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An alternative quantization of the gravitational Hamiltonian constraint of the k ¼ −1 Friedmann-
Robertson-Walker model is proposed by treating the Euclidean term and the Lorentzian term independ-
ently, mimicking the treatment of full-loop quantum gravity. The resulting Hamiltonian constraint operator
for the k ¼ −1 model with a massless scalar field is successfully constructed, and it is shown to have the
corrected classical limit. Compared to the former quantization schemes in the literature where only the
Euclidean term is quantized, the new quantum dynamics of the k ¼ −1 model with a massless scalar field
indicates that the classical big bang singularity is replaced by an asymmetric quantum bounce.
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I. INTRODUCTION

How to quantize general relativity (GR) in a consistent
manner is a great challenge to theoretical physics. One of
the promising candidates is the so-called loop quantum
gravity (LQG), which is a nonperturbative approach to
quantum GR [1–4]. In the past three decades, LQG has
made remarkable progress, such as making natural pre-
dictions of the discretized geometries and providing the
microscopic interpretation of BH entropy [5–12]. The
nonperturbative quantization procedure of LQG has been
successfully applied to the metric fðRÞ theories [13,14],
scalar-tensor theories [15,16], higher-dimensional gravity
[17], and so on [18]. Despite these achievements, the
dynamics of full LQG is still an unsolved issue. To gain a
certain level of understanding of the dynamics, the quan-
tization ideas and technologies developed in LQG have
also been applied to its symmetry-reduced models, such as
the Friedmann-Robertson-Walker (FRW) models and the
spherically symmetric black hole models, leading to loop
quantum cosmology (LQC) and loop quantum black hole
models [19,20]. The most successful feature of LQC is that
it can resolve the classical big bang singularity by a
quantum bounce due to the quantum geometry effects.
We refer to Refs. [19,21–23] for more complete reviews
on LQC.
In full LQG, the gravitational Hamiltonian constraint is a

combination of the so-called Euclidean term and the

Lorentzian term. In the spatially flat, k ¼ 0 FRW model,
the Lorentzian term and the Euclidean term are propor-
tional to each other. Thus, one often combines these two
terms into one term proportional to the Euclidean term,
and then quantizes the Euclidean term to obtain the well-
defined gravitational Hamiltonian constraint operator
[19,22]. It turns out that in this quantization scheme the
classical big bang singularity is replaced by a symmetric
quantum bounce for the k ¼ 0 FRWmodel with a massless
scalar field in the framework of LQC [22]. Note that in
full LQG, the Lorentzian term is quantized independently
by employing Thiemann’s trick [24]. Thus, to mimic the
full LQG quantization procedure in the k ¼ 0 model of
LQC, the Euclidean term and the Lorentzian term are
treated independently [25–27]. This alternative quantiza-
tion scheme leads to an asymmetric quantum bounce,
which relates the spatially flat FRW model with an
asymptotic de Sitter universe, and thus an effective cos-
mological constant and an effective Newtonian constant
can be obtained [28–30].
As in the k ¼ 0 model, the quantization technologies for

the gravitational Hamiltonian constraint developed in LQG
have been extended to the k ¼ −1;þ1 models [31–38].
Compared to the k ¼ 0 model, where the spin connection
vanishes and hence the Ashtekar connection equals the
extrinsic curvature multiplied by the Immirzi parameter, the
Lorentzian term is not proportional to the total Euclidean
term, but is proportional to the part of the Euclidean term
involving the extrinsic curvature due to the nonvanishing
spin connection for both the k ¼ −1model and the k ¼ þ1
model. Hence, in the literature one often absorbs the
Lorentzian term into a part of the Euclidean term, and
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then quantizes the two parts of the Euclidean term. It turns
out that, as it does for the k ¼ 0 model with similar
treatment, the resulting k ¼ −1 LQC model also predicts
a vacuum repulsion in the high-curvature regime that would
lead to a symmetric bounce [31]. Moreover, the k ¼ −1
model of LQC also possesses some new features that never
appear in the k ¼ 0 model; for example, due to a vacuum
repulsion in the high-curvature regime, the scale factor has
the minimum value amin ¼ γ

ffiffiffiffi
Δ

p
[31]. It is natural to ask

whether the treatment of the Lorentzian term independ-
ently, mimicking the treatment in the full theory, can be
directly carried to the k ¼ −1 model, and whether an
asymmetric bounce can still be held for the k ¼ −1 model.
This is the main motivation of the present paper. In this
paper, we consider an alternative quantization of the
gravitational Hamiltonian constraint in the k ¼ −1 model
by treating the Lorentzian term independently.
This paper is organized as follows: The canonical for-

mulation of the k ¼ −1 model is briefly recalled in Sec. II.
Then, we propose an alternative gravitational Hamiltonian
constraint operator by treating the Lorentzian term inde-
pendently, and we provide a new quantum dynamics for the
k ¼ −1 model in Sec. III. The effective theory of the new
quantum dynamics and its asymptotic behavior are studied
in Sec. IV. A summary is included in the last section.

II. CANONICAL FORMULATION
OF THE k= − 1 MODEL

According to the cosmological principle, the line ele-
ments of the homogenous isotropic cosmological models
follow

ds2 ¼ −dt2 þ a2ðtÞ
�

1

1 − kr2
dr2 þ r2ðdθ2 þ sin2θdϕ2Þ

�
;

ð2:1Þ

where aðtÞ is the scale factor, and k ¼ −1, 0, 1 for the open,
flat, and closed FRW models, respectively.
In what follows, we present the canonical formulation of

the k ¼ −1 model following Ref. [31]. For the spatially
noncompact k ¼ 0;−1 models with topology homeomor-
phic to R3, one introduces an “elemental cell” V on the
homogeneous spatial manifold R3 and restricts all integrals
to this elemental cell. Then one chooses a fiducial metric
oqab ¼ oωi

a
oωj

bδij on R
3, with oωi

a being the left- and right-
invariant fiducial one-forms in the k ¼ 0 model, and only
the left-invariant fiducial one-forms in the k ¼ −1 model.
Here a; b;… denote the spatial indices, while i; j;… ¼
1, 2, 3. We denote by Vo the volume of V measured by the
fiducial metric oqab. The left-invariant one-forms oωi

a
satisfy the Maurer-Cartan equation

doωi þ 1

2
Ci

jk
oωj ∧ oωk ¼ 0; ð2:2Þ

where for the k ¼ −1 model the structure constants read

Ci
jk ¼ δijδk1 − δikδj1; ð2:3Þ

while for the k ¼ 0 model they take zero. The correspond-
ing left-invariant vector fields oeai are dual to

oωi
a, satisfying

oeai
oωj

a ¼ δji and oeai
oωi

b ¼ δab. The commutators between
the left-invariant vector fields read

½oei; oej� ¼ Ck
ij
oek: ð2:4Þ

Classically, the dynamical variables of LQC are obtained
by symmetrically reducing those of full LQG. In the full
theory, the dynamical variables consist of the suð2Þ-valued
connection Ai

a and the densitized triad Ẽb
j with the non-

trivial Poisson bracket

fAi
aðxÞ; Ẽb

j ðyÞg ¼ κγδbaδ
i
jδðx; yÞ; ð2:5Þ

where κ ¼ 8πG, with G being the Newtonian constant, and
γ is the Immirzi parameter [39,40]. The connection Ai

a is
related to the spin connection Γi

a and the extrinsic curvature
Ki

a by Ai
a ¼ Γi

a þ γKi
a. It turns out that the symmetry-

reduced extrinsic curvature Ki
a is diagonal in the basis

of left-invariant one-forms for the k ¼ 0;−1 models.
Moreover, unlike the k ¼ 0 model where Γi

a vanishes,
the symmetry-reduced spin connection Γi

a in the k ¼ −1
model takes the form [31]

Γi
a ¼ −ϵ1ijoωj

a; ð2:6Þ

and thus it is nondiagonal. Hence, the symmetry-reduced
connection and densitized triad for the k ¼ −1 model
read [31]

