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We introduce a saddle-point finder that can find the complex saddle points for any analytically continued
action. We showcase our saddle-point finder by two examples in the EPRL spin foam model: the single
vertex case and the case of triangulation Δ3. In both cases, the complex saddle points are found, and each
saddle point’s contribution to the partition function is estimated. We also discuss the geometrical
interpretation of each saddle point.
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I. INTRODUCTION

Witten has suggested using complex path integral
to study the physical theories with complex-valued cou-
plings [1–3]. Later, Refs. [4–12] have related complex path
integrals to the sign problem in the Euclidean path integral
of QCD and models with finite chemical potential. Works
on supersymmetric theories [13–16] pointed out that the
complex saddle points related to the bions are important to
provide the right vacuum energy. Even for theories with
real couplings, complexifying the path integrals is always
necessary [17].
In loop quantum gravity [18–20], a recent result [21] has

shown that the key to solving the long-existing flatness
problem [22–26] is to find the complex saddle points of the
analytically continued Engle-Pereira-Rovelli-Livine (EPRL)
spin foam action [27,28]. These complex saddle points
dominate the whole path integral when curvature exists; they
are also categorized and endowed with geometrical inter-
pretations [29]. Another recent result [30] has used the
Lefschetz thimbles attached to the complex saddle points as
the integral cycles to numerically compute the correlation
functions in the spin foam model. As such, studying the
properties of the complex saddle points is necessary in a
wide range of physical theories.
For a complicated action, e.g., the spin foam action,

solving the saddle point equation analytically can hardly be
possible. This paper thus develops a numerical saddle-point
finder that possesses the following characters1:

(1) working for complex valued action,
(2) being able to find saddle points without analytically

solving the saddle point equation, and
(3) being able to estimate the contribution of each

saddle point to the partition function.
To work for complexified path integrals, our saddle-
point finder combines the generalized thimble method
(GTM) [31] and a perturbative saddle-point finder (PSPF).
The GTM uses the Lefschetz thimbles as integral cycles in
a path integral to suppress the oscillation of the integrand
in the complex-valued action. On Lefschetz thimbles, the
GTM samples points by the distribution eSeff , where the
effective action Seff sums the real part of the action S and
the logarithm of the real part of the Jacobian caused by the
deformation of the integral cycle. Sampled points with
significant statistical weights should be close to and thus
can roughly locate the saddle points of S. At a sampled
point, our PSPF finds where the local minimal value of
j∂μSj can be taken. Therefore, PSPF pins the saddle points
around the sampled points. After finding the saddle points,
one can compute the real part of the action at each of these
saddle points to estimate its contribution to the whole
partition function.
The method used in [21] only applies to the cases of small

deficit angles. Yet, there lacks an explicit relation between
the real saddle points in the case of zero deficit angles and
the complex saddle points in the cases of arbitrary deficit
angles. As mentioned in [21,32,33], figuring out the spin
foam’s asymptotic behavior, which is influenced by the
complex saddle points, is vital to the renormalization
procedure of the spinfoam. To renormalize the spin foam
to check the semiclassical consistency and to explore the
behavior of the spin foam in different discretization schemes,
finding the complex saddle points in spin foams is important.
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1The saddle point method only applies to nondegenerate

saddle points where the determinant of the Hessian is not zero.
This paper considers nondegenerate saddle points only.
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In this paper, we showcase our saddle-point finder by
two examples in the EPRL spin foam model: the single
vertex case and the case of triangulation Δ3. our finder can
find multiple complex saddle points in the large deficit
angle case. Furthermore, we find that in the large deficit
angle case, multiple complex saddle points contribute to the
spin foam amplitude and list these saddle points by their
contributions to the partition function.
The paper is organized as follows. Section II reviews the

GTM. Section III introduces our saddle-point finder.
Section IV reviews the analytically continued spin foam
model. Sections V and VI apply our saddle-point finder to
the single-vertex EPRL spin foam and Δ3-triangulated
EPRL spin foam. Finally, Sec. VII concludes the paper.

II. LEFSCHETZ THIMBLE

A Lefschetz thimble is a multidimensional generaliza-
tion of the stationary phase contour of a single-variable
complex function. References [1,3] use the thimble
method to define a new type of partition functions as
integrals over thimbles instead of over RN. Thimble
method is also used in the asymptotic analysis related
to the resurgent trans-series [34]. Numerically, the thimble
method is used to compute observables when the action is
complex valued ([31,35–41] etc.). For us, the thimble
method can help roughly estimate the positions of saddle
points.
One of the most important properties of the thimbles is

that the imaginary part of the action is a constant on each
thimble. Therefore, the path integral along thimbles is not
oscillatory. Assuming a complex valued action S of a lattice
model, one of the most useful integrals in the path integral
formulation reads

F ¼
Z

dNxOðxÞe−SðxÞ: ð1Þ

When O is 1, F is the partition function. To apply the
thimble method, one has to first assume thatOðxÞ and SðxÞ
can be analytically continued as the holomorphic functions
ÔðzÞ and ŜðzÞ, such that

F ¼
Z
RN

dNzÔðzÞe−ŜðzÞ: ð2Þ

The Picard-Lefschetz theory shows that the integral can be
equivalently decomposed into a linear combination of
integrals over N-dimensional integral cycles J σ; σ ¼
1 � � �N:

F ¼
X
σ

nσ

Z
J σ

dNzÔðzÞe−ŜðzÞ; ð3Þ

where J σ labels the Lefschetz thimbles, and nσ labels the
weight of each thimble. Each thimble J σ is defined as a

union of the steepest decent (SD) paths meeting two
conditions:
(1) Each path zðtÞ is a solution to the SD equation

dza

dt
¼ −

∂ŜðzÞ
∂za

; ð4Þ

where za are the coordinates of the point zðtÞ.
(2) On each path, zðtÞ goes to a saddle point pσ

when t → ∞.
Because

dŜ
dt

¼ ∂Ŝ
∂za

dza

dt
¼ −

���� ∂Ŝ
∂za

����
2

; ð5Þ

ReðŜÞ monotonically decreases along each SD path and
approaches its minimum at the saddle point2; ImðŜÞ is
conserved along each SD path. Therefore, on each thimble,
the phase of each integrand becomes a constant, and

Z
J σ

dNzÔðzÞe−ŜðzÞ ¼ e−iImðŜðpσÞÞ
Z
J σ

dNzÔðzÞe−ReðŜðzÞÞ;

ð6Þ

where the factor e−ReðŜðzÞÞ is nonoscillatory now. As a
result, the oscillatory integral F is equivalent to a combi-
nation of certain nonoscillatory integrals.
One thing to remark here is that Ô and Ŝ may be

meromorphic. Equation (3) does not work when extra poles
are brought in by the analytically continuation. Therefore,
the thimble method may not work under this situation.
Later in this section we will show that the GTM can be
applied in the case when Ŝ is meromorphic and Ô is
holomorphic. But, because the Ô does not affect the saddle
point value of the Ŝ, GTM is capable of finding the saddle
points.
In some simple cases when only one thimble dominates

the whole path integral, the thimble method can be easily
applied in computing observables. An observable hOi reads

hOi ¼
R
dNxOðxÞe−SðxÞR

dNxe−SðxÞ
: ð7Þ

By the thimble method,

2Remark that even though one reaches the saddle point by
decreasing the real part of the action, the saddle point on the
Lefschetz thimble is in fact a maximum of the real part of the
action on the Lefschetz thimble.
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hOi ¼
R
dNzÔðzÞe−ŜðzÞR

dNze−ŜðzÞ

¼
P

σnσe
−iImðŜðpσÞÞ R

J σ
dNzÔðzÞe−ReðŜðzÞÞP

σnσe
−iImðŜðpσÞÞ R

J σ
dNze−ReðŜðzÞÞ

ð8Þ

if Ô and Ŝ are holomorphic. Assuming the thimble J σ0

governs the whole integral, hOi becomes

hOi ¼
R
J σ0

dNzÔðzÞe−ReðŜðzÞÞR
J σ0

dNze−ReðŜðzÞÞ
; ð9Þ

whose nominator and denominator are both nonoscillatory
integrals. In this case, the Lefschetz thimble method turns
an oscillatory path integral into a statistical-mechanics
problem. In fact,

R
J σ0

dNze−ReðŜðzÞÞ shown in (9) is a

partition function denoted as Z, where e−ReðŜðzÞÞ can be
considered as a Boltzmann factor. Such a statistical-
mechanical system can be simulated by the Markov chain
Monte Carlo (MCMC) method that samples points on the
thimble J σ0 by the distribution e−ReðŜðzÞÞ=Z, and hOi is the
mean value of ÔðzÞ among these sampled points. Note that
ReðSÞ decreases along the SD paths, so the point possess-
ing the largest e−ReðŜðzÞÞ on J σ0 should be the saddle point
pσ0 . Thus, most sampled points should cluster around the
saddle point.
In general cases when multiple thimbles contribute to the

integral, the previous way to compute hOi is practically
hard to realize because
(1) multiple thimbles contribute non-negligibly to hOi,
(2) and it is impossible to find the thimbles by solving

the SD equation (4) with t → ∞ in computers.
Therefore, GTM has been developed to do the computa-
tion. Instead of using the SD equation, GTM uses the
steepest ascend (SA) equation

dza

dt
¼ ∂ŜðzÞ

∂za
ð10Þ

to approach the thimbles. Let zðtÞ be a solution to (10) and
x ¼ zð0Þ. Define F TðxÞ ≔ zðTÞ. An N-dimensional mani-
foldMT can be defined as fF TðxÞjx ∈ RNg. By Cauchy’s
theorem,

F ¼
Z
RN

dNzÔðzÞe−ŜðzÞ ¼
Z
MT

dNzÔðzÞe−ŜðzÞ; ð11Þ

where the deformation from M0 ¼ RN to MT is contin-
ues. According to [31], in the limit T → ∞,
MT→∞ ¼ P

σ nσJ σ . Therefore, for a large enough T,

F¼
X
σ

nσ

Z
J σ

dNzÔðzÞe−ŜðzÞ∼
Z
MT

dNzÔðzÞe−ŜðzÞ: ð12Þ

For some scattered points ζ ∈ RN , F TðζÞ approach the
saddle points Pσ of the thimbles with nonzero nσ; for the
points x ∈ RN close to ζ, the set of F TðxÞ forms an N-
dimensional manifold approaching to the combination of
J σ (Fig. 1). To compute

R
MT

dNzÔðzÞe−ŜðzÞ, we label each
point F TðxÞ ∈ MT by its initial point x ∈ RN and trans-
form

R
MT

back to
R
RN .

