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We explore nonrelativistic limits of AV = 1 quiver gauge theories in 5d. The stringy counterpart of these
Super Conformal Field Theories (SCFTs) is characterized by torsional string Newton-Cartan (TSNC)
sigma models which are defined over non-Lorentzian manifolds. We further show that under transverse T
duality, these TSNC sigma models are mapped into another new class of nonrelativistic sigma models
which are defined over a T-dual TSNC background. Considering nonrelativistic limits of various field
theory observables in a holographic setup, we further estimate corresponding entities in the TSNC limit of
N =1 quivers. We carry out a parallel analysis on holomorphic functions and the associated pole
structures in the nonrelativistic limit of (p, g) five brane webs. In particular, we investigate the generic
structure of various loop operators in a nonrelativistic setup and explore their properties under S duality.
Finally, we comment on the large ¢ limit of Ramond-Ramond (RR) fields and discuss the associated
S-duality transformation rules in the nonrelativistic limit of A" = 1 quivers.
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I. INTRODUCTION AND SUMMARY

A. Introduction and the general idea of this paper

Nonrelativistic string theory [1,2] plays a pivotal role in
understanding the nonrelativistic limits of classical gravity
[3-5] as well as the limits of gauge/string duality [6-11].
Besides, it opens up a window for a profound under-
standing of the quantum gravity in its nonrelativistic
limits [12,13].

Recently, there has been significant progress in under-
standing the nonrelativistic target space geometries for the
Neveu-Schwarz (NS)-NS sector of the closed bosonic
strings [14,15]. These backgrounds, which we term the
torsional string Newton-Cartan (TSNC) backgrounds, are
characterized by the following set of data [14]:

Tﬁ; h,uv = eﬁelljéah; my, = nABTﬁ/Tﬁ + éabe[ﬂ;ﬂf] ’ (1 )
where (A =0, 1) are cloak one forms associated with
TSNC target space, h,, is the metric of the transverse space
and m,, is the two form that couples with the tension
current.

The transverse gauge fields #j(a =2,....,d —1) are

what we identify as the key elements of the TSNC (or
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the nonrelativistic geometric) dataset. These characterize
the transverse B, field of the nonrelativistic target space.
At the level of the algebra, they introduce an additional
global charge @, that results in an F-string Galilei
algebra [14].

One of the prime motivations of the present analysis is to
understand these nonrelativistic geometric data from the
perspective of the gauge/string correspondence. There
exists a plethora of examples of holographic dualities
which go beyond the celebrated correspondence between
type IIB superstrings in AdSs x $°> and N' =4 SYM in
4d [16]. It is therefore natural to ask how to take a
consistent nonrelativistic limit in any of these examples
and how could one make sense of the holographic
correspondence in these (TSNC) limits.

The purpose of this paper is to shed light on some of
these issues and set the stage for a deeper understanding
on nonrelativistic holography going beyond the standard
Maldacena conjecture [16]. To address these issues, we
take the specific example of N = 1 dualities which relate
type IIB string theory in AdSg x S x %) and N =1
Super Conformal Field Theories (SCFTs) [17] in 5d.

The present paper heavily relies on the two parallel
holographic descriptions of A" =1 quivers in 5d: (i) the
D’Hoker-Gutperle-Karch-Uhlemann (DGKU) solution
which was originally developed by the authors of
[18-21] and subsequently extended in [22-27] and (ii) the
electrostatic description introduced by the authors of [28]
and subsequently explored in [29] in the context of classical
integrability.
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The DGKU solution [18-21] was originally proposed
as a warped product of AdSq x S? over the 2d Riemann
surface parametrized by a set of complex coordinates. The
full type IIB solution is characterized in terms of a pair of
locally holomorphic functions [A. ()] defined over the 2d
Riemann surface. The poles associated with the differential
of these holomorphic functions correspond to the locations
of the (p, g) five branes along the real line when the
Riemann surface is considered to be the upper half of the
complex plane. The charges associated with the five brane
web is given by the residues at these poles.

The electrostatic approach of [28], on the other hand,
considers an intersection of NS5-D5-D7 brane configura-
tion in 10d. The NS5 branes are placed at discrete locations
along the holographic (#) axis while the color D5 branes are
stretched in between them. The flavor nodes of the quiver
are sourced due to D7 branes.

The spacing between these NS5 branes is what measures
the strength of the coupling between the hypermultiplets
and the vector multiplets of the dual SCFTs. As our
analysis reveals, in the strict nonrelativistic limit, these
NS5 branes are pushed on top of each other which results in
a strongly coupled description for the dual quiver in its
nonrelativistic limit.

In spite of these developments, some key issues are yet to
be addressed. These are precisely the questions in the sense
of the TSNC limits which are alluded to the above. The
present paper discusses the physical consequences in these
limits and how one could make sense of it in the context of
the gauge/string duality. To be more precise, below we pose
some of the key questions which motivate the present
analysis of the paper.

(1) It is utmost important to understand whether
and how the two seemingly different approaches
([18-21,28]) to 5d N =1 quivers can lead to
identical physical phenomena in their respective
nonrelativistic limits. For example, whether one
can still identify the (p, ¢g) brane web as a pole
associated with the differential of the holomorphic
function in the large ¢ limit. This must get translated
into an equivalent picture of five brane web while
considering a large ¢ limit of Hanany-Witten like
brane setup as discussed in [28].

(i) What is the NS5-D5-D7 brane setup and the
associated Page charges in the TSNC limit of the
type IIB background? These numbers must agree to
those obtained in the nonrelativistic limit and using a
holomorphic function approach of [18-21].

(iii) What does happen to the various physical observ-
ables (for example the central charge, couplings,
Wilson loops etc.) associated with the dual QFT in
its TSNC limit?

(iv) What is the fate of S-duality transformation rules in
the nonrelativistic limits of N' = 1 super-conformal
quivers?

We wish to gain some insights into these issues using the
nonrelativistic stringy counterpart of the correspondence.
These nonrelativistic sigma models, as we show, could be
systematically obtained taking a TSNC limit of type IIB
AdSg x §% x Z5) background.

Before, we move on to the summary of results, it is
customary to outline a few steps which realize these TSNC
backgrounds as a solution of type IIB supergravity equa-
tions of motion in the nonrelativistic limit." This goes
precisely along the line of [4]. Since, we have the TSNC
data available only for the NS-NS sector of the full type IIB
supergravity solutions, therefore following the discussion
below, one could imagine taking a large ¢ limit of the
equations of motion in the NS sector only.

TSNC limit corresponds to an expansion of the back-
ground fields of the form

_ 2pArB b.
g;w =cC EuEu Nag + 6abe;ew

By, = napEIL + Sapef, ). (2)
where we define [14]
I} = egth +—m (3)

as the longitudinal component of the background 7, gauge
fields.
On the other hand,

Ef =1} + —rbe) (4)

are the longitudinal components of the background viel-
beins of the relativistic spacetime.

Using (2)—(4), one could expand the curvature two form
(R) and the NS-NS three form (H®)) in the large ¢ limit.
Upon substituting back these into the type IIB action, one
ends up in a large ¢ expansion of the action [4]. The
equations of motion for TSNC data are readily obtained by

varying the zeroth order (finite) action S(©).

'For the purpose of the present paper, we focus only on the NS
sector of the type IIB solution. The primary reason for this stems
from the fact that our current understanding of the F- string
Galilei generators and the associated gauge fields (which we
identify as the TSNC data in this paper) is limited only to the NS
sector [14]. The inclusion of the Ramond-Ramond (RR) sector
would require further understanding on the F- string Galilei
algebra for its full supersymmetric generalization which is
beyond the scope of the present analysis. In other words, the
supersymmetric extension of the F- string Galilei algebra would
require a geometric realization for the RR sector which would
give rise to an additional set of RR generators and the associated
gauge fields. These gauge fields would certainly add to the
existing set of TSNC data thereby making it a supersymmetric
background endowed with nonrelativistic symmetries.
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B. Summary of results

Below, we summarize the key findings of the present
paper. In the first place, we list those results/observations
considering the electrostatic description [28] of N =1
quivers.

(i) The TSNC scaling results in a picture of collapsing

branes at the origin of the holographic (1) axis [see
Fig. 2(a)]. This has an effect in producing a metric
singularity near the origin (¢ ~ 0,  ~ 0) of the (o, 7)
plane which also gets reflected in the corresponding
TSNC data. In the holomorphic language of [18-21],
this is precisely translated into the picture of collaps-
ing five brane web at the zero pole in the com-
plex plane.

(i) We calculate the number of NS5 branes as well as
the color D5 branes in the TSNC limit of N' =1
quivers. These numbers, which are also called the
Page charges, precisely match our expectations
while calculating the residues (using the holomor-
phic functions of [27]) at the zero pole of the
nonrelativistic (p, ¢) five brane web. It turns out
that in both descriptions, the total number of branes
is conserved while taking the large ¢ — oo limit.

(iii) Transverse T duality allows us to map these TSNC
sigma models to another class of nonrelativistic
sigma models [6] which are propagating over the
T-dual TSNC manifold. We identify these T-duality
rules and explicitly work them out taking specific
example(s).

