the scale factor has
the minimum value a,,;, = yv/A [31]. It is natural to ask
whether the treatment of the Lorentzian term independ-
ently, mimicking the treatment in the full theory, can be
directly carried to the kK = —1 model, and whether an
asymmetric bounce can still be held for the k = —1 model.
This is the main motivation of the present paper. In this
paper, we consider an alternative quantization of the
gravitational Hamiltonian constraint in the k = —1 model
by treating the Lorentzian term independently.

This paper is organized as follows: The canonical for-
mulation of the k = —1 model is briefly recalled in Sec. II.
Then, we propose an alternative gravitational Hamiltonian
constraint operator by treating the Lorentzian term inde-
pendently, and we provide a new quantum dynamics for the
k = —1 model in Sec. III. The effective theory of the new
quantum dynamics and its asymptotic behavior are studied
in Sec. IV. A summary is included in the last section.

II. CANONICAL FORMULATION
OF THE k= -1 MODEL

According to the cosmological principle, the line ele-
ments of the homogenous isotropic cosmological models
follow

ds? = —d* + a*(1) dr? + r*(d6? + sin’0d¢?) |,

1 — kr?
(2.1)

where a(r) is the scale factor, and k = —1, 0, 1 for the open,
flat, and closed FRW models, respectively.

In what follows, we present the canonical formulation of
the k = —1 model following Ref. [31]. For the spatially
noncompact k = 0, —1 models with topology homeomor-
phic to R3, one introduces an “elemental cell” V on the
homogeneous spatial manifold R? and restricts all integrals
to this elemental cell. Then one chooses a fiducial metric
Gap = @} ’w}3;; on R3, with °w!, being the left- and right-
invariant fiducial one-forms in the kK = 0 model, and only
the left-invariant fiducial one-forms in the K = —1 model.
Here a, b, ... denote the spatial indices, while i, j,... =
1, 2, 3. We denote by V, the volume of VV measured by the
fiducial metric °g,,. The left-invariant one-forms ‘w/,
satisfy the Maurer-Cartan equation

1. .
d°a’ +§ ljkoa}] A ()wk — 0’ (22)

where for the kK = —1 model the structure constants read

Cijk = 5;‘5k1 - 55{5]‘1,

(2.3)
while for the £ = 0 model they take zero. The correspond-
ing left-invariant vector fields %¢ are dual to °w},, satisfying
%e°w}, = &/ and %¢°w) = 5¢. The commutators between
the left-invariant vector fields read
[Oel’, Oej] = Ckl'joek. (24)
Classically, the dynamical variables of LQC are obtained
by symmetrically reducing those of full LQG. In the full
theory, the dynamical variables consist of the su(2)-valued
connection A/, and the densitized triad Eﬁ? with the non-
trivial Poisson bracket
[AL(), EY0)} = krtsis(ey),  (25)
where k = 87G, with G being the Newtonian constant, and
y is the Immirzi parameter [39,40]. The connection A is
related to the spin connection I'; and the extrinsic curvature
Ki by AL =T% +yK! Tt turns out that the symmetry-
reduced extrinsic curvature K!, is diagonal in the basis
of left-invariant one-forms for the k = 0,—1 models.
Moreover, unlike the k =0 model where I'\ vanishes,
the symmetry-reduced spin connection I'}; in the k = —1
model takes the form [31]

I = —eliiog] (2.6)
and thus it is nondiagonal. Hence, the symmetry-reduced
connection and densitized triad for the Xk = —1 model
read [31]

. L 1 o
Al = —€eliog) + cV, 0! = ALV ary,  (2.7)
- 2
E¢ = pV,iy/det(°q)e?, (2.8)
where
c 0 0
) 1
A; =10 ¢ =Vi], (2.9)
1
0 Vv c

the variables ¢ and p are only functions of #, and det(°q)
denotes the determinant of °q,,. Hence, the gravitational
phase space of the k = —1 model consists of conjugate
pairs (c, p). The nontrivial Poisson bracket reads

{e.p} =57 (2.10)
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Note that the variables ¢ and p are related to the scale factor

2 1
aby |p| = a®V;, and ¢ = yaV}. The physical volume V of
the elemental cell ¥V measured by the spatial (physical)

-2
metric q,, = |p|Vo’°qq is related to p via V = |p|¥/2. In
the improved scheme, it is convenient to choose the
following variables to simplify the dynamics [41]:

pofie , sealp)lpP

A 2.11
2 Zﬂyf}%\/z ( )

where £, = v/Gh denotes the Planck length, sgn(p) is the
signature of p, A = 4\/§ﬂyff) is the minimum nonzero
eigenvalue of the area operator in full LQG [42], and

A/|p|. The Poisson bracket between b and v is
given by

(b,v} = % (2.12)

As in the kK =0 model, the Gauss and diffeomorphism
constraints of the gravitational part are automatically sat-
isfied for the symmetry-reduced variables in Eqgs. (2.7) and
(2.8) in the k = —1 model, and thus the classical dynamics is
encoded in the Hamiltonian constraint. The gravitational
Hamiltonian constraint of the K = —1 model reads

E¢E?

Hkr:a\71 ::/d3X7]
¢ v 2k/det(q)

)

2\ i wd
=2(1+y )K[aKb]]

a b
:/d3x%[€ijk(ﬂ<)pkb
v 2ky/det(q) ¢

E9E?
+ [ &« LT Gij (D) pk
[2 2k+/det(q) £oa
= FET 201+ YRR + T 23
where det(q) denotes the determinant of ¢, and
WIF, = 2015 + €, x0x7 (2.14)
Hence, in the k = —1 model, the Euclidean term consists of

/B k=0 Tk=—1 . . s« A/Lk=0
Heray ~ and Hgray —, while the Lorentzian term Is Heray -
Seen from the above formulation, the two terms Hg;!f\,: 9 and
ﬂlgr’ﬁ\,: 0 have the same formulations as the Euclidean term
ng’;‘\,: % and the Lorentzian term Hggf\,: % in the k = 0 model,

respectively. Thus, the gravitational Hamiltonian constraint
of the k = —1 model differs from that of the & = 0 model
by the third term Hgg;’fvz ~! due to the nonvanishing I', in
the k = —1 model. A straightforward calculation shows
that the three terms in Eq. (2.13) can be expressed by the
variables (b, v) as