Ai
a ¼ −ϵ1ijoωj

a þ cV
−1
3

o
oωi

a ≡ Ai
jV

−1
3

o
oωj

a; ð2:7Þ

Ẽa
i ¼ pV

−2
3

o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðoqÞ

p
oeai ; ð2:8Þ

where

Ai
j ¼

0B@ c 0 0

0 c −V
1
3
o

0 V
1
3
o c

1CA; ð2:9Þ

the variables c and p are only functions of t, and detðoqÞ
denotes the determinant of oqab. Hence, the gravitational
phase space of the k ¼ −1 model consists of conjugate
pairs ðc; pÞ. The nontrivial Poisson bracket reads

fc; pg ¼ κ

3
γ: ð2:10Þ
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Note that the variables c and p are related to the scale factor

a by jpj ¼ a2V
2
3
o and c ¼ γ _aV

1
3
o. The physical volume V of

the elemental cell V measured by the spatial (physical)

metric qab ¼ jpjV−2
3

o
oqab is related to p via V ¼ jpj3=2. In

the improved scheme, it is convenient to choose the
following variables to simplify the dynamics [41]:

b ≔
μ̄c
2
; v ≔

sgnðpÞjpj3=2
2πγl2

p

ffiffiffiffi
Δ

p ; ð2:11Þ

where lp ≡
ffiffiffiffiffiffiffi
Gℏ

p
denotes the Planck length, sgnðpÞ is the

signature of p, Δ≡ 4
ffiffiffi
3

p
πγl2

p is the minimum nonzero
eigenvalue of the area operator in full LQG [42], and
μ̄≡ ffiffiffiffiffiffiffiffiffiffiffiffi

Δ=jpjp
. The Poisson bracket between b and v is

given by

fb; vg ¼ 1

ℏ
: ð2:12Þ

As in the k ¼ 0 model, the Gauss and diffeomorphism
constraints of the gravitational part are automatically sat-
isfied for the symmetry-reduced variables in Eqs. (2.7) and
(2.8) in the k ¼ −1model, and thus the classical dynamics is
encoded in the Hamiltonian constraint. The gravitational
Hamiltonian constraint of the k ¼ −1 model reads

Hk¼−1
grav ≔

Z
V
d3x

Ẽa
i Ẽ

b
j

2κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp h

ϵijk
ðAÞFk

ab − 2ð1þ γ2ÞKi
½aK

j
b�
i

¼
Z
V
d3x

Ẽa
i Ẽ

b
j

2κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp h

ϵijk
ðγKÞFk

ab − 2ð1þ γ2ÞKi
½aK

j
b�
i

þ
Z
V
d3x

Ẽa
i Ẽ

b
j

2κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ϵijk

ðΓÞFk
ab

≡ H̃E;k¼0
grav − 2ð1þ γ2ÞH̃L;k¼0

grav þHΓ;k¼−1
grav ; ð2:13Þ

where detðqÞ denotes the determinant of qab, and

ðxÞFk
ab ≔ 2∂½axkb� þ ϵklmxlaxmb : ð2:14Þ

Hence, in the k ¼ −1 model, the Euclidean term consists of
H̃E;k¼0

grav and HΓ;k¼−1
grav , while the Lorentzian term is H̃L;k¼0

grav .
Seen from the above formulation, the two terms H̃E;k¼0

grav and
H̃L;k¼0

grav have the same formulations as the Euclidean term

HE;k¼0
grav and the Lorentzian term HE;k¼0

grav in the k ¼ 0 model,
respectively. Thus, the gravitational Hamiltonian constraint
of the k ¼ −1 model differs from that of the k ¼ 0 model
by the third term HΓ;k¼−1

grav due to the nonvanishing Γi
a in

the k ¼ −1 model. A straightforward calculation shows
that the three terms in Eq. (2.13) can be expressed by the
variables ðb; vÞ as

H̃E;k¼0
grav ¼ 3γℏffiffiffiffi

Δ
p b2jvj; ð2:15Þ

H̃L;k¼0
grav ¼ 3ℏ

2γ
ffiffiffiffi
Δ

p b2jvj; ð2:16Þ

HΓ;k¼−1
grav ¼ 3ðγ ffiffiffiffi

Δ
p

ℏÞ13V2
3
o

4ð2πGÞ23 jvj13: ð2:17Þ

Hence, the gravitational Hamiltonian constraint (2.13) of the
k ¼ −1 model reduces to

Hk¼−1
grav ¼ −

3ℏjvj
γ
ffiffiffiffi
Δ

p
�
b2 − V

2
3
o

�
γ2Δ

16πGℏjvj
�2

3

�
≡ −

3ℏjvj
γ
ffiffiffiffi
Δ

p gðb; vÞ: ð2:18Þ

At the classical level, we assume that the Universe is
filled by a massless scalar field ϕ. The Hamiltonian of the
scalar field ϕ is given by

Hϕ ¼ p2
ϕ

2V
¼ p2

ϕ

4πγl2
P

ffiffiffiffi
Δ

p jvj ; ð2:19Þ

where pϕ denotes the conjugate momentum of ϕ. The
Poisson bracket between ϕ and pϕ is fϕ; pϕg ¼ 1. Hence,
the total Hamiltonian constraint of gravity coupled to a
massless scalar field reads

Hk¼−1
tot ¼ Hk¼−1

grav þHϕ

¼ −
3ℏjvj
γ
ffiffiffiffi
Δ

p gðb; vÞ þ p2
ϕ

4πγl2
P

ffiffiffiffi
Δ

p jvj : ð2:20Þ

By the total Hamiltonian constraint equation

Hk¼−1
tot ¼ 0; ð2:21Þ

the classical Friedmann equation can be obtained as

H2
k¼−1 ¼

�
_v
3v

�
2

¼
�fv;Hk¼−1

tot g
3v

�
2

¼ 8πG
3

ρϕ þ
V2=3
o

V2=3

¼ 8πG
3

ρϕ þ
1

a2
; ð2:22Þ

where · denotes a derivative with respect to the time

determined by Hk¼−1
tot , and ρϕ ¼ p2

ϕ

2V2 is the energy density
of the scalar field ϕ.
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III. LOOP QUANTIZATION
OF THE k= − 1 MODEL

To pass the classical theory of k ¼ −1 model to its
quantum theory, one needs to construct the kinematical
Hilbert space. In the k ¼ 0model, the vanishing Γi

a enables
us to identify Ai

a with γKi
a, leading to the identification of

the holonomies of the connection and those of the extrinsic
curvature (mutiplied by γ). The resulting holonomies of
the connection Ai

a, equal to γKi
a in the k ¼ 0 model,

along edges generated by the left- and right-invariant
vector fields oeai with physical length λV1=3 take the form

hðλÞi ¼ cosðλc
2
ÞI þ 2τi sinðλc2 Þ, where τi ≔ − i

2
σi, with σi

being the Pauli matrices. Hence, the related algebra is that
of the almost periodic functions, and thus the kinematical
Hilbert space for the gravitational part can be defined as
Hgr;k¼0

kin ¼ L2ðRBohr; dμBohrÞ, where RBohr and dμBohr are
respectively the Bohr compactification of the real line R
and the Haar measure on it [19]. However, in the k ¼ −1
case, the spin connection Γi

a takes the nonvanishing
expression (2.6), resulting in a difference between the
holonomy of the connection and that of the extrinsic
curvature. Moreover, due to the nondiagonal form
[Eq. (2.7)] of the connection, the holonomies of the
connection take complicated forms in the k ¼ −1 model,
leading to the algebra generated no longer being that of the
almost periodic function [31]. Instead, one often considers
the holonomies of the extrinsic curvature γKi

a in the k ¼ −1
model, which take the same forms as those in the k ¼ 0
model. More precisely, considering an edge ei starting
from the base point of the elemental cell V, with a tangent
vector parallel to the vector oeai and taking length λ,
following Refs. [31,32], we define the “holonomy” of