(iv) A further analysis on the QFT observables in the
TSNC limit reveals a number of interesting facts.
For example, the central charge in the nonrelativistic
limit of N' = 1 quivers goes with different powers of
the number of the NS5 branes,

NZP3
6"}’ ~ { 2 D2
N2P

(Ty,_p quiver) 5)

(+p.n, quiver),

where P = Qs is the number of NS5 branes in the
nonrelativistic limit.

(v) The coupling between the tensor multiplet and the
vector multiplets grows strong in the strict large ¢
limit, namely, g, ~ ¢* — oo. This indicates the
onset of a strongly coupled dynamics in the non-
relativistic limit of ' = 1 quivers. We identify this
strong coupling behavior as an artifact of the
collapsing NS5 branes in the nonrelativistic limit.

In Sec. V, we revisit the nonrelativistic limits of N’ =1

quivers using the language of the locally holomorphic
functions [A. (w)] [18-21]. We consider both the examples
of balanced (Ty, and +y_j) as well as unbalanced
(Yy, and Xy ) quivers.

(i) In the case of balanced (T'y_ and +y_y) quivers, we
show that the differential of the holomorphic function
[0,,A ] exhibits a zero pole in the nonrelativistic limit
of the supergravity solutions. The pole essentially
corresponds to the origin of the complex coordinate
system associated with the 2d Riemann surface (£,))
and is lying along the real line when considering X5,
to be the upper half plane.

The existence of such a zero pole corresponds to a
description of a collapsing (p, g) five brane web in the
nonrelativistic limit of the A” = 1 quiver. We further show
that the S? (of the internal space) shrinks to zero along the
boundary of the 2d Riemann surface and ensures the
geodesic completeness [20] of the TSNC background.

(i) The primary question that we address concerns the
fate of the S-duality transformation rules in the
nonrelativistic (¢ — oo) limit. In what follows,
we compute various (p,q) loop operators in the
nonrelativistic limit and study their properties
under S-duality transformations. We show that the
S-duality transforms (p, g) string charges in such a
way that (1,0) and (0,1) states are precisely ex-
changed in the dual description.

(i) We further compute antisymmetric Wilson loops
using D3 brane embeddings and subsequently con-
sider their nonrelativistic limits. We show that in the
nonrelativistic limits of the (p, g) five brane web, the
expectation values for these Wilson loops [at any
point (@) of the upper half plane] turn out to
be (W(2))]emeo = 1= O(c™).

These results also agree with the results which were
obtained using the electrostatic description of A =1
quivers. We further estimate the associated F1 and DI
charges of the nonrelativistic D3 branes which are embedded
at any point (@) of the complex upper half plane and derive
an identity analogous to those obtained previously in [24].

(1) In Secs. VD and V E, we present an algorithm in
order to obtain nonrelativistic limits of unbalanced
(Yy, and Xy ) quivers. Like in the case of balanced
quivers, we identify a zero pole structure (at the
origin of the complex coordinate system) associated
with the derivatives of these holomorphic functions.
We also discuss (p, ¢g) loop operators in the non-
relativistic limits of unbalanced quivers and study
their properties under S duality.

We draw our conclusion in Sec. VI and outline some
possible future directions.

In Appendix A, we consider large ¢ limits of background
RR fluxes and the dilaton of the NS sector. We show that,
under an S duality, these solutions can be mapped into
those of the nonrelativistic background solutions of [30].
We also discuss the nonrelativistic limits of matching
solutions [28] which map the electrostatic variables into
the DGKU solution [18].
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II. ELECTROSTATIC DESCRIPTION
AND TSNC LIMIT

A. N =1 backgrounds

N =1 quiver gauge theories in 5d have their dual
description in terms of type IIB supergravity with an
AdSg factor. The full 10d solution is expressed as a warped
product of the form AdSg x 2 x 25). Here, X5) is a two-
dimensional Riemann surface parametrized by complex
coordinates [18-21].

In the original construction of the duality [18-21], the
warped factors of both AdS, and S? are expressed in terms
of locally holomorphic functions of X, which we identify
here as the DGKU solution. As we progress, along the way,
we outline the roadmap to obtain the TSNC data corre-
sponding to these solutions using the map of [28].

The first part of the analysis is heavily based on the
electrostatic viewpoint of N' = 1 SCFTs as elaborated by the
authors of [28]. The 10d background contains an AdSg factor
together with in internal manifold (M) that comprises an 5>
preserving the SU(2), symmetry of the dual SCFTs.

In the electrostatic description, one expresses the
type IIB background in terms of a potential function
V(o,n) that satisfies Laplace’s equation,

0,(6%0,V) + c%0;V =0, (6)
with appropriate boundary conditions [28]

V(e = to0.n)=0; R(n=0)=0=R(n="r), (7)

where R(n) is called the rank function that classifies
different classes of quivers.” Here, the modified potential

function V = oV (that actually solves the Laplace’s equa-
tion) is subjected to the boundary conditions of the
following form:

V(e.n=0)=0=V(o,n=P), (8)
where 7 is called the holographic direction whose range is
bounded between O and P.

Using the string frame, the type IIB background could be
formally expressed as [28]

dsiip = f1(o, n)dSZAdS(, + dsivu ©)

= filo,n)dsigs, + f2(n.0)dQ (1. &)
+ f3(n. 0)(do” + dip?), (10)

*Given the electrostatic description, one can imagine a charge
distribution R (77) [28] between the conducting plates located at
n=0and n=P.

By = f4(o.n)sinydy A dé;

C, = fs(o,n)sinydy A dé, (11)
e — fﬁ(d, 7’]); CO = f7(01 'l)’ (12)
C3n( L, 3VN'Y2 . R@vV Qv
f1—2<0’ +a§v> s =l BEhngg
(13)

2 A
P 1% 5
fSZE V—X(GWV(Q,@"V)—SG,?V()GV) N (14)
_ 120V3VA f—a(ava 3Va,0,V
© " B0,V+aoazv)r T\ T (30,V +6d2V))
(15)
1. . .
A=—Q2V-V)aV +6(0,0,V)% V(e,n) = 0d,V.
(o2
(16)

The corresponding Hanany-Witten setup consists of an
intersection of NS5-D5-D7 branes in 10d. The NS5 branes
are placed along the holographic # axis at discrete locations
(n;) while the color D5 branes are extended between them.
The completion of the ' = 1 quiver is achieved by placing
flavor D7 branes at n = P — 1 (see Fig. 1).

B. Ty_p quivers

To start with, we first construct the nonrelativistic limit
of Ty_p quivers which is closed by placing flavor branes at
n=P—1[28] (see Fig. 1).

The corresponding rank function is given by

Nn
N(P=1)(P-n)

<(P-1)

0<py
R = { PSRN

Expanding the potential V(c,7) in the limit of small ¢
and large P we find [29]

nNPlog2 an(n* + 1)N. onN,

V(e ~0,n)~
(0~ 0.1) 7 24P 2
2
anoc°N, 3
. 1
+ T +O(c”) (18)
On the other hand, an expansion in the limit of large o
reveals
. PN, . . :
V(e - o0,n) ~ poo e~ sin (%) sin <”?:7> (19)

046010-4



HOLOGRAPHIC DUALS OF N = 1 QUIVERS ... PHYS. REV. D 107, 046010 (2023)

(@) Hanany-Witten set up

b) Z(n) vs n plot
A
D7
4 R(n)
........ D5 | ps:
> > 1
NSS 7 P—1 P
NS5
n=P-1 n=~p

FIG. 1. (a) NS5-D5-D7 brane intersections for Ty _p quivers in the electrostatic description of N =1 SCFTs in 5d. (b) The
corresponding rank function/charge density R(n) is plotted against the holographic # axis. The rank function increases linearly
exhibiting a “kink” at the location of the flavor D7 branes.

However, to carry out our analysis, we restrict ourselves in the region ¢ ~ 0 and consider’ (t,m) being the longitudinal
directions of the TSNC manifold [14]. The remaining directions of the internal manifold (M,) are being considered as the
transverse coordinates.

The corresponding metric components read as

7 12P?log2 1
filo~ 0n>~—\/'—— + = o), (20)
Fo(o~ o) ~ 27 (24P log2 — (i + 1))3/?) (1)
V22 (9 + 1211 — 1) = 576P*1og?2 + 487%(1 — 612)P*log 2)’
|
(=% g=7 e=§  g=%. ()
371'2 — b n UK - o X = c
NN e a— —_0(e). () S
\/ [48P*log2 —27°(n* +1)| Using (23), we find longitudinal vielbeins as’
5 37 6P%log2
Yt = cEVdr = +-o|dt. (24
1. Decoding the vielbeins “ a ¢ 2\/5( ncty? (24)
We are now in a position to decode the NR data . .
{rﬁ,hij,ﬂf.‘} which we collectively call the TSNC data Comparing (24) with [14]
[14] associated with the non-Lorentzian manifold.* Given £O — 40 R 25)
this set of data, one can next write down the corresponding Ay R (
i del L ian that i lativistic with refer-
Zlch:atomt(l)leet ar;egtrzgiéin 4 15 MONrEtativistic with Teter we find the corresponding TSNC data as
To obtain the TSNC data, we propose NR scaling of the 3
following form: =, |2 zl =0. 26
1 2\/—’ t ( )
iThe rest of th.e directions of Adsﬁ a.re being freezed. On a similar note, we find
As our analysis reveals, the longitudinal 7 (A = 0,1) gauge
fields are identically zero for warped AdSg x S? background . 3x 6P*log2
considered in this paper. Following the redefinition of [14], the e,17d11 = cE},dn:W ( — a5+ ) (27)
above feature clearly reflects the absence of the Z, symmetry [4] (27°) / \/77 e'n

at the level of the TSNC sigma models which are discussed in this
paper. This is an artifact of the nonexistence of the foliation/zero

torsion constraint [4,14] for TSNC backgrounds which are
obtained as a limit of the type IIB supergravity solutions.

