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We explore nonrelativistic limits ofN ¼ 1 quiver gauge theories in 5d. The stringy counterpart of these
Super Conformal Field Theories (SCFTs) is characterized by torsional string Newton-Cartan (TSNC)
sigma models which are defined over non-Lorentzian manifolds. We further show that under transverse T
duality, these TSNC sigma models are mapped into another new class of nonrelativistic sigma models
which are defined over a T-dual TSNC background. Considering nonrelativistic limits of various field
theory observables in a holographic setup, we further estimate corresponding entities in the TSNC limit of
N ¼ 1 quivers. We carry out a parallel analysis on holomorphic functions and the associated pole
structures in the nonrelativistic limit of (p, q) five brane webs. In particular, we investigate the generic
structure of various loop operators in a nonrelativistic setup and explore their properties under S duality.
Finally, we comment on the large c limit of Ramond-Ramond (RR) fields and discuss the associated
S-duality transformation rules in the nonrelativistic limit of N ¼ 1 quivers.
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I. INTRODUCTION AND SUMMARY

A. Introduction and the general idea of this paper

Nonrelativistic string theory [1,2] plays a pivotal role in
understanding the nonrelativistic limits of classical gravity
[3–5] as well as the limits of gauge/string duality [6–11].
Besides, it opens up a window for a profound under-
standing of the quantum gravity in its nonrelativistic
limits [12,13].
Recently, there has been significant progress in under-

standing the nonrelativistic target space geometries for the
Neveu-Schwarz (NS)-NS sector of the closed bosonic
strings [14,15]. These backgrounds, which we term the
torsional string Newton-Cartan (TSNC) backgrounds, are
characterized by the following set of data [14]:

τAμ ; hμν¼eaμebνδab; mμν¼ ηABτ
A
½μπ

B
ν� þδabea½μπ

b
ν�; ð1Þ

where τAμ ðA ¼ 0; 1Þ are cloak one forms associated with
TSNC target space, hμν is the metric of the transverse space
and mμν is the two form that couples with the tension
current.
The transverse gauge fields πaμða ¼ 2;…; d − 1Þ are

what we identify as the key elements of the TSNC (or

the nonrelativistic geometric) dataset. These characterize
the transverse Bμν field of the nonrelativistic target space.
At the level of the algebra, they introduce an additional
global charge Qa that results in an F-string Galilei
algebra [14].
One of the prime motivations of the present analysis is to

understand these nonrelativistic geometric data from the
perspective of the gauge/string correspondence. There
exists a plethora of examples of holographic dualities
which go beyond the celebrated correspondence between
type IIB superstrings in AdS5 × S5 and N ¼ 4 SYM in
4d [16]. It is therefore natural to ask how to take a
consistent nonrelativistic limit in any of these examples
and how could one make sense of the holographic
correspondence in these (TSNC) limits.
The purpose of this paper is to shed light on some of

these issues and set the stage for a deeper understanding
on nonrelativistic holography going beyond the standard
Maldacena conjecture [16]. To address these issues, we
take the specific example of N ¼ 1 dualities which relate
type IIB string theory in AdS6 × S2 × Σð2Þ and N ¼ 1

Super Conformal Field Theories (SCFTs) [17] in 5d.
The present paper heavily relies on the two parallel

holographic descriptions of N ¼ 1 quivers in 5d: (i) the
D’Hoker-Gutperle-Karch-Uhlemann (DGKU) solution
which was originally developed by the authors of
[18–21] and subsequently extended in [22–27] and (ii) the
electrostatic description introduced by the authors of [28]
and subsequently explored in [29] in the context of classical
integrability.
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The DGKU solution [18–21] was originally proposed
as a warped product of AdS6 × S2 over the 2d Riemann
surface parametrized by a set of complex coordinates. The
full type IIB solution is characterized in terms of a pair of
locally holomorphic functions [A�ðωÞ] defined over the 2d
Riemann surface. The poles associated with the differential
of these holomorphic functions correspond to the locations
of the (p, q) five branes along the real line when the
Riemann surface is considered to be the upper half of the
complex plane. The charges associated with the five brane
web is given by the residues at these poles.
The electrostatic approach of [28], on the other hand,

considers an intersection of NS5-D5-D7 brane configura-
tion in 10d. The NS5 branes are placed at discrete locations
along the holographic (η) axis while the color D5 branes are
stretched in between them. The flavor nodes of the quiver
are sourced due to D7 branes.
The spacing between these NS5 branes is what measures

the strength of the coupling between the hypermultiplets
and the vector multiplets of the dual SCFTs. As our
analysis reveals, in the strict nonrelativistic limit, these
NS5 branes are pushed on top of each other which results in
a strongly coupled description for the dual quiver in its
nonrelativistic limit.
In spite of these developments, some key issues are yet to

be addressed. These are precisely the questions in the sense
of the TSNC limits which are alluded to the above. The
present paper discusses the physical consequences in these
limits and how one could make sense of it in the context of
the gauge/string duality. To be more precise, below we pose
some of the key questions which motivate the present
analysis of the paper.

(i) It is utmost important to understand whether
and how the two seemingly different approaches
([18–21,28]) to 5d N ¼ 1 quivers can lead to
identical physical phenomena in their respective
nonrelativistic limits. For example, whether one
can still identify the (p, q) brane web as a pole
associated with the differential of the holomorphic
function in the large c limit. This must get translated
into an equivalent picture of five brane web while
considering a large c limit of Hanany-Witten like
brane setup as discussed in [28].

(ii) What is the NS5-D5-D7 brane setup and the
associated Page charges in the TSNC limit of the
type IIB background? These numbers must agree to
those obtained in the nonrelativistic limit and using a
holomorphic function approach of [18–21].

(iii) What does happen to the various physical observ-
ables (for example the central charge, couplings,
Wilson loops etc.) associated with the dual QFT in
its TSNC limit?

(iv) What is the fate of S-duality transformation rules in
the nonrelativistic limits of N ¼ 1 super-conformal
quivers?

We wish to gain some insights into these issues using the
nonrelativistic stringy counterpart of the correspondence.
These nonrelativistic sigma models, as we show, could be
systematically obtained taking a TSNC limit of type IIB
AdS6 × S2 × Σð2Þ background.
Before, we move on to the summary of results, it is

customary to outline a few steps which realize these TSNC
backgrounds as a solution of type IIB supergravity equa-
tions of motion in the nonrelativistic limit.1 This goes
precisely along the line of [4]. Since, we have the TSNC
data available only for the NS-NS sector of the full type IIB
supergravity solutions, therefore following the discussion
below, one could imagine taking a large c limit of the
equations of motion in the NS sector only.
TSNC limit corresponds to an expansion of the back-

ground fields of the form

Gμν ¼ c2EA
μEB

ν ηAB þ δabeaμebν ;

Bμν ¼ c2ηABEA
½μΠ

B
ν� þ δabea½μπ

b
ν�; ð2Þ

where we define [14]

ΠA
μ ¼ ϵABτ

B
μ þ 1

2c2
πAμ ; ð3Þ

as the longitudinal component of the background πμ gauge
fields.
On the other hand,

EA
μ ¼ τAμ þ 1

2c2
πBμ ϵ

A
B ð4Þ

are the longitudinal components of the background viel-
beins of the relativistic spacetime.
Using (2)–(4), one could expand the curvature two form

(R) and the NS-NS three form (Hð3Þ) in the large c limit.
Upon substituting back these into the type IIB action, one
ends up in a large c expansion of the action [4]. The
equations of motion for TSNC data are readily obtained by
varying the zeroth order (finite) action Sð0Þ.

1For the purpose of the present paper, we focus only on the NS
sector of the type IIB solution. The primary reason for this stems
from the fact that our current understanding of the F- string
Galilei generators and the associated gauge fields (which we
identify as the TSNC data in this paper) is limited only to the NS
sector [14]. The inclusion of the Ramond-Ramond (RR) sector
would require further understanding on the F- string Galilei
algebra for its full supersymmetric generalization which is
beyond the scope of the present analysis. In other words, the
supersymmetric extension of the F- string Galilei algebra would
require a geometric realization for the RR sector which would
give rise to an additional set of RR generators and the associated
gauge fields. These gauge fields would certainly add to the
existing set of TSNC data thereby making it a supersymmetric
background endowed with nonrelativistic symmetries.