γKi
a ¼ cV

−1
3

o
oωi

a as

hðλÞi ≔ P exp
Z
ei

dtγKj
aτj

oeai

¼ eλcτi

¼ cos

�
λc
2

�
I þ 2 sin

�
λc
2

�
τi: ð3:1Þ

Here,P denotes the path ordering which orders the smallest
path parameter to the left [2], and it takes the trivial action
in our model as in Refs. [2,19,31,32]. Clearly, these
holonomies in Eq. (3.1) generate the algebra of almost
periodic functions, and thus result in the kinematical
Hilbert space for the k ¼ −1 model being Hgr

kin ≡
Hgr;k¼−1

kin ¼ Hgr;k¼0
kin [31]. As in the k ¼ 0 model, we will

employ the μ̄ scheme to define the Hamiltonian operator.
This requires us to consider the holonomies along the edges
taking physical length

ffiffiffiffi
Δ

p
[2,31,32], which are given by

hðμ̄Þi ≔ P exp

�Z
μ̄V1=3

o

0

dtγKj
aτj

oeai

�
¼ eμ̄cτi

¼ cos

�
μ̄c
2

�
I þ 2 sin

�
μ̄c
2

�
τi

¼ cosðbÞI þ 2 sinðbÞτi; ð3:2Þ

and their inverse takes the form:

hðμ̄Þi
−1 ¼ cosðbÞI − 2 sinðbÞτi: ð3:3Þ

In the v representation for both the k ¼ 0 model and the

k ¼ −1 model, the two elementary operators, êib and v̂, act
on the basis jvi of Hgr

kin as

ceibjvi ¼ jvþ 1i; v̂jvi ¼ vjvi: ð3:4Þ

Thus, one can easily write down the action of the operators

d
hðμÞi ¼ dcosðbÞI þ 2 dsinðbÞτi ð3:5Þ

corresponding to the holonomies hðμ̄Þi of the extrinsic

curvature γKi
a on jvi in terms of ceib. For the scalar field,

it is convenient to choose the Schrödinger representation
[23]. Thus, the kinematical Hilbert space for the scalar
field part can be chosen as Hsc

kin ≔ L2ðR; dϕÞ. Hence, the
total kinematical Hilbert space of the k ¼ −1 model with a
scalar field is Htot

kin ¼ Hgr
kin ⊗ Hsc

kin.
We now consider an alternative regularization of the

gravitational Hamiltonian constraint of the k ¼ −1 model
in Eq. (2.13), such that it is closer to that in the k ¼ 0model
as well as to that in full LQG. As mentioned previously, the
two terms H̃E;k¼0

grav and H̃L;k¼0
grav in Eq. (2.13) have the same

forms as the Euclidean and Lorentzian terms in the k ¼ 0
model, respectively. Hence, it is natural to expect that the
two terms in the k ¼ −1 model can be regularized as
the corresponding forms in the k ¼ 0 model. To realize
explicitly this idea, some subtle issues should be clarified.
First, we consider the first term

H̃E;k¼0
grav ¼

Z
V
d3x

Ẽa
i Ẽ

b
j

2κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ϵijk

ðγKÞFk
ab

¼
Z
V
d3x

Ẽa
i Ẽ

b
j

2κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ϵijk½2∂½aγKk

b�þϵklmγKl
aγKm

b �

¼
Z
V
d3x

Ẽa
i Ẽ

b
jϵ

ij
k

2κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ϵklmγKl

aγKm
b ; ð3:6Þ

where in the third step we use the fact that the first term in
the integral of the second line vanishes due to
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oeai
oebj ϵ

ij
k2∂½aγKk

b� ¼ cV
−1
3

o
oeai

oebjϵ
ij
k2∂½aoωk

b�

¼ −cV−1
3

o
oeai

oebj ϵ
ij
kCk

lm
oωl

a
oωm

b

¼ −cV−1
3

o ϵijkCk
ij

¼ 0: ð3:7Þ

To regularize H̃E;k¼0
grav in Eq. (3.6), one needs to use

Thiemann’s trick

Ẽa
i Ẽ

b
jffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp ϵijk ¼
2

κγ
ϵ̃abcfAk

c; Vg ¼ 2

κγ
ϵ̃abcfγKk

c; Vg; ð3:8Þ

where ϵ̃abc is the Levi-Civita density, and then to express
the curvature ðγKÞFk

ab of γK
i
a in terms of holonomies of γKi

a.
In the k ¼ 0 case, since the left- and right-invariant vector
fields oeai commute to each other, the integral curvatures of
oeai and oebj can form closed loops □ij, around which the

curvature ðγKÞFk
ab can be recast as the holonomies hðμÞ

□ij
of

γKi
a. Compared to the k ¼ 0 case, due to the noncommu-

tativity of the left-invariant vector fields oeai in the k ¼ −1
case, the integral curves of oeai and oeaj cannot provide
closed loops. In Ref. [31], holonomies of γKi

a based on the
open curves generated by oeai and oeaj were adopted to

regularize the curvature ðγKÞFk
ab. In Ref. [32], the author

proposed closed loops □ij generated by the integral curves
of the left-invariant vector fields oeai and the right-invariant

vector fields oηbj commuting with oeai . In the present paper,
we will consider open holonomies to represent extrinsic
curvature following Refs. [27,36,38,43]. Inputting Eq. (3.8)
into Eq. (3.6), one obtains

H̃E;k¼0
grav ¼ 1

κ2γ

Z
V
d3xϵ̃abcϵklmγKl

aγKm
b fγKk

c; Vg

¼ −
4

κ2γ

Z
V
d3xϵ̃abcTrðγKaγKbfγKc; VgÞ; ð3:9Þ

where the identity TrðτiτjτkÞ ¼ − 1
4
ϵijk is used. In cosmol-

ogy, the known identities [27,36,38,43] take the forms

γKa ¼
hð2μ̄Þi − hð2μ̄Þi

−1

4μ̄V1=3
o

oωi
a; ð3:10Þ

fγKc; Vg ¼ −
1

μ̄V1=3
o

X
k

hðμ̄Þk fhðμ̄Þk
−1; Vgoωk

c; ð3:11Þ

where hðμ̄Þi (or hð2μ̄Þi ) is defined by Eq. (3.2). It should be
noticed that Eq. (3.10), which is precisely valid in the limit
μ̄ → 0, should be understood as a regularized expression in
the μ̄ scheme with μ̄ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

Δ=jpjp
. Substituting Eqs. (3.10)

and (3.11) into Eq. (3.9) and assuming for simplicity that
the holonomies of k ¼ −1 can be approximated with the
holonomies of k ¼ 0, we arrive at

H̃E;k¼0;reg
grav ¼ sgnðpÞ

4κ2γμ̄3
X
i;j;k

ϵijkTr
h�

hð2μ̄Þi − hð2μ̄Þi
−1
��

hð2μ̄Þj − hð2μ̄Þj
−1
�
hðμ̄Þk

n
hðμ̄Þk

−1; V
oi

¼ ℏ2γ

4
ffiffiffiffi
Δ

p sinð2bÞ
�
v
X
k

Tr
�
τkh

ðμ̄Þ
k

n
hðμ̄Þk

−1; jvj
o��

sinð2bÞ; ð3:12Þ

where the identity τiτj ¼ 1
2
ϵijmτ

m − 1
4
δij is used. The

resulting regularized expression H̃E;k¼0;reg
grav in Eq. (3.12)

is the same as the regularized Euclidean Hamiltonian
constraint HE;k¼0;reg

grav in the k ¼ 0 model [22]. We now
consider the second term H̃L;k¼0

grav in Eq. (2.13). Classically,
the term H̃L;k¼0

grav is proportional to the term H̃E;k¼0
grav , and

hence the term H̃L;k¼0
grav does not need to be quantized

independently. This approach to quantization of H̃L;k¼0
grav in

the k ¼ −1 model has been adopted in Refs. [31,32],
similarly to the k ¼ 0 case in Ref. [22]. Alternatively, the
Lorentzian term in the k ¼ 0 case can be regularized
independently in Ref. [27], mimicking the treatment of
full LQG. It is natural to ask whether the treatment for the
Lorentzian term in the k ¼ 0 case can be directly carried to
that for H̃L;k¼0

grav in the k ¼ −1 model, and the resulting
operator is the same as that in the k ¼ 0model. The answer

is in the affirmative. To this end, let us recall the key
identities for regularizing the Lorentzian term of the
gravitational Hamiltonian constraint in the full theory,
study their symmetry-reduced forms in the k ¼ −1 model,
and then compare them with those in the k ¼ 0 model. The
first classical identity reads

Ki
aτi ¼

1

κγ
fAi

aτi; Kg ¼ 1

κγ
fΓi

aτi þ γKi
aτi; Kg

¼ 1

κγ
fγKi

aτi; Kg

¼ −
2

3κγ

1

μ̄V1=3
o

X
i

hðμ̄Þi fhðμ̄Þi
−1; Kgoωi

a; ð3:13Þ

where K ≔
R
d3xKi

aẼa
i , and the former steps hold for the

full theory and thus hold for its symmetry-reduced models,
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while the third step holds due to the fact that the spin
connection Γi

a in Eq. (2.6) is proportional to oωj
a up to a

constant for the k ¼ −1 case, and the vanishing connection
for the k ¼ 0 model. In the last step, we have used the
relation [27]

fcτi; Kg ¼ −
2

3μ̄
hðμ̄Þi fhðμ̄Þi

−1; Kg: ð3:14Þ

Here, it is worth noting that the above equation is satisfied
only in the μ̄ scheme where μ̄ is a function of p, rather than
a certain constant in the μo scheme. In the μ̄ scheme, μ̄
depending on p does not commute with K, leading to a
factor 2=3 on the right-hand side of Eq. (3.14). The second
identity is