>We remove tildes for simplicity which has been followed for
the rest of the analysis.
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which therefore yields

1 3z

To obtain the transverse vielbeins (eﬁ,a =2, 3),
we notice

Ady= | lay = dy;, == 2L (29
Sdy N Y 33 (29)

T s — B3 e 3 |
3\/5)(42'5 ezdg; = e; 3\/7*(, (30)

where we take into account the Im+/f, while decoding the
vielbeins.

The remaining TSNC data is obtained by looking
into the transverse B, field and its NR reduction. A
straightforward computation of the metric component

eldé =

falo~0,10)|psy ~ % [29] reveals the following com-
bination of the vielbein and the z fields [14]:

33
wRy _Ls s 53\ mny
By _E(elﬂ‘f_e‘fﬂx)_2leog2’ (31)

which is subjected to the scaling P — ¢?P in accordance to
that with the scaling of the holographic 5 axis (23).

2. Sigma model and its symmetries

Given the above set of TSNC data (26)—(31), we are now
in a position to write down the corresponding NR sigma
model action [14]:

SIVR) — _ VANR j;VR / oLy, (32)

where the corresponding NR Lagrangian density is
defined as®

®For the purpose of this paper, we restrict ourselves only to the
NS-NS sector of the full supergravity solution. The reason behind
this stems from the fact that the TSNC data corresponding to the
RR sector is not yet settled down. Therefore a priori the NR limit
(those have been obtained in Appendix A) of the RR sector is not
clear from the perspective of the geometric data in the NR sector. A
complete understanding of these TSNC data would lead towards a
supersymmetric generalization of the F-string Galilean algebra.
However, as an interesting fact, we wish to point out that one can
still calculate the number of (p, g) five branes (for the non-
relativistic theory) starting from the basic definition of Page
charges as in a relativistic setup and thereby taking a ¢ — oo
limit of that (see Secs. I B4 and II C 3). In other words, without
knowing the explicit TSNC data for the RR sector, one can still
figure out the five brane configuration in a nonrelativistic setup
following simple scaling arguments along the holographic (1) axis.

LYR = =y el 0, X1 0pX" 5,
+ nap(thml — Tﬁ”ﬁ)X"X’”
+ S (eiml — efnb) XM X" + e el vt dpX"
+ CePeg,05X0. (33)

Here, we introduce ¢ and ¢ as world-sheet scalars
together with e; = e} + e} and 7; = 7|, £ 7. The above
Lagrangian (33) can be further simplified by choosing
the conformal gauge dety,; = —1 for the world-sheet
vielbeins.

The resulting Lagrangian density turns out to be

(NR)

LR h;j0,X'0sX 0 + e B 0,X 05X
— (£ = E)(9X" — 7lx'h), (34)
NR a . . .

where X# characterize the longitudinal directions together
with the transverse metrics as

oy

hee =3 5 (36)

hy, =—";
AP
Symmetries.—The Lagrangian (34) has a SO(1, 1) boost

symmetry generated by K, associated with the longi-
tudinal directions X* =1, X! = :

a __ AD .
oty = Aﬂrﬁ,

SXP = A’;X”, (37)
where we identify the matrices A € SO(1,1).

On the other hand, associated with the transverse
X'(= yx, &) directions, one can imagine a SO(2) C SU(2),
rotational invariance of the form

X' = AixV, (38)

where the matrices are identified as 4 € SO(2). These
rotations can be associated with angular momentum gener-
ators of the form L;;.

On top of these, the sigma model possesses translation
symmetries 0 = &, and 6t = 1. These two directions are
what we identify as the isometries associated with the non-
Lorentzian target space.

The translation along & is generated by the transverse
translation generators P; = 62P3 and the time translation
is generated by nonrelativistic world-sheet Hamiltonian
H, = 1H,. A closer look further reveals that, under string

Galilean boost [14], both the variations &h;; = 0 = 6B{} ©
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which stems from the fact that the longitudinal one
form 7 = 0.

3. Laplace equation and the rank function

The Laplace equation in the electrostatic description [28]
is given by

RV + a2V =0. (39)
The associated rank function turns out to be [28]
R(1) = 0,V|,—0 = *R(7), (40)

where the rank function in the NR limit is identified as

B
=
()

<< 3
R@=42 ST e
TC(P_l)(_z—ﬂ) — N5

¢ —

In the NR limit, one defines a modified boundary
conditions for the rank function

~ ~ [ P
R(”]min = 0) =0= 72<7/]max = ?) > (42)

where C% is the new location of the conducting plane that
was initially at a location n = P.

4. Brane setup and Page charges

We now discuss the effect of NR scaling on NS5-D5-D7
brane configuration. In order to explore the brane setup, it is
customary first to estimate the Page charges in the NR limit.

Let us first estimate the Page charge associated to NS5
branes:

1
=— [ Hj;
Onss . / 3

Considering the NR scaling (23), this finally leads to

Hy = 0,f4dn A Vol($?).  (43)

~ 1 P/c? 5 B cr 2 .
Onss =z [ divgflo=xoo.i) [ "z [
:%(f4(0:i°°,’~1:P/C2)—f4(6:i00,f720)).
(44)

Estimating the metric function f, both at ¢ = *o0,
finally leads to

Onss = P. (45)

Modulo an overall scaling (~ ”72) which may be absorbed
in the definition of Qygs, the above relation (45) simply

(@) NS5 branes in NR limit (b) Electrostatics in NR limit

—
.
> 1 n
L 1
P NS5 - 0 P -

P
3

FIG. 2. (a) NS5 brane configuration in the TSNC limit. P NS5
branes are localized near the origin # ~ 0 of the holographic axis
as a result of TSNC scaling (23). (b) The conducting plates of
electrostatic description [28] are now closely spaced as a result of
TSNC scaling (23).

ensures the conservation of NS5 brane charge in the TSNC
limit. However, the location of these NS5 branes is now
rescaled/shifted by a factor of 1/c? which we identify as an
artifact of the TSNC scaling (23).

To summarize, therefore in the strict TSNC (¢ — o0)
limit, all these P NS5 branes are eventually put on top of
each other near the origin (y ~ 0) of the holographic axis
causing a singularity there (see Fig. 2). This effect is
precisely reflected as a singularity in the one form 1,17 (28) in
the limit, n — 0.

For D7 branes, we have the following expression for the
Page charge (following a proper rescaling) in the relativistic
setup [28]:

Op7 = R'(0) = R'(P) = N.P. (46)

Using (40) (and following a suitable rescaling), one can
show that in the TSNC limit, R/ (i) = R'(7;) which there-
fore leads towards the conservation of D7 brane charge
as follows:

Op7 = R'(0) = R'(P/c?) = NP (47)

Finally, we note the D5 brane charge and its NR limit.
In the type IIB description, for an interval 5 € [k, k + 1],
one finds the D5 brane charge goes as [28]

Qoslk K-+ 1] = (R(r) = Ri(n)n = K)).  (48)

Using (41), we finally note the following scaling relation
in the TSNC limit:

P P/ 0
0ps = [ Rlnan= [ R =52 @)
0 0 4
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where Qps = %P(P — 1) counts the number of color D5
branes in the nonrelativistic limit. One should think of (49)

as a simple nonrelativistic scaling relation of the form

Ops — % where the total number of D5 branes is

preserved in the nonrelativistic limit.

Let us try to understand the C% factor sitting in front

in (49). As a result of nonrelativistic scaling, the NS5

branes are now all shifted by a factor of '67—5 along the

holographic (1) axis which produces a factor of % On top

of this, the quiver appears with a single kink which

corresponds to a (positive) slope [see Fig. 1(b)]. It is this
1

slope that produces an additional factor of  while

integrating the rank function along the holographic axis.

5. TSNC scaling at special points

As a final remark, we wish to explore the properties
of the metric functions and their NR scaling in the large
6 =A — *oo limit. Using the potential function (19),
below we enumerate the metric functions in the large o
limit:

Filo~Ap~0) = i#—%%%— O(1/A),  (50)
falo~an~0) =S o(/n), (51
o~ An~0) =T rou/n). ()
f4(0~/\,77~0)—%+0(1//\). (53)

To obtain the corresponding TSNC data, we propose the
following NR scaling:

(@) Hanany-Witten set up

D7

cu@es O

@

()

. .
D5¢ ofeeeeccd D5 -
.

NS5

............
ceceeadenan
=V

n=1 n=P-1

FIG. 3.