DIBAKAR ROYCHOWDHURY PHYS. REV. D 107, 046010 (2023)

046010-2



B. Summary of results

Below, we summarize the key findings of the present
paper. In the first place, we list those results/observations
considering the electrostatic description [28] of N ¼ 1
quivers.

(i) The TSNC scaling results in a picture of collapsing
branes at the origin of the holographic (η) axis [see
Fig. 2(a)]. This has an effect in producing a metric
singularity near the origin (σ ∼ 0, η ∼ 0) of the ðσ; ηÞ
plane which also gets reflected in the corresponding
TSNC data. In the holomorphic language of [18–21],
this is precisely translated into the picture of collaps-
ing five brane web at the zero pole in the com-
plex plane.

(ii) We calculate the number of NS5 branes as well as
the color D5 branes in the TSNC limit of N ¼ 1
quivers. These numbers, which are also called the
Page charges, precisely match our expectations
while calculating the residues (using the holomor-
phic functions of [27]) at the zero pole of the
nonrelativistic (p, q) five brane web. It turns out
that in both descriptions, the total number of branes
is conserved while taking the large c → ∞ limit.

(iii) Transverse T duality allows us to map these TSNC
sigma models to another class of nonrelativistic
sigma models [6] which are propagating over the
T-dual TSNC manifold. We identify these T-duality
rules and explicitly work them out taking specific
example(s).

(iv) A further analysis on the QFT observables in the
TSNC limit reveals a number of interesting facts.
For example, the central charge in the nonrelativistic
limit ofN ¼ 1 quivers goes with different powers of
the number of the NS5 branes,

ĉnr ∼
�
N2

cP3 ðTNc;P quiverÞ
N2

cP2 ðþP;Nc
quiverÞ; ð5Þ

where P ¼ Q̃NS5 is the number of NS5 branes in the
nonrelativistic limit.

(v) The coupling between the tensor multiplet and the
vector multiplets grows strong in the strict large c
limit, namely, g2QFT ∼ c2 → ∞. This indicates the
onset of a strongly coupled dynamics in the non-
relativistic limit of N ¼ 1 quivers. We identify this
strong coupling behavior as an artifact of the
collapsing NS5 branes in the nonrelativistic limit.

In Sec. V, we revisit the nonrelativistic limits of N ¼ 1
quivers using the language of the locally holomorphic
functions ½A�ðωÞ� [18–21]. We consider both the examples
of balanced (TNc

and þNc;M) as well as unbalanced
(YNc

and XNc
) quivers.

(i) In the case of balanced (TNc
and þNc;M) quivers, we

show that the differential of the holomorphic function
[∂ωA�] exhibits a zero pole in the nonrelativistic limit
of the supergravity solutions. The pole essentially
corresponds to the origin of the complex coordinate
system associated with the 2d Riemann surface (Σð2Þ)
and is lying along the real line when considering Σð2Þ
to be the upper half plane.

The existence of such a zero pole corresponds to a
description of a collapsing (p, q) five brane web in the
nonrelativistic limit of the N ¼ 1 quiver. We further show
that the S2 (of the internal space) shrinks to zero along the
boundary of the 2d Riemann surface and ensures the
geodesic completeness [20] of the TSNC background.

(i) The primary question that we address concerns the
fate of the S-duality transformation rules in the
nonrelativistic (c → ∞) limit. In what follows,
we compute various ðp; qÞ loop operators in the
nonrelativistic limit and study their properties
under S-duality transformations. We show that the
S-duality transforms ðp; qÞ string charges in such a
way that (1,0) and (0,1) states are precisely ex-
changed in the dual description.

(ii) We further compute antisymmetric Wilson loops
using D3 brane embeddings and subsequently con-
sider their nonrelativistic limits. We show that in the
nonrelativistic limits of the (p, q) five brane web, the
expectation values for these Wilson loops [at any
point (ω̃) of the upper half plane] turn out to
be hWðz̃Þijc→∞ ≃ 1 −Oðc−5Þ.

These results also agree with the results which were
obtained using the electrostatic description of N ¼ 1
quivers. We further estimate the associated F1 and D1
charges of the nonrelativistic D3 branes which are embedded
at any point (ω̃) of the complex upper half plane and derive
an identity analogous to those obtained previously in [24].

(i) In Secs. V D and V E, we present an algorithm in
order to obtain nonrelativistic limits of unbalanced
(YNc

and XNc
) quivers. Like in the case of balanced

quivers, we identify a zero pole structure (at the
origin of the complex coordinate system) associated
with the derivatives of these holomorphic functions.
We also discuss (p, q) loop operators in the non-
relativistic limits of unbalanced quivers and study
their properties under S duality.

We draw our conclusion in Sec. VI and outline some
possible future directions.
In Appendix A, we consider large c limits of background

RR fluxes and the dilaton of the NS sector. We show that,
under an S duality, these solutions can be mapped into
those of the nonrelativistic background solutions of [30].
We also discuss the nonrelativistic limits of matching
solutions [28] which map the electrostatic variables into
the DGKU solution [18].
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II. ELECTROSTATIC DESCRIPTION
AND TSNC LIMIT

A. N = 1 backgrounds

N ¼ 1 quiver gauge theories in 5d have their dual
description in terms of type IIB supergravity with an
AdS6 factor. The full 10d solution is expressed as a warped
product of the form AdS6 × S2 × Σð2Þ. Here, Σð2Þ is a two-
dimensional Riemann surface parametrized by complex
coordinates [18–21].
In the original construction of the duality [18–21], the

warped factors of both AdS6 and S2 are expressed in terms
of locally holomorphic functions of Σð2Þ which we identify
here as the DGKU solution. As we progress, along the way,
we outline the roadmap to obtain the TSNC data corre-
sponding to these solutions using the map of [28].
The first part of the analysis is heavily based on the

electrostatic viewpoint ofN ¼ 1 SCFTs as elaborated by the
authors of [28]. The 10d background contains an AdS6 factor
together with in internal manifold (M4) that comprises an S2

preserving the SUð2ÞR symmetry of the dual SCFTs.
In the electrostatic description, one expresses the

type IIB background in terms of a potential function
Vðσ; ηÞ that satisfies Laplace’s equation,

∂σðσ2∂σVÞ þ σ2∂2ηV ¼ 0; ð6Þ

with appropriate boundary conditions [28]

V̂ðσ → �∞; ηÞ ¼ 0; Rðη ¼ 0Þ ¼ 0 ¼ Rðη ¼ PÞ; ð7Þ

where RðηÞ is called the rank function that classifies
different classes of quivers.2 Here, the modified potential
function V̂ ¼ σV (that actually solves the Laplace’s equa-
tion) is subjected to the boundary conditions of the
following form:

V̂ðσ; η ¼ 0Þ ¼ 0 ¼ V̂ðσ; η ¼ PÞ; ð8Þ

where η is called the holographic direction whose range is
bounded between 0 and P.
Using the string frame, the type IIB background could be

formally expressed as [28]

ds2IIB ¼ f1ðσ; ηÞds2AdS6 þ ds2M4
ð9Þ

¼ f1ðσ; ηÞds2AdS6 þ f2ðη; σÞdΩ2ðχ; ξÞ
þ f3ðη; σÞðdσ2 þ dη2Þ; ð10Þ

B2 ¼ f4ðσ; ηÞ sin χdχ ∧ dξ;

C2 ¼ f5ðσ; ηÞ sin χdχ ∧ dξ; ð11Þ

e−2ϕ ¼ f6ðσ; ηÞ; C0 ¼ f7ðσ; ηÞ; ð12Þ

f1¼
3π

2

�
σ2þ 3 _V

∂
2
ηV

�1=2

; f2¼f1
∂
2
ηV _V

3σΔ
; f3¼f1

∂
2
ηV

3 _V
;

ð13Þ

f4 ¼
π

2

�
η −

_V∂σ∂ηV

Δ

�
;

f5 ¼
π

2

�
V −

_V
Δ
ð∂ηVð∂σ∂ηVÞ − 3∂2ηV∂σVÞ

�
; ð14Þ

f6¼
12σ _V∂2ηVΔ

ð3∂σVþσ∂2ηVÞ2
; f7¼2

�
∂ηVþ 3 _V∂σ∂ηV

ð3∂σVþσ∂2ηVÞ
�
;

ð15Þ

Δ ¼ 1

σ
ð2 _V − V̈Þ∂2ηV þ σð∂σ∂ηVÞ2; _Vðσ; ηÞ ¼ σ∂σV:

ð16Þ

The corresponding Hanany-Witten setup consists of an
intersection of NS5-D5-D7 branes in 10d. The NS5 branes
are placed along the holographic η axis at discrete locations
(ηi) while the color D5 branes are extended between them.
The completion of theN ¼ 1 quiver is achieved by placing
flavor D7 branes at η ¼ P − 1 (see Fig. 1).