K ¼ 1

γ2
fðAÞHE; Vg ¼ 1

γ2
fðΓÞHEþðγKÞ HE; Vg

¼ 1

γ2
fðγKÞHE; Vg ¼ 1

γ2
fH̃E;k¼0

grav ; Vg

¼ 1

γ2
fHE;k¼0

grav ; Vg; ð3:15Þ

where ðxÞHE ≔
R
d3x

Ẽa
i Ẽ

b
j

2κ
ffiffiffiffiffiffiffiffiffi
detðqÞ

p ϵijk
ðxÞFk

ab. Hence, to regu-

larize K, one just replaces H̃E;k¼0
grav with its regularized

version H̃E;k¼0;reg
grav in Eq. (3.15). It should also be noted here

that both μ̄ and V depend only on p. As a result, the Poisson
bracket between H̃E;k¼0;reg

grav and V has the same form for
both the μ̄ and μo schemes. Thus, the above two classical
identities which play key roles in the regularization of the
Lorentzian term hold in the k ¼ −1 model, and they take
the same forms as those in the k ¼ 0 model. Therefore, to
regularize H̃L;k¼0

grav independently in the k ¼ −1model, one
can follow directly the treatment of the Lorentzian term
HL;k¼0

grav in the k ¼ 0 model, mimicking the treatment of
the full theory. To this end, we first reexpress H̃L;k¼0

grav in
the form

H̃L;k¼0
grav ¼

Z
V
d3x

Ẽa
i Ẽ

b
j

2κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp Ki

½aK
j
b�

¼
Z
V
d3x

Ẽa
i Ẽ

b
j

2κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ϵijk

1

2
ϵklmKl

aKm
b

¼ −
2

κ2γ

Z
V
d3xϵ̃abcTrðKaKbfγKc; VgÞ: ð3:16Þ

Combining Eq. (3.16) with Eqs. (3.13) and (3.11) and
replacing H̃E;k¼0

grav with its regularized version H̃E;k¼0;reg
grav ,

one obtains the regularized expression of H̃L;k¼0
grav as [27]

H̃L;k¼0;reg
grav ¼ 8sgnðpÞ

9κ4γ7μ̄3
X
i;j;k

ϵijkTrðhðμ̄Þi fhðμ̄Þi
−1; fH̃E;k¼0;reg

grav ; Vgghðμ̄Þj fhðμ̄Þj
−1; fH̃E;k¼0;reg

grav ; Vgghðμ̄Þk fhðμ̄Þk
−1; VgÞ

¼ 8sgnðpÞ
9κ4γ7μ̄3

X
i;j;k

ϵijkTrðhðμ̄Þj fhðμ̄Þj
−1; fH̃E;k¼0;reg

grav ; Vgghðμ̄Þk fhðμ̄Þk
−1; Vghðμ̄Þi fhðμ̄Þi

−1; fH̃E;k¼0;reg
grav ; VggÞ

¼ ℏ4
ffiffiffiffi
Δ

p

288γ3
X
i;j;k

ϵijkTrðhðμ̄Þi fhðμ̄Þi
−1; fH̃E;k¼0;reg

grav ; jvjggvhðμ̄Þj fhðμ̄Þj
−1; jvjghðμ̄Þk fhðμ̄Þk

−1; fH̃E;k¼0;reg
grav ; jvjggÞ: ð3:17Þ

Similarly, the last term in Eq. (2.13) can be regularized as [31,32]

HΓ;k¼−1;reg
grav ¼ sgnðpÞV2

3
o

2κπGγμ̄

X
k

Trðτkhðμ̄Þk fhðμ̄Þk
−1; VgÞ

¼ ℏðℏγ ffiffiffiffi
Δ

p Þ13V2
3
o

4ð2πGÞ23 sgnðvÞjvj13
X
k

Trðτkhðμ̄Þk fhðμ̄Þk
−1; jvjgÞ: ð3:18Þ

Up to now, the three parts of the gravitational Hamiltonian constraint in Eq. (2.13) have been regularized as the expressions
in Eqs. (3.12), (3.17), and (3.18), which can be directly promoted to quantum operators by replacing the functions with the
corresponding operators and replacing f·; ·g with ½·; ·�=ðiℏÞ. Then, H̃E;k¼0;reg

grav in Eq. (3.12) can be quantized as
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ĤE;k¼0
grav ¼ −

iℏγ

4
ffiffiffiffi
Δ

p dsinð2bÞ�v̂X
k

Tr
�
τk
d
hðμÞk

h d
hðμ̄Þk

−1; jv̂j
i�� dsinð2bÞ

¼ iℏγ

2
ffiffiffiffi
Δ

p dsinð2bÞðv̂Ôjv̂jÞ dsinð2bÞX
k

TrðτkτkÞ

¼ −
i3ℏγ

4
ffiffiffiffi
Δ

p dsinð2bÞðv̂Ôjv̂jÞ dsinð2bÞ; ð3:19Þ

where in the second step we have used

d
hðμÞk

h d
hðμ̄Þk

−1; B̂
i
¼ B̂I −dhðμÞk B̂

d
hðμ̄Þk

−1

¼ B̂I −
� dcosðbÞI þ 2 dsinðbÞτk�B̂� dcosðbÞI − 2 dsinðbÞτk�

¼ B̂I −
h dcosðbÞB dcosðbÞ I − 4 dsinðbÞ B̂ dsinðbÞ τkτk þ 2

� dsinðbÞ B̂ dcosðbÞ− dcosðbÞ B̂ dsinðbÞ�τki
¼
�
B̂ − dsinðbÞ B̂ dsinðbÞ− dcosðbÞ B̂ dcosðbÞ�I − 2ÔB̂τk: ð3:20Þ

Here in the fourth step, the identity τkτk ¼ − 1
4
I for k ¼ 1, 2, 3 is used, and the operator ÔB̂, depending on the operator B̂, is

defined by

ÔB̂ ≔ dsinðbÞ B̂ dcosðbÞ− dcosðbÞ B̂ dsinðbÞ; ð3:21Þ

and TrðτkÞ ¼ 0. In the last step in Eq. (3.19), we have used
P

k TrðτkτkÞ ¼ − 3
2
. Similarly, the regularized expression (3.17)

can be quantized as

ĤL;k¼0
grav ¼ −

i
ffiffiffiffi
Δ

p

288ℏγ3
X
i;j;k

ϵijkTr
�d
hðμÞi

h d
hðμ̄Þi

−1; ½ĤE;k¼0
grav ; jv̂j�

i
v̂
d
hðμÞj

h d
hðμ̄Þj

−1; jv̂j
id
hðμÞk

h d
hðμ̄Þk

−1; ½ĤE;k¼0
grav ; jv̂j�

i�
¼ i

ffiffiffiffi
Δ

p

36ℏγ3
Ô½ĤE;k¼0

grav ;jv̂j�ðv̂Ôjv̂jÞÔ½ĤE;k¼0
grav ;jv̂j�

X
i;j;k

ϵijkTrðτiτjτkÞ

¼ −
i
ffiffiffiffi
Δ

p

24ℏγ3
Ô½ĤE;k¼0

grav ;jv̂j�ðv̂Ôjv̂jÞÔ½ĤE;k¼0
grav ;jv̂j�; ð3:22Þ

where in the second step we have used Eq. (3.20) and used the fact that the terms involving zero, one, and two τ’s in the trace
vanish due to

P
ijk ϵ

ijk ¼ 0,
P

ijk ϵ
ijkTrðτkÞ ¼ 0, and

P
ijk ϵ

ijkTrðτiτjÞ ¼ − 1
2

P
ijk ϵ

ijkδij ¼ 0. The operators Ôjv̂j and
Ô½ĤE;k¼0

grav ;jv̂j� are defined according to Eq. (3.21) with B̂ ¼ jv̂j and B̂ ¼ ½ĤE;k¼0
grav ; jv̂j�, respectively. Moreover, in the last step in

Eq. (3.22), we have used
P

i;j;k ϵ
ijkTrðτiτjτkÞ ¼ − 1

4

P
i;j;k ϵ

ijkϵijk ¼ − 3
2
. Finally, the operator corresponding to HΓ;k¼−1;reg

grav

in Eq. (3.18) reads, if assuming again for simplicity that the holonomies of k ¼ −1 can be approximated with the
holonomies of k ¼ 0,