SR

n=ci =& y=%. (54)

This leads to the following expressions for the longi-
tudinal as well as transverse vielbeins in the large ¢ - o
limit:

3zA 9P b3
O = £+ ; R 55
Tt ’ 2 + 4 TI] \/ﬁ ( )
T 3 Ty
e; = ——; e; — ——. 56
/2P ¢ V2P (56)
The NS-NS two form, on the other hand, turns out to be
_ p(NR). (NR) _ TY
By, =cB;, "; By, = 3P (57)

Clearly, as one can see, unlike in the previous example,
all the TSNC data are nonsingular in the limit 7 ~ 0. In
other words, the singularity at the origin of the (o,7)
coordinate system is not visible from a large distance along
the o axis.

C. +py, quivers

These quivers are of special interest because of their
richer structure as compared to the previous one. The
corresponding rank function [R(5)] is piecewise linear and
possesses a plateau as a consequence of the location of
flavor D7 branes at distinct locations along the holographic
axis (see Fig. 3).

The rank function in this case reads as [28,29]

Ny 0<n<l1
R() =4 N. 1<yp<(P-1) (58)
N(P-n) (P-1)<n<P,

(b) K1) vs 1 plot

v
=

(a) NS5-D5-D7 brane intersections for +y_p quivers. Flavor D7 branes are located at 7 =1 and n = P — 1 along the

holographic axis. (b) The corresponding rank function R(5) exhibits a plateau for 1 <np < P — 1.
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which corresponds to placing flavor D7 branes at# = 1 and
n= P —1 (see Fig. 3).

Clearly, the presence of flavor branes at distinct locations
modifies the geometry. As a result, we categorize the
background into three different regions which we list
below.

A careful analysis reveals that when expanded near
o ~ 0, the corresponding potential function ‘7(6, n) reads as

V(o,
EZ )’I) ~1n(6+4log?2) —4nlog<%> —2nlog|1 —»?|
b

r7+1

—1I (59)

—(1+f72—0)log

which turns out to be regular [29] across the location of the
flavor D7 branes at n = 1.

As mentioned above, we divide the entire range 0 <y < P
into the following three regions.

Region I—This region corresponds to the range
0 <5 < 1. The resulting metric functions read as

3 2
f1(6~0,n < 1)~2n” —’72—310g<;’)> +3+log8',

(60)
f2le~0,n<1)
_ mp* (—n* — 6log(%) + 6 + log(64))3/2
3(\/5('14 + 8772(10g(ﬁ) -1)- 4(log(#) — 1)2)) ’
(61)

f3(le~0,n<1)

3(n\/| —"2—2—310g(%)+3+10g8|>

~— . (62
n* + 6log(%) — 6(1 + log 2) (62)

Region I1.—This is the region which corresponds to
1-0<n<1+46 with § being very small. The corre-
sponding metric functions read as

3v/3
fl(aNo,,]NUNg”kc ’210g<;>—3, (63)
1
fao~Om~1)~gfilo~0m~1).  (64)

972 1
filo~ 0~ 1)~ == fri(o~0n~1),  (65)

where k. = ¢ is kept fixed in the limit § — 0.

Region Ill.—Finally, we consider the region 1 +6 <y <P
which corresponds to metric functions of the form’

N N3\/§” a(n)
fl(g 0”7 > 1) 2\/2 bl(”l), (66)
a(n)
falo~ 0> 1)~ 5705 (67)
as(n)
filo~0.7>1) N_bz(m' (68)

1. Decoding the vielbeins
We obtain TSNC data for two different regions of the
spacetime; namely, (i) 0 <# <1 and (ii)) | < < P. The
NR scaling is defined as

S

(=& x= (69)

For case (i), the resulting TSNC data turns out to be

- [
3\/55 3\/— k)
(70)

where we remove tildes for simplicity.
On the other hand, for case (ii), in the large ¢ limit of the
vielbeins one finds

7 1
cEY = ¢ 3\/57”7<1—|— —
242 4ijc

1
:c(r(t)—ﬁﬂ}), (71)
(210g(112— 1) —6—410g2+410g<;§>>.

(72)

0 37:77 3z

T, = \/_’7

K+ )

Kin) = ——
(n) 1og';_ii

A straightforward comparison reveals the following
longitudinal one forms:

90 = 3;f%Q %(1%;(?) +210g<%) —3>>’
(73)
xl =0. (74)

'See Appendix B for details.
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On a similar note, one finds

3\1/4 [z 1 5
1 0
:C<T}7—2—627T,~7>.

From (75), it trivially follows that

()" e(3)-2)
(76)
=0 (77)

Before proceeding further, let us first explore the
behavior of TSNC fields near # ~ 0. Like in the previous
example, we notice that T,% (70) becomes singular as one
approaches the origin of the holographic axis. This singu-
larity, like before, is an artifact of the collapsing NS5 branes
as a result of the NR scaling (69).

In the strict NR limit, the range 7 € [0, P] becomes
singular as a result of the 1/c? scaling. This corresponds to
the fact that the NS5 branes which were in the region # > 1
are now all collapsed at the singularity # ~ 0. This is
reflected as a singularity of the vielbein (76) in the
limit 77 — O.

Finally, we note transverse vielbeins which read as

, ﬂ’j E 1/4. s ﬂj % 1/4~
e)-(—\/2<2> ; ef_”2 5) X (78)

2. Laplace equation and the rank function

The associated charge density/rank function is defined
as [28]

R(n) = 1im(9,V(c = +e,n) — 9,V (6 = —e,7)).

e—0

(79)
A straightforward computation reveals
R . in(n—1
i> = Re(z((r]— 1)log (—%)
izn+1)
—(n+1)log ——p ) T2 +log4 (80)

which by virtue of the TSNC scaling (69) reveals the NR
charge density as

(i) vs ij plot

c2

FIG. 4. We plot the rank function against the rescaled holo-
graphic axis (77) in the TSNC limit of A" = 1 quivers. The red
lines show the modified rank function in the large ¢ limit while
the dotted lines correspond to the rank function in the relativistic
scenario. The rank function vanishes sharply at the end points
while exhibiting a plateau in the intermediate regime.

ﬁ@—MMm(ﬁ) (81)

P

Clearly, the charge density vanishes at the origin, namely
R(ijmin = 0) = 0. On the other hand, for the other end
point, we find R (7. ) = 47N, arg (— Liz) which also van-
ishes in the strict large ¢ — oo limit. Therefore, to sum-
marize, both boundary conditions are preserved in the
TSNC limit of N/ = 1 quivers.

On the other hand, in the intermediate region 0 < 7 < C%,

the rank function R(jj) exhibits a plateau region as in the
relativistic scenario (see Fig. 4). Combining these two
features together, we propose an alternative expression for
the rank function in the TSNC limit which reads as

. (N, L<p<
OB !

From Fig. 4, it is quite evident that the area under the
curve is much less as compared to its relativistic counter-
part. This clearly indicates a lower charge density in the
TSNC limit of the A" = 1 quivers.

We probe more on this in the next section, where we
compute Page charges and explore the associated NS5-D5-
D7 brane setup in the TSNC limit.

3. Brane setup and Page charges

We begin by computing the Page charge corresponding
to NS5 branes. To begin with, we first note the potential
function in the large ¢ — oo limit:
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N iN.P (nN_.log(%3) iN.o(log(%3)—1)
V(e = o0,n) ~— 1 —( ~ 2P 4 ”ZP
1 1. 5 1 ) 1 , 1. 3
X 5 —%m(fm —l—l)Nca—%m](n +1)NC+E7111NCO' +%mNca i (83)

Using (83) and considering the real part, one finally
obtains

2
=~ nci, (84)

f4(G: ioo’;])lc—wo 3

which by means of (44) reveals the NS5 brane Page charge
in the TSNC limit as

QNSS =P. (85)

Clearly, following a suitable rescaling, like in the
previous example, one precisely conserves the number
of (= P) NS5 branes in the TSNC limit. As we emphasized
before, in the large ¢ — oo limit, all these P NS5 branes are
pushed together near the origin of the holographic axis [see
Fig. 2(a)] creating a metric singularity there.

On a similar note, the Page charge corresponding to D7
branes turns out to be

QD7 = (7~?j<0) - ﬁl(ﬁmax)) =N, (86)

which corresponds to the N, flavor D7 branes localized at
71 = fimax = % (see Fig. 4).

Finally, we note the number of color D5 branes in the
TSNC limit,

Ops = % (87)

where Qs = N, (P — 1) is the number of color D5 branes
in the nonrelativistic limit. The above result simply follows
from the fact that there are (P — 1) N, color nodes whose
relative spacing is now rescaled by a factor of L]_Z as an
artifact of nonrelativistic scaling of the original positions
(n;) of NS5 branes along the holographic axis.

Notice that, unlike the previous example of single kink
quivers, here we have a factor of C% floating around. This is
simply because of the fact that the quiver is flat. In other
words, it is with zero slope and therefore does not produce
an additional factor of 1.

4. TSNC scaling at special points

We complete our discussion on the TSNC limit by
exploring the metric functions in the asymptotic limits
(6 = A - £o0) and thereby decoding the vielbeins in
those limits.

Below, we enumerate metric functions which directly
follow from (83)

opP

filo~An~0)==2;  fylo~An~0)=2V2P,

N

(83)

f3(e ~An~0)~O(P/A?); falo~A,n~0)~0.