B. TNc;P quivers

To start with, we first construct the nonrelativistic limit
of TNc;P quivers which is closed by placing flavor branes at
η ¼ P − 1 [28] (see Fig. 1).
The corresponding rank function is given by

RðηÞ ¼
�
Ncη 0 ≤ η ≤ ðP − 1Þ
NcðP − 1ÞðP − ηÞ ðP − 1Þ ≤ η ≤ P:

ð17Þ

Expanding the potential Vðσ; ηÞ in the limit of small σ
and large P we find [29]

V̂ðσ ∼ 0; ηÞ ∼ ηNcP log 2
π

−
πηðη2 þ 1ÞNc

24P
−
σηNc

2

þ πησ2Nc

8P
þOðσ3Þ: ð18Þ

On the other hand, an expansion in the limit of large σ
reveals

V̂ðσ → ∞; ηÞ ∼ P3Nc

π3
e−

πσ
P sin

�
π

P

�
sin

�
πη

P

�
: ð19Þ

2Given the electrostatic description, one can imagine a charge
distribution RðηÞ [28] between the conducting plates located at
η ¼ 0 and η ¼ P.

DIBAKAR ROYCHOWDHURY PHYS. REV. D 107, 046010 (2023)

046010-4



However, to carry out our analysis, we restrict ourselves in the region σ ∼ 0 and consider3 ðt; ηÞ being the longitudinal
directions of the TSNC manifold [14]. The remaining directions of the internal manifold (M4) are being considered as the
transverse coordinates.
The corresponding metric components read as

f1ðσ ∼ 0; ηÞ ∼ 3π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� − η2

2
þ 12P2 log 2

π2
−
1

2

����
s

þOðσ2Þ; ð20Þ

f2ðσ ∼ 0; ηÞ ∼ −3ðπ2η2ð24P2 log 2 − π2ðη2 þ 1ÞÞ3=2Þffiffiffi
2

p ðπ4ð9η4 þ 12η2 − 1Þ − 576P4 log2 2þ 48π2ð1 − 6η2ÞP2 log 2Þ ; ð21Þ

f3ðσ∼0;ηÞ∼ 3π2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j48P2 log2−2π2ðη2þ1Þj

p þOðσ2Þ: ð22Þ

1. Decoding the vielbeins

We are now in a position to decode the NR data
fτAμ̂ ; hij; πai g which we collectively call the TSNC data
[14] associated with the non-Lorentzian manifold.4 Given
this set of data, one can next write down the corresponding
sigma model Lagrangian that is nonrelativistic with refer-
ence to the target space.
To obtain the TSNC data, we propose NR scaling of the

following form:

t ¼ t̃; η ¼ c2η̃; ξ ¼ ξ̃; χ ¼ χ̃

c
: ð23Þ

Using (23), we find longitudinal vielbeins as5

e0̂t dt ¼ cE0
t dt ¼ c

ffiffiffiffiffiffiffiffiffi
3πη

2
ffiffiffi
2

p
s �

1 −
6P2 log 2
π2c4η2

þ � � �
�
dt: ð24Þ

Comparing (24) with [14]

E0
t ¼ τ0t −

1

2c2
π1t ; ð25Þ

we find the corresponding TSNC data as

τ0t ¼
ffiffiffiffiffiffiffiffiffi
3πη

2
ffiffiffi
2

p
s

; π1t ¼ 0: ð26Þ

On a similar note, we find

e1̂ηdη¼cE1
ηdη¼

c
ffiffiffiffiffiffi
3π

p

ð2π2Þ1=4 ffiffiffi
η

p
�
1þ6P2 log2

π2c4η2
þ���

�
; ð27Þ

3The rest of the directions of AdS6 are being freezed.
4As our analysis reveals, the longitudinal πAμ ðA ¼ 0; 1Þ gauge

fields are identically zero for warped AdS6 × S2 background
considered in this paper. Following the redefinition of [14], the
above feature clearly reflects the absence of the ZA symmetry [4]
at the level of the TSNC sigma models which are discussed in this
paper. This is an artifact of the nonexistence of the foliation/zero
torsion constraint [4,14] for TSNC backgrounds which are
obtained as a limit of the type IIB supergravity solutions.

FIG. 1. (a) NS5-D5-D7 brane intersections for TNc;P quivers in the electrostatic description of N ¼ 1 SCFTs in 5d. (b) The
corresponding rank function/charge density RðηÞ is plotted against the holographic η axis. The rank function increases linearly
exhibiting a “kink” at the location of the flavor D7 branes.

5We remove tildes for simplicity which has been followed for
the rest of the analysis.
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which therefore yields

τ1η ¼
1

ð2π2Þ1=4

ffiffiffiffiffiffi
3π

η

s
; π0η ¼ 0: ð28Þ

To obtain the transverse vielbeins (eaμ; a ¼ 2, 3),
we notice

e2̂χdχ ¼
ffiffiffiffiffiffiffiffiffi
πη

3
ffiffiffi
2

p
r

dχ ¼ e2χdχ; ⇒ e2χ ¼
ffiffiffiffiffiffiffiffiffi
πη

3
ffiffiffi
2

p
r

; ð29Þ

e3̂ξdξ ¼
ffiffiffiffiffiffiffiffiffi
πη

3
ffiffiffi
2

p
r

χdξ ¼ e3ξdξ; ⇒ e3ξ ¼
ffiffiffiffiffiffiffiffiffi
πη

3
ffiffiffi
2

p
r

χ; ð30Þ

where we take into account the Im
ffiffiffiffiffi
f2

p
while decoding the

vielbeins.
The remaining TSNC data is obtained by looking

into the transverse B2 field and its NR reduction. A
straightforward computation of the metric component

f4ðσ ∼ 0; ηÞjP≫1 ∼
π3η3

2P2 log 2 [29] reveals the following com-

bination of the vielbein and the π fields [14]:

BðNRÞ
χξ ¼ 1

2

�
e2χπ2ξ − e3ξπ

3
χ

�
¼ π3η3χ

2P2 log 2
; ð31Þ

which is subjected to the scaling P → c2P in accordance to
that with the scaling of the holographic η axis (23).

2. Sigma model and its symmetries

Given the above set of TSNC data (26)–(31), we are now
in a position to write down the corresponding NR sigma
model action [14]:

SðNRÞ ¼ −
ffiffiffiffiffiffiffiffi
λNR

p
4π

Z
d2σLðNRÞ

P ; ð32Þ

where the corresponding NR Lagrangian density is
defined as6

LðNRÞ
P ¼ ffiffiffiffiffiffi

−γ
p

γαβeaμebν∂αXμ
∂βXνδab

þ ηABðτAμπBν − τAν π
B
μ Þ _XμX0ν

þ δabðeaμπbν − eaνπbμÞ _XμX0ν þ ζεαβeþα τþμ ∂βXμ

þ ζ̄εαβe−α τ−μ ∂βXμ: ð33Þ

Here, we introduce ζ and ζ̄ as world-sheet scalars
together with e�α ¼ e0α � e1α and τ�μ ¼ τ0μ � τ1μ. The above
Lagrangian (33) can be further simplified by choosing
the conformal gauge det γαβ ¼ −1 for the world-sheet
vielbeins.
The resulting Lagrangian density turns out to be