3 3yh
He 0 = \/Lzbzhj . (2.15)
_ 3h
HE0 = ——p2|0 (2.16)
g 2}/\/K
12
. 3(rARRVS
e AL L LTI
4(27G)3

Hence, the gravitational Hamiltonian constraint (2.13) of the
k = —1 model reduces to

_ 37| TN
k—,—l — _ b2 _ V?,
T =R [ (ercm
3n|v|
=-2""1g(b,v). (2.18)
VA’

At the classical level, we assume that the Universe is
filled by a massless scalar field ¢». The Hamiltonian of the
scalar field ¢ is given by

Py P

S A— 2.19
2V dnyt3VA[w| 1)

Hy =

where p, denotes the conjugate momentum of ¢. The
Poisson bracket between ¢ and p, is {¢. p;} = 1. Hence,
the total Hamiltonian constraint of gravity coupled to a
massless scalar field reads

H{Co?_l = Hé;;l + H(/)
_3n|y| P(Z/,
= g(b,v) + ————. (2.20)
~r VN
By the total Hamiltonian constraint equation
HET =0, (2.21)

the classical Friedmann equation can be obtained as

= ) - (5

87G V23
3 P + V23

8rG 1

=3 Pt 3

(2.22)

where - denotes a derivative with respect to the time

determined by k!,

of the scalar field ¢.

2
and py = 2 is the energy density
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III. LOOP QUANTIZATION
OF THE k= -1 MODEL

To pass the classical theory of k = —1 model to its
quantum theory, one needs to construct the kinematical
Hilbert space. In the k = 0 model, the vanishing I'"}, enables
us to identify A, with yK’, leading to the identification of
the holonomies of the connection and those of the extrinsic
curvature (mutiplied by y). The resulting holonomies of
the connection A/, equal to yK! in the k =0 model,
along edges generated by the left- and right-invariant
vector fields %¢ with physical length AV'/3 take the form
hY = cos(45)I + 2¢; sin(%), where 7
being the Pauli matrices. Hence, the related algebra is that

of the almost periodic functions, and thus the kinematical
Hilbert space for the gravitational part can be defined as

l
—30i, with o;

ng-lk=0 = LZ(RBOhr’dﬂBohr)’ where IRBohr and d/'tBohr are
respectively the Bohr compactification of the real line R
and the Haar measure on it [19]. However, in the k = —1
case, the spin connection I'), takes the nonvanishing
expression (2.6), resulting in a difference between the
holonomy of the connection and that of the extrinsic
curvature. Moreover, due to the nondiagonal form
[Eq. (2.7)] of the connection, the holonomies of the
connection take complicated forms in the k = —1 model,
leading to the algebra generated no longer being that of the
almost periodic function [31]. Instead, one often considers
the holonomies of the extrinsic curvature yK', in the k = —1
model, which take the same forms as those in the k = 0
model. More precisely, considering an edge e; starting
from the base point of the elemental cell V, with a tangent
vector parallel to the vector “e¢ and taking length 4,
following Refs. [31,32], we define the “holonomy” of

. 1 .
yKi, = cV, 0, as

=7Dexp/dtyKaT et

— elcri
A A
= cos (EC) I+ 2sin <?C> 7

Here, P denotes the path ordering which orders the smallest
path parameter to the left [2], and it takes the trivial action
in our model as in Refs. [2,19,31,32]. Clearly, these
holonomies in Eq. (3.1) generate the algebra of almost
periodic functions, and thus result in the kinematical
Hilbert space for the k= —1 model being H, =
HEHF=T! — HEE0 [31] As in the k = 0 model, we will
employ the z scheme to define the Hamiltonian operator.
This requires us to consider the holonomies along the edges

taking physical length v/A [2,31,32], which are given by

(3.1)

_ avls?
hl(ll) = Pexp (/ dtyKaTJ i>
0

— eﬁcr,

=co <%>]I+251n<'u2 )

= cos(b)I + 2sin(b)z;, (3.2)
and their inverse takes the form:

hP ™" = cos(b)I - 2sin(b)z; (3.3)

In the v representation for both the k = 0 model and the

k = —1 model, the two elementary operators, ¢ and 7, act
on the basis |v) of H; as

el’|v) =

Thus, one can easily write down the action of the operators

lv+1), Do) = v|v). (3.4)

(#) (7

os(b)I + 2sin(b)7; (3.5)

corresponding to the holonomies hgﬁ ) of the extrinsic

curvature yK’, on |v) in terms of ¢'. For the scalar field,
it is convenient to choose the Schrodinger representation
[23]. Thus, the kinematical Hilbert space for the scalar
field part can be chosen as H{S = L?(R, d¢). Hence, the
total kinematical Hilbert space of the k = —1 model with a
scalar field is H, = Hy ® HS .

We now consider an alternative regularization of the
gravitational Hamiltonian constraint of the k = —1 model
in Eq. (2.13), such that it is closer to that in the K = 0 model
as well as to that in full LQG. As mentioned previously, the
two terms ﬂgr'é‘vz 0 and ﬂér'é‘vz % in Eq. (2.13) have the same
forms as the Euclidean and Lorentzian terms in the k = 0
model, respectively. Hence, it is natural to expect that the
two terms in the k = —1 model can be regularized as
the corresponding forms in the k = 0 model. To realize
explicitly this idea, some subtle issues should be clarified.
First, we consider the first term

FHEA=0 _ / RE xﬂ €'l (rK) pk
s v 2ky/det(q) @

/ a3 EE) €, [20,,y K5 +-€* 1,y KLy K]
= x———c¢ a et mV B a
v 2xy/det(q) (aV By T m¥ Ral

eklmnyzyK?’ (36)

E9Ebel
— / dBy—
v 2xy/det(q)
where in the third step we use the fact that the first term in
the integral of the second line vanishes due to
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‘e’ e”k20[ }/Kk] = cVo ej’e] beli %20,° a)b]

— _CV;E()e?()ejbeijkCklmaa)flowzz
1 X
= —CV()SGUkC ij
—0. (3.7)

To regularize ng’gv: 0

Thiemann’s trick

in Eq. (3.6), one needs to use

ra b
Ei Ej €ijk _ iéabc{Alé’ V} —

2
e — e {yKg, V3,
det(q) Ky Ky

(3.8)

where &%7¢ is the Levi-Civita density, and then to express
the curvature (K ab of yK! in terms of holonomies of y K.