(89)

Based on the above information (88) and (89), we
propose TSNC scaling as
= ct,

n=ci;, E=&  x=x (90)

which yields the following TSNC data:

3P
TE):?; 7, ~ O(1/A?); e =

7

el =/ 2V2Psiny; B<2NR) ~0. (91)

III. T DUALITY

Our purpose here is to discuss the effects of applying T
duality on the NR sigma model (34) and use the above as a
tool to compute various field theory observables in the
TSNC limit of N' = 1 quivers in 5d. Below, we present a
general algorithm to obtain the T-dual Lagrangian using the
canonical framework of [31].

We begin by considering the TSNC sigma model (34) in
its most generic form:

LY = hy (X2 4 2k, XX 4 By XX = By (X772
— 23, X' X" = By XX
— 2B (xmiT — X1k
+ (¢ = D) (IXF — LX), (92)

Here, X' = {X', X"} stand for the transverse coordinates
associated with TSNC manifold. On the other hand,
X*(fr = 0, 1) represent longitudinal directions.

In particular, X'(= &) is identified as the isometric
circular direction (associated to TSNC manifold) along
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which the T duality is applied. The corresponding gen-
erating function is defined as [31]

1 A~ N~ T
G= 5 / do' (X"'X" — X'X'T), (93)

where X is introduced as the dual coordinate that is
accompanied by a dual momentum

oG
oxi

oG
ox!

=X p=—=-X1 (94)

Pi

Below, we enumerate the canonically conjugate
momenta which readily follow from (92):

pp=1(- 5)12, (95)
Py = 200X + by, X") = 2B X (97)

The above relations (95)—(97) can be inverted to obtain
velocities in terms of momenta,

. 1 A

X" = pmn <2 P — B§5R>X/l> . (98)

XK= L (L pRgm (99)
hyi \270 i ’

where we set, i, = 0 which is compatible with TSNC
backgrounds that we consider here.

This finally yields the T-dual Hamiltonian of the follow-
ing form:

mn

~ 1 ~ % ~
H= M(X”)z + 4 PmPn + gmnX/mX/n + gﬁ(pf)z
(NR)
o+ h B pypr = - XR 4 (= Dyeh X,
(100)
where we define the following entities as
1
Imn = hmn + h_B,(gR)BSQVR>’ (101)
i = hy; + kB B (102)
Velocities which readily follow from the dual

Hamiltonian (100) could be expressed as

(NR),

il

X = 2g§;ﬁ; -+ hm”meh

2

X =

1

pa+ h" B b (103)

The above relation (103) can be inverted to express
momenta in terms of velocities as

. 1 X (NR)
;= —+X"BV |, 104
p= (3 + A (104)
(NR)
The T-dual Lagrangian is defined as
L=pX' + p X" + pXF = H, (106)

which by means of the above set (104) and (105) of data
reveals
Z: = gﬁnaﬂaa}?zaﬂjﬁ + gmnnaﬂaaxmaﬂxn

+ 3,0, X" X" + (¢ = O)(2)XF — 2L X'7). (107)

Below, we enumerate T-duality rules for the metric as
well as NS fluxes,

1 v
gff_m’ Gmn = Gmn> gmf:%; B%R:(),

il i1

(108)

where the vanishing of the NS-NS fluxes in the T-dual
picture has its root in the choice of the metric component
h,,; = 0 that we had mentioned earlier.

Considering one specific example, below we decode
these T-duality rules explicitly. We take the example of
Ty, p quivers in their TSNC limit. The compact isometry is

identified as & whose dual is denoted as . This yields the
following T-dual TSNC (transverse) metric components
which readily follow from (108):

944
=)
2P*log"2

2

— 32 _ <
gez -k I V2
3z
g;=—7=———"—. 109
it V2P%log2 (109)
Clearly, some of these T-dual metric components diverge
in the limit 7 — 0 which is an artifact of the collapsing P
NS5 branes which were discussed previously. As a final
note, we find that the longitudinal vielbeins (Tg) do not

transform under T duality.
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IV. QFT OBSERVABLES IN THE TSNC LIMIT
A. Central charge

The general idea of this section is to consider the
holographic central charge of the relativistic description
[28] and thereby taking its TSNC limit. The resulting entity
we claim to be the holographic central charge in the TSNC
limit of A" = 1 quiver.

Central charge in the relativistic description is found
to be [28]

2 P +00
éh(}l = ﬁ/) d”]/ dUGS()O_Vd%V. (110)

Let us consider the potential function corresponding to
Ty, p quivers:

{/ P3N n(o+itis n(o—i+in
V(on) = 5= Re[Liy (—e 5 ) — Lig (~e=5™)]

273
(111)

where we define V = oV.
Using (111), a straightforward computation in the large
P limit reveals

A

NZP2A [P
Chol = < / di1+0(1/P>, (112)

367° Jo

where we fix the limits of the o integral as [-A, A] with A
being large.

Following our previous discussion, the TSNC limit is
realized by setting # = ¢%ij which finally yields the central
charge in the nonrelativistic limit as

R N2P3A ¢
Chal:?’gﬂisc“:ﬁ. (113)
Clearly, the degrees of freedom associated to N =1
SCFTs are reduced down significantly as one approaches
the corresponding TSNC limit. This can also be interpreted
using our previous results on Page charges associated to D5
branes which shows that the color degrees of freedom are
reduced down to zero in the strict large ¢(— oo0) limit.
A similar calculation for +p y_quiver reveals

N2PA [P
=g [Canroap). (114)
3z 0
which upon taking the TSNC limit yields
N N%PZA 6‘nr
Chol = 37T6C2 = ? (1 15)

B. Couplings

Technically speaking, the coupling constant in the
nonrelativistic counterpart of A =1 quivers can be
studied through color D5 brane probes in the bulk
supergravity solution. These coupling constants are fixed
by the vacuum expectation value of the scalars (®;) that
corresponds to the location of the ith NS5 brane along the
holographic axis.

These scalars ®; form an important component of
the tensor multiplet living on the world volume of NS5
branes. One could imagine a typical coupling between the
elements of the tensor multiplet and the elements of the
vector multiplet living on the world volume of color D5
branes that gives rise to the Lagrangian of the
form L ~ (®;, — ®;)F%, +---.

Typically the QFT Lagrangian in 5d could be recast in
the form

1
Sorr ~ (@41 — D;) / d°xF}, ~—— | d&xF,,. (116)

9JorT

which shows that the coupling constant goes inversely with
the relative separation between NS5 branes. Naively, one
should therefore expect that the coupling constant in the
nonrelativistic limit must grow large as the NS5 branes are
closely spaced.

To see this explicitly, we consider the probe Dirac Born-
Infeld (DBI) action of the following form:

Sper = T'ps / d®x\/—detlg + 2zd'F],  (117)

where we switch off the dilaton for the present
computation and turn on world-volume gauge fields;
namely, F = F,,.

The D5 brane is considered to be extended along the four
Minkowski directions of the target space as well as along
the holographic # direction. While on the other hand, it is
considered to be located at a fixed position at ¢ = 0 and the
radial (r = r,) direction of AdSs.

The target space that we choose to work with turns out to
be of the following form:

4r2
ds* :fl(ﬂ)?dx%,4+f3(’7)d’72, (118)

where the remaining directions are switched off.
The resulting DBI action takes the following form:

412\ 52 T

Sper = T'ps (?> /d’?dsx\/ f3f?/2 1+ 472 F7,.
1'c

(119)
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Considering & F,, to be small and P >> 1 one can expand
perturbatively to yield

63T psar, [P
5SDBIz%/ dn/deF?X+---, (120)
0

where the metric functions are evaluated taking the specific
example of Ty p quivers.

In the nonrelativistic limit, one introduces the following
scaling,8

NR
Ths

Tps = ;
c®

(121)

_ 2. / 2. .
n=cw; ath_CaNRflx’

r. =cF; L =c?,
which finally yields the nonrelativistic DBI action of the
form

6 3T(NR> 12 =
oo = 2 s _TNkT / Exfr. (122)

¥

A direct comparison with (116) reveals that the coupling
constant in the nonrelativistic limit of the SCFTs behaves
like gpr ~ ¢* = co. The 1/c¢* dependence is quite intuitive
and it stems from the fact that the original location of NS5
branes (n; ~ (®;)) is rescaled by a factor of 1/c? in the
TSNC limit. To summarize, the nonrelativistic limit of
N =1 quivers emerges as a strongly coupled quantum
many body system.

C. Wilson loops

The computation of Wilson loops is carried out starting
from the electrostatic description of [28]. The general idea
is to consider Wilson loops in the antisymmetric repre-
sentation of the color gauge group which is realized by
considering probe D3 branes extended over AdS, C AdS¢
and the two sphere of the internal space.

A direct computation in the relativistic setup yields [28]

logW) = TpsN6?d,V, (123)

where N = Volygs, Volg.
Let us first estimate the above entity (123) for Ty _p
quivers in the large P > 1 limit,

¥For generic Dp branes the tension is defined as Tp, =

W. In the TSNC limit, one introduces the nonrelativistic
2 7

scaling as o = c*aj,. This leads to the following relation
between the DBI tensions in the relativistic and in the non-

e e T
relativistic limit as T, = C,,’%

+O(1/P).  (124)

Therefore, considering the TSNC limit, one finds

_F/TD3N'N(-Plug2
MWeoo =€ 8 =1-0(c?),  (125)
which turns out to be a nearly Bogomol’ nyi-Prasad-
Sommerfield (BPS) (Wilson) operator whose interpretation
in the nonrelativistic sector is not clear at the moment.