Consider RN ¼ M0, when T ¼ 0, ∂F 0ðxÞk=∂xi ¼ δki
defines the coordinate transformation from RN to M0, and
det δ ¼ 1 is the Jacobian for this coordinate transformation.
When T ≠ 0, the evolution of ∂F tðxÞk=∂xi along an SA
path is governed by

dð∂F tðxÞk=∂xiÞ
dt

¼
Xn
l¼1

∂
2ŜðF tðxÞÞ

∂F tðxÞk∂F tðxÞl
ð∂F tðxÞl=∂xiÞ:

ð13Þ

With the initial condition ∂F 0ðxÞk=∂xi ¼ δki , (13) has the
solution ∂F TðxÞk=∂xi, which describes the coordinate
transformation from F TðζÞ to ζ, with the Jacobian
JTðxÞ ¼ det ð∂F TðxÞk=∂xiÞ. As such, (12) becomes

F ∼
Z
MT

dNzÔðzÞe−ŜðzÞ

¼
Z
RN

dNxJTðxÞÔðF TðxÞÞe−ŜðF TðxÞÞ: ð14Þ

Let STeff ¼ ReðŜÞ − logðdetðJTÞÞ be the purely real effec-
tive action and θT res ¼ argðdetðJTÞÞ − ImðŜÞ be the
residual phase, (14) becomes

FIG. 1. The gray plate indicates RN and the red manifolds J 1

and J 2 are two Lefschetz thimbles. The blue arrows indicate the
SA flow. By SA flow, ζ1 and ζ2 are mapped to the saddle points
ζ1 and ζ2, and the points in the green disks around ζ1 and ζ2 are
mapped to the points close to the corresponding thimbles.
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F ∼
Z
RN

dNxÔðF TðxÞÞeiθT res e−ST effðF T ðxÞÞ; ð15Þ

where e−ST effðF TðxÞÞ can be considered as the Boltzmann
factor of a sampling process on RN . The observable (9) can
be computed by the reweighted method [31]:

hOi ∼
R
RN dNxÔðF TðxÞÞeiθT rese−ST effðF TðxÞÞR

RN dNxeiθT rese−ST effðFT ðxÞÞ ;

¼
R
RN dNxÔðF TðxÞÞeiθT rese−ST effðFT ðxÞÞR

RN dNxe−ST effðF TðxÞÞ

×

R
RN dNxe−ST effðF TðxÞÞR

RN dNxeiθT rese−ST effðFT ðxÞÞ ;

¼ hÔeiθT resiTeff
heiθT resiTeff

: ð16Þ

hfiTeff is the mean value of any given f among the sampled
points.
Although the integrands in (16) are still oscillatory, the

fluctuation is much smaller in MT than in RN for large T.
In MT , the points with significant distribution come from
small isolated regions around the saddle points. In each
such small region, eiθT res oscillates mildly. Outside these
small regions, eiθT res oscillates severely, but the points here
contribute little to the whole integral. As a result, the larger
T is, the smaller the contributing regions are and the less
oscillating the integrands are. This property ensures that
with a properly chosen T, most the sampled points in the
GTM are around the saddle points, and our saddle-point
finder uses this fact.
Besides, the choice of T is important in the GTM. On the

one hand, large T can suppress the oscillation of the
integrands. On the other hand, the larger the T, the more
isolated the contributing regions. Isolated regions are a
landscape that is hard to be sampled by samplers like
MCMC or slice sampling. For a multimodal distribution
with multiple contributing regions, the sampler depending
on local movements may be trapped in one of the regions.
To resolve this issue, the world-volume-tempered Lefschetz
thimble method (WV-TLTM) has been developed [42]. By
Cauchy’s theorem, the value of hOi is independent of the
choice of T:

hOi∼ hÔeiθT1 resiT1eff

heiθT1 resiT1eff

¼ hÔeiθT2 resiT2eff

heiθT2 resiT2eff

; T1 ≠ T2: ð17Þ

Therefore, hOi can be computed by considering the
contributions of different T, i.e.,

hOi ∼
R T1

T0
dTe−WðTÞ R

RN dNxÔðF TðxÞÞeiθT rese−ST effðF TðxÞÞR T1

T0
dTe−WðTÞ R

RN dNxeiθT rese−ST effðF TðxÞÞ
;

ð18Þ

where WðTÞ is an arbitrary function. In this computation,
the sampling is performed on the world volume defined as

R ¼ ∪
T1

i¼T0

MT:

In an MT with small T, the contributing regions are so
large that they will contact with each other, and the sampler
may use this MT as a bridge between the isolated regions
in large T slices. Therefore, by considering the interval
between a small T and a large T, WV-TLTM can sample
over all the regions containing saddle points.

III. SADDLE-POINT FINDER

In our finder, saddle points are found by a two-level
searching procedure. On the first level, the GTM serves as
the coarse finder to roughly locate the saddle points. On the
second level, the PSPF is deployed to pin the saddle points.
This section introduces the coarse finder first and then the
pinpoint finder.

A. The coarse finder

The GTM can sample the points around saddle
points. Specifically, we use the ensemble slice sampling
method [43] as the sampler and WV-TLTM to combine the
contributions of the different evolution time T. The finder
consists of the following steps:
(1) Choose A points fxi; i ¼ 1 � � �Ag. If the action is a

function depending onN complex variables, A > 2N
is suggested.

(2) Using fxi; i ¼ 1 � � �Ag as initial points of the SA
flow, find the maximal time T1, till which the
differential equation solver can evolve all these
points. Pick a time T0 < T1 and use ðT0; T1Þ as
the time interval in WV-TLTM.

(3) Apply the ensemble slice sampling method
(Algorithm 1) to sample on the world volume by
the distribution density e−ST effðF TðxÞÞ.

(4) Sort the sampled points x by their effective action.
Take the first P points as the output of the finder.
Here, P is a parameter of the finder, and it needs to
be tuned to achieve the best performance.

In the second step, any ordinary differential equation
(ODE) solver cannot evolve the SA flow for infinitely long.
The right-hand side of (10) becomes larger and larger when
the flow is leaving the saddle point. The ODE numerical
solvers, e.g., Runge-Kutta, Rosenbrock, etc, use difference
equations to approximate the differential equations. The
error of this approximation is proportional to the norm of the
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right-hand side of the differential equations. Therefore, the
error increases with the evolution time, and the maximal
time T1 is the largest evolution time, such that the error is
under the given tolerance.
The ensemble slice sampling (ESS) used in the third

step is a powerful MCMC sampler that applies to
complicated cases. As a type of slice sampling [44], the
basic idea of ESS is that sampling from a distribution pðxÞ
whose density is proportional to fðxÞ is equivalent to
uniformly sampling from the region below the curve of
fðxÞ. In many cases [43], ESS performs better than those
random-walking based MCMC sampler for multimodal
distribution, and we take this advantage of ESS to sample
on the MT . The ESS defines an ensemble fx1; � � �xAg of
parallel chains and generates moves by the positions of the

current head of the chains fxðtÞ
1 ; � � �xðtÞ

A g. In each ESS
iteration, we first apply the differential move scheme to
generate the direction vector for each chain xk. This
scheme comprises two steps:
(1) From the complementary ensemble S½k� ¼ fxn;∀ n ≠ kg, draw two chains xl and xm uniformly

and without replacement.
(2) Compute the direction vector η⃗k by η⃗k ¼ μðxl − xmÞ.

The parameter μ can be automatically tuned by the method
in [43]. Then, we apply η⃗k in Algorithm 1 to generate the
moves for this ESS iteration. The whole ESS sampling
process consists of multiple ESS iterations.
In our work, the distribution fðxÞ is chosen to be

e−ST effðF T ðxÞÞ, and the space for sampling is RN . We remark
that although theoretically the ergodicity of WV-TLTM is
proven, the efficiency of the sampling procedure can be
very low for a largeN. We can improve the efficiency of the
finder with the following pretreatments:
(1) Find a compact region of interest as the working

place of the finder.
(2) Find the points with small value of j∂μfðxÞj within

the compact region by physical facts or by optimi-
zation algorithm, e.g., annealing algorithm, genetic
algorithm, particle swarm algorithm, etc. Use those
points the initial points.

B. The pinpoint finder

The MCMC sampler cannot exactly sample saddle point.
Most samples are located near the saddle points. Thus, we
develops a pinpoint finder to nail down the saddle points.
The coarse finder feeds multiple points around the saddle
points to the pinpoint finder that applies the PSPF to locate
the saddle points. The PSPF is based on that there always
exists a point x̃ such that j∂μfðx̃Þj ≤ j∂μfðxÞj for any x ∈
CN and a locally smooth function fðxÞ with det ∂

2fðxÞ
∂xμ∂xν ≠ 0.

Let ϵ⃗ ¼ −ð∂2fðxÞ
∂xμ∂xνÞ−1∂νfðxÞ, ∂μfðxþ αϵÞ expands as

∂μfðxþ αϵÞ ¼ ∂μfðxÞ þ α
∂
2fðxÞ
∂xμ∂xν

ϵν þOðα2ϵ2Þ;

¼ ∂μfðxÞ − α
∂
2fðxÞ
∂xμ∂xν

�
∂
2fðxÞ
∂xν∂xλ

�
−1
∂λfðxÞ

þOðα2ϵ2Þ;
¼ ð1 − αÞ∂μfðxÞ þOðα2ϵ2Þ: ð19Þ

Hence, for a positive but sufficiently small α,
j∂μfðxþ αϵÞj < j∂μfðxÞj, then we can use xþ αϵ as the
x̃. Recursively taking the output x̃ as the input x, one can
find the location of the nearest local minimal value of j∂μfj
where det ∂

2fðxÞ
∂xμ∂xν ≠ 0. Algorithm 2 with three parameters (N,

toa, tol) summarizes the PSPF method.
The parameterN defines the upper limit of the number of

iterations; toa and tol are the lower bounds of α and jαϵj;
toa indicates the accuracy of the algorithm. The algorithm
terminates when the PSPF finds jjfðx0Þj − jfðx̃Þjj < tol.
For a point far away from all the saddle points [Fig. 2(b)],
the PSPF cannot find the saddle points. Nevertheless, when
a point is close to one of the saddle points [Fig. 2(a)] the
PSPF can find saddle points. Consequently, pinpoint finder
can locate the saddle points from most points fed by the
coarse finder.

Algorithm 1. Ensemble slice sampling.

1: Given t, f, S:
2: Initialize NðtÞ

e ¼ 0 and NðtÞ
c ¼ 0

3: for k ¼ 1;…; A do
4: Get direction vector η⃗k
5: Sample Y ∼ Uniformð0; fðxðtÞ

k ÞÞ
6: Sample U ∼ Uniformð0; 1Þ
7: Set L ← −U, and R ← Lþ 1
8: while Y < fðxðtÞ

k þ Lη⃗kÞ do
9: L ← L − 1
10: NðtÞ

e ← NðtÞ
e þ 1

11: end while
12: while Y < fðxðtÞ

k þ Rη⃗kÞ do
13: R ← Rþ 1
14: NðtÞ

e ← NðtÞ
e þ 1

15: end while
16: while True do
17: Sample X0 ∼ UniformðL;RÞ
18: Set Y 0 ← fðX0η⃗k þ xðtÞ

k Þ
19: if Y < Y 0 then
20: break
21: end if
22: if X0 < 0 then
23: L ← X0
24: NðtÞ

c ← NðtÞ
c þ 1

25: else
26: R ← X0
27: NðtÞ

c ← NðtÞ
c þ 1

28: end if
29: end while
30: Set xðtþ1Þ

k ← X0ηk þ xðtÞ
k

31: end for
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C. Additional instructions

Our coarse finder is based on ESS, which is a type of
MCMC. Similar to many of MCMC programs, e.g.,
CosmoMC, COBAYA, PyMC, etc. ([45,46] etc.), we suggest
to find a compact region of interest as the working place of
the finder as a pre-treatment to improve the efficiency. The
ergodicity of ESS is proven in [43] for N-dimensional
cases if the number of the Markov chains is greater than
2N. The [43] also shows that the average time of each
sampling step reaches its minimum when the number of
threads running in the computer is equal to half of the
number of the Markov chains. Therefore, the typical
dimension of the problem to apply our coarse finder
should be equal to or smaller than the number of threads
that computer can efficiently run in parallel. In order to
converge to the target distribution, ESS has to run for a
large number of steps. Although there is no prediction on
the exact value of this large number, one can always use
Gelman-Rubin diagnostic to see whether the program runs
long enough to converge (see Appendix D for details).

Our pinpoint finder can only work for the cases with

det ∂
2fðxÞ
∂xμ∂xν ≠ 0. Therefore, the finder can only find non-

degenerate saddle points. In fact, in the Lefschetz thimble
method, thimbles attach only to nondegenerate saddle
points, and degenerate saddle points do not contribute to
the partition function. The benchmark of the pinpoint is
given in Appendix E. Our benchmark shows that the
pinpoint finder uses OðN2Þ time to find the saddle points
in N-dimensional cases. Thus, our pinpoint finder is ran by
a polynomial algorithm and should be applicable in any
finite dimensional cases.
Finally, we admit that our saddle-point finder may miss

some of the nondegenerate saddle points. In general, the pin-
point finder will not be fed by all the samples from the coarse
finder. After the Markov chains converge, we let ESS
continue to sample K points and choose initial points of
the pinpoint finder from these K points. Thus, some of the
saddle points may be neglected. One can increase theK to let
pinpoint finder find more saddle points or fed all the sampled
points to the pinpoint finder to find all the saddle point in a
very long time. Besides, though some of the saddle points
are missing at certain values of K, the remaining saddle
points include the most contributing ones.