ĤΓ;k¼−1
grav ¼ ðℏγ ffiffiffiffi

Δ
p Þ13V2

3
o

i4ð2πGÞ23 sgnðv̂Þjv̂j13
X
k

Tr
�
τk
d
hðμÞk

h d
hðμ̄Þk

−1; jv̂j
i�

¼ −
ðℏγ ffiffiffiffi

Δ
p Þ13V2

3
o

i2ð2πGÞ23 sgnðv̂Þjv̂j13Ôjv̂j
X
k

TrðτkτkÞ

¼ 3ðℏγ ffiffiffiffi
Δ

p Þ13V2
3
o

i4ð2πGÞ23 sgnðv̂Þjv̂j13Ôjv̂j: ð3:23Þ

The actions of the operators ĤE;k¼0
grav , ĤL;k¼0

grav , and ĤΓ;k¼−1
grav on jvi read
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ĤE;k¼0
grav jvi ¼ EþðvÞjvþ 4i þ E0ðvÞjvi þ E−ðvÞjv − 4i;

ð3:24Þ

ĤL;k¼0
grav jvi ¼ LþðvÞjvþ 8i þ L0ðvÞjvi þ L−ðvÞjv − 8i;

ð3:25Þ

ĤΓ;k¼−1
grav jvi ¼ ΓðvÞjvi; ð3:26Þ

where

EþðvÞ ¼
3γℏ

32
ffiffiffiffi
Δ

p ðvþ 2ÞM1;3ðvÞ; ð3:27Þ

E−ðvÞ ¼ Eþðv − 4Þ; ð3:28Þ

E0ðvÞ ¼ −EþðvÞ − E−ðvÞ; ð3:29Þ

LþðvÞ ¼ −
ffiffiffiffi
Δ

p

192γ3ℏ
ðvþ 4ÞM−1;1ðvþ 4Þ

×G−ðvþ 4ÞGþðvþ 4Þ; ð3:30Þ

L−ðvÞ ¼ Lþðv − 8Þ; ð3:31Þ

L0ðvÞ ¼ −
ffiffiffiffi
Δ

p

192γ3ℏ
fðvþ 4ÞM−1;1ðvþ 4Þ½GþðvÞ�2

þðv − 4ÞM−1;1ðv − 4Þ½G−ðvÞ�2g; ð3:32Þ

ΓðvÞ ¼ 3ðγ ffiffiffiffi
Δ

p
ℏÞ13V2

3
o

8ð2πGÞ23 sgnðvÞjvj13M1;−1ðvÞ: ð3:33Þ

Here,

Ma;bðvÞ ≔ jvþ aj − jvþ bj; ð3:34Þ

G�ðvÞ ≔ E�ðv − 1ÞM0;�4ðv − 1Þ
− E�ðvþ 1ÞM0;�4ðvþ 1Þ: ð3:35Þ

The function Ma;bðvÞ satisfies

M0;jkjðvÞ ¼ −M0;−jkjðvþ jkjÞ: ð3:36Þ

Hence, the action of the k ¼ −1 gravitational Hamiltonian
constraint operator Ĥk¼−1

grav on jvi reads

Ĥk¼−1
grav jvi ¼ L̃þðvÞjvþ 8i þ EþðvÞjvþ 4i

þ ½E0ðvÞ þ L̃0ðvÞ þ ΓðvÞ�jvi
þ E−ðvÞjv − 4i þ L̃−ðvÞjv − 8i; ð3:37Þ

where L̃� ≔ −2ð1þ γ2ÞL�; here, � ¼ þ;−; 0.

On the other hand, the Hamiltonian constraintHϕ for the
scalar field can be quantized as a well-defined operator Ĥϕ

in Htot
kin, and the action of Ĥϕ on a quantum state jψi ¼

ψðv;ϕÞjv;ϕi with jv;ϕi≡ jvi ⊗ jϕi ∈ Hgr
kin ⊗ Hsc

kin is
given by [22]

Ĥϕ · ψðv;ϕÞ ¼ −
ℏ2

4πγ
ffiffiffiffi
Δ

p
l2
p

CðvÞ∂2ϕψðv;ϕÞ; ð3:38Þ

where

CðvÞ≡
�
3

2

�
3

jvjjjvþ 1j1=3 − jv − 1j1=3j3: ð3:39Þ

Combining equations above, one can write down the
resulting quantum Hamiltonian constraint equation corre-
sponding to its classical one [Eq. (2.21)] as

Ĥk¼−1
tot · ψðv;ϕÞ ¼ ðĤk¼−1

grav þ ĤϕÞ · ψðv;ϕÞ ¼ 0; ð3:40Þ

which describes the quantum evolution of the coupled
system with the scalar field ϕ as an emergent time.

IV. EFFECTIVE THEORY AND ITS
ASYMPTOTIC BEHAVIOR OF THE

ALTERNATIVE k= − 1 LQC

By constructing certain coherent states peaked at points
of the classical phase space and computing the expectation
value of the Hamiltonian constraint operator under the
coherent states, one can obtain the corresponding effective
Hamiltonian constraint. To this end, we first note that
the symmetry-reduced phase space of the k ¼ −1 model
coincides with that of the k ¼ 0 model. Hence, certain
coherent states constructed for the k ¼ 0 model can be
directly carried to the k ¼ −1 model. A Gaussian coherent
state peaked at a point ðbo; vo;ϕo; pϕÞ in the classical phase
space with spreads ϵ and σ in the gravitational sector and
scalar field sector takes the form [41]

ðΨðbo;vo;ϕo;pϕÞj ≔
Z

dϕ
X
v∈R

e−
ϵ2

2
ðv−voÞ2eiboðv−voÞ

× e−
σ2

2
ðϕ−ϕoÞ2e i

ℏpϕðϕ−ϕoÞðvj ⊗ ðϕj; ð4:1Þ

and its shadow on the regular lattice with spacing 1 reads

jΨi ≔
Z

dϕ
X
n∈Z

e−
ϵ2

2
ðn−voÞ2e−iboðn−voÞ

× e−
σ2

2
ðϕ−ϕoÞ2e− i

ℏpϕðϕ−ϕoÞjni ⊗ jϕi
≡ jΨgravi ⊗ jΨϕi: ð4:2Þ

To make the state be sharply peaked in the classical phase
space of the Universe with large volume, one should require
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that ϵ ≪ bo, voϵ ≫ 1, σ ≪ ϕo, and pϕσ ≫ 1. We denote

by hÔi ≔ hΨjÔjΨi
hΨjΨi the expectation value of an operator Ô

under the coherent states in Eq. (4.2). By using the Poisson
resummation on the sum over n and the steepest descent
approximation, the expectation value of each term of the
gravitational Hamiltonian constraint operator Ĥk¼−1

grav can be

calculated, and thus the resulting expectation value of
Ĥk¼−1

grav can be obtained. For brevity, in the remainder of
this paper, we will suppress the label o appearing in bo, vo,
and ϕo. A straightforward calculation reveals that (see the
Appendix for a derivation) [27,28,44]

HE;k¼0
grav;eff ≔ hĤE;k¼0

grav i ¼ 3ℏγv

4
ffiffiffiffi
Δ

p ½sin2ð2bÞ þOðϵ2Þ�f1þOðe−π2=ϵ2Þ þO½1=ðvϵÞ2�g; ð4:3Þ

HL;k¼0
grav;eff ≔ hĤL;k¼0

grav i ¼ 3ℏv

32γ
ffiffiffiffi
Δ

p ½sin2ð4bÞ þOðϵ2Þ�f1þOðe−π2=ϵ2Þ þO½1=ðvϵÞ2�g; ð4:4Þ

HΓ;k¼−1
grav;eff ≔ hĤΓ;k¼−1

grav i ¼ 3ðγ ffiffiffiffi
Δ

p
ℏÞ13V2

3
o

4ð2πGÞ23 v
1
3f1þOðe−π2=ϵ2Þ þO½1=ðvϵÞ2�g: ð4:5Þ

Hence, in the region with ϵ ≪ b, vϵ ≫ 1, σ ≪ ϕ, and pϕσ ≫ 1, the higher-order corrections can be omitted. In what
follows, we focus on the leading terms. Hence, the effective Hamiltonian constraint of the gravitational part for the k ¼ −1
model reads

Hk¼−1
grav;eff ¼ HE;k¼0

grav;eff − 2ð1þ γ2ÞHL;k¼0
grav;eff þHΓ;k¼−1

grav;eff

¼ −
3ℏv

γ
ffiffiffiffi
Δ

p
	
1

4
sin2ð2bÞ½1 − ð1þ γ2Þsin2ð2bÞ�− γ2Δ

4

V2=3
o

V2=3



≡ −

3ℏv

γ
ffiffiffiffi
Δ

p geffðb; vÞ: ð4:6Þ

Taking into account the result for the scalar field in
Ref. [27], the total effective Hamiltonian constraint of
the gravity coupled with a massless scalar field reads