On a similar note, for +p y_quivers one finds

2 _
9 a(7V|P>>1 ==

(3+2log2)+0O(1/P),

nN.
126
y3 (126)

2

which in the TSNC limit yields a similar result for Wilson
loops,

<W>|c—>oo =1- 0(6_2)' (127)

V. NONRELATIVISTIC LIMITS OF
DGKU SOLUTIONS

A. Preliminaries

Let us briefly review the DGKU solution of [18], which
in the first place was proposed as the holographic setup to
describe A =1 quivers in 5d. As mentioned previously,
the resulting type IIB geometry is a warped product of
AdSg and §* over a 2d Riemann surface X5 (w, @) para-
metrized by a pair of complex coordinates (@, ).

Typically, in their original construction [18], one intro-
duces a pair of holomorphic functions A, (w) whose
differentials possess isolated poles on the boundary of
X (5). They emerge as (p, g) five branes with charge density
given by the residues at these poles.

Using these holomorphic functions, the type 1IB geom-
etry could be expressed as

ds* = fedsigs, + f3dsy, +4p*dwdd,  (128)
where one identifies the warping functions as [24]
1 K
e=\6GT; f3=-\/6GT% pP=—=T"2 (129
f6 f2 9 P \/@ ( )

The metric functions are expressed in terms of local
holomorphic functions (A, ) [24]

G=|A.>-|A_]® +2ReB;

au)B = AJramA— - A—amAJr’ (130)

209, G

T2 =1 .
+ 3k2G

K2 = —|0,A, >+ |0,A_|;

(131)
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The SO(4) sector of the dual SCFTs can be realized
by wrapping the S* C AdSs. On the other hand, the
SU(2) R symmetry can be realized by wrapping the S°
of the internal space. Below, our purpose would be to obtain
these metric functions in the nonrelativistic limit and
identify the symmetries associated with the dual
Quantum Field Theory (QFT).

B. Large c limits of balanced quivers

Below, we consider some particular examples of A = 1
quivers with balanced SU(N,) color nodes. In these
examples, the effective number of flavors is twice the
number of colors; namely, N F= 2N,.

1. Ty, quivers

Let us consider the example of T, quivers. The
corresponding holomorphic functions (for the upper half
plane) are expressed as [24]

3N
A =5 (Hlog(o = 1) + (F 1 - ) log(w+ 1)

+ ilog(2w)), (132)
where the poles are clearly located at ® = —1, 0, 1. Here,
@ = 1 corresponds to the N. NS5 brane pole. On the other
hand, @ =0 and @ = —1 respectively represent N, D5
brane pole and N, (1,1) five brane pole.

(p, q) five brane web in the nonrelativistic limit.—The
poles associated with the differential of the holomorphic
function reflect the presence of (p, ¢q) five
branes [24]. The above notion should get translated in
the nonrelativistic limit too.

In order to define a consistent nonrelativistic limit
for holomorphic functions (A, ), we rescale the complex
coordinate as @ = cv/@ which leads to a holomorphic
function in the nonrelativistic limit of the quiver as

3 3i
_ 3iN,log2 (ziE)Nc

3iN,
A c—00 T 3
= &r * xe @

167c%d

(133)

The differential of the holomorphic function 9,4 |._
exhibits a zero pole at @ ~ 0 when expanded up to 1/c? in
the large ¢ limit:

(£3+ 3w,

aa)Ai|c—>oo =T 2~
ctw

+O(c?).  (134)

This is clearly an artifact of the collapsing (p, g) five
brane web as a result of the nonrelativistic scaling ~ ‘;’—,2 with

respect to the rescaled coordinate (@). For example, the
nonrelativistic scaling shifts the previous location (w = 1)

of the NS5 brane pole to @ ~ % ~ (. The above phenomena
precisely mimics the collapsing NS5 brane picture of the
electrostatic description using a different (o, 77) coordinate
system (see Sec. [I B 4).

The five brane charges at the pole can be obtained by
estimating the residue [27]

3(£2 4+ )N, 3(£2Nyss + iN
Res(d, A, = ¢ 871'02) _3( s bs)

(135)

which shows that the number of NS5 branes is preserved
(Nyss = N,) in the nonrelativistic limit. On the other hand,
Nps = N, counts the net D5 brane charge associated with
the zero pole. These numbers precisely indicate towards the
conservation of the total number of NS5 and D5 branes in
the nonrelativistic limit.

Background geometry.—The background data (in the
language of holomorphic functions) can be obtained
following the basic definitions which were listed in
(130) and (131).

Using (130), the equation for the B function in the
nonrelativistic limit turns out to be

9iN?log?2

0,B(@ =-S5+ 0(c), 136
B0 = = e+ O, (136)
which upon integration yields
9iN2log?2
B(@)|,n =——=. 137
@)oo = (ot (137)

Using these data, it is now straightforward to write down
the composite functions [defined at any point (@) of the 2d
complex plane] in the nonrelativistic limit as

(@) = s (1) - lalim( 1))

~ kNZ

C

fol@), (138)

with k being some overall constant.
Using (138), the other two functions can be read as

N INZfi(@
()| = DD,
~ ~3/2\% _ ~ ~ %
fula) = m(HEELZVEN) (139
~ 128k|@|x%c? f';
T2(w)|c—>oo - 27 fk]zg . (140)
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Using the above set of data [(138)—(140)], the metric
functions (at any point @ of the 2d Riemann surface X,)) in
the nonrelativistic limit could be formally as

N Ve
f6=96@);  f3=559(@);
C
p*ldw|? = 9/’5“1) |da|?. (141)
4c*|@|

The details of these functions could be easily read using
the above data [(138)—(140)]:

5/4 3/4

(@) ~ & 1/4‘@|1/4 /. (@) ~ 29 Jk .
e 7, g5 92 f/3/2|5)|3/4 ’
g

3/4
(@)~ (1) "o 1,

g

(142)

Considering X ,) to be the upper half plane, it is trivial to
see that the pole (@ = 0) lies at the origin of the (complex)
coordinate system and in particular along the real axis of
the complex plane which is identified as the boundary of
the 2d Riemann surface.

It is trivial to see that the composite function G vanishes
identically along the real axis (or the boundary) of the
2d Riemann surface.” In other words, the S? (of the
internal manifold) shrinks to zero and as a result
the spacetime closes off. This further ensures the geodesic
completeness of the TSNC background like in the relativ-
istic scenario [20].

Using (141), the nonrelativistic metric in the large ¢ limit
could be expressed as

V6
9

4|
(143)

Clearly, the longitudinal cloak one forms (rl"}) are
associated with the AdSgq factor. For example, the time

component of the one form can be expressed as 79 =

\/g¢(@) and so on. Transverse vielbeins, on the other hand,
are associated with S? and the 2d Riemann disk:

61/4

e,‘f :T 92(5’); e

9y(@)
@]

M| —

(144)

IS

°On a similar note, one can show that |s= = 0 which ensures
the boundary conditions of [19] to be valid in the nonrelativistic
limit of type IIB solutions.

9 (®)ds3, + 9(®) |d&)|2>.

2. +n, M quivers

+n,.m quivers are described by the holomorphic func-
tions of the following form [24]:

3 (iN, (log(20 — 1) — log( — 1))

+ M(log(3w —2) — log w)),

Ay
(145)
which exhibits M NS5 brane poles at w = {0, 2} and N, D5

poles at w = {§,1}.
Considering a large ¢ limit, one finds

3i(N.log2 F iMlog3) F4M + 3iN.,
Ai|c—>oo = =
87 16zcV@
F 16M + 27iN,
_——— 146
1927c*® (146)

(p, q) five brane web in the nonrelativistic limit.—Clearly,
the differential of the holomorphic function (146)

+4M - 3iN,

amAi|C—>oo = 1671'6'2(7)

+0(c73) (147)

exhibits a zero pole in the complex plane which corresponds
to a collapsed (p, q) five brane web like in the previous
example. In other words, the nonrelativistic scaling brings
all the four (p, ¢) five brane poles to the zero of the
complex plane.

The five brane charges could be estimated by computing
the residue at the pole [27]

HAM —3iN,  +4Nygs — 3iN ps
Res(awAi)|C—>oo = 1672 -= 167z¢2

(148)

This clearly indicates that, like in the electrostatic
scenario, the number of NS5 branes is preserved
N ~nss = M. In fact, using the identification M = P [28],
this is precisely what we identify as the NS5 brane Page
charge derived previously using the electrostatic descrip-
tion. On a similar note, N5 = N, is the D5 brane charge
associated with the pole.

Background geometry.—The background data can be
obtained pretty much in a way similar to those obtained
in the previous example. The B function, in the non-
relativistic limit, yields a differential equation of the form

_ 3iMN . log(432)

awlg(&))'c—mo = 64”2625)

+0(c7?), (149)
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which upon integrating once yields the following solution:

_ 3iMN_log(432)

B(d))lc—mo - 6471'26'\/5 (150)

The rest of the composite functions could be obtained in
a straightforward manner:

(@)oo =320 (1) - i ) )

327%c|@)| NG
SMN.. -
= @), (1s1)
which is of similar structure as that of (138).
The remaining functions can be expressed as
N SMN .f(&)
2 _ c .
(0| = g
N (sgn(@) — 1)sgn(®)?
fk(a))zlm( >~5/2 (152)
@
512s|@|x*c* f'5
T2(@)],.g = 20T T (153)

o 15 fufy

The rest of the analysis can be carried out precisely in a
straightforward manner and the results agree qualitatively
to those obtained in the previous section. For example, the
cloak one form is given by 70 = /g¢(®) with the function
fe(@) as given in (152).