IV. THE ANALYTICALLY CONTINUED
SPIN FOAM MODEL

Spin foam is a covariant formulation of loop quantum
gravity [27,47–50]. In this work, we use the EPRL spin
foam model [27] to test our saddle-point finder. Here, we
review the action of the EPRL spin foam model, the
analytic continuation of the EPRL action, the classification
of the complex saddle points of the analytically continued
action, and the classical limit of the spin foam model.
Loop quantum gravity aims to quantize the pseudo-

Riemannian geometry to describe quantum spacetimes. In
loop quantum gravity, quantized three-dimensional spaces
are spin-network states [51,52]. The evolution of spin-
network states constructs quantum spacetimes. Geometric
variables in pseduo-Riemannian geometry are promoted as

FIG. 2. For both figures, the vertical axis corresponds to the f0ðxÞ and the horizontal axis corresponds to the x. For (a), the red point is
close to the saddle point x0, and PSPF can move the red points to x0. For (b), there is a bump between the saddle point x0 and the red
point, and PSPF cannot move the red point to the saddle point.

Algorithm 2. Perturbative Finder.

1: Given parameters N, toa, and tol and function f:
2: Initialise k ¼ 0
3: while k < N do
4: ε ← −ðf00ðx0ÞÞ−1 · f0ðx0Þ
5: α ← 0
6: while α < toa do
7: C ← jf0ðx0Þj − jf0ðx0 þ 10−α × εÞj
8: if C > 0 then
9: break
10: end if
11: α ← αþ 1
12: end while
13: if C < tol then
14: break
15: end if
16: x0 ← x0 þ 10−α × ε
17: k ← kþ 1
18: end while
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quantum operators. Following the spin-geometry theorem
proposed by Penrose [53], spin-network states can be
considered as a “polymeric foam” made by combining
multiple “quanta of the space.” In the simplicial case, each
“quantum of the space” is a quantum tetrahedron, which is
a tensor state consisting of four angular momentum states
satisfying the condition

ðĴð1Þ þ Ĵð2Þ þ Ĵð3Þ þ Ĵð4ÞÞjψi ¼ 0; ð20Þ

where ĴðiÞ are the angular momentum operators. Each of
these angular momentum states is a face of the quantum
tetrahedron, and ĴðiÞ is proportional to the normal operator
of the face. Condition (20) is a quantum version of the
closure condition of a classical tetrahedron. In loop quantum
gravity, the quantum space time is the evolution from one
spin-network state to another. The spin foam theory
provides a way to compute the transition amplitude—the
spin foam amplitude—of this evolution and hence the
expectation values of geometric-variable operators. For
example, three-dimensional metric is promoted as the
Penrose metric operator, and its connected correlation
function is related to the graviton propagator [54–60].
Usually, evolution of a spin-network state has a basic
building block called a vertex in spin foam theory. A vertex
describes the evolution involving five quantum tetrahedra
(m initial and 5 −m finial quantum tetrahedra). The tensor
state ofm initial and 5 −m finial quantum tetrahedra makes
a boundary state [61,62]. Spin foam theory provides the
transition amplitude of each vertex by summing over all the
bulk degrees of freedom. In the EPRL model, the spin foam
amplitude of a vertex is given by

Z ¼
Z
SLð2;CÞ5

Y
a

dga
Y
a>b

PabðgÞ; ð21Þ

where

PabðgÞ ¼ hjab;−n⃗abjY†g−1a gbYjjba; n⃗bai: ð22Þ

Here, the Latin indices a and b label the five quantum
tetrahedra. For each Pab, the states jjba; n⃗bai and jjab; n⃗abi
stand for a pair of faces evolving to each other. The operator
Y maps the spin-j SUð2Þ irreducible representation Hj to
the lowest level in SLð2;CÞ ðj; γjÞ-irreducible representa-
tion Hðj;γjÞ ¼ ⊕∞

k¼j Hk. Here, γ is the Barbero-Immirzi
parameter,3 ga ∈ SLð2;CÞ embeds the face Yjjba; n⃗bai in
four dimensions. Therefore, each Pab stands for the ampli-
tude when faces jjba; n⃗bai and jjab; n⃗abi coincide in four
dimensions. The integral of the bulk degrees of freedom

R
SLð2;CÞ5

Q
a dga traverses all the possible embeddings, and

Z is the transition amplitude when the five tetrahedra
interact with each other. Since the elements in Hðj;γjÞ can
be expressed as homogeneous functions on CP1, the inner
product (22) is equivalent to the integral [63,64]

Pab ¼
djab
π

Z
CP1

dz̃abhZba; Zbai−ð1−iγÞjabhZab; Zabi−ð1þiγÞjab

× hξab; Zabi2jabhZba; ξbai2jab ; ð23Þ

in which dj ¼ 2jþ 1, Zab ¼ g†azab, and Zba ¼ g†hzab. The
integral measure dz̃ab ¼ −ðhZab; ZabihZba; ZbaiÞ−1dzab
(with dz ¼ i

2
ðz0dz1 − z1dz0Þ ∧ ðz̄0dz̄1 − z̄1dz̄0Þ) is homo-

geneous on CP1. The bracket h·; ·i is the SU(2)-invariant
inner product. Using this expression, the spin foam ampli-
tude in this simple case reads

Z ¼
Z
SLð2;CÞ5

Y
a

dga

Z �Y
a>b

djab
π

dz̃ab

�
eS; ð24Þ

with

Sðj; g; zÞ ¼
X
a>b

½2jab logðhξab; ZabihZba; ξbaiÞ

− ð1þ iγÞjab loghZab; Zabi
− ð1 − iγÞjab loghZba; Zbai�: ð25Þ

In the general, multiple vertices exist. Similar to the
single-vertex case, the general form of the spin foam
amplitude on a simplicial complex K reads

Z ¼
X
J⃗

Y
f

dJf

Z
½dX�e

P
f
JfFf ½X;T�; ð26Þ

where f labels the 2-faces in K colored by spins Jf,
P

J⃗
means summing over all the possible ways of coloringK by
spins, X collects all the variables to be integrated, T collects
the parameters determined by the given boundary state, andP

f JfFf½X; T� is the action.
In the Lorentzian EPRL model,

8>>>>><
>>>>>:

dJf ¼ 2Jf þ 1

X ≡ ðgve; zvf; ξIefÞ
dX ≡ dgvedz̃vfdξIef

T ≡ ðξBefÞ

: ð27Þ

Here, v denotes a 4-simplex in K, and each three-dimen-
sional tetrahedron in ∂v is denoted by e. For each v, the
group variables gve ∈ SLð2;CÞ are assigned to tetrahedra;
the spinor variables zvf ∈ CP1 are assigned to the faces
(see Fig. 3). Both ξIef and ξ

B
ef are C

2 spinors normalized by

3In loop quantum gravity, the physical area of a face is given
by Aphy ¼ 8πℏGγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

, where j is the spin of the face state.
Therefore, 8πℏGγ defines a physical units of the area spectrum.
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Hermitian inner product. Variables ξIef, which are assigned
to the internal faces in K, need to be integrated. Parameters
ξBef, which are assigned to the boundary faces, are fixed by
the boundary states. The SLð2;CÞ Haar measure dgve can
be expressed as [65]

dg ¼ dβdβ�dγdγ�dδdδ�

jδj2 ∀ g ¼
�
α β

γ δ

�
: ð28Þ

Let Zvef ¼ g†vezvf and h·; ·i be the SU(2) invariant inner
product, ∀ zvf ¼ ðz0; z1Þ,

dz̃vf ¼ −
dzvf

hZvef; ZvefihZve0f; Zve0fi
;

¼ −
i
2

ðz0dz1 − z1dz0Þ ∧ ðz̄0dz̄1 − z̄1dz̄0Þ
hZvef; ZvefihZve0f; Zve0fi

: ð29Þ

Here, e; e0 ∈ ∂v are two tetrahedra sharing the face f. Let
fvjf ⊂ vg as the set of 4-simplices containing the face f,

Ff½X; T� ¼
X

fvjf⊂vg

�
ln

hξef; Zvefi2hZve0f; ξe0fi2
hZvef; ZvefihZve0f; Zve0fi

− iγ ln
hZvef; Zvefi
hZve0f; Zve0fi

�
; ð30Þ

where γ is the Barbero-Immirzi parameter. Depending on K,
ξef can be either ξIef or ξ

B
ef. By the convention in [28,65–67],

some of the ξef in Ff can be replaced by Jξef where Jξ ¼
ðξ̄2;−ξ̄1Þ for a spinor ξ ¼ ðξ1; ξ2Þ.
The EPRL spin foam action has two types of gauge

degrees of freedom—the continuous gauges and the dis-
crete gauge [65]. There are three continuous gauge degrees
of freedom:
(1) Rescaling of zvf:

zvf ↦ λzvf; λ ∈ C: ð31Þ

(2) SLð2;CÞ gauge transformation at each 4-simplex v:

gve↦x−1v gve; zvf↦x†vzvf; xv∈SLð2;CÞ: ð32Þ

(3) SU(2) gauge transformation on each internal
tetrahedron e, i.e., the tetrahedron shared by two
4-simplices:

gve ↦ gveh−1e ; he ∈ SUð2Þ: ð33Þ

The discrete gauge is flipping the sign of the group variables
gve ↦ −gve. The group variables take value of Lorentz
group SOþð1; 3Þ rather than its double-cover SLð2;CÞ.
In our work, we parametrize the EPRL spin foam action

after fixing the continuous gauges. By fixing the rescaling
gauge of zvf, each zvf can be parametrized by two real
variables:

zvf ¼ ð1; xvf þ iyvfÞ: ð34Þ

By fixing the SLð2;CÞ gauge in each 4-simplex, one can set
one of the five gve at each vertex v as identity. For any
SLð2;CÞ group element g, one can always decompose g
into g0h where h is an SU(2) element and g0 is a triangular
matrix. Thus, to fix the SU(2) gauge in the internal
tetrahedron e, one can parametrize one of two SLð2;CÞ
elements assigned to e as

�
λ−1 xþ iy

0 λ

�
; λ ∈ Rnf0g; x; y ∈ R ð35Þ

and parametrize the other SLð2;CÞ element as

0
@ 1þ ðx1 þ iy1Þ=

ffiffiffi
2

p ðx2 þ iy2Þ=
ffiffiffi
2

p

ðx3 þ iy3Þ=
ffiffiffi
2

p
1þðx2þiy2Þðx3þiy3Þ=2

1þðx1þiy1Þ=
ffiffi
2

p

1
A;

× x1; y1; x2; y2; x3; y3 ∈ R: ð36Þ

For each boundary tetrahedron, the assigned SLð2;CÞ
element is also parametrized as (36) too.

FIG. 3. (a) In a simplical complex, the 4-simplices are labeled by v; v ¼ 1;…; 10. (b) For 4-simplex 1, five tetrahedra are labeled by
e; e ¼ 1;…; 5. Each tetrahedron is assigned with a group variable gve, where ve is 12, 13, 14, 15. (c) For the tetrahedron ve ¼ 11, the
faces are labeled by 111, 112, 113, 114, and each face is assigned by a spinor.
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It is convenient to shift one of the saddle points to the
origin x ¼ y ¼ 0.4 Denoting ð1; z0vfÞ and g0ve as the saddle
point value of zvf and gve, (34)–(36) can be modified as

zvf ¼ ð1; z0vf þ xvf þ iyvfÞ;

gve ¼ g0ve

�
λ−1 xþ iy

0 λ

�
;

gve ¼ g0ve

0
@1þðx1þ iy1Þ=

ffiffiffi
2

p ðx2þ iy2Þ=
ffiffiffi
2

p

ðx3þ iy3Þ=
ffiffiffi
2

p
1þðx2þiy2Þðx3þiy3Þ=2

1þðx1þiy1Þ=
ffiffi
2

p

1
A: ð37Þ

With the parametrization defined by (34)–(36), the measure
dgve and dzvf become

dg ¼ 1

128π4
dx1dx2dx3dy1dy2dy3

j1þ x1þiy1ffiffi
2

p j2 ;

dzvf ¼ dxvfdyvf:

The analytic continuation of Ff can be realized by
complexifing the group variables gve and the spinor
variables zvf. After this complexification, gve ∈ SLð2;CÞ
becomes g̃ve ∈ SOð4;CÞ, and g†ve ∈ SLð2;CÞ becomes
g̃0ve ∈ SOð4;CÞ, which is independent of g̃ve. Similarly,
the spinor zvf ∈ CP1 becomes z̃vf ∈ C2, and z̄vf becomes
z̃0vf ∈ C2, which is independent of z̃vf. This analytic
continuation complexifies all the real parameters appearing
in (34)–(36).
From the saddle points of the analytic continued EPRL

spin foam action, one can reconstruct a pair of bivectors
B�
vef. Let Z0

vef be the saddle point value, the spinor
representations of the bivectors are

Bþ
vef ¼ χvef ⊗ Z̄00

vef −
1

2
1; ð38Þ

B−
vef ¼ Z̄0

vef ⊗ χ0vef −
1

2
1: ð39Þ

When vef is a boundary face, χ0vef and χvef read

χ0vef ¼ iγ þ κvef
iγ − 1

Z̄00
vef

Z̄00
vefZ̄

0
vef

−
κvef þ 1

iγ − 1

ξ†vef

ξ†vefZ̄
0
vef

;

χvef ¼ iγ þ κvef
iγ þ 1

Z̄0
vef

Z̄00
vefZ̄

0
vef

−
κvef − 1

iγ þ 1

ξvef
Z̄00
vefξvef

: ð40Þ

When vef is a bulk face,

χ0vef ¼ iγ þ κvef
iγ − 1

Z̄00
vef

Z̄00
vefZ̄

0
vef

−
κvef þ 1

iγ − 1

Z̄00
vef

Z̄00
vefZ̄0

vef

;

χvef ¼ iγ þ κvef
iγ þ 1

Z̄0
vef

Z̄00
vefZ̄

0
vef

−
κvef − 1

iγ þ 1

Z̄0
vef

Z̄00
vefZ̄

0
vef

: ð41Þ

The κvef ¼ �1 depends on the orientation. The four-
dimensional bivectors are given by the spin-1 representa-
tion of B�vef. At each vertex the bivectors BIJ

�vef are
classified into the following three types corresponding to
different geometries.
(1) Nondegenerate simplicial geometry: The bivectors

at the vertex indicates a 4-simplex. Each of the 10
faces is represented by a bivector Bf. For each
tetrahedron, the bivectors of the four faces satisfy the
closure condition:

X
j;j≠i

Bf
ij ¼ 0: ð42Þ

The volume Vi of tetrahedron i is nonzero. Each
tetrahedron has a four-dimensional normal vectorNi:

NiBf
ij ¼ 0: ð43Þ

This condition is also known as the cross simplicial
condition [68]. The four-dimensional normal vectors
fulfill the four-dimensional closure condition:

X
i

ViNi ¼
X
i

Ui ¼ 0: ð44Þ

The volume of the 4-simplex is nonzero:

va ¼
5!P

ijklϵijkl det ½Ui; Uj; Uk; Ul�
≠ 0: ð45Þ

(2) Degenerate vector geometry: The bivectors at the
vertex are interpreted as the vector geometry. There
exist 10 bivectors corresponding to 10 faces, and
they all belong to the same three-dimensional sub-
space. For each tetrahedron, the closure condition
and cross simplicial condition hold; however, the
four-dimensional normal vectors of the five tetra-
hedra are parallel to each other. Therefore, the
volume of v is ill-defined, rendering this type of
geometry degenerate.

(3) Lorentzian SOð1; 3Þ bivector geometry: This type of
geometry also depends on 10 faces represented by
bivectors. These bivectors fulfill the closure con-
dition but not the cross simplicial condition. This
indicates that those 10 faces cannot form five
tetrahedra as required by the simplicial geometry.

This classification depends crucially on the behavior of the
four-dimensional normal vectors. At each saddle point, one4Here, x and y stand for all real variables in (36), (35), and (34).
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can always try to reconstruct the four-dimensional normal
vectors by g̃ve, g̃0ve, z̃vf, and z̃0vf. If the four-dimensional
normal vectors at a saddle point cannot be reconstructed,
the saddle point indicates an SOð1; 3Þ bivector geometry. If
the reconstructed normal vectors at a saddle point are
parallel to each other, then the saddle point indicates a
vector geometry, and if they make ϵijkl det ½Ui; Uj; Uk; Ul�
nonzero, the saddle point indicates a simplicial geometry.
In spin foam theory, there are three important limits:

semiclassical limit, refinement limit, and the classical limit.
In the semiclassical limit j → ∞, the saddle points dominate
the spin foam amplitudes ([50,64,66,67,69,70] etc.). A
general belief [50] is that the saddle points corresponding
to the simplicial geometry contribute far more than other
types of saddle points. Therefore, in semiclassical limit, the
EPRL model, flow to the Regge geometry, i.e., a discrete
version of general relativity. In refinement limit, the number
of the vertices goes to infinity, and the EPRL model should
flow to a continuous theory of quantum gravity. Classical
limit combines the semiclassical limit and the refinement
limit. In this limit, the EPRL model reproduces general
relativity. There are many ways of combining semiclassical
and refinement limits. One such way [55,71] suggests to
increase j and the number of vertices simultaneously while
keeping the deficit angle on each triangle face small. Since
any Riemannian geometry without singularity can be
approximated by a Regge geometry containing sufficiently
many 4-simplices with sufficiently small deficit angles, this
way of taking the limit can drive the EPRL model to general
relativity.

V. APPLICATION: THE SADDLE POINTS
IN THE SINGLE 4-SIMPLEX SPIN FOAM MODEL

A. The action

The first example of applying our saddle point finder is
the single-vertex spin foam model. This model describes
how five spacelike quantum tetrahedra interact with each
other. In this model, we only have one 4-simplex, so we can
neglect the v label in this section. The index a labels the
tetrahedra, and the index pair ab labels the face shared by
two tetrahedra a and b. The index a runs from 1 to 5 because
a 4-simplex has five boundary tetrahedra. All the faces in a
4-simplex are boundary faces, whose geometric information
is encoded in the parameters ξab. Following [57–60], we
use a coherent spin-network state as the boundary state, such
that (26) takes the form

Z ¼
X
J⃗

ψJ0;ζ0

Y
ab

dJab

Z
½dX�ePa>bJabFab½X;T�: ð46Þ

In this section, we have

8>>>><
>>>>:

dJab ¼ 2Jab þ 1

X ≡ ðga; zab; JabÞ
dX ≡ ðdga; dz̃abÞ
T ≡ ðξab; ζab0 ; J0ab; αðabÞðcdÞÞ

; ð47Þ

ψJ0;ζ0 ¼ exp

�
−i
X
ab

ζab0 ðJab−J0abÞ
�

×exp

�
−
X
ab;cd

αðabÞðcdÞ
Jab−J0abffiffiffiffiffiffiffiffiffi

J0ab
p Jcd−J0cdffiffiffiffiffiffiffiffiffi

J0cd
p

�
; ð48Þ

and

Fab ¼ ½2 logðhJξab;ZabihZba;ξbaiÞ− ð1þ iγÞ loghZab;Zabi
− ð1− iγÞ loghZba;Zbai�; a > b: ð49Þ

Here, Zab ¼ g†azab; ξab, ζab0 , J0ab, and αðabÞðcdÞ are the
parameters given by the boundary state; ga and zab are
variables to be integrated; Jab are spin variables to be
summed up. In addition, we introduce a scale factor λ, such
that Jab ¼ λjab, J0ab ¼ λj0ab.
We adopt the 4-simplex geometry used in [21,30,72] to

generate the boundary state. The five vertices of this 4-
simplex are

P1 ¼ ð0; 0; 0; 0Þ; P2 ¼ ð0; 0; 0;−2
ffiffiffi
5

p
=31=4Þ;

P3 ¼ ð0; 0;−31=4
ffiffiffi
5

p
;−31=4

ffiffiffi
5

p
Þ;

P4 ¼ ð0;−2
ffiffiffiffiffi
10

p
=33=4;−

ffiffiffi
5

p
=33=4;−

ffiffiffi
5

p
=31=4Þ;

P5 ¼ ð−3−1=410−1=2;−
ffiffiffiffiffiffiffiffi
5=2

p
=33=4;−

ffiffiffi
5

p
=33=4;−

ffiffiffi
5

p
=31=4Þ:

Then, the 4-normal vectors of the tetrahedra are

N1 ¼ ð−1; 0; 0; 0Þ; N2 ¼
�

5ffiffiffiffiffi
22

p ;

ffiffiffiffiffi
3

22

r
; 0; 0

�
;

N3 ¼
�

5ffiffiffiffiffi
22

p ;−
1ffiffiffiffiffi
66

p ;
2ffiffiffiffiffi
33

p ; 0

�
;

N4 ¼
�

5ffiffiffiffiffi
22

p ;−
1ffiffiffiffiffi
66

p ;−
1ffiffiffiffiffi
33

p ;
1ffiffiffiffiffi
11

p
�
;

N5 ¼
�

5ffiffiffiffiffi
22

p ;−
1ffiffiffiffiffi
66

p ;−
1ffiffiffiffiffi
33

p ;−
1ffiffiffiffiffi
11

p
�
: ð50Þ

Table I lists all the ten j0 s. The spinors ξba and Jξab are
related to the 3-normal vectors n⃗ba and −n⃗ab, respectively
by n⃗ba ¼ hξbajσ⃗jξbai and −n⃗ab ¼ hJξabjσ⃗jJξabi. Table II
(III) records all the 3-normal (4-normal) vectors of the
4-simplex.
The matrix αðabÞðcdÞ must have a positive definite real

part, and
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αðabÞðcdÞ ¼ α1P
ðabÞðcdÞ
0 þ α2P

ðabÞðcdÞ
1 þ α3P

ðabÞðcdÞ
2 ;

where α1, α2, α3 are free parameters. The basis

PðabÞðcdÞ
k ðk ¼ 0…2Þ are defined as

(1) PðabÞðcdÞ
0 ¼ 1 if ðabÞ ¼ ðcdÞ and zero otherwise.

(2) PðabÞðcdÞ
1 ¼ 1 if a ¼ c, b ≠ d and zero otherwise.

(3) PðabÞðcdÞ
2 ¼ 1 if ðabÞ ≠ ðcdÞ and zero otherwise.

In this paper, we set α1 ¼ 7.8816=γ, α2 ¼ 0.1224=γ, and
α3 ¼ 1.4814=γ. The choice of α does not affect the
application of our algorithm.
The parameters ζab0 , whose values are given in Table IV,

are related to the dihedral angles between the 4-normal
vectors (50). One can find the way to determine ζab0 in [30].
By Poisson resummation, the summation

P
a>b can be

approximated by the integral
R
dj [30] when the λ is large.

Thus, the action and the partition function read

Stot ¼ iλ
X
ab

ζab0 ðjab − j0abÞ þ λ
X
ab;cd

αðabÞðcdÞ
jab − j0abffiffiffiffiffiffiffiffi

j0ab
p

×
jcd − j0cdffiffiffiffiffiffiffiffi

j0cd
p −

X
a>b

λjabFab; ð51Þ

and

Z ¼
Z Y

a

dga
Y
a>b

djabdz̃abdλjabe
Stot ; ð52Þ

which has the same form as (1).
In our computation, we set γ ¼ 0.1 and λ ¼ 50.

B. Pretreatments

To apply our saddle point finder, we apply the following
pretreatments:
(1) Fix the SLð2;CÞ gauge by fixing g1 to be identity.
(2) Parameterize the variables ga, jab, and zab. In the

single 4-simplex case, all the tetrahedra are boun-
dary tetrahedra. We parametrize g2 to g5 as in (36).
Each jab is a real variable. zab are parametrized in
the form (34). Hence, the total action depends on 54
real variables.

(3) The works [30,57–60,73] pointed out that the
action (51) has a saddle point s0 with geometric
interpretation. At the saddle point s0, jab ¼ j0ab,
and Table V (VI) records the values of ga (zab).