In the k = O case, since the left- and right-invariant vector
fields %e¢ commute to each other, the integral curvatures of

%e¢ and ¢ e can form closed loops [J;;, around which the

curvature <J’K)F k, can be recast as the holonomies h(mﬁ,.)j of
yK',. Compared to the k = 0 case, due to the noncommu-
tativity of the left-invariant vector fields “e{ in the k = —1
case, the integral curves of “ef and “e cannot provide
closed loops. In Ref. [31], holonomies of yK' based on the
open curves generated by “ef and “ef were adopted to
regularize the curvature /®JF%, . In Ref. [32], the author
proposed closed loops [J;; generated by the integral curves

of the left-invariant vector fields “e{ and the right-invariant
|

E.k=0,reg
ngav

Ay
2

where the identity 7,7; = J€;;,,7" —36;; is used. The
resulting regularized expression Hame ¢ in Eq. (3.12)

is the same as the regularized Euclidean Hamiltonian

constraint ng’;‘v: 018 in the k =0 model [22]. We now

consider the second term ng;gf % in Eq. (2.13). Classically,
the term ﬂ;é‘f % is proportional to the term ﬂg;fjf 0, and

L.k=0

hence the term ﬁg;av does not need to be quantized

independently. This approach to quantization of 7:[2;;31‘7 0 in
the k = —1 model has been adopted in Refs. [31,32],
similarly to the kK = 0 case in Ref. [22]. Alternatively, the
Lorentzian term in the k =0 case can be regularized
independently in Ref. [27], mimicking the treatment of
full LQG. It is natural to ask whether the treatment for the
Lorentzian term in the kK = 0 case can be directly carried to
that for ﬂlgr{fvz O in the k = —1 model, and the resulting
operator is the same as that in the X = 0 model. The answer

Py @) [ (@-1
:4\/Zs1n(2b) {v?Tr(rkhk {hk .

- b . .
vector fields %} commuting with “{. In the present paper,

we will consider open holonomies to represent extrinsic
curvature following Refs. [27,36,38,43]. Inputting Eq. (3.8)
into Eq. (3.6), one obtains

Hg = =~ / d*xeeek,, yKlyKy{yKE, v}
4 3,.=abc
T Tr(yKayKp{rK.. V}).  (3.9)

where the identity Tr(z;7,7;) = — %€, is used. In cosmol-
ogy, the known identities [27,36,38,43] take the forms

(2m) (2m)-1

" —h; .
vKe = ————35— "0, 3.10
e (310

1 B @=1 o
(K VE=—— 3 nf ™ vk, (3.10)
ne A

where hgﬁ ) (or hgzﬁ )) is defined by Eq. (3.2). It should be

noticed that Eq. (3.10), which is precisely valid in the limit
it — 0, should be understood as a regularized expression in

the iz scheme with @ = \/A/|p|. Substituting Egs. (3.10)
and (3.11) into Eq. (3.9) and assuming for simplicity that
the holonomies of k = —1 can be approximated with the
holonomies of k = 0, we arrive at

Sglzl(lfz ZeijkTr[ (hgzm _ hf.zf’)‘l) (h5_2ﬁ> _ h§2‘)‘1) e { e VH

(3.12)

m})} sin(2b),
[

is in the affirmative. To this end, let us recall the key
identities for regularizing the Lorentzian term of the
gravitational Hamiltonian constraint in the full theory,
study their symmetry-reduced forms in the X = —1 model,
and then compare them with those in the kK = 0 model. The
first classical identity reads

. 1 . 1 . .
Kyt = K_}/{Aiﬂ'iv K} = K_y{riﬂ'i +yK,7. K}

1 .
= K_{YKZ% K}

= ' K)wl, 3.13

3f<mv1/3 o (3.13)
where K = [d3xK’E¢, and the former steps hold for the
full theory and thus hold for its symmetry-reduced models,
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while the third step holds due to the fact that the spin
connection I, in Eq. (2.6) is proportional to wl, up to a
constant for the k = —1 case, and the vanishing connection
for the kK = 0 model. In the last step, we have used the
relation [27]

2
{ct, K} = ——nP

-1
3 (W7 K},

1

(3.14)

Here, it is worth noting that the above equation is satisfied
only in the z# scheme where i is a function of p, rather than
a certain constant in the y, scheme. In the i scheme, i
depending on p does not commute with K, leading to a
factor 2/3 on the right-hand side of Eq. (3.14). The second
identity is

K = 1{ MHE, VY = {”HE+(7’(>HE,V}
7’ 7’

1 |
= y_z{ rEIHE VY = 2 {Hga " VY
1 _
= P{HE;&;‘), 143 (3.15)
x 3 Er Ejb l] (x) gk _
where = [dx 5 \/T M FY,. Hence, to regu
K C

larize K, one just replaces ngffv: O with its regularized
|

re 8 - -
HIg:rz]i{v Oreg Sgl’l( )Ze”kTr(hE”){h

A VIR ()

version H§r§V Oreg 4y Eq. (3.15). It should also be noted here
that both zz and V depend only on p. As a result, the Poisson
bracket between Hgn]fv 0¢¢ and V has the same form for
both the z and u, schemes. Thus, the above two classical
identities which play key roles in the regularization of the
Lorentzian term hold in the k = —1 model, and they take
the same forms as those in the £ = 0 model. Therefore, to
regularize Hérﬁv % independently in the k = —1 model, one
can follow directly the treatment of the Lorentzian term
ng“rffvo in the kK = 0 model, mimicking the treatment of
the full theory. To this end, we first reexpress H]g“r’;\, % in

the form

”f.lEl?