−LðNRÞ
P ¼ hij∂αXi

∂βXjηαβ þ εαβBðNRÞ
ij ∂αXi

∂βXj

− ðζ − ζ̄Þðτ0μ̂ _Xμ̂ − τ1μ̂X
0μ̂Þ; ð34Þ

BðNRÞ
ij ¼ δabea½iπ

b
j�; i; j ¼ χ; ξ; ð35Þ

where Xμ̂ characterize the longitudinal directions together
with the transverse metrics as

hχχ ¼
πη

3
ffiffiffi
2

p ; hξξ ¼
πηχ2

3
ffiffiffi
2

p : ð36Þ

Symmetries.—The Lagrangian (34) has a SOð1; 1Þ boost
symmetry generated by K01 associated with the longi-
tudinal directions X0 ¼ t; X1 ¼ η:

δταμ̂ ¼ Λν̂
μ̂τ

α
ν̂ ; δXμ̂ ¼ Λμ̂

ν̂X
ν̂; ð37Þ

where we identify the matrices Λ ∈ SOð1; 1Þ.
On the other hand, associated with the transverse

Xið¼ χ; ξÞ directions, one can imagine a SOð2Þ ⊂ SUð2ÞR
rotational invariance of the form

δXi ¼ λijX
j; ð38Þ

where the matrices are identified as λ ∈ SOð2Þ. These
rotations can be associated with angular momentum gener-
ators of the form Lij.
On top of these, the sigma model possesses translation

symmetries δξ ¼ ξ0 and δt ¼ t0. These two directions are
what we identify as the isometries associated with the non-
Lorentzian target space.
The translation along ξ is generated by the transverse

translation generators Pξ ¼ e3ξP3 and the time translation
is generated by nonrelativistic world-sheet Hamiltonian
Ht ¼ τ0t H0. A closer look further reveals that, under string

Galilean boost [14], both the variations δhij ¼ 0 ¼ δBðNRÞ
ij

6For the purpose of this paper, we restrict ourselves only to the
NS-NS sector of the full supergravity solution. The reason behind
this stems from the fact that the TSNC data corresponding to the
RR sector is not yet settled down. Therefore a priori the NR limit
(those have been obtained in Appendix A) of the RR sector is not
clear from the perspective of the geometric data in the NR sector. A
complete understanding of these TSNC data would lead towards a
supersymmetric generalization of the F-string Galilean algebra.
However, as an interesting fact, we wish to point out that one can
still calculate the number of (p, q) five branes (for the non-
relativistic theory) starting from the basic definition of Page
charges as in a relativistic setup and thereby taking a c → ∞
limit of that (see Secs. II B 4 and II C 3). In other words, without
knowing the explicit TSNC data for the RR sector, one can still
figure out the five brane configuration in a nonrelativistic setup
following simple scaling arguments along the holographic (η) axis.
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which stems from the fact that the longitudinal one
form τAi ¼ 0.

3. Laplace equation and the rank function

The Laplace equation in the electrostatic description [28]
is given by

∂
2
σV̂ þ ∂

2
ηV̂ ¼ 0: ð39Þ

The associated rank function turns out to be [28]

RðηÞ ¼ ∂σV̂jσ¼0 ¼ c2R̃ðη̃Þ; ð40Þ

where the rank function in the NR limit is identified as

R̃ðη̃Þ ¼
8<
:

η̃Nc
2

0 ≤ η̃ ≤ ðP−1Þ
c2

Nc
2
ðP − 1ÞðPc2 − η̃Þ ðP−1Þ

c2 ≤ η̃ ≤ P
c2 :

ð41Þ

In the NR limit, one defines a modified boundary
conditions for the rank function

R̃ðη̃min ¼ 0Þ ¼ 0 ¼ R̃
�
η̃max ¼

P
c2

�
; ð42Þ

where P
c2 is the new location of the conducting plane that

was initially at a location η ¼ P.

4. Brane setup and Page charges

We now discuss the effect of NR scaling on NS5-D5-D7
brane configuration. In order to explore the brane setup, it is
customary first to estimate the Page charges in the NR limit.
Let us first estimate the Page charge associated to NS5

branes:

QNS5 ¼
1

4π2

Z
H3; H3 ¼ ∂ηf4dη ∧ VolðS2Þ: ð43Þ

Considering the NR scaling (23), this finally leads to

Q̃NS5 ¼
1

4π2c2

Z
P=c2

0

dη̃∂η̃f4ðσ ¼�∞; η̃Þ
Z

cπ

0

χ̃dχ̃
Z

2π

0

dξ̃

¼ π

4
ðf4ðσ ¼�∞; η̃¼ P=c2Þ− f4ðσ ¼�∞; η̃¼ 0ÞÞ:

ð44Þ

Estimating the metric function f4 both at σ ¼ �∞,
finally leads to

Q̃NS5 ¼ P: ð45Þ

Modulo an overall scaling (∼ π2

4
) which may be absorbed

in the definition of Q̃NS5, the above relation (45) simply

ensures the conservation of NS5 brane charge in the TSNC
limit. However, the location of these NS5 branes is now
rescaled/shifted by a factor of 1=c2 which we identify as an
artifact of the TSNC scaling (23).
To summarize, therefore in the strict TSNC (c → ∞)

limit, all these P NS5 branes are eventually put on top of
each other near the origin (η ∼ 0) of the holographic axis
causing a singularity there (see Fig. 2). This effect is
precisely reflected as a singularity in the one form τ1η (28) in
the limit, η → 0.
For D7 branes, we have the following expression for the

Page charge (following a proper rescaling) in the relativistic
setup [28]:

QD7 ¼ R0ð0Þ −R0ðPÞ ¼ NcP: ð46Þ

Using (40) (and following a suitable rescaling), one can
show that in the TSNC limit, R0ðηÞ ¼ R̃0ðη̃Þ which there-
fore leads towards the conservation of D7 brane charge
as follows:

Q̃D7 ¼ R̃0ð0Þ − R̃0ðP=c2Þ ¼ NcP: ð47Þ

Finally, we note the D5 brane charge and its NR limit.
In the type IIB description, for an interval η ∈ ½k; kþ 1�,
one finds the D5 brane charge goes as [28]

QD5½k; kþ 1� ¼ 4

π
ðRðηÞ −R0ðηÞðη − kÞÞ: ð48Þ

Using (41), we finally note the following scaling relation
in the TSNC limit:

QD5 ¼
Z

P

0

RðηÞdη ¼
Z

P=c2

0

R̃ðη̃Þdη̃ ¼ Q̃D5

2c4
; ð49Þ

FIG. 2. (a) NS5 brane configuration in the TSNC limit. P NS5
branes are localized near the origin η ∼ 0 of the holographic axis
as a result of TSNC scaling (23). (b) The conducting plates of
electrostatic description [28] are now closely spaced as a result of
TSNC scaling (23).
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where Q̃D5 ¼ Nc
2
PðP − 1Þ counts the number of color D5

branes in the nonrelativistic limit. One should think of (49)
as a simple nonrelativistic scaling relation of the form
QD5 →

QD5

c4 , where the total number of D5 branes is
preserved in the nonrelativistic limit.
Let us try to understand the 1

c4 factor sitting in front
in (49). As a result of nonrelativistic scaling, the NS5
branes are now all shifted by a factor of ηi

c2 along the
holographic (η) axis which produces a factor of 1

c2. On top
of this, the quiver appears with a single kink which
corresponds to a (positive) slope [see Fig. 1(b)]. It is this
slope that produces an additional factor of 1

c2 while
integrating the rank function along the holographic axis.