C. QFT observables

1. (p.q) loops
Let us now calculate the couplings associated with (p, ¢)
strings wrapping the AdS, C AdSg and thereby taking its
nonrelativistic limit. Considering half BPS embeddings
which are restricted to the boundary of the disk (0X3)),
one finds [24]

Stpa) = 22T|(p + iq) (A = A) + (p = ig) (A, = A)].
(154)
In the nonrelativistic limit, one simply makes the

replacements A, — A, (@) Where @y, is determined
considering a nonrelativistic limit of the BPS condition [24]

(p + iq)au)A+|c—>oo = (p - iq)a(u-A—‘c—wo' (155)
Upon solving (155) for Ty quivers, one finds
2 2
gt = 51—y = Pl (156)

Ag-2pp?

where ), is the solution obtained in a relativistic five brane
web scenario [24].

Using (156), the action (154) in the nonrelativistic limit
turns out to be

3N.T|(q—-2p)?
- (g qp) +2g log2| + O(c™3).

P.q) |(Z):(IJ“,| -

S
2qc

(157)

Clearly, (1,0) strings can be embedded at the (zero) pole

of the collapsed (p, g) five brane web. The expectation
value of the corresponding loop operator vanishes:

logW(1.0)(ZF)) lcmo = =00 = W(1,0)(ZF))]cm00 = O
(158)
On a similar note, (0,1) strings are also embedded at the

zero pole, @ ~%~O. The expectation value of the
associated loop operator is given by

. 3N, T
10g<W(0,1)(ZD)>|C—>oo = T2 (1 +2log2)
= W0.)(Z0))lecmee = 1 = O(c™?). (159)

Under S duality the above expectation values must
exchange. This is achieved considering the following
transformation on the (p, ¢) string charges:

p=1-p; g=1-gq, (160)
where hat represents string charges in the S-dual picture.

The corresponding S-dual action is represented as

. 3N.T | (1+g-2p)
Siaay = — 2(1 —¢g)log2|,
03 = 30— g| 1-g T2 dle

(161)

as, for example, the F strings in the S-dual picture are
represented by p = 1 and ¢ = 0. The expectation value for
the corresponding loop operator is (VA\/(LOQ ~ 1. This is
precisely the expectation value associated with D-string
operators in (159). On a similar note, one can show that
(1,1) strings are mapped into (1, —1) strings under S duality.

2. Antisymmetric Wilson loops and D3 branes

We revisit the calculation of Wilson loops which were
obtained previously using the electrostatic description of
N =1 quivers.

Wilson loops in the antisymmetric representation are
given by the D3 branes [24]

2
10g<W(Z)> = — g TD3VOIAdSZV0152g, (162)

where G is given by (130).
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For Ty _ quivers, it is quite straightforward to evaluate
these loops in the nonrelativistic limit. For example,
using (138), one finds at any point (@) of the upper
half plane,

21<N2 2f (@)

log<W(Z>>|c—>oo = 3ﬂ'a CS
NR

= <W(Z>>|c—>oo ~1- O(C 5)’ (163)
which reveals identical results which were obtained pre-
viously using the electrostatic approach. Clearly, in the
strict nonrelativistic limit, the expectation values of these
Wilson loops are one and they are mapped into themselves
under the S duality.

On a similar note, one can show that in the nonrelativistic
limit of the (p, ¢) five brane web, the F1 and D1 charges of
the D3 brane at any point (@) on X, turn out to be

. rg(@)
N, sin (a g )
NFl|(—>oo _E 4(1)2 +O(C_3)’ (164)
. [arg(®)
2N, Sin (—g2 )
Npilemw = 25>+ 0(c7),  (165)

nc  \4&?

where one needs to take into account only the real values on
the rhs of (164) and (165).

This also scales the field theory direction associated with
the dual quiver [24] as

. [arg(®)
. Np 2 s1n( 2 ) _
= =S X2 L0, (166
¢ Nc =0 e \/Z&')Z " (C ) ( )

where one needs to take into account the real value on the
rhs of (166).

Combining the above two expressions (164) and (165), it
is quite instructive to note the following identity:

(NFl + iND1>|c—>oo = _F((b)('A-‘r + "zt—>|c—>oo’

4
; (167)

|| sin(2E2))

where F (0)) W
nonrelativistic counterpart of the identity derived in the
relativistic theory [24].

The above relation (167) is the

D. Large ¢ limits of Yy quivers

Nonrelativistic data for unbalanced quivers like ¥ and
Xy, can be obtained following a similar analysis. These are
the examples where the central node involves a Chern-
Simons term and the effective number of flavor (N ) is less
than 2N,.

Yy, solutions are characterized by holomorphic func-
tions of the form [24]

3N,
Ay = . “[(£1 4 i) log(w—1) + (£1 — i) log(w + 1)
F 2log(2w), (168)
whose poles are clearly located at {0, +1}.
Considering a large ¢ limit, one finds
N.log8 3iN, _ 3N,
Al ==F ~8 : 4o (169)

4 B 4ﬂC\/5 T 8c2nw

which clearly exhibits a zero pole at @ ~ O while taking the
following differential:

3iN,

(3 Ai -
oA tlemco 4nctd

O(c). (170)

Like before, the charges associated at the pole of the
(p, q) five brane web could be estimated by knowing the
residue [27],

3iN,  3iN
dgc? Axc?’

Res(ﬁu)Ai” (171)

Cc—>00 =
which shows that N = N, is the effective number of branes
at the zero pole.

1. Background geometry
Following our previous discussion, below we estimate
the nonrelativistic background data for Y, quivers. Like

before, the first step is to obtain the composite function B
which obeys a differential equation of the form

. 3iN2log8 _
0,B(®)]c—00 = 8”2—2~+O(C ), (172)
which upon integration yields
3iN%log8
B(@)]seo = ————. 173
(@) = g e (173)

Using (173), it is straightforward to obtain the remaining
functions:

3N2log 8 ¢N?
G| = e fo@) == £y(@). (174)
_ INf+(@)
Kz(w)|c—>oo = Tzﬁs’ (175)
~1.2.2 £12
T®)] -0 =764f|§)7|” < Iy (176)

fkfg‘
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The rest of the discussion follows qualitatively in a way
similar to those for the balanced quivers. For example, the
composite function (G) vanishes along the boundary of the
upper half plane thereby ensuring the geodesic complete-
ness of the associated TSNC manifold. The TSNC data
for Yy quivers turn out to be identical to those of the
balanced quivers.

2. (p.q) loops

Let us now explore the nonrelativistic limit of the BPS
condition of [24] which for the present example reveals a
solution of the form

2 2
- P a)rel
D) = —— = , 177
sol c2q2 C2 ( )

which clearly scales the previous solution of [24] by a
factor of 1/c2.

The corresponding (p, ¢q)
expressed as

string action can be

+0(c73).

(178)

- 3N T|(g*>—2p*log2)
S(]’-q) |i):d7sol -

c2

Clearly, the (0,1) strings are located at the zero pole
while, on the other hand, (1,0) strings are embedded away
from the pole. Clearly, under S duality, the expectation
values of the (0,1) and (1,0) loops are exchanged. This is
precisely achieved following (160), which leads to an
S-dual action of the following form:

. 3N.T| (1= 4)* = 2(1 - p)*log2)

Stha) = 2 (1-p)

(179)

3. Antisymmetric Wilson loops and D3 branes

Like in the previous examples, the (antisymmetric)
Wilson loop in the nonrelativistic limit can be obtained as

2N, (@)

10g(W(E)) a0 =
oz(W (@), T

= W(2))]cne = 1= 0(c™), (180)

which corresponds to D3 branes embedded at any point (®)
of the upper half plane.

Finally, we note the associated F1 and D1 charges of
the D3 brane,

;o [ arg(®)
o, sin(*42)
N =-—"“_x " 7 10, 181
F1 |c—>oo c 4&)2 + (C ) ( )
ND1|C—>oo 0’ (182)

which clearly reveals a difference when compared with the
previous examples.

E. Large c limits of Xy _quivers

The corresponding supergravity solution is characterized
by a pair of holomorphic functions of the following
form [24]:

3N,
Ay = 871'6 [(£1 4 i)(log(B3w —2) — log w)
+ (£1 —i)(log(w — 1) —log(2w — 1))], (183)
whose poles are clearly located at {0,3,5, 1}.
Considering a large ¢ limit, one finds
R
+lesoo = L F JZC\/g F ﬂczd,) ’
(184)
where we define the constants as
3N,
C, = g “(1+1i)(log3 + ilog2), (185)
T
3N,
C_= 2 “(1+i)(ilog3 +log2). (186)
n

Taking the differential of the holomorphic function, one
finds

7(116 - %) N +0O(c™3),

awAi|c—>oo = 2~
cT@

(187)
which clearly reveals a pole associated with the five
brane web located at @ = 0. As before, the charges
associated with the nonrelativistic five brane junction
can be estimated through residues evaluated at the pole
which shows N = N,.