7 Lk=0 __ 3 ! J
Hgiar™ = Ad xzx,/det( )KE“K”
E¢EL
= d3 vy ij _ .k Kle
/V xZK\/det(q)e k€ mTa

2
i d3 abcTr(KaKb{yKu V})

(3.16)
K’y

Combining Eq. (3.16) with Egs. (3.13) and (3.11) and
replacing ’F[gr'ﬁvz O with its regularized version ngljv Oreg,

one obtains the regularized expression of H]g“rlgv 0 as [27]

T {Hg VIR D T vy

okt Y i =1
SSgn( ) ij 7 p)—1  (5/Ek=0,re ii k=0.re
= Gty 2 Te O (L (Ha S VAP O VI ™ (Rl V)
ij,
VA
— 733 3 ZeukTr( ﬂ {h {ngav |U|}]’l {]’l {ngav ) (317)
vk
Similarly, the last term in Eq. (2.13) can be regularized as [31,32]
F.k:—l.reg Sgn(p 1
rav T , Vv
|2
_ h(hy VA )5 Vi
sgn(v)|v Tr(z h h v|}). 3.18
427 G)§ & |Z k { | ) (3.18)

Up to now, the three parts of the gravitational Hamiltonian constraint in Eq. (2.13) have been regularized as the expressions
in Egs. (3.12), (3.17), and (3.18), which can be directly promoted to quantum operators by replacing the functions with the

corresponding operators and replacing {-,-} with [-,]/(i%). Then, ng;lfv 012 in Eq. (3.12) can be quantized as

046012-6
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7:{5;{;?0 :—41\/_sm (2b) < ZTr(rkh [ | |D>sm(2b)
ihy —= . .~ | .—=
= 2\/% sin(2b)(90); )sin(2b) ; Tr(7,7)
Bhy . —= .~ .=
- —4\/£sm(2b)(uom)sm(2b), (3.19)

where in the second step we have used

W (W B| = Br—n B!

= Bl - (cos(b)]l + 2sm(b)rk)f?(C(§(\b)]I - ZSiE(\b)Tk)

n(b) Beos(s) —eox(p) Bsin(h) )

= BI - [C(;(\b) B co/s@) I- 4si;(\b) B 513(\19) 4Ty + 2 (sin(b) B cos(b) —cos(b) Bsin(b) )z

— L — -

= (f? — sin(b) Bsin(b) —cos(b) B C(;(\b)>]1 —20;7¢. (3.20)

Here in the fourth step, the identity 7,7, = — i]l for k = 1, 2, 3 is used, and the operator 0 5> depending on the operator B, is
defined by

~ — A — — n @ —

Oy, = sin(b) B cos(b) —cos(b) Bsin(b), (3.21)

and Tr(z;) = 0. In the last step in Eq. (3.19), we have used >, Tr(z47;) = —3. Similarly, the regularized expression (3.17)
can be quantized as

/\ —_ —_—

AT ke ; a1 a7 [ =1 a1 2@ [ )= 2/ EA=0 A
FLS = - 28%32 e (1P [ (A, o1]] 01 [P 1] WP [ [0, 1]
ivVA
= 3gy3 O o (01) Opisico o %;e “Tr(zizjne)
\/" ) . )
= 24hy O[nga\ U”(UOhl)O[ngévO 1)”’ (322)

where in the second step we have used Eq. (3.20) and used the fact that the terms involving zero, one, and two 7’s in the trace
vanish due to Y, €% =0, 32, €/*Tr(r;) = 0, and 3, €/*¥Tr(z;7;) = =137, €7%8;; = 0. The operators O; and
0[ﬂ§;§7°,\m1 are defined according to Eq. (3.21) with B = || and B = [ﬂgr’ffv: 0, ||], respectively. Moreover, in the last step in

Eq. (3.22), we have used Y, ; , €/XTr(z;zj1) = =432, €%€;x = —3. Finally, the operator corresponding to Hyr "%
in Eq. (3.18) reads, if assuming again for simplicity that the holonomies of k = —1 can be approximated with the
holonomies of k = 0,
cree (ArVA )%V
it = PR ) o3 e (P [ o]
gra 4(2 G |Z k |
_ (VA )%V ()0
= ()90 Y Tr(zer
TR0GR ¢ ‘Z )
2
3(hyVARVE, s
= %sgn(v)|v|30|@|. (3.23)
i4(27G)s

The actions of the operators ngfv 0, ngrffv 0 and ngfv_ " on |v) read
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E,(v)[v+4) + Eo(v)|v) + E_(v)|v —4),
(3.24)

i /E k=0 _
ngav U> -

g *v) = Ly (v)|v+8) + Lo(v)|v) + L_(v)|v = 8),

(3.25)
Fyss o) = T(v)[0), (3.26)
where
Ei(1) = R0+ DM, (2]
E_(v)=E, (v-4), (3.28)
Ey(v) = —E.(v) - E_(v), (3.29)
Li(v) = —m(v +AHM_; (v +4)
XxG_(v+4)G,(v+4), (3.30)
L_(v)=L,(v-28), (3.31)
Lo(v) = = 1oaisy (0 + M1, (0 + 916 P
+Ho=M_i (v =4)[G_(v)]}. (3.32)
r() = 3(2(“25?)?3’ sen(n)|of'd, L (). (3.33)
Here,
M, ,(v) :=|v+al - (3.34)
Gi(v)=Ep(v—1)Mora(v—1)
—E.(v+1)My4(v+1). (3.35)
The function M, ,(v) satisfies
Mo (v) = =Mo_jiy(v + [K]). (3.36)
Hence, the action of the k = —1 gravitational Hamiltonian
constraint operator 7:(];;\7 !on |v) reads
Himar ' [0) = Lo (v)|v + 8) + E, (v)|v +4)
+[Eo(v) + Lo(v) + T (v)]|v)
+E_(v)lv—4)+L_(v)|v-8), (3.37)

where L, := —2(1 4 y?)L,; here, * = +,—,0.