5. TSNC scaling at special points

As a final remark, we wish to explore the properties
of the metric functions and their NR scaling in the large
σ ¼ Λ → �∞ limit. Using the potential function (19),
below we enumerate the metric functions in the large σ
limit:

f1ðσ ∼ Λ; η ∼ 0Þ ¼ � 3πΛ
2

þ 9P
4

þOð1=ΛÞ; ð50Þ

f2ðσ ∼ Λ; η ∼ 0Þ ¼ π2η2

2P
þOð1=ΛÞ; ð51Þ

f3ðσ ∼ Λ; η ∼ 0Þ ¼ π2

2P
þOð1=ΛÞ; ð52Þ

f4ðσ ∼ Λ; η ∼ 0Þ ¼ π3η3

3P2
þOð1=ΛÞ: ð53Þ

To obtain the corresponding TSNC data, we propose the
following NR scaling:

t ¼ ct̃; η ¼ cη̃; ξ ¼ ξ̃; χ ¼ χ̃

c
: ð54Þ

This leads to the following expressions for the longi-
tudinal as well as transverse vielbeins in the large c → ∞
limit:

τ0t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����� 3πΛ

2
þ 9P

4

����
s

; τ1η ¼
πffiffiffiffiffiffi
2P

p ; ð55Þ

e2χ ¼
πηffiffiffiffiffiffi
2P

p ; e3ξ ¼
πηχffiffiffiffiffiffi
2P

p : ð56Þ

The NS-NS two form, on the other hand, turns out to be

B2 ¼ cBðNRÞ
2 ; BðNRÞ

2 ¼ π3η3χ

3P2
: ð57Þ

Clearly, as one can see, unlike in the previous example,
all the TSNC data are nonsingular in the limit η ∼ 0. In
other words, the singularity at the origin of the ðσ; ηÞ
coordinate system is not visible from a large distance along
the σ axis.

C. + P;Nc
quivers

These quivers are of special interest because of their
richer structure as compared to the previous one. The
corresponding rank function [RðηÞ] is piecewise linear and
possesses a plateau as a consequence of the location of
flavor D7 branes at distinct locations along the holographic
axis (see Fig. 3).
The rank function in this case reads as [28,29]

RðηÞ ¼
8<
:

Ncη 0 ≤ η ≤ 1

Nc 1 ≤ η ≤ ðP − 1Þ
NcðP − ηÞ ðP − 1Þ ≤ η ≤ P;

ð58Þ

FIG. 3. (a) NS5-D5-D7 brane intersections for þNc;P quivers. Flavor D7 branes are located at η ¼ 1 and η ¼ P − 1 along the
holographic axis. (b) The corresponding rank function RðηÞ exhibits a plateau for 1 ≤ η ≤ P − 1.
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which corresponds to placing flavor D7 branes at η ¼ 1 and
η ¼ P − 1 (see Fig. 3).
Clearly, the presence of flavor branes at distinct locations

modifies the geometry. As a result, we categorize the
background into three different regions which we list
below.
A careful analysis reveals that when expanded near

σ ∼ 0, the corresponding potential function V̂ðσ; ηÞ reads as

V̂ðσ; ηÞ
ðNc
4πÞ

∼ ηð6þ 4 log 2Þ − 4η log

�
π

P

�
− 2η log j1 − η2j

− ð1þ η2 − σ2Þ log
���� ηþ 1

η − 1

����; ð59Þ

which turns out to be regular [29] across the location of the
flavor D7 branes at η ¼ 1.
As mentioned above, we divide the entire range 0≤η≤P

into the following three regions.
Region I.—This region corresponds to the range

0 ≤ η < 1. The resulting metric functions read as

f1ðσ ∼ 0; η < 1Þ ∼ 3

2
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� − η2

2
− 3 log

�
π

P

�
þ 3þ log 8

����
s

;

ð60Þ

f2ðσ ∼ 0; η < 1Þ

∼ −
πη2ð−η2 − 6 logðπPÞ þ 6þ logð64ÞÞ3=2

3ð ffiffiffi
2

p ðη4 þ 8η2ðlogð π
2PÞ − 1Þ − 4ðlogð π

2PÞ − 1Þ2ÞÞ ;

ð61Þ

f3ðσ ∼ 0; η < 1Þ

∼ −
3

�
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j − η2

2
− 3 logðπPÞ þ 3þ log 8j

q �
η2 þ 6 logðπPÞ − 6ð1þ log 2Þ : ð62Þ

Region II.—This is the region which corresponds to
1 − δ ≤ η ≤ 1þ δ with δ being very small. The corre-
sponding metric functions read as

f1ðσ ∼ 0; η ∼ 1Þ ∼ 3
ffiffiffi
3

p
πffiffiffi
2

p kc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����2 log

�
π

P

�
− 3

����
s

; ð63Þ

f2ðσ ∼ 0; η ∼ 1Þ ∼ 1

9
f1ðσ ∼ 0; η ∼ 1Þ; ð64Þ

f3ðσ ∼ 0; η ∼ 1Þ ∼ 9π2

4
f−11 ðσ ∼ 0; η ∼ 1Þ; ð65Þ

where kc ¼ δ
σ is kept fixed in the limit δ → 0.

Region III.—Finally, we consider the region 1þδ≤η≤P
which corresponds to metric functions of the form7

f1ðσ ∼ 0; η > 1Þ ∼ 3
ffiffiffi
3

p

2
ffiffiffi
2

p π

ffiffiffiffiffiffiffiffiffiffiffi
a1ðηÞ
b1ðηÞ

s
; ð66Þ

f2ðσ ∼ 0; η > 1Þ ∼ a2ðηÞ
b2ðηÞ

; ð67Þ

f3ðσ ∼ 0; η > 1Þ ∼ −
a3ðηÞ
b3ðηÞ

: ð68Þ

1. Decoding the vielbeins

We obtain TSNC data for two different regions of the
spacetime; namely, (i) 0 ≤ η ≤ 1 and (ii) 1 < η ≤ P. The
NR scaling is defined as

t ¼ t̃; η ¼ c2η̃; ξ ¼ ξ̃; χ ¼ χ̃

c
: ð69Þ

For case (i), the resulting TSNC data turns out to be

τ0t ¼
ffiffiffiffiffiffiffiffiffi
3πη

2
ffiffiffi
2

p
s

; τ1η ¼
ffiffiffiffiffiffiffiffiffi
3πffiffiffi
2

p
η

s
; e2χ ¼

ffiffiffiffiffiffiffiffiffi
πη

3
ffiffiffi
2

p
r

; e3ξ ¼
ffiffiffiffiffiffiffiffiffi
πη

3
ffiffiffi
2

p
r

χ;

ð70Þ
where we remove tildes for simplicity.
On the other hand, for case (ii), in the large c limit of the

vielbeins one finds

cE0
t ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ffiffiffi
3

p
πη̃

2
ffiffiffi
2

p
s �

1þ 1

4η̃c2
Kðc2η̃Þ þ � � �

�

¼ c

�
τ0t −

1

2c2
π1t

�
; ð71Þ

KðηÞ ¼ 1

log ηþ1
η−1

�
2 logðη2 − 1Þ− 6− 4 log2þ 4 log

�
π

P

��
:

ð72Þ
A straightforward comparison reveals the following

longitudinal one forms:

τ0t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ffiffiffi
3

p
πη̃

2
ffiffiffi
2

p
s �

1þ 1

4

�
log

�
c4η̃2

4

�
þ 2 log

�
π

P

�
− 3

��
;

ð73Þ
π1t ¼ 0: ð74Þ

7See Appendix B for details.
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On a similar note, one finds

cE1
η̃ ¼ c

�
3

2

�
1=4

ffiffiffi
π

η̃

r �
1 −

1

4η̃c2
Kðc2η̃Þ þ � � �

�

¼ c

�
τ1η̃ −

1

2c2
π0η̃

�
: ð75Þ

From (75), it trivially follows that

τ1η̃ ¼
�
3

2

�
1=4

ffiffiffi
π

η̃

r �
1 −

1

4

�
log

�
c4η̃2

4

�
þ 2 log

�
π

P

�
− 3

��
;

ð76Þ

π0η̃ ¼ 0: ð77Þ

Before proceeding further, let us first explore the
behavior of TSNC fields near η ∼ 0. Like in the previous
example, we notice that τ1η (70) becomes singular as one
approaches the origin of the holographic axis. This singu-
larity, like before, is an artifact of the collapsing NS5 branes
as a result of the NR scaling (69).
In the strict NR limit, the range η ∈ ½0; P� becomes

singular as a result of the 1=c2 scaling. This corresponds to
the fact that the NS5 branes which were in the region η > 1
are now all collapsed at the singularity η ∼ 0. This is
reflected as a singularity of the vielbein (76) in the
limit η̃ → 0.
Finally, we note transverse vielbeins which read as

e2χ̃ ¼
ffiffiffiffiffi
πη̃

2

r �
3

2

�
1=4

; e3
ξ̃
¼

ffiffiffiffiffi
πη̃

2

r �
3

2

�
1=4

χ̃: ð78Þ

2. Laplace equation and the rank function

The associated charge density/rank function is defined
as [28]