TABLE I. Each cell shows the area of the face shared by line
number tetrahedra and column number tetrahedra.

b

j0ab

a 2 3 4 5

1 5 5 5 5
2 � � � 2 2 2
3 � � � � � � 2 2
4 � � � � � � � � � 2

TABLE II. Each cell shows the three-dimensional normal vector of the face shared by line number tetrahedra and column number
tetrahedra.

b

Normal n⃗ab

a 1 2 3 4 5

1 � � � (1,0,0) (−0.33; 0.94; 0) (−0.33;−0.47; 0.82) (−0.33;−0.47;−0.82)
2 (−1; 0; 0) � � � (0.83,0.55,0) (0.83;−0.28; 0.48) (0.83;−0.28;−0.48)
3 (0.33;−0.94; 0) (0.24,0.97,0) � � � (−0.54; 0.69; 0.48) (−0.54; 0.69;−0.48)
4 (0.33; 0.47;−0.82) (0.24;−0.48; 0.84) (−0.54; 0.068; 0.84) � � � (−0.54;−0.76; 0.36)
5 (0.33,0.47,0.82) (0.24;−0.48;−0.84) (−0.54; 0.068;−0.84) (−0.54;−0.76;−0.36) � � �

TABLE III. Each cell indicates a spinor ξab corresponding to a 3-normal of a tetrahedron.

b

jξabi
a 1 2 3 4 5

1 � � � (0.71,0.71) (0.71;−0.24þ 0.67i) (0.95;−0.17 − 0.25i) (0.30;−0.55 − 0.78i)
2 (0.71;−0.71) � � � (0.71; 0.59þ 0.39i) (0.86; 0.48 − 0.16i) (0.51; 0.82 − 0.27i)
3 (0.71; 0.24 − 0.67i) (0.71; 0.17þ 0.69i) (0.86; − 0.31þ 0.40i) (0.51;−0.53þ 0.68i)
4 (0.30; 0.55þ 0.78i) (0.96; 0.13 − 0.25i) (0.96;−0.28þ 0.035i) (0.83;−0.33 − 0.46i)
5 (0.95; 0.17þ 0.25i) (0.28; 0.43 − 0.86i) (0.28;−0.95þ 0.12i) (0.57;−0.48 − 0.67i) � � �
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Using (37), we shift the origin of the 54-dimensional
real variables space to the saddle point s0.

(4) The analytic continuation of the action turns all the
real variables complex. We denote the analytically
continued action as S̃tot and the analytically con-
tinued ga, g

†
a, zab, and conjugate zab by ḡa, ḡ0a, z̄ab,

and z̄0ab. The s0 is also the saddle point of S̃tot. InR
54,

j∂μS̃totj takes the minimal value 0 at s0. Thus, we can
choose the 108-ball centered at s0 with radius 10 as
the workplace of the saddle point finder. In the
subspaceR54, we randomly choose 200 points as the
initial points of the coarse finder.

C. Results

Other than s0, our saddle-point finder finds two more
complex saddle points s1 and s2. At s1, Tables XIV–XVIII
show all the jab, ḡa, ḡ0a, z̄ab, and z̄0ab, respectively. At s2,
Tables XIX–XXIII show all the jab, ḡa, ḡ0a, z̄ab, and z̄0ab,
respectively. The values of the action S̃tot at s0, s1,
and s2 are 0þ 138.037i, −0.334705þ 138.179i, and
−0.551927þ 137.624i. The real parts indicate that by
contribution to the partition function, s0 > s1 > s2.

D. Geometrical interpretations

The work [68] shows that the bivectors generated by
group variables ga and spinors zab and ξab encode the
geometric interpretation of a complex saddle point. Let

χ0ab ¼
iγ þ κab
iγ − 1

Z̄0
ab

Z̄0
abZ̄ab

−
κab þ 1

iγ − 1

ξ†ab
ξ†abZ̄ab

;

χab ¼
iγ þ κab
iγ þ 1

Z̄ab

Z̄0
abZ̄ab

−
κab − 1

iγ þ 1

ξab
Z̄0
abξab

; ð53Þ

where

Z̄0
ab ¼ z̄0abḡb; Z̄ab ¼ ḡ0az̄ab;

and

kab ¼
�
1; a > b

−1; a < b
:

Two traceless simple bivectors of the face ab are defined by

TABLE IV. The table of ζab0 .

b

ζab0

a 2 3 4 5

1 −3.14þ 0.36γ 0.68þ 0.36γ 5.05þ 0.36γ 5.05þ 0.36γ
2 � � � 5.05 − 0.59γ −5.93 − 0.59γ −3.20 − 0.59γ
3 � � � � � � −2.81 − 0.59γ −5.54 − 0.59γ
4 � � � � � � � � � −4.37 − 0.59γ

TABLE V. Each cell of the table is the critical point of ga.

a 1 2 3 4 5

g0a
�
1 0

0 1

� �
0.18i 1.01i
1.01i 0.18i

� �
0.18i 0.96 − 0.34i

0.96 − 0.34i 0.18i

� �
1.01i −0.48 − 0.34i

0.48i − 0.34i −0.65i
� �

−0.65i −0.48 − 0.34i
0.48 − 0.34i 1.01i

�

TABLE VI. Each cell indicates a spinor zab.

b

jz0abi
a 1 2 3 4 5

1 � � � (1,1) ð1;−0.333þ 0.942iÞ ð1;−0.184 − 0.259iÞ ð1;−1.817 − 2.569iÞ
2 (1,1) � � � ð1; 0.685 − 0.729iÞ ð1; 1.857þ 0.989iÞ ð1; 0.420þ 0.223iÞ
3 ð1; 0.333 − 0.943iÞ ð1; 0.685 − 0.729iÞ � � � ð1; 0.313þ 2.080iÞ ð1; 0.071þ 0.470iÞ
4 ð1;−0.184 − 0.259iÞ ð1; 1.857þ 0.989iÞ ð1; 0.313þ 2.080iÞ � � � ð1; 0.058þ 0.082iÞ
5 ð1;−1.817 − 2.569iÞ ð1; 0.420þ 0.223iÞ ð1; 0.071þ 0.470iÞ ð1; 0.058þ 0.082iÞ � � �
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Bþ
ab ¼ χab ⊗ Z̄0

ab −
1

2
1; ð54Þ

B−
ab ¼ Z̄ab ⊗ χ0ab −

1

2
1: ð55Þ

The 4-dimensional bivectors B�IJ
ab of the face ab are the

spin-1 representations of B�
ab. Namely,

B�IJ
ab ¼

0
BBBBB@

0 K1
� K2

� K3
�

−K1
� 0 J3� −J2�

−K2
� −J3� 0 J1�

−K3
� J2� −J1� 0

1
CCCCCA
;

where

Ki
� þ iJi� ¼ TrðB�

abσ
iÞ;

and σi are Pauli matrices. For each tetrahedron a, the
closure condition reads

X
b∈f1…5gna

jabκabB−
ab ¼ 0;

X
b∈f1…5gna

jabκabB
þ
ab ¼ 0: ð56Þ

For each face ab, the parallel condition reads

ðḡ0aÞ−1B−
abḡ

0
a ¼ −ðḡ0bÞ−1B−

baḡ
0
b;

ḡaB
þ
abðḡaÞ−1 ¼ −ḡbBþ

baðḡbÞ−1: ð57Þ

Saddle point s1 meets (56) and (57), while s2 meets (56)
and (57) up to an error of 10−5. At either s1 or s2, however,
for each tetrahedron a, one cannot find its four-dimensional
normal NI that meets the condition

∀ b ∈ f1…5gna; B�IJ
abNJ ¼ 0:

Thus, both s1 and s2 are saddle points with Lorentzian
SOð1; 3Þ bivector geometry.5

VI. APPLICATION: SADDLE POINTS
IN THE Δ3 EPRL SPIN FOAM MODEL

A. The action

The simplicial complex K considered in this section
consists of three 4-simplices as in Fig. 4. We follow the
convention in [21,74] to call this K as Δ3. As shown in
Fig. 4, we number the vertices of the Δ3 from 1 to 6. Each
4-simplex is labeled by a single index a. We let a ¼ 6 for
the 4-simplex 12345, a ¼ 4 for the 4-simplex 12356, and

a ¼ 2 for the 4-simplex 13456. In 4-simplex a, the number
pair ab labels the tetrahedron whose vertices belong to the
set f1;…; 6gnfa; bg. For example, five tetrahedra belong-
ing to 4-simplex 6 are labeled by 61, 62, 63, 64, 65. The
face shared by ab and ac is labeled by the triple abc. The
faces in the Δ3 are classified into three types.
(1) Type I consists the faces belonging only to a single

4-simplex. The labels of this type of the faces form
the set

F1¼fabcja∈ f2;4;6g;b;c∈ f1;3;5g; and b≠ cg:
ð58Þ

(2) Type II faces belong to the tetrahedra shared by
two 4-simplices. The labels of the type II face form
the set

F2 ¼ fabcjða; b ∈ f2; 4; 6g; c ∈ f2; 4; 6gÞ or
× ða; c ∈ f2; 4; 6g; b ∈ f2; 4; 6gÞg: ð59Þ

(3) Type III faces are shared by three 4-simplices. Type
III face’s labels form the set

F3 ¼ fabcja; b; c ∈ f2; 4; 6gg: ð60Þ

The partition function of this Δ3 spin foam is

Z ¼
X

fJabcjabc∈F3g

Y
abc

dJabc

Z
½dX�eSðX;JabcÞ; ð61Þ

where

8>>>><
>>>>:

dJabc ¼ 2Jabc þ 1

X ≡ ðgab; zabc; JIabcÞ
dX ≡ ðdgab; dz̃abcÞ
T ≡ ðξabc; JBabcÞ; abc ∉ F3

: ð62Þ

In (62), we denote fJabcjabc ∈ F3g as JIabc and
fJabcjabc ∉ F3g as JBabc. In contrast to (27), all the internal

FIG. 4. The left-hand figure indicates the topological structure
of the Δ3. A Δ3 consists six vertices and the edges connecting
every two vertices. The right-hand figure shows that theΔ3 can be
decomposed into three 4-simplices.

5The value of B� bivectors can be found in our program.
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ξI have already been integrated out and thus are not the
components of X.
In our convention, the face abc is glued to the face

labeled by any permutation of abc, e.g., face 624 is glued to
face 642. The spinor variables z and spin variables J
assigned to the glued faces fulfill the following rules.

(i) The glued faces abc and acb belong to the
same 4-simplex, denoted by a, and share a spinor
variable zabc.

(ii) The glued faces abc and bac belong to two different
4-simplices, and each has its own spinor variable,
i.e., zabc ≠ zbac.

(iii) Any two glued faces share a spin variable J. Thus,
for any permutation of abc, denoted as ½abc�,
Jabc ¼ J½abc�.

The X in (62) contains 15 group g variables, 30 spinor z
variables, and 1 spin J variable. Each boundary face is
assigned with a spinor ξ. Therefore, the T in (62) contains
36 spinor ξ parameters and 18 spin J parameters.
Note that all the spin variables are half-integer valued,

and we have
P

fJabcjabc∈F3g instead of
R
dJabc in (61). In

order to apply our saddle-point finder, we use Poisson
summation to approximate the summation over the internal
spin by the integral over continuous Jabc in the large spin
region [21]. For convenience, we introduce a scale factor λ
of the spin variables, such that Jabc ¼ λjabc. We apply our
saddle-point finder in the case with λ ¼ 50. In this case, the
partition function is approximated by

Z ¼
Z

½dX�dλj246
Y
abc

dλjabce
λSðXÞ: ð63Þ

The action S contains three parts,

S ¼ S1 þ S2 þ S3: ð64Þ

Type I, Type II, and Type III faces contribute to S1, S2, and
S3, respectively. Let Zabc ¼ g†abzabc, we have

S1 ¼
X

abc∈f1

�
jabc ln

hξabc; Zabci2hZacb; ξacbi2
hZabc; ZabcihZacb; Zacbi

þ iγjabc ln
hZacb; Zacbi
hZabc; Zabci

�
; ð65Þ

S2 ¼
X

abc∈f2

�
jabc ln

hξabc; Zabci2hZcba; ξcbai2
hZabc; ZabcihZcba; Zcbai

×
hZacb; Zcabi2

hZcab; ZcabihZacb; Zacbi

þ iγjabc ln
hZcba; Zcbai
hZabc; Zabci

hZacb; Zacbi
hZcab; Zcabi

�
; ð66Þ

and

S3 ¼ j246

�
ln

hZ642; Z462i2
hZ462; Z462ihZ642; Z642i

þ iγ ln
hZ642; Z642i
hZ462; Z462i

�

þ j246

�
ln

hZ426;Z246i2
hZ246;Z246ihZ426; Z426i

þ iγ ln
hZ426; Z426i
hZ246; Z246i

�

þ j246

�
ln

hZ264;Z624i2
hZ624;Z624ihZ264; Z264i

þ iγ ln
hZ264; Z264i
hZ624; Z624i

�
;

ð67Þ

where

f1 ¼ f635; 413; 453; 451; 235; 251; 231g;

and

f2 ¼ f216; 416; 436; 632; 652; 654; 432; 214; 254; 615g:

The γ above is the Immirzi parameter. In our work, we set
γ ¼ 0.2. We remark that the order of the numbers of each
element in f1 and f2 and the explicit form of S3 depend on
the orientation of the Δ3 complex.
The parameters ξvef and jBabc are given by the simplicial

geometry of the Δ3. This geometry is determined by the 15
edge lengths shown in Table VII. Here, we denote each edge
by ab, with a and b the ends of the edge. Since edges 15, 35,
and 13 are shared by all three 4-simplices, edges 21, 23, and
25 are shared by 4-simplices 4 and 6, and edges 41, 43, and
45 are shared by 4-simplices 2 and 6, one only needs to set
the length of the edges 61, 62, 63, 62, and 64 to fix the Δ3.
In the case with cylindrical symmetry [65],

l61 ¼ l63 ¼ l65 ¼ l1; l62 ¼ l2; l64 ¼ l3:

We set l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12.8421

p
, l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
33.3319

p
, and l3 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

17.1054
p

. The 4-normal vectors of tetrahedra 64 and 62 are

N64 ¼ ð−1; 0; 0; 0Þ; N62 ¼ ð1.066; 0.369; 0; 0Þ;

the 4-normal vectors of tetrahedra 46 and 42 are

N46 ¼ ð1; 0; 0; 0Þ; N42 ¼ ð1;−0.00173; 0; 0Þ;

TABLE VII. Edge lengths in 4-simplex 6.

b

lab

a 1 2 3 4 5

1 � � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11.547

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11.547

p ffiffiffiffiffiffiffiffiffiffiffi
4.272

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11.547

p
2 � � � � � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11.547
p ffiffiffiffiffiffiffiffiffiffiffi

4.272
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11.547
p

3 � � � � � � � � � ffiffiffiffiffiffiffiffiffiffiffi
4.272

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11.547

p
4 � � � � � � � � � � � � ffiffiffiffiffiffiffiffiffiffiffi

4.272
p
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the 4-normal vectors of tetrahedra 26 and 24 are

N26 ¼ ð−1.066;−0.369; 0; 0Þ;
N24 ¼ ð−1.473; 1.082; 0; 0Þ:

In each 4-simplex, the inner product of the 4-normal
vectors of two tetrahedra defines the dihedral angle on the
common face of the two tetrahedra. For example, in 4-
simplex 6, the dihedral angle θ6642 on face 642 satisfies

coshðθ6642Þ ¼ ηijNi
64N

j
62:

With our given edge lengths, θ6642 ¼ 0.361,
θ4462 ¼ 0.00172, and θ2246 ¼ 1.2995. The deficit angle
θD246 hinged on face 246 depends on the orientation of
the Δ3 and can take one of the following 8 values

θD246 ¼ 0.3614 − 0.001726 − 1.300 ¼ −0.9399; ð68Þ

θD246 ¼ 0.3614 − 0.001726þ 1.300 ¼ 1.659; ð69Þ

θD246 ¼ 0.3614þ 0.001726 − 1.300 ¼ −0.9364; ð70Þ

θD246 ¼ −0.3614 − 0.001726 − 1.300 ¼ −1.662; ð71Þ

θD246 ¼ 0.3614þ 0.001726þ 1.300 ¼ 1.662; ð72Þ

θD246 ¼ −0.3614 − 0.001726þ 1.300 ¼ 0.9364; ð73Þ

θD246 ¼ −0.3614þ 0.001726 − 1.300 ¼ −1.659; ð74Þ

θD246 ¼ −0.3614þ 0.001726þ 1.300 ¼ 0.9399: ð75Þ

With these edge lengths, one can compute the 3-normal
vector of each face in Δ3, and use these 3-normal vectors to
build the ξ and the jB. Tables VIII–X record the values of ξ.

TABLE VIII. Values of ξ6ab.

b

ξ6ab

a 1 2 3 4 5

1 � � � ð0.2887;−0.9534þ 0.0878iÞ ð0.9574;−0.1667 − 0.2357iÞ (1,0) ð0.9574;−0.1208þ 0.2622iÞ
2 ð0.9574;−0.25 − 0.1443iÞ � � � ð0.2887;−0.8292þ 0.4787iÞ (0,1) ð0.2887;−0.9574iÞ
3 ð0.2887;−0.5528 − 0.7817iÞ ð0.9574; 0.1208 − 0.2622iÞ � � � (1,0) ð0.9574;−0.2875þ 0.02649iÞ
4 ð0.9530; 0.1749þ 0.2473iÞ (0.7071,0.7071) ð0.3029; 0.5502þ 0.7781iÞ � � � ð0.7071;−0.2357þ 0.6667iÞ
5 ð0.2887; 0.1750þ 0.9413iÞ ð0.9574; 0.2722þ 0.09623iÞ ð0.2887; 0.7277 − 0.6222iÞ ð0; 0.9701þ 0.2425iÞ � � �

TABLE IX. Values of ξ4ab.

b

ξ4ab

a 1 2 3 5 6

1 � � � ð0.9467; 0.1348 − 0.2926iÞ ð0.9530;−0.1749 − 0.2473iÞ ð0.3029;−0.9490þ 0.08744iÞ ð0;−0.6247 − 0.7809iÞ
2 ð0.8096; 0.5083 − 0.2935iÞ � � � ð0.5870; 0.7011þ 0.4048iÞ ð0.8096; 0.5870iÞ (1,0)
3 ð0.3029;−0.5502 − 0.7781iÞ ð0.3221;−0.9427þ 0.08686iÞ � � � ð0.3029;−0.3988þ 0.8656iÞ ð0; 0.5145þ 0.8575iÞ
5 ð0.9530; 0.2302 − 0.1968iÞ ð0.9467; 0.3037þ 0.1074iÞ ð0.9530; 0.05535þ 0.2978iÞ � � � (1,0)
6 ð0.9530; 0.1749þ 0.2473iÞ (0.7071,0.7071) ð0.3029; 0.5502þ 0.7781iÞ ð0.7071;−0.2357þ 0.6667iÞ � � �

TABLE X. Values of ξ2ab.

b

ξ2ab

a 1 3 4 5 6

1 � � � ð0.9685;−0.2171 − 0.1220iÞ ð0.9590;−0.09545 − 0.2667iÞ ð0.9685; 0.09038 − 0.2320iÞ ð0.9985; 0.01820þ 0.05084iÞ
3 ð0.2490;−0.8443 − 0.4745iÞ � � � ð0.2833;−0.9393þ 0.1935iÞ ð0.2490;−0.5880þ 0.7696iÞ ð0.05400; 0.9780 − 0.2015iÞ
4 ð0.8096; 0.5083 − 0.2935iÞ ð0.5870; 0.7011þ 0.4048iÞ � � � ð0.8096; 0.5870iÞ (1,0)
5 ð0.2490;−0.9684 − 0.01161iÞ ð0.9685; 0.03190þ 0.2469iÞ ð0.9590; 0.2116þ 0.1883iÞ � � � ð0.05400; 0.7460þ 0.6638iÞ
6 ð0.9574;−0.25 − 0.1443iÞ ð0.2887;−0.8292þ 0.4787iÞ (0,1) ð0.2887;−0.9574iÞ � � �
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Tables XI–XIII record the variables jB. Many values in
Tables XII and XIII are not half-integers; however, at large
λ, the difference between λjB and its closest half integer is
negligible. Therefore, a λjB can be approximately regarded
as a half-integer spin variable.

B. Pretreatments

We have the following pretreatments:
(1) We fix the gauges (32) and (33) by parametrizing the

group variables as follows. The SLð2;CÞ gauge on
each 4-simplex is fixed by restricting g61, g45, and
g23 to be the identity matrix. The SU(2) gauge on
each internal tetrahedron is fixed by parametrizing
g64, g42, and g26 as in (35). The group variables
g65; g63; g43; g41; g25; g21; g62; g46; g24 are parame-
trized as in (36)

(2) All the z variables are parametrized as (34). All the
js are already real variables and hence needs no
additional parametrization.

(3) The works [63,64,70,75–80] pointed out that the
simplicial geometry defines the critical points of the
spin foam action Xa ¼ ðja; za; gaÞ, such that

ReðSðXaÞÞ ¼ 0;

∂gSjXa
¼ 0;

∂zSjXa
¼ 0:

In our case with curvature, these critical points are
not saddle points because

Imð∂j246SjXa
Þ ¼ γλθD246:

Such critical points and the points close to them can
still be the initial points of our saddle-point finder.
Corresponding to the simplicial geometry with

deficit angle (68), the g0ab and z0abc of a critical point
X0 are given in Tables XXIV–XXVII, and j0246 is 5.
We shift the origin of the space of our real variables
to X0 by plugging g0ab and z0abc into (37). In this
parametrization, the action S depends on 124 real
variables.
Seven more critical points can be found by acting

parity flip operation on X0. On each 4-simplex, the
parity flip is a transformation between two critical
points ðg0ab; z0abc; j0abcÞ and ðg̃0ab; z̃0abc; j̃0abcÞ, where

g̃0ab ¼ ðg0†abÞ−1;

z̃0abc ¼
g0abg

0†
abz

0
abc

jjg0†abz0abcjj2
;

and

j̃0abc ¼ j0abc:

In Δ3, including the identity, there are 23 different
ways of parity flipping. Acting these flippings
on X0 results in 7 more critical points. These
critical points corresponding to the simplicial
geometries with deficit angles (69) to (75). Using
the technique introduced in Appendix C, one can
find the coordinates of those critical points in our
parametrization.

(4) Similar to the single 4-simplex case, the analytic
continuation of the action changes all the real
variables into complex. We denote the analytically
continued action as S̃ and the analytically continued
gab, g

†
ab, zabc, and conjugate zabc as ḡab, ḡ0ab, z̄abc,

and z̄0abc. The j246 is analytically continued as j̃246.

TABLE XII. The jb4ab.

b

jb4ab
a 1 2 3 5 6

1 � � � 5.361 5.663 5.663 5
2 5.361 � � � 5.361 5.361 � � �
3 5.663 5.361 � � � 5.663 5
5 5.663 5.361 5.663 � � � 5
6 5 � � � 5 5 � � �

TABLE XIII. The jb2ab.

b

jb2ab
a 1 3 4 5 6

1 � � � 3.704 5.361 3.704 2
3 3.704 � � � 5.361 3.704 2
4 5.361 5.361 � � � 5.361 � � �
5 3.704 3.704 5.361 � � � 2
6 2 2 � � � 2 � � �

TABLE XI. The jb6ab.

b

jb6ab
a 1 2 3 4 5

1 � � � 2 2 5 2
2 2 � � � 2 � � � 2
3 2 2 � � � 5 2
4 5 � � � 5 � � � 5
5 2 2 2 5 � � �
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The distances between the seven additional criti-
cal points and X0 are smaller than 21. Therefore, we
choose the 248-ball centered at X0 with radius 21 as
the workplace of the saddle point finder. In the
subspace R124, we randomly choose 1600 points
closing to the critical points, and feed them to our
saddle-point finder.

C. Results

The saddle-point finder finds 112 points. The ∂μS̃ at all
these points are smaller than 10−11, so we can safely
consider all 112 points as the saddle points of the S̃. We
store the exact values of the ðS̃; ḡab; ḡ0ab; z̄abc; z̄0abc; j̃246Þ at
each saddle points in [81]. We can compute the real part of S̃.
In our computation, we find 44 saddle points have positive
real part of the action. By [30], we know that the saddle
points attached to the Lefschetz thimbles have negative real
part of the action. Hence, those 44 saddle points with
positive real part of the action are attached with the
antithimbles and do not contribute to the partition function.
The other 68 saddle points with negative real part of the
action contribute to the partition function, and each point’s
contribution can be estimated by its real part of the action.