On the other hand, the Hamiltonian constraint H, for the
scalar field can be quantized as a well-defined operator 7:{45
in ., and the action of 7{, on a quantum state |y) =

w(v.@)lv.¢) with [v.¢)=|v) ® |p) € Hy;, ® His, is
given by [22]

N h?
H, - ,p) = ———~~—C(v)0> . P), 3.38
V) =R O ). (39
where
3\3
Cv) = <§) olllo+ 12 = [o = 1133, (3.39)

Combining equations above, one can write down the
resulting quantum Hamiltonian constraint equation corre-
sponding to its classical one [Eq. (2.21)] as
Prk=—1 _ (k=1 | & _

ot ° U/(U’ ¢) - (ngav + H([J) ’ W(U’ ¢) =0,
which describes the quantum evolution of the coupled
system with the scalar field ¢ as an emergent time.

(3.40)

IV. EFFECTIVE THEORY AND ITS
ASYMPTOTIC BEHAVIOR OF THE
ALTERNATIVE k= -1 LQC

By constructing certain coherent states peaked at points
of the classical phase space and computing the expectation
value of the Hamiltonian constraint operator under the
coherent states, one can obtain the corresponding effective
Hamiltonian constraint. To this end, we first note that
the symmetry-reduced phase space of the k = —1 model
coincides with that of the X = 0 model. Hence, certain
coherent states constructed for the k = 0 model can be
directly carried to the k = —1 model. A Gaussian coherent
state peaked at a point (b,,, v, ¢,. py) in the classical phase
space with spreads ¢ and o in the gravitational sector and
scalar field sector takes the form [41]

(\P(b by, p,/; /dqﬁZe‘T@ v,) pib (v-v,)

veR

% =T b=0.) pipo(d=d,) (0] ® (

(4.1)

and its shadow on the regular lattice with spacing 1 reads

- / dgbze_%(n_v”)z e_ib" (i’l—yn)

nez

« =T b=0.) p=ips(d—0)
= ‘Tgrav> ® |\P¢>

n) @ |¢)
(4.2)

To make the state be sharply peaked in the classical phase
space of the Universe with large volume, one should require
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that e < b,, v, > 1, 6 < ¢,, and pyo > 1. We denote

by (0) = <\:’.‘*,?\Ll§,> the expectation value of an operator O
under the coherent states in Eq. (4.2). By using the Poisson
resummation on the sum over n and the steepest descent
approximation, the expectation value of each term of the
gravitational Hamiltonian constraint operator ﬂ’g‘r:a; ! can be

|

calculated, and thus the resulting expectation value of
ﬂ]g‘;; ! can be obtained. For brevity, in the remainder of
this paper, we will suppress the label o appearing in b, v,,
and ¢,. A straightforward calculation reveals that (see the
Appendix for a derivation) [27,28,44]

Hemeatr = (Flgiay ) = iffg [sin(2b) + O(e2) {1 + O(e™™/<") + O[1/ (ve)?]}. (4.3)

Heoor = (Hia ) = M 15in? (4b) + 0(@){1 + 0(e/<) + O[1/(ve)]}. (4.4)
7\/_

Heymeatt = (Hiae ) = (2{2;2)% {1+ 0(e™ /<) + 0[1/(ve)]}. (4.5)

Hence, in the region with € < b, ve > 1, 6 < ¢, and pyo > 1, the higher-order corrections can be omitted. In what
follows, we focus on the leading terms. Hence, the effective Hamiltonian constraint of the gravitational part for the k = —1

model reads

ng:a;,l:ff = ngfv:,gff -2(1+ YZ)Hérfv o + ng’]zfv:.e_f#
3hw (1 PAVY?
= y\/_{ sin?(2b)[1 — (1 + y?)sin®(2b)]— ) V2/3}
RY%),

= }/\/deff(b ’l))

Taking into account the result for the scalar field in
Ref. [27], the total effective Hamiltonian constraint of
the gravity coupled with a massless scalar field reads

3hv (b,v) + p¢
J/\/deff ’ 471'}/Gh\/_ v

Before calculating the dynamics of this effective Hamil-
tonian, we clarify some subtle issues. First, we expect here
that the evolution of, say, (?) up to O(#) order coincides
with the dynamics determined by the effective Hamiltonian
constraint [Eq. (4.7)]. In other words, if we compute the
quantum dynamics of the coherent state [Eq. (4.2)] and
investigate the evolution of the expectation value of 7, we
conjecture that the result coincides with the dynamics of v
obtained by solving Hamilton’s equation concerning the
effective Hamiltonian [Eq. (4.7)]. Second, as claimed
before, we consider the region with ¢ << b so that the
higher-order corrections are omitted. However, as shown
later, in the FRW phase of the evolution given by the
effective Hamiltonian, b approaches 0 asymptotically. We
thus obtain a tension that, on the one hand, we require
b > ¢, but, on the other hand, b goes to 0 along the

k=-1 _
Hlot eff —

(4.7)

(4.6)

[
evolution. To resolve this tension, we still have to compute
the quantum dynamics to see how the spread e =

1/+/2](9)> = (??)| evolves. Even though the quantum

dynamics, which will be left as our future work, has not
been investigated yet, the previous results in the k =0
model [22,45] make us expect € ~ 1/(?), which would
make ¢ < b true along the evolution. Indeed, coherent
states with the phase-space-dependent spread have been
considered in the regular LQC [46]. Moreover, another
approach to understanding the effective dynamics is to
apply the path integral formulation to study the transi-
tion amplitude A(vy, ¢y v, i) = (vp, hslvis hi)pny With
(*|*)pny denoting the physical inner products [47,48]. Since
the Hamiltonian constraint operator Hg;w is the same as

that of the k = 0 model up to the term ngfvf effl , which takes

|v) as its eigenstate, one can simply generalize the results in
Ref. [48] to conclude that the classical path resulting
from dynamics of the effective Hamiltonian dominates
A(vy.¢siv;.¢;). Finally, in the region with b — 0 and
v> 1, it is easy to see that, as b — 0, g.g(b, v) goes to

g(b, v), and thus the total effective Hamiltonian constraint

Hisor in Eq. (4.7) reduces to its classical expression Hig ™!
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in Eq. (2.20). Hence, the new alternative quantum dynam-
ics has the corrected classical limit.