1. Background geometry

The TSNC data follow trivially like in the previous
examples. Below, we calculate the composite functions
which are relevant for our subsequent analysis.

The B function can be expressed as

3NZ%log (%)
2%V

Using (188), the G function, in its nonrelativistic limit,
can be expressed as

B(@)]cmeo = (188)

9(@)] oo =

3N? [log(432)Im(V/®)
167°c |@|

o) )

(189)
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The remaining functions follow trivially as before which we therefore do not list here. Likewise, one can also obtain the
corresponding nonrelativistic geometry and the associated background data (Tﬁ, e, associated with the 10d background.

2. (p.q) loops
The BPS equation, in its nonrelativistic limit, yields a solution of the form

. (43p + 11g)?

o] = . 190
Wsol 366‘2(61 _ 7]7)2 ( )
Using (190), the corresponding (p, ¢) string action can be expressed as
S(,,,?) _ (P*(172coth™ 5 — 49) — 2pq(=7 + 54log2 + 32log3)) ¢*(1 +22log6) N (g=7Tp) + 0@ (191)
3N.T 2(43p + 11q) 2(43p + 11q) (43p+11g) .
¢ (q=Tp)
|
Clearly, the F strings are embedded at @y = t15,. On sin (arg(,;))>
: ~ 121 - - 4N, 2
the other hand, D strings are eI'nbedded at @p =355 (Np, —NFl)\c_m _ . 4~2+0(6—3)’ (196)
Below, we enumerate the expectation values of the corre- e \/4d

sponding loop operators in the nonrelativistic limit:

—39115IN, T

10g<W(1'0) (ZF)>|C—>OO =e€ o

= W00/ E)eme = 1= 0(c72),  (192)
ogWo)(Zp))emeo =€ @
= Wi.1) @)oo = 1 - O(c™2). (193)

Clearly, in the strict nonrelativistic (¢ — oo) limit, the
expectation values for both (1,0) and (0,1) loop operators
are trivially one. This further ensures the invariance of these
loop operators under S duality. In other words, the S duality
exchanges these operators and the entire Xy quiver is
mapped into itself.

3. Antisymmetric Wilson loops and D3 branes

Wilson loops, in the antisymmetric representation, fol-
low trivially as before. Using (189), one finds away from
the pole

. Nf«(@)
1ogW(@))leweo =~ 575
NR

= W(Z))]cne = 1= O(c™). (194)

Finally, we note the (p, g) string charges of the D3 brane
in the nonrelativistic limit of the five brane web. A
straightforward analysis shows

y } sin(—argé&’)) \
N N =—< - 7 - 195
( D1 + F1)|C—>oo c \/16)2 + O(C )’ ( 9 )

where one has to take into account only real values on the
rhs of the above expressions.

The corresponding Wilson loop parameter for the D3
brane can be expressed as

B 7 Sin(_argé(“)) +O( _3)
oo OmC /AR c

NDl
N.

7= (197)

VI. CONCLUDING REMARKS AND
FUTURE DIRECTIONS

The present paper is all about learning lessons on
the nonrelativistic limits of 5d A/ = 1 SCFTs using tor-
sional string Newton-Cartan (TSNC) sigma models
which are obtained considering a large ¢ — oo limit of
AdSg x 8% x X (7) geometry in type IIB supergravity. These
nonrelativistic backgrounds possess a nontrivial profile for
the cloak one form (r;:‘) which results in a nonvanishing
torsion two form 7, = 2d,7,) # 0.

Our analysis reveals a mutual compatibility between the
original DGKU formulation [18] of A" = 1 quivers and the
recently proposed electrostatic description [28] of 5d SCFTs
in their respective nonrelativistic limits. In particular, the
zero pole associated with the differential of the holomorphic
functions translates into a corresponding picture of collaps-
ing five brane web near the origin (7 ~ 0) of the holographic
axis in the electrostatic description.

On top of this, taking a large ¢ — oo limit of the
relativistic expressions, we are able to show that the total
number of five branes is preserved in the nonrelativistic
description. These numbers (modulo an overall scaling)
are shown to be conserved in both descriptions. In the
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electrostatic approach, these are precisely given by the
Page charges. On the other hand, in the DGKU formalism
of [18] these numbers are obtained by estimating the
residues associated with the differentials of the holomor-
phic functions.

The present paper offers a tremendous possibility for
further investigations on the nonrelativistic limits of
electrostatic descriptions and the associated quiver struc-
ture for the unbalanced sector [24] and compare it with the
results which were obtained using holomorphic functions.
This includes examples like X and Yy _quivers.

The first step towards understanding these limits would
be to identify a potential function V(¢,7) for unbalanced
quivers and thereby rediscover the physical phenomena of
collapse like in the case of the balanced quivers. This will
complete the electrostatic picture and will shed light on the
associated S-duality properties for the unbalanced sector.

It would be an interesting future project to decode the
TSNC data corresponding to the RR sector and thereby
construct a supersymmetric version of the F-string Galilei
algebra in the nonrelativistic limits of A" = 1 backgrounds.
Another interesting direction would be to explore the
nonrelativistic limits of type IIB supergravity equations
which were outlined in the Introduction and find their
compatibility with the beta function calculations.

We leave all these issues for future investigations.
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APPENDIX A: A NOTE ON RR FIELDS AND
MATCHING RELATIONS IN THE ¢ — oo LIMIT

We consider the nonrelativistic limit of rest of the fields in
the supergravity solution which are listed in (9)—(16). These
include the RR sector and the dilaton of the NS sector.

Considering Ty _p quivers, one finds the following
expressions near o ~ 0:

137%n%
20 = O(N.c™ Al
= O, (D)
N *o
Colinsoe =~ 52— A2
Olees 72¢*P3 log(2) (A2)
7N’y
Coline = ———L—dy ANdE+O(c™), (A3
2|L—>oo leOg(64) X 5_‘_ (C ) ( )

where we scale P — ¢ P and remove tildes on the rhs of the
above set of relations.

As we mentioned previously, a complete understanding
of these nonrelativistic limits in terms of the TSNC data is
not known yet. In other words, an analogous relation to that
of (31) is yet to be settled down.

Under S duality, these backgrounds transform into a
different AdSq vacuum in its nonrelativistic limit. Our
purpose would be to identify this new type IIB vacuum
obtained via S duality. To this end, we choose to work with
the type IIB background of [30] as presented by authors
in [28].

Taking a nonrelativistic limit, one finds (modulo an
overall scaling that may be absorbed into the definition of
the background fluxes)

BZ|C—>00 = _CZ|C—>00; CZlc—mo = B2|c—>oo’ (A4)
where hatted fields correspond to a nonrelativistic limit of
type IIB solutions of [30].

1. Matching relations in the nonrelativistic limit

We now discuss the nonrelativistic limits of the matching
relations which were presented in [28]. These matching
relations precisely serve as the dictionary between the two
parallel descriptions of A" = 1 quivers.

For T'y_p quivers, the mapping is given by the following

relation:
2nz
= coth ,
v o (9NC )

where z = o — in [28].
In the nonrelativistic limit, we introduce the scaling
relation of the following form:

(AS)

1
=, A6
. cZ (A6)

which in the large ¢ limit yields a map of the following
form:

81N2z2

i + O(c7?).

o = (A7)
Clearly, the zero pole of the holomorphic function
corresponds to setting Z = 0. Considering an expansion
near 6 = 0 corresponds to setting 7 = 0. This is precisely
the origin of the holographic axis in the nonrelativistic limit
of the electrostatic description.
On a similar note, for +,, 5 quivers one finds [28]

2 1
w = g (1 + 4364”2/9”[ __1) . (AS)
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Considering a nonrelativistic expansion of the form

OMc

— (53— : - A9
2= (E-z2)/c 2 o (A9)
one finds the following mapping between the variables in two descriptions:
471.222
DR ——— . Al10
YR IM (A10)
APPENDIX B: DETAILED EXPRESSIONS FOR THE METRIC FUNCTIONS IN REGION III
The individual functions a;(n) and b;(n) read as
2 n + 1 2 T
a;(n) =—(*+1)log V=1 +n(—2log (7> — 1) + 6 + log 16) — 45 log 7)) (B1)
n+1
bi(n) =log| ~—|. (B2)
n—1
- (o) )
= + 1)log( —— ) —25(—1o —1)+3+1log4)+4nlog(—=]) , B3
e (n )gn_1 n(—log (n* — 1) g4) +dnlog( (B3)
=2(n* + 1) log (Tfi) + 4n(—1log (n* = 1) + 3 + log4) — 8nlog(%)
ba(n) = c2(n o ; (B4)
log <nTl>
_ 2 (nt+1 2 2 o[ ®
ca(n) = =2(n* +3) log V=1 + (=2log (n* — 1) + 4+ log 16)* 4 16log 7): (BS)
3 n+ 1\ | =07+ D) log() + n(=2log (7 = 1) + 6 + log 16) — 4y log(%)
as (’7) = Eﬂ: log 1 n+1 s (B6)
- log (1)
5 n+1 5 T
bs(n) = (1" + 1) log o —2n(—log (n* — 1) + 3 +log4) + 45 log Ik (B7)
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