RðηÞ ¼ lim
ϵ→0

ð∂σV̂ðσ ¼ þϵ; ηÞ − ∂σV̂ðσ ¼ −ϵ; ηÞÞ: ð79Þ

A straightforward computation reveals

RðηÞ
Nc
π

¼ Re

�
i

�
ðη − 1Þ log

�
−
iπðη − 1Þ

P

�

− ðηþ 1Þ log
�
−
iπðηþ 1Þ

P

�
þ 2þ log 4

��
ð80Þ

which by virtue of the TSNC scaling (69) reveals the NR
charge density as

R̃ðη̃Þ ¼ 4πNc arg
�
−
iη̃
P

�
: ð81Þ

Clearly, the charge density vanishes at the origin, namely
R̃ðη̃min ¼ 0Þ ¼ 0. On the other hand, for the other end
point, we find R̃ðη̃maxÞ ¼ 4πNc arg ð− i

c2Þ which also van-
ishes in the strict large c → ∞ limit. Therefore, to sum-
marize, both boundary conditions are preserved in the
TSNC limit of N ¼ 1 quivers.
On the other hand, in the intermediate region 0 < η̃ < P

c2,

the rank function R̃ðη̃Þ exhibits a plateau region as in the
relativistic scenario (see Fig. 4). Combining these two
features together, we propose an alternative expression for
the rank function in the TSNC limit which reads as

R̃ðη̃Þ ¼
�
Nc

1
c2 ≤ η̃ ≤ ðP−1Þ

c2

NcðPc2 − η̃Þ η̃ ¼ P
c2 :

ð82Þ

From Fig. 4, it is quite evident that the area under the
curve is much less as compared to its relativistic counter-
part. This clearly indicates a lower charge density in the
TSNC limit of the N ¼ 1 quivers.
We probe more on this in the next section, where we

compute Page charges and explore the associated NS5-D5-
D7 brane setup in the TSNC limit.

3. Brane setup and Page charges

We begin by computing the Page charge corresponding
to NS5 branes. To begin with, we first note the potential
function in the large σ → ∞ limit:

FIG. 4. We plot the rank function against the rescaled holo-
graphic axis (η̃) in the TSNC limit of N ¼ 1 quivers. The red
lines show the modified rank function in the large c limit while
the dotted lines correspond to the rank function in the relativistic
scenario. The rank function vanishes sharply at the end points
while exhibiting a plateau in the intermediate regime.
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V̂ðσ → ∞; ηÞ ≃ −
iNcP
4

−
�
ηNc logðπσ2PÞ

π
þ iNcσðlogðπσ2PÞ − 1Þ

π

�

×
1

P2

�
−

1

36
iπð3η2 þ 1ÞNcσ −

1

36
πηðη2 þ 1ÞNc þ

1

12
πηNcσ

2 þ 1

36
iπNcσ

3

�
: ð83Þ

Using (83) and considering the real part, one finally
obtains

f4ðσ ¼ �∞; η̃Þjc→∞ ¼ 2

3
πc2η̃; ð84Þ

which by means of (44) reveals the NS5 brane Page charge
in the TSNC limit as

Q̃NS5 ¼ P: ð85Þ

Clearly, following a suitable rescaling, like in the
previous example, one precisely conserves the number
of (¼ P) NS5 branes in the TSNC limit. As we emphasized
before, in the large c → ∞ limit, all these P NS5 branes are
pushed together near the origin of the holographic axis [see
Fig. 2(a)] creating a metric singularity there.
On a similar note, the Page charge corresponding to D7

branes turns out to be

Q̃D7 ¼ ðR̃0ð0Þ − R̃0ðη̃maxÞÞ ¼ Nc; ð86Þ

which corresponds to the Nc flavor D7 branes localized at
η̃ ¼ η̃max ¼ P

c2 (see Fig. 4).
Finally, we note the number of color D5 branes in the

TSNC limit,

QD5 ¼
Q̃D5

c2
; ð87Þ

where Q̃D5 ¼ NcðP − 1Þ is the number of color D5 branes
in the nonrelativistic limit. The above result simply follows
from the fact that there are (P − 1) Nc color nodes whose
relative spacing is now rescaled by a factor of 1

c2 as an
artifact of nonrelativistic scaling of the original positions
(ηi) of NS5 branes along the holographic axis.
Notice that, unlike the previous example of single kink

quivers, here we have a factor of 1
c2 floating around. This is

simply because of the fact that the quiver is flat. In other
words, it is with zero slope and therefore does not produce
an additional factor of 1

c2.

4. TSNC scaling at special points

We complete our discussion on the TSNC limit by
exploring the metric functions in the asymptotic limits
(σ ¼ Λ → �∞) and thereby decoding the vielbeins in
those limits.

Below, we enumerate metric functions which directly
follow from (83)

f1ðσ ∼ Λ; η ∼ 0Þ ¼ 9Pffiffiffi
2

p ; f2ðσ ∼ Λ; η ∼ 0Þ ¼ 2
ffiffiffi
2

p
P;

ð88Þ

f3ðσ ∼ Λ; η ∼ 0Þ ∼OðP=Λ2Þ; f4ðσ ∼ Λ; η ∼ 0Þ ∼ 0:

ð89Þ

Based on the above information (88) and (89), we
propose TSNC scaling as

t ¼ ct̃; η ¼ cη̃; ξ ¼ ξ̃; χ ¼ χ̃; ð90Þ

which yields the following TSNC data:

τ0t ¼
3P

2
1
4

; τ1η ∼Oð1=Λ2Þ; e2χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

p
P

q
;

e3ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

p
P

q
sin χ; BðNRÞ

2 ∼ 0: ð91Þ

III. T DUALITY

Our purpose here is to discuss the effects of applying T
duality on the NR sigma model (34) and use the above as a
tool to compute various field theory observables in the
TSNC limit of N ¼ 1 quivers in 5d. Below, we present a
general algorithm to obtain the T-dual Lagrangian using the
canonical framework of [31].
We begin by considering the TSNC sigma model (34) in

its most generic form:

LðNRÞ
P ¼ hî îð _XîÞ2 þ 2hîm _Xî _Xm þ hmn

_Xm _Xn − hî îðX0 îÞ2
− 2hîmX

0 îX0m − hmnX0mX0n

− 2BðNRÞ
îm

ðX0m _Xî − X0 î _XmÞ
þ ðζ − ζ̄Þðτ0μ̂ _Xμ̂ − τ1μ̂X

0μ̂Þ: ð92Þ

Here, Xi ¼ fXî; Xmg stand for the transverse coordinates
associated with TSNC manifold. On the other hand,
Xμ̂ðμ̂ ¼ 0; 1Þ represent longitudinal directions.
In particular, Xîð¼ ξÞ is identified as the isometric

circular direction (associated to TSNC manifold) along
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which the T duality is applied. The corresponding gen-
erating function is defined as [31]

G ¼ 1

2

Z
dσ1ðX0 îX̃ĩ − XîX̃0 ĩÞ; ð93Þ

where X̃ĩ is introduced as the dual coordinate that is
accompanied by a dual momentum

p̃ĩ ¼ −
∂G

∂X̃ĩ
¼ −X0 î; pî ¼

∂G

∂Xî
¼ −X̃0 ĩ: ð94Þ

Below, we enumerate the canonically conjugate
momenta which readily follow from (92):

pμ̂ ¼ ðζ − ζ̄Þτ0μ̂; ð95Þ

pm ¼ 2ðhîm _Xî þ hmn
_XnÞ þ 2BðNRÞ

îm
X0 î; ð96Þ

pî ¼ 2ðhî î _Xî þ hîm _XmÞ − 2BðNRÞ
îm

X0m: ð97Þ

The above relations (95)–(97) can be inverted to obtain
velocities in terms of momenta,

_Xm ¼ hmn

�
1

2
pn − BðNRÞ

în
X0 î

�
; ð98Þ

_Xî ¼ 1

hî î

�
1

2
pî þ BðNRÞ

îm
X0m

�
; ð99Þ

where we set, hmî ¼ 0 which is compatible with TSNC
backgrounds that we consider here.
This finally yields the T-dual Hamiltonian of the follow-

ing form:

H̃ ¼ 1

4hî î
ðX̃0 ĩÞ2 þ hmn

4
pmpn þ gmnX0mX0n þ gî îðp̃ĩÞ2

þ hmnBðNRÞ
în

pmp̃ĩ −
BðNRÞ
îm

hî î
X0mX̃0 ĩ þ ðζ − ζ̄Þτ1μ̂X0μ̂;

ð100Þ

where we define the following entities as

gmn ¼ hmn þ
1

hî î
BðNRÞ
mî

BðNRÞ
nî

; ð101Þ

gî î ¼ hî î þ hmnBðNRÞ
mî

BðNRÞ
nî

: ð102Þ

Velocities which readily follow from the dual
Hamiltonian (100) could be expressed as

_̃X
ĩ ¼ 2gî îp̃ĩ þ hmnpmB

ðNRÞ
în

;

_Xm ¼ hmn

2
pn þ hmnBðNRÞ

în
p̃ĩ: ð103Þ

The above relation (103) can be inverted to express
momenta in terms of velocities as

p̃ĩ ¼
1

hî î

� _̃X
ĩ

2
þ _XmBðNRÞ

mî

�
; ð104Þ

pm ¼ 2gmn
_Xn þ BðNRÞ

mî

hî î
_̃X
ĩ
: ð105Þ

The T-dual Lagrangian is defined as

L̃ ¼ p̃ĩ
_̃X
ĩ þ pm

_Xm þ pμ̂
_Xμ̂ − H̃; ð106Þ

which by means of the above set (104) and (105) of data
reveals

L̃ ¼ g̃ĩ ĩη
αβ
∂αX̃ĩ

∂βX̃ĩ þ g̃mnη
αβ
∂αXm

∂βXn

þ g̃mĩη
αβ
∂αXm

∂βX̃ĩ þ ðζ − ζ̄Þðτ0μ̂ _Xμ̂ − τ1μ̂X
0μ̂Þ: ð107Þ

Below, we enumerate T-duality rules for the metric as
well as NS fluxes,

g̃ĩ ĩ ¼
1

4hî î
; g̃mn ¼ gmn; g̃mĩ ¼

BðNRÞ
mî

hî î
; B̃NR

ĩm
¼ 0;

ð108Þ

where the vanishing of the NS-NS fluxes in the T-dual
picture has its root in the choice of the metric component
hmî ¼ 0 that we had mentioned earlier.
Considering one specific example, below we decode

these T-duality rules explicitly. We take the example of
TNc;P quivers in their TSNC limit. The compact isometry is
identified as ξ whose dual is denoted as ξ̃. This yields the
following T-dual TSNC (transverse) metric components
which readily follow from (108):

g̃ξ̃ ξ̃ ¼
3

ffiffiffi
2

p

4πηχ2
; g̃χχ ¼

πη

3
ffiffiffi
2

p
�
1þ 9π4η4

2P4log22

�
;

g̃χξ̃ ¼
3π2ffiffiffi

2
p

P2 log 2

η2

χ
: ð109Þ

Clearly, some of these T-dual metric components diverge
in the limit η → 0 which is an artifact of the collapsing P
NS5 branes which were discussed previously. As a final
note, we find that the longitudinal vielbeins (ταμ̂) do not
transform under T duality.
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IV. QFT OBSERVABLES IN THE TSNC LIMIT

A. Central charge

The general idea of this section is to consider the
holographic central charge of the relativistic description
[28] and thereby taking its TSNC limit. The resulting entity
we claim to be the holographic central charge in the TSNC
limit of N ¼ 1 quiver.
Central charge in the relativistic description is found

to be [28]

ĉhol ¼
2

3π5

Z
P

0

dη
Z þ∞

−∞
dσσ3∂σV∂2ηV: ð110Þ

Let us consider the potential function corresponding to
TNc;P quivers:

V̂ðσ; ηÞ ¼ P3Nc

2π3
Re

h
Li3

�
−e−

πðσþiþiηÞ
P

�
− Li3

�
−e−

πðσ−iþiηÞ
P

�i
;

ð111Þ

where we define V̂ ¼ σV.
Using (111), a straightforward computation in the large

P limit reveals

ĉhol ¼
N2

cP2Λ
36π5

Z
P

0

dηþOð1=PÞ; ð112Þ

where we fix the limits of the σ integral as ½−Λ;Λ� with Λ
being large.
Following our previous discussion, the TSNC limit is

realized by setting η ¼ c2η̃ which finally yields the central
charge in the nonrelativistic limit as

ĉhol ¼
N2

cP3Λ
36π5c4

¼ ĉnr
c4

: ð113Þ

Clearly, the degrees of freedom associated to N ¼ 1
SCFTs are reduced down significantly as one approaches
the corresponding TSNC limit. This can also be interpreted
using our previous results on Page charges associated to D5
branes which shows that the color degrees of freedom are
reduced down to zero in the strict large cð→ ∞Þ limit.
A similar calculation for þP;Nc

quiver reveals

ĉhol ¼
N2

cPΛ
3π6

Z
P

0

dηþOð1=PÞ; ð114Þ

which upon taking the TSNC limit yields

ĉhol ¼
N2

cP2Λ
3π6c2

¼ ĉnr
c2

: ð115Þ

B. Couplings

Technically speaking, the coupling constant in the
nonrelativistic counterpart of N ¼ 1 quivers can be
studied through color D5 brane probes in the bulk
supergravity solution. These coupling constants are fixed
by the vacuum expectation value of the scalars hΦii that
corresponds to the location of the ith NS5 brane along the
holographic axis.
These scalars Φi form an important component of

the tensor multiplet living on the world volume of NS5
branes. One could imagine a typical coupling between the
elements of the tensor multiplet and the elements of the
vector multiplet living on the world volume of color D5
branes that gives rise to the Lagrangian of the
form L ∼ ðΦiþ1 −ΦiÞF2

mn þ � � �.
Typically the QFT Lagrangian in 5d could be recast in

the form

SQFT ∼ hΦiþ1 −Φii
Z

d5xF2
mn ∼

1

g2QFT

Z
d5xF2

mn; ð116Þ

which shows that the coupling constant goes inversely with
the relative separation between NS5 branes. Naively, one
should therefore expect that the coupling constant in the
nonrelativistic limit must grow large as the NS5 branes are
closely spaced.
To see this explicitly, we consider the probe Dirac Born-

Infeld (DBI) action of the following form:

SDBI ¼ TD5

Z
d6x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det½gþ 2πα0F�

p
; ð117Þ

where we switch off the dilaton for the present
computation and turn on world-volume gauge fields;
namely, F ¼ Ftx.
The D5 brane is considered to be extended along the four

Minkowski directions of the target space as well as along
the holographic η direction. While on the other hand, it is
considered to be located at a fixed position at σ ¼ 0 and the
radial (r ¼ rc) direction of AdS6.
The target space that we choose to work with turns out to

be of the following form:

ds2 ¼ f1ðηÞ
4r2c
L2

dx21;4 þ f3ðηÞdη2; ð118Þ

where the remaining directions are switched off.
The resulting DBI action takes the following form:

SDBI ¼ TD5

�
4r2c
L2

�
5=2 Z

dηd5x
ffiffiffiffiffi
f3

p
f5=21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ π2α02L4

4f21r
4
c
F2
tx

s
:

ð119Þ

HOLOGRAPHIC DUALS OF N ¼ 1 QUIVERS ... PHYS. REV. D 107, 046010 (2023)

046010-13



Considering α0Ftx to be small and P ≫ 1 one can expand
perturbatively to yield

δSDBI ≈
6π3TD5α

02rc
L

Z
P

0

dη
Z

d5xF2
tx þ � � � ; ð120Þ

where the metric functions are evaluated taking the specific
example of TNc;P quivers.
In the nonrelativistic limit, one introduces the following

scaling,8

η ¼ c2η̃; α0Ftx ¼ c2α0NRftx; TD5 ¼
TðNRÞ
D5

c6
;

rc ¼ cr̃; L ¼ cl; ð121Þ

which finally yields the nonrelativistic DBI action of the
form

δSðNRÞ
DBI ¼ 6π3TðNRÞ

D5 α02NRr̃
c2l

Z
d5xf2tx: ð122Þ

A direct comparison with (116) reveals that the coupling
constant in the nonrelativistic limit of the SCFTs behaves
like g2QFT ∼ c2 → ∞. The 1=c2 dependence is quite intuitive
and it stems from the fact that the original location of NS5
branes (ηi ∼ hΦii) is rescaled by a factor of 1=c2 in the
TSNC limit. To summarize, the nonrelativistic limit of
N ¼ 1 quivers emerges as a strongly coupled quantum
many body system.