It is easy to see that, in the effective theory, p, is a
constant of motion due to py = {py. Hiy ot} = 0, and ¢

can be regarded as an internal clock because of ¢ >0,
similar to the classical theory. The effective Hamiltonian
constraint equation

Hiet =0

tot,eff (48)
can determine the evolutions of » with respect to b for some
given p,, which is plotted in Fig. 1. Figure 1 depicts that
v = 0 can never be a solution to Eq. (4.8). It indicates that
the classical singularity at » = 0 can be avoided in the
effective theory. By Eq. (4.8), the matter density can be
expressed as

-2 -1 0 1 2
400 f 400
350 F 1350
300 04=107 {300
. 250} {250
200 {200
150 £ b \} 1150
100 £ U u {100
e a— I S—re——
3500 {3500
3000 F bg=10° 13000
2500 F j {2500
>
2000 f {2000
1500 11500
1000 £ {1000
500 : : : : : 500
35000 {35000
30000 #=10% 130000
25000 f F {25000
~ 20000} 120000
15000 £ {15000
10000 F {10000
5000 5000
350000 1350000
300000 F Dg=10° 1300000
250000 1250000
~ 200000} 1200000
150000 F 1150000
100000 f 100000
50000 b - s : 4150000

FIG. 1. Plots of v with respect to b determined by the total

Hamiltonian constraint equation Hy o = 0 for different values

of py, with Vg = G = h = 1 and y = 0.2375.

Ml

grav,eff
) =5y ="y
3
= — b,v) = pt(b,v). 4.9
ZHG]/ZA geff( U) p¢ ( 1]) ( )

The effective Hubble parameter is determined by the total
effective Hamiltonian constraint (4.7) and reads

H2 _ i 2 _ {U’ H{coie_f]f :
eff k=—1 3y 3y

L (b o)1,

= 4.1

where  denotes the first-order derivative with respect to b.
In what follows, we focus on the region b € [0, #/4] where
we live. A bounce appears when H2;, | = 0; i.e.,

1
Guy(b,v) =0 b= Earcsin (4.11)

2(1+7%)
at which the energy density p, takes the maximal value,
namely the critical energy density, as

3 y3 301

=1 — pp — 2
87G V?/3 F8rGa?

Perit = PF— (4.12)
where

3
322Gy (1 + A’

P (4.13)

In comparison with the effective k = 0 model proposed in
Ref. [27] where the critical density is given by the first term
of Eq. (4.12), the effective k = —1 model contributes an
additional term, the second term of Eq. (4.12), to the critical
energy density. It is worth mentioning that the critical
energy density p’cﬁ‘l in the effective k = —1 model
depends on the value of v (or the scale factor a) at the
bounce point. The value vy, Of v at the bounce point can
be determined by

p¢(vbounce) - Pléri_] (Ubounce)' (4 14)

In Fig. 2, the value vy,qypc. as a function of py is plotted. It is
shown that as p, increases, the value vpgynee increases
monotonically. Moreover, the condition p (vpounce) = 0

implies that
a4 (1+77)A,

and thus the effective theory predicts that the scale factor a
477 (1+7%)A

(4.15)

is bounced below a,;, =
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700 F . . I . .
Solving the total effective Hamiltonian constraint equation
6ot H{{(;t o = 0 for b yields
500 F
§ 400 ' . 1_/)4#%:%2
& 300f by = 1arcsin —a—
200} b= e (4.16)
100} Ly 12
oé by = 5 arcsin 2(1+y2)pF
0 200 200 600 800 1000 i . .
Ps Hence, there exist two types of classical universe: namely,
' ' the type-I universe and the type-Il universe. The two
FIG. 2. Plotof vyounce With respect to py, with Vo =G =2 =1 ypjverses are connected by a quantum bounce. The
and y = 0.2375. effective Hubble parameter is determined by
5\ 2
H 2ff k=—11/11 — <i>
ell,k=—1,
30/ lp=py
872G pr Pyt 56w RRror: 2 Pyt
= 51— = lF 4/l ——FE | [T +2p7 1 ———% ), (4.17)
3 14y Pr Pr PF

which can be expressed as the following more convenient forms:

and
8nG p¢ t8G 87rG a®
Hi i 3 P Ay <1 oy
where
Aeff . 3
= , th Ay i=———5—. 4.20
P At 872G Wi ff (1 i y2)2A ( )

Now, let us study the asymptotic behavior of the effective
dynamics at the large-» limit. For » — oo, the matter
density p,(v) in Eq. (4.9) goes to zero, and thus

sin?(2b)[1 — (1 + y?)sin?(2b)] - 0,  (4.21)

which implies

3
_P¢+ma

2
/P¢+i%

(4.18)
1 + }/ ( p‘/’+8ﬂG 2
/’rﬁ’sﬂa 2
1 —2y2 /1
4 + p(/)+87[GLl (4 19)
4]/ <1 1 - "—“;F”( )
[
bI,C = 0,
b — by = T (4.22)
by = yarcsin i

Expanding H{‘OT ;-lf at b, up to the second order yields the
classical behavior of the effective Hamiltonian constraint as

_ 3hv
Hiratt = _—y\/Z |:geff(b07 v) + e (bo) (b — bo)
Yeir(bo) 2] pé
+=——=(b-"> +—F, 4.23
2 ( 0) 4ryGhy/Av ( )
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where ” denotes the second-order derivative with respec-
tive to b, and

0, by = by,

4.24
by = bll,ca ( )

1+y29

gleff(bo> = {

2, b() - bI.C,
err(bo) = { 2-10p
eff 2 IOy bo — bH.C.