Hk¼−1
tot;eff ¼ −

3ℏv

γ
ffiffiffiffi
Δ

p geffðb; vÞ þ
p2
ϕ

4πγGℏ
ffiffiffiffi
Δ

p
v
: ð4:7Þ

Before calculating the dynamics of this effective Hamil-
tonian, we clarify some subtle issues. First, we expect here
that the evolution of, say, hv̂i up to OðℏÞ order coincides
with the dynamics determined by the effective Hamiltonian
constraint [Eq. (4.7)]. In other words, if we compute the
quantum dynamics of the coherent state [Eq. (4.2)] and
investigate the evolution of the expectation value of v̂, we
conjecture that the result coincides with the dynamics of v
obtained by solving Hamilton’s equation concerning the
effective Hamiltonian [Eq. (4.7)]. Second, as claimed
before, we consider the region with ϵ ≪ b so that the
higher-order corrections are omitted. However, as shown
later, in the FRW phase of the evolution given by the
effective Hamiltonian, b approaches 0 asymptotically. We
thus obtain a tension that, on the one hand, we require
b ≫ ϵ, but, on the other hand, b goes to 0 along the

evolution. To resolve this tension, we still have to compute
the quantum dynamics to see how the spread ϵ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jhv̂i2 − hv̂2ij

p
evolves. Even though the quantum

dynamics, which will be left as our future work, has not
been investigated yet, the previous results in the k ¼ 0
model [22,45] make us expect ϵ ∼ 1=hv̂i, which would
make ϵ ≪ b true along the evolution. Indeed, coherent
states with the phase-space-dependent spread have been
considered in the regular LQC [46]. Moreover, another
approach to understanding the effective dynamics is to
apply the path integral formulation to study the transi-
tion amplitude Aðvf;ϕf; vi;ϕiÞ ¼ hvf;ϕfjvi;ϕiiphy, with
h·j·iphy denoting the physical inner products [47,48]. Since

the Hamiltonian constraint operator Ĥk¼−1
grav is the same as

that of the k ¼ 0model up to the term ĤΓ;k¼−1
grav;eff , which takes

jvi as its eigenstate, one can simply generalize the results in
Ref. [48] to conclude that the classical path resulting
from dynamics of the effective Hamiltonian dominates
Aðvf;ϕf; vi;ϕiÞ. Finally, in the region with b → 0 and
v ≫ 1, it is easy to see that, as b → 0, geffðb; vÞ goes to
gðb; vÞ, and thus the total effective Hamiltonian constraint
Hk¼−1

tot;eff in Eq. (4.7) reduces to its classical expressionH
k¼−1
tot
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in Eq. (2.20). Hence, the new alternative quantum dynam-
ics has the corrected classical limit.
It is easy to see that, in the effective theory, pϕ is a

constant of motion due to _pϕ ¼ fpϕ;Hk¼−1
tot;effg ¼ 0, and ϕ

can be regarded as an internal clock because of _ϕ > 0,
similar to the classical theory. The effective Hamiltonian
constraint equation

Hk¼−1
tot;eff ¼ 0 ð4:8Þ

can determine the evolutions of vwith respect to b for some
given pϕ, which is plotted in Fig. 1. Figure 1 depicts that
v ¼ 0 can never be a solution to Eq. (4.8). It indicates that
the classical singularity at v ¼ 0 can be avoided in the
effective theory. By Eq. (4.8), the matter density can be
expressed as

ρϕðvÞ ¼
p2
ϕ

2V2
¼ −

Hk¼−1
grav;eff

V

¼ 3

2πGγ2Δ
geffðb; vÞ≡ ρeffϕ ðb; vÞ: ð4:9Þ

The effective Hubble parameter is determined by the total
effective Hamiltonian constraint (4.7) and reads

H2
eff;k¼−1 ¼

�
_v
3v

�
2

¼
�fv;Hk¼−1

tot;effg
3v

�2

¼ 1

γ2Δ
½g0effðb; vÞ�2; ð4:10Þ

where 0 denotes the first-order derivative with respect to b.
In what follows, we focus on the region b ∈ ½0; π=4� where
we live. A bounce appears when H2

eff;k¼−1 ¼ 0; i.e.,

g0effðb; vÞ ¼ 0 ⇔ b ¼ 1

2
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ð1þ γ2Þ

s
; ð4:11Þ

at which the energy density ρϕ takes the maximal value,
namely the critical energy density, as

ρk¼−1
crit ¼ ρF −

3

8πG
V2=3
o

V2=3 ¼ ρF −
3

8πG
1

a2
; ð4:12Þ

where

ρF ≔
3

32πGγ2ð1þ γ2ÞΔ : ð4:13Þ

In comparison with the effective k ¼ 0 model proposed in
Ref. [27] where the critical density is given by the first term
of Eq. (4.12), the effective k ¼ −1 model contributes an
additional term, the second term of Eq. (4.12), to the critical
energy density. It is worth mentioning that the critical
energy density ρk¼−1

crit in the effective k ¼ −1 model
depends on the value of v (or the scale factor a) at the
bounce point. The value vbounce of v at the bounce point can
be determined by

ρϕðvbounceÞ ¼ ρk¼−1
crit ðvbounceÞ: ð4:14Þ

In Fig. 2, the value vbounce as a function of pϕ is plotted. It is
shown that as pϕ increases, the value vbounce increases
monotonically. Moreover, the condition ρϕðvbounceÞ ≥ 0

implies that

a ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γ2ð1þ γ2ÞΔ

q
; ð4:15Þ

and thus the effective theory predicts that the scale factor a
is bounced below amin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γ2ð1þ γ2ÞΔ

p
.

FIG. 1. Plots of v with respect to b determined by the total
Hamiltonian constraint equation Hk¼−1

tot;eff ¼ 0 for different values
of pϕ, with V0 ¼ G ¼ ℏ ¼ 1 and γ ¼ 0.2375.
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Solving the total effective Hamiltonian constraint equation
Hk¼−1

tot;eff ¼ 0 for b yields

b ¼

8>>>>><>>>>>:
bI ≡ 1

2
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ρϕþ 3
8πG

1

a2
ρF

q
2ð1þγ2Þ

s

bII ≡ 1
2
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ρϕþ 3
8πG

1

a2
ρF

q
2ð1þγ2Þ

s : ð4:16Þ

Hence, there exist two types of classical universe: namely,
the type-I universe and the type-II universe. The two
universes are connected by a quantum bounce. The
effective Hubble parameter is determined by

H2
eff;k¼−1;I=II ¼

�
_v
3v

�
2
����
b¼bI=II

¼ 8πG
3

ρF
1þ γ2

�
1 −

ρϕ þ 3
8πG

1
a2

ρF

� 
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρϕ þ 3
8πG

1
a2

ρF

s ! 
1þ 2γ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρϕ þ 3
8πG

1
a2

ρF

s !
; ð4:17Þ

which can be expressed as the following more convenient forms:

H2
eff;k¼−1;I ¼

8πG
3

�
ρϕ þ

3

8πG
1

a2

��
1 −

ρϕ þ 3
8πG

1
a2

ρF

�266641þ γ2

1þ γ2

0BBB@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρϕþ 3

8πG
1

a2

ρF

r
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρϕþ 3
8πG

1

a2

ρF

r
1CCCA

237775 ð4:18Þ

and

H2
eff;k¼−1;II ¼

8πG
3

ρΛeff

�
1 −

ρϕ þ 3
8πG

1
a2

ρF

�266641þ 1 − 2γ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρϕþ 3
8πG

1

a2

ρF

r
4γ2
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρϕþ 3
8πG

1

a2

ρF

r � ρϕ þ 3
8πG

1
a2

ρF

37775; ð4:19Þ

where

ρΛeff
≔

Λeff

8πG
; with Λeff ≔

3

ð1þ γ2Þ2Δ : ð4:20Þ

Now, let us study the asymptotic behavior of the effective
dynamics at the large-v limit. For v → ∞, the matter
density ρϕðvÞ in Eq. (4.9) goes to zero, and thus

sin2ð2bÞ½1 − ð1þ γ2Þ sin2ð2bÞ� → 0; ð4:21Þ

which implies

b → b0 ¼
8<:

bI;c ≡ 0;

bII;c ≡ 1
2
arcsin

�
1ffiffiffiffiffiffiffiffi
1þγ2

p
�
:

ð4:22Þ

Expanding Hk¼−1
tot;eff at b0 up to the second order yields the

classical behavior of the effective Hamiltonian constraint as

Hk¼−1
tot;eff → −

3ℏv

γ
ffiffiffiffi
Δ

p
�
geffðb0; vÞ þ g0effðb0Þðb − b0Þ

þ g00effðb0Þ
2

ðb − b0Þ2
�
þ p2

ϕ

4πγGℏ
ffiffiffiffi
Δ

p
v
; ð4:23Þ

FIG. 2. Plot of vbounce with respect to pϕ, with V0 ¼ G ¼ ℏ ¼ 1
and γ ¼ 0.2375.
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where 00 denotes the second-order derivative with respec-
tive to b, and

g0effðb0Þ ¼
(
0; b0 ¼ bI;c;

− γ
1þγ2

; b0 ¼ bII;c;
ð4:24Þ

g00effðb0Þ ¼
(
2; b0 ¼ bI;c;
2−10γ2
1þγ2

; b0 ¼ bII;c:
ð4:25Þ

Plugging these asymptotic expressions into Eq. (4.10),
we have

H2
eff;k¼−1 →

8πG
3

�
g00effðb0Þ

2
ρϕ þ

3½g0effðb0Þ�2
8πGγ2Δ

þ 3g00effðb0Þ
16πG

V2=3
0

V2=3

�
¼ 8πG

3

�
g00effðb0Þ

2

�
ρϕ þ

3

8πG
1

a2

�
þ 3½g0effðb0Þ�2

8πGγ2Δ

�

¼
8<:

8πG
3
ρϕ þ 1

a2 ; b0 ¼ bI;c;

8πG
3

�
1−5γ2
1þγ2

�
ρϕ þ

�
1−5γ2
1þγ2

�
1
a2 þ Λeff

3
; b0 ¼ bII;c:

ð4:26Þ

The above asymptotic behavior (4.26) of the effective
Hubble parameter can be also obtained directly from
Eqs. (4.18) and (4.19). Equation (4.26) implies that the
type-II universe is an asymptotic de Sitter universe with a
positive effective cosmological constant Λeff . Therefore,
the asymptotical k ¼ −1 FRW universe (the type-I uni-
verse) will be bounced to an asymptotic de Sitter universe
(the type-II universe) coupled to a scalar field.
We now numerically study the effective dynamical

evolution of v with ϕ. To this end, we can first solve
the effective Hamiltonian constraint equation Hk¼−1

tot;eff ¼ 0

to yield

v ¼ vðb; pϕÞ: ð4:27Þ

Second, we consider the evolution equation of ϕ with
respect to b, namely

dϕ
db

¼ fϕ;Hk¼−1
tot;effg

fb;Hk¼−1
tot;effg

¼ fðb; pϕÞ; ð4:28Þ

where Eq. (4.27) is inserted in the second step. Solving
Eq. (4.28) yields

ϕ ¼ ϕðb; pϕÞ: ð4:29Þ

By combining Eq. (4.27) with Eq. (4.29) and then elimi-
nating b, we arrive at v ¼ vðϕ; pϕÞ. In Fig. 3, the effective
dynamical evolution of v with respect to ϕ for given pϕ

is plotted. It indicates that an asymmetric bounce appears
in the backward evolution of the universe sourced by a
massless scalar field ϕ, and the classical big bang singu-
larity is resolved.

V. SUMMARY

The quantization ambiguities often exist in constructing
the gravitational Hamiltonian constraint operator of full
LQG as well as that of LQC. It has been shown that in LQC

different quantizations of the gravitational Hamiltonian
constraint may lead to different quantum dynamics, and
thus affect the fate of the Universe. Hence, the study of the
quantization ambiguities of the gravitational Hamiltonian
constraint plays an important role in the quantum dynamics
of LQC. In the present paper, we have studied an alternative
quantization of the gravitational Hamiltonian constraint in
the k ¼ −1 model of LQC closely following that in the
k ¼ 0 model proposed in Ref. [27], mimicking the treat-
ment of full LQG.
Classically, the connection Ai

a in the k ¼ −1model takes
the nondiagonal expression [Eq. (2.7)] on the left-invariant
one-forms oωi

a, while it takes the diagonal form on the
left- and right-invariant one-forms oωi

a in the k ¼ 0 model.
In the k ¼ −1 model, the nondiagonal expression of Ai

a
leads to the complicated forms of the resulting holonomies
of the connection. Instead, one often considers the holon-
omies of the extrinsic curvature Ki

a multiplied by γ in the
k ¼ −1 model, and thus they have the same expressions as
the holonomies of the connection Ai

a ¼ γKi
a in the k ¼ 0

model. Hence, both the k ¼ 0model and the k ¼ −1model
have the same Hilbert space Hgr

kin ¼ L2ðRBohr; dμBohrÞ.
To study the quantum dynamics of the k ¼ 0;−1 models

in the framework of LQC, one needs to promote the
gravitational Hamiltonian constraint into a well-defined
operator in Hgr

kin. At the classical level, the gravitational
Hamiltonian constraint of the k ¼ −1 model can be
expressed as the three terms in Eq. (2.13). On one hand,
the former two terms, H̃E;k¼0

grav and H̃L;k¼0 in Eq. (2.13), have
the same expressions as the Euclidean and Lorentzian
terms, HE;k¼0

grav and HL;k¼0 in the k ¼ 0 model, respectively,
although involving different fiducial one-forms oωi

a (the
only left-invariant one-forms vs the left- and right-invariant
one-forms). From the symmetry-reduced expressions in
Eqs. (2.15) and (2.16), the former two terms are propor-
tional to each other, and thus one can first combine the two
terms and then quantize the first and third terms to obtain
the gravitational Hamiltonian constraint [31]. On the other
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hand, from the viewpoint of full LQG, the sum of both the
first and last terms forms the Euclidean term, while the
middle term represents the Lorentzian term. Hence, alter-
natively, we can quantize the Euclidean term and the
Lorentzian term, respectively, mimicking the treatment in
full LQG. We have shown that the former two terms H̃E;k¼0

grav

and H̃L;k¼0 in Eq. (2.13) can be quantized as the operators,
ĤE;k¼0

grav and ĤL;k¼0
grav in Eqs. (3.19) and (3.22), corresponding

precisely to the Euclidean and Lorentzian Hamiltonian
operators of the k ¼ 0 model proposed in Ref. [27], while
the third term has been quantized as ĤΓ;k¼−1

grav in Eq. (3.23).
The resulting gravitational Hamiltonian constraint operator
Ĥk¼−1

grav is symmetric, which has the action of Eq. (3.37) on
jvi. Moreover, we have shown that the new quantum
dynamics determined by the alternative Hamiltonian con-
straint operator Ĥk¼−1

tot in Eq. (3.40) for the k ¼ −1 model
coupled to a massless scalar field has the corrected classical
limit, and we have obtained its effective Hamiltonian
constraint [Eq. (4.7)] by semiclassical analysis. The effec-
tive Friedmann equation for the k ¼ −1 model was derived
in Eq. (4.17), which shows that it has two branches
[Eqs. (4.18) and (4.19)] relating to two types of universes,
similar to the k ¼ 0 LQC proposed in Ref. [27]. It turns out
that the asymptotical k ¼ −1 FRW universe (the type-I
universe) will be bounced to an asymptotic de Sitter
universe (the type-II universe) coupled to a scalar
field. Last but not least, by requiring the condition
ρϕðvbounceÞ ≥ 0, the effective theory predicts that the

scale factor a is bounced below amin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γ2ð1þ γ2ÞΔ

p
,

which is different from that in the previous k ¼ −1 LQC
model [31].
So far, Thiemann’s trick for regularizing the gravitational

Hamiltonian constraint in full LQG, by treating the
Euclidean term and the Lorentzian term independently,
has been successfully applied to the k ¼ 0;−1 LQC
models. However, to our knowledge, a similar treatment
for the k ¼ þ1 model in the framework of LQC has not
been carried out, in spite of the Thiemann regularization of
the Hamiltonian constraint on the hyperspherical lattice for
the k ¼ þ1 model having been studied from the viewpoint
of full LQG in Ref. [49]. The expectation value of the
Hamiltonian constraint under certain coherent states was
computed, and an effective Hamiltonian constraint was
obtained in the μo scheme rather than the μ̄ scheme [49]. By
numerical simulations of the dynamical evolution, an
asymmetric bounce replacing the classical big bang was
also obtained in the model [49].
It should be noted that there are still many aspects of the

loop quantum k ¼ −1 model that deserve further inves-
tigation. Recently, some works have focused on the relation
between LQG and the k ¼ 0 LQC by calculating the
expectation value of the Hamiltonian in LQG under a
certain coherent state peaked at some point in the classical
phase space [50–55]. Determining how to generate these
works for the k ¼ −1 case will be interesting. Moreover,
except for the alternative regularization from Thiemann’s
trick adopted in the present paper following directly that
in the k ¼ 0 case, the other alternative regularizations
employed in the k ¼ 0 model [30,56–58] can also be in
principle extended to the k ¼ −1 model.