D. Geometrical interpretations

As we mentioned, the geometrical interpretation of the
saddle points is encoded in the bivectors. For each face
abc, two bivectors can be defined

Bþ
abc ¼ χabc ⊗ Z̄0

abc −
1

2
1; ð76Þ

B−
abc ¼ Z̄abc ⊗ χ0abc −

1

2
1: ð77Þ

When b ∈ f1; 3; 5g, the face abc is a boundary face, and its
χ0abc and χabc read

χ0abc ¼
iγ þ κabc
iγ − 1

Z̄0
abc

Z̄0
abcZ̄abc

−
κabc þ 1

iγ − 1

ξ†abc
ξ†abcZ̄abc

;

χabc ¼
iγ þ κabc
iγ þ 1

Z̄abc

Z̄0
abcZ̄abc

−
κabc − 1

iγ þ 1

ξabc
Z̄0
abcξabc

: ð78Þ

When b ∈ f2; 4; 6g, the face abc is a bulk face, and

χ0abc ¼
iγ þ κabc
iγ − 1

Z̄0
abc

Z̄0
abcZ̄abc

−
κabc þ 1

iγ − 1

Z̄0
abc

Z̄0
abcZ̄abc

;

χabc ¼
iγ þ κabc
iγ þ 1

Z̄abc

Z̄0
abcZ̄abc

−
κabc − 1

iγ þ 1

Z̄abc

Z̄0
abcZ̄abc

: ð79Þ

The κabc depends the orientation of the Δ3. Namely, κabc ¼
−1 for the faces 612, 614, 623, 625, 631, 634, 651, 653,
412, 415, 423, 426, 431, 435, 451, 456, 461, 463, 213, 215,

234, 236, 241, 245, 253, 256, 361, and 264, otherwise
κabc ¼ 1. For each tetrahedron ab, the closure condition is
given by

X
c∈f1…6gnfabg

jabcκabcB−
abc ¼ 0;

X
c∈f1…6gnfabg

jabcκabcB
þ
abc ¼ 0: ð80Þ

For each face abc, the parallel condition reads

ðḡ0abÞ−1B−
abcḡ

0
ab ¼ −ðḡ0acÞ−1B−

acbḡ
0
ac; ḡabB

þ
abcðḡabÞ−1

¼ −ḡacBþ
acbðḡacÞ−1: ð81Þ

All the saddle points satisfy the closure condition and the
parallel condition; however, the four-dimensional normal
vectors of the tetrahedra in the Δ3 do not exist. Therefore,
these saddle points give rise to Lorentzian SOð1; 3Þ
bivector geometry.

VII. CONCLUSION

We have developed our saddle-point finder to find the
complex saddle points for any given action. Applying the
saddle-point finder to two examples in the spin foam model,
we find the complex saddle points and estimate their
contributions to the partition function. Finding these saddle
points would help not only the asymptotic analysis of the
analytically continued spin foam model but also the
Lefschetz thimble Monte Carlo computation in the regime
of small j, because in this regime, the nonperturbative
contribution due to the complex saddle points is non-
negligible.
In the example of the Δ3 spin foam model, all of the

saddle points we have found do not correspond to simplicial
geometry. This result enforced the conclusion in [21,55],
i.e., the classical limit of the spin foam model should be
taken in the limit with large-j but small deficit angles. Yet,
the explicit relation between the complex saddle points and
real saddle points [21] is not clear. In future works we shall
also explore how the complex critical points would influ-
ence the renormalization procedure of the spin foam model
and the exact meaning of the complex critical points in the
semiclassical limit. Our saddle-point finder is one of the
essential tools for those further researches. For example, one
can deform the boundary state in the Δ3 spin foam model
from the flat geometry boundary to the curved geometry
boundary, and use the saddle-point finder to explore how the
real saddle points can evolve into complex saddle points
with respect to the deformation of the boundary state; one
can also apply the saddle-point finder in the Pachner move
scheme of the spin foam to see how the number of the
complex saddle points would change with different discre-
tization schemes.

SADDLE-POINT FINDER AND ITS APPLICATION TO THE … PHYS. REV. D 107, 046011 (2023)

046011-17



In this paper, we use the information of the simplicial geometry to help us to narrow down the region to find the complex
saddle points. In future works, instead of using the physical information, we would like to employ certain optimization
algorithm in the pretreatment stage to automatically find the proper region to be the workplace for our finder. This optimization
will improve our saddle-point finder to be a “black-box” that is applicable to other physical system other than loop quantum
gravity.
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APPENDIX A: SADDLE POINTS OF SINGLE 4-SIMPLEX SPIN FOAM MODEL

TABLE XIV. The values of jab at s1.

b

jab

a 2 3 4 5

1 4.947þ 3.013 × 10−4i 4.946þ 2.766 × 10−4i 4.948þ 3.358 × 10−4i 4.951þ 4.880 × 10−4i
2 � � � 2.018þ 1.267 × 10−3i 2.019þ 1.383 × 10−3i 2.021þ 1.490 × 10−3i
3 � � � � � � 2.019þ 1.341 × 10−3i 2.021þ 1.448 × 10−3i
4 � � � � � � � � � 2.0198þ 1.386 × 10−3i

TABLE XV. The values of ga at s1.

a ga

1
�
1 0

0 1

�

2
�
1.793 × 10−2 þ ð4.688 × 10−4Þi 1.793 × 10−2 þ ð4.688 × 10−4Þi

−5.331 × 10−5 þ 1i 1.832 × 10−2 þ ð4.071 × 10−4Þi
�

3
�

1.827 × 10−2 þ ð6.071 × 10−4Þi 9.425 × 10−1 − ð3.332 × 10−1Þi
−9.428 × 10−1 − ð3.333 × 10−1Þi 1.797 × 10−2 þ ð4.961 × 10−4Þi

�

4
�
1.814 × 10−2 þ ð8.171 × 10−1Þi −4.712 × 10−1 − ð3.332 × 10−1Þi
4.714 × 10−1 − ð3.333 × 10−1Þi 1.809 × 10−2 − ð8.158 × 10−1Þi

�

5
�
1.811 × 10−2 − ð8.156 × 10−1Þi −4.713 × 10−1 − ð3.333 × 10−1Þi
4.713 × 10−1 − ð3.332 × 10−1Þi 1.81 × 10−2 þ ð8.171 × 10−1Þi

�

TABLE XVI. The values of g†a at s1.

a g†a

1
�
1 0

0 1

�

2
�
1.832 × 10−2 þ ð4.071 × 10−4Þi −6.919 × 10−5 − ð9.997 × 10−1Þi

5.331 × 10−5 − 1i 1.793 × 10−2 þ ð4.688 × 10−4Þi
�

3
�
1.797 × 10−2 þ ð4.961 × 10−4Þi −9.425 × 10−1 þ ð3.332 × 10−1Þi
9.428 × 10−1 þ ð3.333 × 10−1Þi 1.827 × 10−2 þ ð6.071 × 10−4Þi

�

4
�

1.809 × 10−2 − ð8.158 × 10−1Þi 4.712 × 10−1 þ ð3.332 × 10−1Þi
−4.714 × 10−1 þ ð3.333 × 10−1Þi 1.814 × 10−2 þ ð8.171 × 10−1Þi

�

5
�

1.81 × 10−2 þ ð8.171 × 10−1Þi 4.713 × 10−1 þ ð3.332 × 10−1Þi
−4.713 × 10−1 þ ð3.333 × 10−1Þi 1.811 × 10−2 − ð8.156 × 10−1Þi

�
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TABLE XVII. Values of zab at s1.

b

jzabi
a 1 2 3 4 5

1 � � � (1,1) ð1;−0.3333þ 0.9428iÞ ð1;−0.1835 − 0.2595iÞ ð1;−1.816 − 2.569iÞ
2 (1,1) � � � ð1; 0.8507 − 0.5636iÞ ð1; 1.568þ 0.5511iÞ ð1; 0.5603þ 0.1737iÞ
3 ð1;−0.3333þ 0.9428iÞ ð1; 0.8507 − 0.5636iÞ � � � ð1;−0.067þ 1.704iÞ ð1;−0.001082þ 0.6021iÞ
4 ð1;−0.1835 − 0.2595iÞ ð1; 1.568þ 0.5511iÞ ð1;−0.067þ 1.704iÞ � � � ð1;−0.01705 − 0.006849iÞ
5 ð1;−1.816 − 2.569iÞ ð1; 0.5603þ 0.1737iÞ ð1;−0.001082þ 0.6021iÞ ð1;−0.01705 − 0.006849iÞ � � �

TABLE XVIII. Values of conjugate zab at s1.

b

hzabj
a 1 2 3 4 5

1 � � � ð1; 0.9997 − 0.0005081iÞ ð1;−0.3328 − 0.9426iÞ ð1;−0.1834þ 0.2593iÞ ð1;−1.817þ 2.569iÞ
2 ð1; 0.9997 − 0.0005081iÞ � � � ð1; 0.8145þ 0.6141iÞ ð1; 1.633 − 0.6519iÞ ð1; 0.5211 − 0.1853iÞ
3 ð1;−0.3328 − 0.9426iÞ ð1; 0.8145þ 0.6141iÞ � � � ð1; 0.003138 − 1.808iÞ ð1; 0.02253 − 0.568iÞ
4 ð1;−0.1834þ 0.2593iÞ ð1; 1.633 − 0.6519iÞ ð1; 0.003138 − 1.808iÞ � � � ð1; 0.0007018 − 0.01837iÞ
5 ð1;−1.817þ 2.569iÞ ð1; 0.5211 − 0.1853iÞ ð1; 0.02253 − 0.568iÞ ð1; 0.0007018 − 0.01837iÞ � � �

TABLE XIX. The values of jab at s2.

b

jab

a 2 3 4 5

1 4.976 − 0.07024i 4.976 − 0.07097i 4.977 − 0.06961i 4.977 − 0.06565i
2 � � � 2.004þ 0.02366i 2.004þ 0.02595i 2.005þ 0.0285i
3 � � � � � � 2.004þ 0.02514i 2.005þ 0.0277i
4 � � � � � � � � � 2.005þ 0.02678i

TABLE XX. The values of ga at s2.

a ga

1
�
1 0

0 1

�

2
�
−8.793 × 10−2 − ð1.918 × 10−1Þi 1.683 × 10−2 þ 1.015i

1.632 × 10−2 þ 1.014i −8.766 × 10−2 − ð1.913 × 10−1Þi
�

3
�
−8.788 × 10−2 − ð1.913 × 10−1Þi 9.508 × 10−1 − ð3.539 × 10−1Þi
−9.621 × 10−1 − ð3.228 × 10−1Þi −8.785 × 10−2 − ð1.918 × 10−1Þi

�

4
�
−7.448 × 10−2 þ ð6.368 × 10−1Þi −4.838 × 10−1 − ð3.3 × 10−1Þi
4.728 × 10−1 − ð3.459 × 10−1Þi −1.015 × 10−1 − 1.02i

�

5
�

−1.018 × 10−1 − 1.02i −4.838 × 10−1 − ð3.303 × 10−1Þi
4.727 × 10−1 − ð3.46 × 10−1Þi −7.463 × 10−2 þ ð6.368 × 10−1Þi

�
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TABLE XXI. The values of g†a at s2.

a g†a

1
�
1 0

0 1

�

2
�
1.588 × 10−1 þ ð1.664 × 10−1Þi −2.647 × 10−2 − 1.002i

−2.619 × 10−2 − 1.002i 1.586 × 10−1 þ ð1.659 × 10−1Þi
�

3
�
1.585 × 10−1 þ ð1.661 × 10−1Þi −9.354 × 10−1 þ ð3.588 × 10−1Þi
9.531 × 10−1 þ ð3.092 × 10−1Þi 1.585 × 10−1 þ ð1.665 × 10−1Þi

�

4
�

1.37 × 10−1 − ð6.516 × 10−1Þi 4.81 × 10−1 þ ð3.213 × 10−1Þi
−4.634 × 10−1 þ ð3.462 × 10−1Þi 1.798 × 10−1 þ ð9.842 × 10−1Þi

�

5
�

1.798 × 10−1 þ ð9.84 × 10−1Þi 4.81 × 10−1 þ ð3.214 × 10−1Þi
−4.635 × 10−1 þ ð3.463 × 10−1Þi 1.369 × 10−1 − ð6.516 × 10−1Þi

�

TABLE XXII. Values of zab at s2.