I+y2 2

(4.25)

Plugging these asymptotic expressions into Eq. (4.10),
we have

87G ( gu(bo)
H? eff
eilk=—1 7 73 ( 2 P 8aGpn 162G V?/3
%pqﬁ +a_12’ by = b[,c’

") 8zG (1-5/° 1-572\ 1 | Aur
3 <1+72 'D¢+ [E a2+ 3

The above asymptotic behavior (4.26) of the effective
Hubble parameter can be also obtained directly from
Egs. (4.18) and (4.19). Equation (4.26) implies that the
type-II universe is an asymptotic de Sitter universe with a
positive effective cosmological constant A.y. Therefore,
the asymptotical kK = —1 FRW universe (the type-I uni-
verse) will be bounced to an asymptotic de Sitter universe
(the type-II universe) coupled to a scalar field.

We now numerically study the effective dynamical
evolution of » with ¢. To this end, we can first solve
the effective Hamiltonian constraint equation Hf o = 0
to yield

v =v(b, py). (4.27)
Second, we consider the evolution equation of ¢ with
respect to b, namely

dp Ao Mot}

db  {b,HE Y

tot,eff

f(b.pgy). (4.28)

where Eq. (4.27) is inserted in the second step. Solving
Eq. (4.28) yields

¢ =¢(b.py). (4.29)
By combining Eq. (4.27) with Eq. (4.29) and then elimi-
nating b, we arrive at v = v(¢, p,). In Fig. 3, the effective
dynamical evolution of v with respect to ¢ for given p,
is plotted. It indicates that an asymmetric bounce appears
in the backward evolution of the universe sourced by a

massless scalar field ¢, and the classical big bang singu-
larity is resolved.

V. SUMMARY

The quantization ambiguities often exist in constructing
the gravitational Hamiltonian constraint operator of full
LQG as well as that of LQC. It has been shown that in LQC

3ok (bl |, 3dlin(bo) Vo

bO = bH,c-

_ 82G (o) 31
3 [ 2 \""8ca) "

3[%&(190)]2}
82Gy*A

(4.26)

I

different quantizations of the gravitational Hamiltonian
constraint may lead to different quantum dynamics, and
thus affect the fate of the Universe. Hence, the study of the
quantization ambiguities of the gravitational Hamiltonian
constraint plays an important role in the quantum dynamics
of LQC. In the present paper, we have studied an alternative
quantization of the gravitational Hamiltonian constraint in
the k = —1 model of LQC closely following that in the
k = 0 model proposed in Ref. [27], mimicking the treat-
ment of full LQG.

Classically, the connection A/, in the k = —1 model takes
the nondiagonal expression [Eq. (2.7)] on the left-invariant
one-forms “w!,, while it takes the diagonal form on the
left- and right-invariant one-forms e/, in the k = 0 model.
In the k = —1 model, the nondiagonal expression of Al
leads to the complicated forms of the resulting holonomies
of the connection. Instead, one often considers the holon-
omies of the extrinsic curvature K’, multiplied by y in the
k = —1 model, and thus they have the same expressions as
the holonomies of the connection A!, = yK' in the k = 0
model. Hence, both the k¥ = 0 model and the kK = —1 model
have the same Hilbert space Hy;, = L?(Rpopr» déBonr)-

To study the quantum dynamics of the k = 0, —1 models
in the framework of LQC, one needs to promote the
gravitational Hamiltonian constraint into a well-defined
operator in Hy; . At the classical level, the gravitational
Hamiltonian constraint of the k= —1 model can be
expressed as the three terms in Eq. (2.13). On one hand,
the former two terms, &£ 0 and H™*=0 in Eq. (2.13), have
the same expressions as the Euclidean and Lorentzian
terms, ng’gfv: % and HY*=0 in the k = 0 model, respectively,
although involving different fiducial one-forms ‘!, (the
only left-invariant one-forms vs the left- and right-invariant
one-forms). From the symmetry-reduced expressions in
Egs. (2.15) and (2.16), the former two terms are propor-
tional to each other, and thus one can first combine the two
terms and then quantize the first and third terms to obtain
the gravitational Hamiltonian constraint [31]. On the other
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FIG. 3. Plots of the effective dynamical evolution of » with
respect to ¢, in reverse direction of the cosmological time,
determined by the effective Hamiltonian constraint for different
values of p, with initial data o(byu. p,) =8p, and
¢ (bgar» Py) = 1, With Vy =G = h =1 and y = 0.2375.

hand, from the viewpoint of full LQG, the sum of both the
first and last terms forms the Euclidean term, while the
middle term represents the Lorentzian term. Hence, alter-
natively, we can quantize the Euclidean term and the
Lorentzian term, respectively, mimicking the treatment in
full LQG. We have shown that the former two terms ﬂgr‘é‘v: 0

and H“*= in Eq. (2.13) can be quantized as the operators,
ﬂgr'ffv: 0 and ﬂ'gr'ﬁv: %in Egs. (3.19) and (3.22), corresponding
precisely to the Euclidean and Lorentzian Hamiltonian
operators of the k = 0 model proposed in Ref. [27], while
the third term has been quantized as ﬂgr‘fjvz ~Vin Eq. (3.23).
The resulting gravitational Hamiltonian constraint operator
7:(?;; !'is symmetric, which has the action of Eq. (3.37) on
|v). Moreover, we have shown that the new quantum
dynamics determined by the alternative Hamiltonian con-
straint operator ;! in Eq. (3.40) for the k = —1 model
coupled to a massless scalar field has the corrected classical
limit, and we have obtained its effective Hamiltonian
constraint [Eq. (4.7)] by semiclassical analysis. The effec-
tive Friedmann equation for the kK = —1 model was derived
in Eq. (4.17), which shows that it has two branches
[Egs. (4.18) and (4.19)] relating to two types of universes,
similar to the £ = 0 LQC proposed in Ref. [27]. It turns out
that the asymptotical k = —1 FRW universe (the type-I
universe) will be bounced to an asymptotic de Sitter
universe (the type-Il universe) coupled to a scalar
field. Last but not least, by requiring the condition
Pp(Vbounce) = 0, the effective theory predicts that the

scale factor a is bounced below @i, = \/4y*(1 + y?)A,
which is different from that in the previous k = —1 LQC
model [31].