FIG. 3. Plots of the effective dynamical evolution of v with
respect to ϕ, in reverse direction of the cosmological time,
determined by the effective Hamiltonian constraint for different
values of pϕ with initial data vðbstart; pϕÞ ¼ 8pϕ and
ϕðbstart; pϕÞ ¼ 1, with V0 ¼ G ¼ ℏ ¼ 1 and γ ¼ 0.2375.
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APPENDIX: DERIVATION OF THE
EXPECTATION VALUES

In this appendix, we present the calculations of expect-
ation values of the Hamiltonian constraint operator on the

coherent states. To this end, let us first consider an operator
Ĥ with the action on jvi:

Ĥjvi ¼ fþðvÞjvþ li þ f0ðvÞjvi þ f−ðvÞjv − li; ðA1Þ

where l is a positive even number, and

f−ðvÞ ¼ fþðv − lÞ: ðA2Þ

Then the expectation value of Ĥ on the coherent states in
Eq. (4.2) reads

hΨgravjĤjΨgravi ¼
X
n;n0∈Z

e−
ϵ2

2
ðn0−voÞ2eiboðn0−voÞe−ϵ2

2
ðn−voÞ2e−iboðn−voÞ½fþðnÞhn0jnþ li þ f−ðnÞhn0jn − li þ f0ðnÞhn0jni�

¼
X
n∈Z

e−
ϵ2

2
ðnþl−voÞ2eiboðnþl−voÞe−ϵ2

2
ðn−voÞ2e−iboðn−voÞfþðnÞ

þ
X
n∈Z

e−
ϵ2

2
ðn−l−voÞ2eiboðn−l−voÞe−ϵ2

2
ðn−voÞ2e−iboðn−voÞf−ðnÞ þ

X
n∈Z

e−ϵ
2ðn−voÞ2f0ðnÞ

¼
X
n∈Z

e−
ϵ2

2
ðnþl−voÞ2eiboðnþl−voÞe−ϵ2

2
ðn−voÞ2e−iboðn−voÞfþðnÞ

þ
X
n0∈Z

e−
ϵ2

2
ðn0−voÞ2eiboðn0−voÞe−ϵ2

2
ðn0þl−voÞ2e−iboðn0þl−voÞfþðn0Þ þ

X
n∈Z

e−ϵ
2ðn−voÞ2f0ðnÞ

¼ ðeilbo þ e−ilboÞ
X
n0∈Z

e−
ϵ2

2
½ðn0−voÞ2þðn0þl−voÞ2�fþðn0Þ þ

X
n∈Z

e−ϵ
2ðn−voÞ2f0ðnÞ

¼ 2 cosðlboÞe−l2
4
ϵ2
X
n∈Z

e−ϵ
2ðn−voÞ2fþ

�
n −

l
2

�
þ
X
n∈Z

e−ϵ
2ðn−voÞ2f0ðnÞ

¼
�
sin2
�
l
2
bo

�
−
1

2

�
e−

l2
4
ϵ2
�
−4
X
n∈Z

e−ϵ
2ðn−voÞ2fþ

�
n −

l
2

��
þ 1

2

�
2
X
n∈Z

e−ϵ
2ðn−voÞ2f0ðnÞ

�
; ðA3Þ

where in the third step we have used Eq. (A2) and relabeled n − l as n0. Applying the Possion resummation formula and the
steepest decent method, for an arbitrary analytic function gðnÞ, one has [19]

X
n∈Z

e−ϵ
2ðn−voÞ2gðnÞ ¼

ffiffiffi
π

p
ϵ

gðvoÞf1þOðe−π2=ϵ2Þ þO½1=ðvoϵÞ2�g: ðA4Þ

Then, one gets

hΨgravjΨgravi ¼
X
n;n0∈Z

e−
ϵ2

2
ðn0−voÞ2eiboðn0−voÞe−ϵ2

2
ðn−voÞ2e−iboðn−voÞhn0jni

¼
X
n∈Z

eϵ
2ðn−voÞ2

¼
ffiffiffi
π

p
ϵ

f1þOðe−π2=ϵ2Þ þO½1=ðvoϵÞ2�g ðA5Þ

and

hΨgravjĤjΨgravi ¼
ffiffiffi
π

p
ϵ

	
e−

l2
4
ϵ2
�
sin2
�
l
2
bo

�
−
1

2

��
−4fþ

�
vo −

l
2

��
þ 1

2
½2f0ðvoÞ�



f1þOðe−π2=ϵ2Þ þO½1=ðvoϵÞ2�g ðA6Þ
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for analytic functions fþðyÞ and f0ðyÞ. If fþðyÞ [or f0ðyÞ]
is not an analytic function, which is the case under
consideration due to the involved absolute value, one can
replace it with its analytic extension f̄þðyÞ [or f̄0ðyÞ] (for
example, omitting the absolute value symbol). It turns out

that the error
P

n expð−ϵ2ðn − voÞÞ½fþðnÞ − f̄þðnÞ� can be
shown to be the order Oðe−v2oϵ2Þ, which is negligible
compared to the corrections derived above [19]. Hence,
the resulting normalized expectation value of Ĥ reads

hĤi ¼ hΨjĤjΨi
hΨjΨi ¼ hΨgravjĤjΨgravi

hΨgravjΨgravi

¼
	
e−

l2
4
ϵ2
�
sin2
�
l
2
bo

�
−
1

2

��
−4fþ

�
vo −

l
2

��
þ 1

2
½2f0ðvoÞ�



f1þOðe−π2=ϵ2Þ þO½1=ðvoϵÞ2�g: ðA7Þ

Now, we turn to the three parts of the gravitational Hamiltonian constraint operator Ĥk¼−1
grav . Applying the result in

Eq. (A7) to the first two terms ĤE;k¼0
grav and ĤL;k¼0

grav with l ¼ 4 and l ¼ 8, respectively, we have

hĤE;k¼0
grav i ¼ 3ℏγvo

4
ffiffiffiffi
Δ

p
�
sin2ð2boÞe−4ϵ2 þ

1

2
ð1 − e−4ϵ

2Þ
�
f1þOðe−π2=ϵ2Þ þO½1=ðvoϵÞ2�g

¼ 3ℏγvo
4
ffiffiffiffi
Δ

p ½sin2ð2boÞ þOðϵ2Þ�f1þOðe−π2=ϵ2Þ þO½1=ðvoϵÞ2�g; ðA8Þ

hĤL;k¼0
grav i ¼ 3ℏvo

32γ
ffiffiffiffi
Δ

p
�
sin2ð4boÞe−16ϵ2 þ

1

2
ð1 − e−16ϵ

2Þ
�
f1þOðe−π2=ϵ2Þ þO½1=ðvoϵÞ2�g

¼ 3ℏvo
32γ

ffiffiffiffi
Δ

p ½sin2ð4boÞ þOðϵ2Þ�f1þOðe−π2=ϵ2Þ þO½1=ðvoϵÞ2�g; ðA9Þ

where we have used the results

−4Ēþðvo − 2Þ ¼ 3ℏγ

4
ffiffiffiffi
Δ

p vo; 2Ē0ðvoÞ ¼
3ℏγ

4
ffiffiffiffi
Δ

p vo; ðA10Þ

−4L̄þðvo − 4Þ ¼ 3ℏ

32γ
ffiffiffiffi
Δ

p vo; 2L̄0ðvoÞ ¼
3ℏ

32γ
ffiffiffiffi
Δ

p vo: ðA11Þ

To get the expectation value hĤΓ;k¼−1
grav i from Eq. (A7), we drop the term involving fþðvÞ, since ĤΓ;k¼−1

grav has jvi as its
eigenstate, and obtain

hĤΓ;k¼−1
grav i ¼ 3ðγ ffiffiffiffi

Δ
p

ℏÞ13V2
3
o

4ð2πGÞ23 v
1
3
of1þOðe−π2=ϵ2Þ þO½1=ðvoϵÞ2�g; ðA12Þ

where we have used

Γ̄ðvoÞ ¼
3ðγ ffiffiffiffi

Δ
p

ℏÞ13V2
3
o

4ð2πGÞ23 v
1
3
o: ðA13Þ
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