b

jzabi
a 1 2 3 4 5

1 � � � ð1; 1 − 0.00007656iÞ ð1;−0.3334þ 0.9427iÞ ð1;−0.1835 − 0.2595iÞ ð1;−1.816 − 2.569iÞ
2 ð1; 1 − 0.00007656iÞ � � � ð1; 1.044 − 0.4492iÞ ð1; 1.258þ 0.4235iÞ ð1; 0.6495þ 0.06107iÞ
3 ð1; 1.044 − 0.4492iÞ ð1; 0.8507 − 0.5636iÞ � � � ð1;−0.3736þ 1.486iÞ ð1;−0.01186þ 0.753iÞ
4 ð1; 1.258þ 0.4235iÞ ð1; 1.568þ 0.5511iÞ ð1;−0.3736þ 1.486iÞ � � � ð1;−0.113 − 0.04805iÞ
5 ð1;−1.816 − 2.569iÞ ð1; 0.6495þ 0.06107iÞ ð1;−0.01186þ 0.753iÞ ð1;−0.113 − 0.04805iÞ � � �

TABLE XXIII. Values of conjugate zab at s2.

b

hzabj
a 1 2 3 4 5

1 � � � ð1; 1.001 − 0.0006011iÞ ð1;−0.3335 − 0.9421iÞ ð1;−0.1832þ 0.2596iÞ ð1;−1.816þ 2.569iÞ
2 ð1; 1.001 − 0.0006011iÞ � � � ð1; 0.8086þ 0.3475iÞ ð1; 1.527 − 0.1443iÞ ð1; 0.7141 − 0.2405iÞ
3 ð1;−0.3335 − 0.9421iÞ ð1; 0.8086þ 0.3475iÞ � � � ð1;−0.0209 − 1.327iÞ ð1;−0.1588 − 0.6324iÞ
4 ð1;−0.1832þ 0.2596iÞ ð1; 1.527 − 0.1443iÞ ð1;−0.0209 − 1.327iÞ � � � ð1;−0.007496þ 0.1226iÞ
5 ð1;−1.816þ 2.569iÞ ð1; 0.7141 − 0.2405iÞ ð1;−0.1588 − 0.6324iÞ ð1;−0.007496þ 0.1226iÞ � � �
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APPENDIX B: THE SADDLE POINT X0

TABLE XXIV. The table of g0ab.

a

g0ab

b 6 4 2

1
�

0.9553 −0.2955i
−0.2955i 0.9553

� �
−0.3900þ 0.6198i −0.1417 − 0.6688i
0.1401 − 0.6650i −0.3888 − 0.6193i

� �
0.7052þ 0.04132i −0.1336 − 0.3004i
2.173 − 1.447i 0.3506 − 0.6723i

�

2
�
0.4515þ 0.5054i −1.042 − 0.4024i
0.4792 − 0.2790i 0.4896 − 0.3313i

� �
0.1784 − 0.6465i 0.4982 − 0.5489i
−0.4970 − 0.5489i 0.1799þ 0.6483i

� � � �

3
�

0.8343 − 0.1999i 0.6464þ 0.7435i
−0.3138þ 0.2731i 0.6888þ 0.09706i

� �
0.2856þ 0.1372i 0.1484 − 0.9387i
−0.1479 − 0.9346i 0.2869 − 0.1373i

� �
0.9553 −0.2955i
−0.2955i 0.9553

�

4
�
0.6724þ 0.06192i −0.2002 − 0.5181i
0.1395 − 0.5346i 1.030 − 0.04314i

� � � � �
1.2080þ 0.2345i 0.8229 − 0.2524i
−1.094þ 0.1394i 0.1679þ 0.2911i

�

5
�

0.1820 − 0.2099i 0.08676 − 1.274i
−0.01552 − 0.7019i 0.3588þ 0.1879i

� �
0.9553 −0.2955i
−0.2955i 0.9553

� �
0.7194 − 0.2650i −0.1255 − 0.06036i
0.7314þ 2.2003i 1.419þ 0.07753i

�

6 � � � �
0.4773 − 0.06975i 0.2255 − 0.8464i
−0.2249 − 0.8453i 0.4797þ 0.06956i

� �
2.096 − 0.2671i −0.3216 − 0.5575i
0.6308þ 0.1225i 0.4297 − 0.1318i

�

TABLE XXV. The table of z06ab.

b

z06ab
a 1 2 3 4 5

1 � � � ð1;−1.615þ 1.503iÞ ð1;−0.2227 − 0.5883iÞ ð1;−0.3093iÞ ð1;−0.1173 − 0.02850iÞ
2 ð1;−1.615þ 1.503iÞ � � � ð1; 0.5763 − 0.03732iÞ ð1; 0.5401 − 0.2764iÞ ð1; 0.7037 − 0.4995iÞ
3 ð1;−0.2227 − 0.5883iÞ ð1; 0.5763 − 0.03732iÞ � � � ð1; 0.3919þ 0.4517iÞ ð1;−0.03505þ 0.2601iÞ
4 ð1;−0.3093iÞ ð1; 0.5401 − 0.2764iÞ ð1; 0.3919þ 0.4517iÞ � � � ð1;−0.1737þ 0.1311iÞ
5 ð1;−0.1173 − 0.02850iÞ ð1; 0.7037 − 0.4995iÞ ð1;−0.03505þ 0.2601iÞ ð1;−0.1737þ 0.1311iÞ � � �

TABLE XXVI. The table of z04ab.

b

z04ab
a 1 2 3 5 6

1 � � � ð1;−0.1445þ 0.9792iÞ ð1;−0.2163þ 0.5057iÞ ð1; 0.3001 − 0.5271iÞ ð1; 0.7687 − 0.7459iÞ
2 ð1;−0.1445þ 0.9792iÞ � � � ð1;−0.2137þ 0.1556iÞ ð1; 0.3251 − 0.1581iÞ ð1; 0.9837þ 0.4936iÞ
3 ð1;−0.2163þ 0.5057iÞ ð1;−0.2137þ 0.1556iÞ � � � ð1; 0.05290þ 0.003738iÞ ð1; 0.09562þ 0.3193iÞ
5 ð1; 0.3001 − 0.5271iÞ ð1; 0.3251 − 0.1581iÞ ð1; 0.05290þ 0.003738iÞ � � � ð1;−0.3093iÞ
6 ð1; 0.7687 − 0.7459iÞ ð1; 0.9837þ 0.4936iÞ ð1; 0.09562þ 0.3193iÞ ð1;−0.3093iÞ � � �
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APPENDIX C: PARITY FLIPPING

In Sec. VI, g64, g42, and g26 are parametrized as in (35).
Considering a parity flip at 4-simplex 6, the saddle point
values of g64 and g46 are ðg0†64Þ−1 and g046. In fact, there is no
upper triangular matrix T, such that g064T ¼ ðg0†64Þ−1. But
the parametrization used in Sec. VI is still compatible with
the parity flipping. By SU(2) gauge, g64 ¼ ðg0†64Þ−1, g46 ¼
g046 is equivalent to g64 ¼ ðg0†64Þ−1U, g46 ¼ g046U, where
U ∈ SUð2Þ. One can always find a upper triangular matrix
T such that g064T ¼ ðg0†64Þ−1U. Thus, the parity flipped
saddle point with g64 ¼ ðg0†64Þ−1U, g46 ¼ g046U can be
expressed in our parametrization. Explicitly, solving the
equation

ðg0†64g064Þ−1 · ððg0†64g064Þ−1Þ† ¼ T · T†

results in T, and

U ¼ g0†64g
0
64T:

The parity flip on 4-simplex 4 or on 4-simplex 2 can be
treated similarly.

APPENDIX D: GELMAN-RUBIN DIAGNOSTIC

Gelman-Rubin diagnostic (GRD) [82–84] is a general
approach to monitor the convergence of the Markov chain
Monte Carlo. GRD tests the convergence by comparing the
variances of different chains with the variances within
chains. Large differences between these variances indicates
nonconvergence. GRD can qualify whether the choice of
the initial point largely affects the Markov chain with
certain length or not. GRD monitors whether a Markov
chain converges to a target posterior distribution because
the Markov chain should forget where it starts once it
converges. GRD is a very important diagnostic for MCMC
in high-dimensional cases. When the high-dimensional
target distribution is multimodal, the Markov chain is easy
to be trapped around one local extremum of the distribution
and may cause large error in most cases. Doing GRD on
Markov chains initiated from different regions effectively

show that whether these Markov chains have covered the
entire sampling space.
The diagnostic can be done by runningMMarkov chains

in parallel. Suppose we do GRD when the length of each
chain is N. For a parameter θ, denote fθmtgNt ¼ 1 as the
value of θ in the mth chain. Denote θ̂m, σ̂2m, and θ̂
respectively as the mean of θ in the mth chain, the variance
of θ in the mth chain, and the overall mean of θ among all
the chains. The between-chains variance B and within-
chain variance W are given by

B
N

¼ 1

M − 1

XM
m¼1

ðθ̂m − θ̂Þ2; ðD1Þ

W ¼ 1

MðN − 1Þ
XM
m¼1

XN
t¼1

ðθmt − θ̂mÞ2: ðD2Þ

The pooled posterior variance yields

V̂ ¼ N − 1

N
W þM þ 1

MN
B: ðD3Þ

In [82,83], the potential scale reduction factor is defined by

R̂ ¼ V̂
W

; ðD4Þ

which compares the between-chains variance with the
within-chain variance. If the Markov chains converge to
the target distribution, then all the parameters θ should have
their R̂ close to one. Once the Markov chains converge, the
sampling procedure can stop.

APPENDIX E: BENCHMARKS OF THE
PINPOINT FINDER

In our saddle-point finder, the coarse finder roughly
locates the saddle points. Therefore, the points fed to the
pinpoint finder are close to the saddle points. In the region
close to the saddle point, the action can be approximated by
quadratic functions. As such, we use the quadratic function
−ðx⃗ · x⃗Þ to test the performance of our pinpoint finder.

TABLE XXVII. The table of z02ab.

b

z02ab
a 1 3 4 5 6

1 � � � ð1;−2.928þ 2.087iÞ ð1;−3.280þ 2.139iÞ ð1;−3.498þ 1.795iÞ ð1;−2.962þ 1.585iÞ
3 ð1;−2.928þ 2.087iÞ � � � ð1;−1.442þ 1.530iÞ ð1;−0.5935þ 1.644iÞ ð1; 0.6318þ 3.250iÞ
4 ð1;−3.280þ 2.139iÞ ð1;−1.442þ 1.530iÞ � � � ð1;−0.5022þ 1.623iÞ ð1; 1.268þ 3.028iÞ
5 ð1;−3.498þ 1.795iÞ ð1;−0.5935þ 1.644iÞ ð1;−0.5022þ 1.623iÞ � � � ð1; 2.085þ 3.439iÞ
6 ð1;−2.962þ 1.585iÞ ð1; 0.6318þ 3.250iÞ ð1; 1.268þ 3.028iÞ ð1; 2.085þ 3.439Þ � � �
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To benchmark the pinpoint finder’s performance in
different dimensions, we run the pinpoint finder in 5,
10, 30, 50, 100, 500, and 1000 dimensional cases and
measure the time for finding the saddle points with a
numerical error less than 10−10 in the gradient of the action.
The distances between the initial points and the saddle
points are set to be 1. The results are shown in the
Table XXVIII. The relation of the time versus the dimen-
sion is fitted as a second order function:

time ¼ 32.5 − 0.316 × dimþ 0.00413 × dim2;

and shown in Fig. 5. This result shows that the time
complexity for the pinpoint finder is in Oðn2Þ in n-
dimensional cases. We also test how the distance between

the initial points and the saddle points affects the time
cost. In 10- and 50-dimensional cases, we test the pinpoint
finder with different distances between the initial points
and the saddle points. The results are shown in
Table XXIX. From the results, we see that the number
of steps is independent of the dimension. The logarithmic
relation between the number of steps and the distance
from the initial points to the saddle points is shown
in Fig. 6.
These benchmarks show that our pinpoint finder is a

polynomial algorithm. By Cobham’s thesis [85], this
algorithm is quick to solve in different dimensional cases.
One thing to remark is that our pinpoint finder computes
the components of Hessians and gradients in sequence. The
finder would be faster than Oðn2Þ, if one computes these
components in parallel.

FIG. 5. The relation between the time costs and the dimensions.

TABLE XXVIII. The results of the benchmark.

Dimension 5 10 30 50 100 500 1000

Number of steps 227 227 227 227 227 227 227
Total time (seconds) 4.05 8.76 24.6 41.8 92.1 888 3852

TABLE XXIX. The results of the benchmark with respect to the initial distances.

Distances 1 5 10 20 50

Number of steps (10-dim) 227 242 248 255 264
Number of steps (50-dim) 227 242 248 255 264
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