So far, Thiemann’s trick for regularizing the gravitational
Hamiltonian constraint in full LQG, by treating the
Euclidean term and the Lorentzian term independently,
has been successfully applied to the k=0,—1 LQC
models. However, to our knowledge, a similar treatment
for the k = +1 model in the framework of LQC has not
been carried out, in spite of the Thiemann regularization of
the Hamiltonian constraint on the hyperspherical lattice for
the £ = +1 model having been studied from the viewpoint
of full LQG in Ref. [49]. The expectation value of the
Hamiltonian constraint under certain coherent states was
computed, and an effective Hamiltonian constraint was
obtained in the y, scheme rather than the i scheme [49]. By
numerical simulations of the dynamical evolution, an
asymmetric bounce replacing the classical big bang was
also obtained in the model [49].

It should be noted that there are still many aspects of the
loop quantum k = —1 model that deserve further inves-
tigation. Recently, some works have focused on the relation
between LQG and the k =0 LQC by calculating the
expectation value of the Hamiltonian in LQG under a
certain coherent state peaked at some point in the classical
phase space [50-55]. Determining how to generate these
works for the k = —1 case will be interesting. Moreover,
except for the alternative regularization from Thiemann’s
trick adopted in the present paper following directly that
in the k=0 case, the other alternative regularizations
employed in the kK = 0 model [30,56-58] can also be in
principle extended to the kK = —1 model.
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APPENDIX: DERIVATION OF THE
EXPECTATION VALUES

In this appendix, we present the calculations of expect-
ation values of the Hamiltonian constraint operator on the
|

A 2 . .
<ngrav|H|ngrav> = E e_%(n/_ﬁ”>2€1b”(’1/_v )e 2(n b> =ib, (n—
nn'€zZ
_ E e <( n+l v, b,(n+l-v )e—%(n—v,,)ze—ibo(n—
nez
4 E 6_7 n—I-v, (n—Il-v, )e—§(n—y) —ib,(
nez
2 . 2 .
— E e—%(nJrl—vu)zelbu(n+l—v(,)e—‘?(n—vo)ze—lb(,(n
nez

2 . 2 .
+ E e—%(n/—b‘”)zelb,,(l’l/—v,))6—7(11/4»1—7}(,)2e—lb,,(l’l/+l—v“)f+(n/

n'ez
_ 1lb +e—1lb E e~ 2
n'ez
_ - —e*(n—v
=2cos(lb,)e E e o f+<n——)
nez

[l

nez

4§:e‘6 nvo) f <n—>} [226‘5 n=10)" £ (n

coherent states. To this end, let us first consider an operator
H with the action on |v):

Hlv) = f(0)[o+ 1) + fo(v)|o) + f_(0)lv = 1), (A1)
where [ is a positive even number, and
Fo0) = fi (o1, (A2)

Then the expectation value of H on the coherent states in
Eq. (4.2) reads

()l + 1) + f- () (n'|n = 1) + fo(n) (n'|n)]

v")f+ (n)

_I_Ze—é n-uv, f()

nez

) f o (n)

)+ e fo(n)

nez

+(n'+1-v, f (n/)+ze—e n—v, fO( )

nez

+Ze—€ n—uv, fO

nez

0. (A3)

nez

where in the third step we have used Eq. (A2) and relabeled n — [ as n’. Applying the Possion resummation formula and the
steepest decent method, for an arbitrary analytic function g(n), one has [19]

S et g(n) = gg(va){l +0(e7™/¥) + 0[1/(v,€)*]}.

nez

Then, one gets

<ngrav |‘Pgrav> = Z

nn'ez

=Y ety

nez

- g{l +0(e™/¥) + 01/ (v,€)?]}

and

N Va [ eal . [ 1
<‘Pgrav|H|‘Pgrav>:7 e g SIHZ Eb() _E _4f+ Vo —

e_é(",_v())z eiba (",

(A4)

2 .
—1}0) e_%("_va)z e_lba<n_

"))

l

5)] 3 [Zfo(vo)]}{l +0(e17) + 0[1/(v,6)2} (A6)
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for analytic functions £, (y) and fo(y). If f,.(y) [or fo(»)]
is not an analytic function, which is the case under

consideration due to the involved absolute value, one can
replace it with its analytic extension f_ (y) [or fo(y)] (for
example, omitting the absolute value symbol). It turns out
|

(A1)
(W[¥)

_ <ngrav |If1|ngrav>
<\Pgrav |\Pgrav>

(i) =

= et () =3 [ (1o =3) | 3t oo s o,

Now, we turn to the three parts of the gravitational Hamiltonian constraint operator ngav
Eq. (A7) to the first two terms FHEX=0 and HLFO with [ =

grav grav

that the error 3, exp(—€%(n — v,))[f+(n) — f(n)] can be
shown to be the order O(e~%¢), which is negligible
compared to the corrections derived above [19]. Hence,
the resulting normalized expectation value of A reads

(A7)

Applying the result in

4 and [ = 8, respectively, we have

() =322 [ 20, 45 (1= )] (14 0 /) + 011/ (v,07)
- T\% [sin(2b,) + O(e?)[{1 + O(e™/<") + O[1/(v,€)?]}, (A8)
() = 5 s (4,15 5 (1= 15 {1+ 0(e1%) + 011 (1,6
= 32:’% [sin2(4b,) + O(e)]{1 + 0(e™* /) + O[1/(v,€)%]}. (A9)
where we have used the results

_4E+(Uo - 2) = %1}0, ZEO(UO) = %vo’ (AIO)

_ 3n _ 3n
—4L. (v, —4) :32}/—&%, 2Lo(v,) :mvo (Al1)

To get the expectation value (ﬂgr‘ffv: ~1Y from Eq. (A7), we drop the term involving f. (v), since ngf\,_ ! has |v) as its

eigenstate, and obtain

2T k=—1 3(y\/—h)3VZ, % —2/e v €
b ™t) == gy o1+ 0(e1) + O/ (1), (A12)
where we have used
[(v,) = 3<N_h)z§o (A13)
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