C. Wilson loops

The computation of Wilson loops is carried out starting
from the electrostatic description of [28]. The general idea
is to consider Wilson loops in the antisymmetric repre-
sentation of the color gauge group which is realized by
considering probe D3 branes extended over AdS2 ⊂ AdS6
and the two sphere of the internal space.
A direct computation in the relativistic setup yields [28]

loghWi ¼ TD3N σ2∂σV; ð123Þ

where N ¼ VolAdS2VolS2 .
Let us first estimate the above entity (123) for TNc;P

quivers in the large P ≫ 1 limit,

σ2∂σVjP≫1 ¼ −
ηNcP log 2

π
þOð1=PÞ: ð124Þ

Therefore, considering the TSNC limit, one finds

hWijc→∞ ¼ e−
η̃T̃D3NNcP log 2

πc2 ¼ 1 −Oðc−2Þ; ð125Þ

which turns out to be a nearly Bogomol’nyi-Prasad-
Sommerfield (BPS) (Wilson) operator whose interpretation
in the nonrelativistic sector is not clear at the moment.
On a similar note, for þP;Nc

quivers one finds

σ2∂σVjP≫1 ¼ −
ηNc

2π
ð3þ 2 log 2Þ þOð1=PÞ; ð126Þ

which in the TSNC limit yields a similar result for Wilson
loops,

hWijc→∞ ¼ 1 −Oðc−2Þ: ð127Þ

V. NONRELATIVISTIC LIMITS OF
DGKU SOLUTIONS

A. Preliminaries

Let us briefly review the DGKU solution of [18], which
in the first place was proposed as the holographic setup to
describe N ¼ 1 quivers in 5d. As mentioned previously,
the resulting type IIB geometry is a warped product of
AdS6 and S2 over a 2d Riemann surface Σð2Þðω; ω̄Þ para-
metrized by a pair of complex coordinates ðω; ω̄Þ.
Typically, in their original construction [18], one intro-

duces a pair of holomorphic functions A�ðωÞ whose
differentials possess isolated poles on the boundary of
Σð2Þ. They emerge as ðp; qÞ five branes with charge density
given by the residues at these poles.
Using these holomorphic functions, the type IIB geom-

etry could be expressed as

ds2 ¼ f26ds
2
AdS6

þ f22ds
2
S2 þ 4ρ2dωdω̄; ð128Þ

where one identifies the warping functions as [24]

f26¼
ffiffiffiffiffiffiffiffiffi
6GT

p
; f22¼

1

9

ffiffiffiffiffiffi
6G

p
T−3=2; ρ2¼ κ2ffiffiffiffiffiffi

6G
p T1=2: ð129Þ

The metric functions are expressed in terms of local
holomorphic functions (A�) [24]

G ¼ jAþj2 − jA−j2 þ 2ReB;

∂ωB ¼ Aþ∂ωA− −A−∂ωAþ; ð130Þ

κ2 ¼ −j∂ωAþj2 þ j∂ωA−j2; T2 ¼ 1þ 2j∂ωGj2
3κ2G

: ð131Þ

8For generic Dp branes the tension is defined as TDp ¼
1

ð2πÞpα0 ðpþ1Þ=2. In the TSNC limit, one introduces the nonrelativistic

scaling as α0 ¼ c2α0NR. This leads to the following relation
between the DBI tensions in the relativistic and in the non-

relativistic limit as TDp ¼ T̃Dp

cpþ1.
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The SOð4Þ sector of the dual SCFTs can be realized
by wrapping the S3 ⊂ AdS6. On the other hand, the
SUð2Þ R symmetry can be realized by wrapping the S2

of the internal space. Below, our purpose would be to obtain
these metric functions in the nonrelativistic limit and
identify the symmetries associated with the dual
Quantum Field Theory (QFT).

B. Large c limits of balanced quivers

Below, we consider some particular examples of N ¼ 1
quivers with balanced SUðNcÞ color nodes. In these
examples, the effective number of flavors is twice the
number of colors; namely, Nf ¼ 2Nc.

1. TNc
quivers

Let us consider the example of TNc
quivers. The

corresponding holomorphic functions (for the upper half
plane) are expressed as [24]

A� ¼ 3Nc

8π
ð� logðω − 1Þ þ ð∓ 1 − iÞ logðωþ 1Þ

þ i logð2ωÞÞ; ð132Þ

where the poles are clearly located at ω ¼ −1, 0, 1. Here,
ω ¼ 1 corresponds to the Nc NS5 brane pole. On the other
hand, ω ¼ 0 and ω ¼ −1 respectively represent Nc D5
brane pole and Nc (1,1) five brane pole.

(p, q) five brane web in the nonrelativistic limit.—The
poles associated with the differential of the holomorphic
function reflect the presence of (p, q) five
branes [24]. The above notion should get translated in
the nonrelativistic limit too.
In order to define a consistent nonrelativistic limit

for holomorphic functions (A�), we rescale the complex
coordinate as ω ¼ c

ffiffiffiffi
ω̃

p
which leads to a holomorphic

function in the nonrelativistic limit of the quiver as

A�jc→∞ ¼ 3iNc log 2
8π

∓
�
3
4
� 3i

8

�
Nc

πc
ffiffiffiffi
ω̃

p þ 3iNc

16πc2ω̃
þ � � � :

ð133Þ
The differential of the holomorphic function ∂ωA�jc→∞

exhibits a zero pole at ω̃ ∼ 0 when expanded up to 1=c2 in
the large c limit:

∂ωA�jc→∞ ¼
�
� 3

4
þ 3i

8

�
Nc

πc2ω̃
þOðc−3Þ: ð134Þ

This is clearly an artifact of the collapsing (p, q) five
brane web as a result of the nonrelativistic scaling ∼ ω2

c2 with
respect to the rescaled coordinate (ω̃). For example, the
nonrelativistic scaling shifts the previous location (ω ¼ 1)

of the NS5 brane pole to ω̃ ∼ 1
c2 ∼ 0. The above phenomena

precisely mimics the collapsing NS5 brane picture of the
electrostatic description using a different (σ, η) coordinate
system (see Sec. II B 4).
The five brane charges at the pole can be obtained by

estimating the residue [27]

Resð∂ωA�Þjc→∞ ¼ 3ð�2þ iÞNc

8πc2
¼ 3ð�2ÑNS5 þ iÑD5Þ

8πc2
;

ð135Þ

which shows that the number of NS5 branes is preserved
(ÑNS5 ¼ Nc) in the nonrelativistic limit. On the other hand,
ÑD5 ¼ Nc counts the net D5 brane charge associated with
the zero pole. These numbers precisely indicate towards the
conservation of the total number of NS5 and D5 branes in
the nonrelativistic limit.

Background geometry.—The background data (in the
language of holomorphic functions) can be obtained
following the basic definitions which were listed in
(130) and (131).
Using (130), the equation for the B function in the

nonrelativistic limit turns out to be

∂ωBðω̃Þjc→∞ ¼ −
9iN2

c log 2
16π2c2ω̃

þOðc−3Þ; ð136Þ

which upon integration yields

Bðω̃Þjc→∞ ¼ 9iN2
c log 2

16π2c
ffiffiffiffi
ω̃

p : ð137Þ

Using these data, it is now straightforward to write down
the composite functions [defined at any point ðω̃Þ of the 2d
complex plane] in the nonrelativistic limit as

Gðω̃Þjc→∞ ¼ 9N2
c log 2

8π2cjω̃j
�
Imð ffiffiffiffi

ω̃
p Þ − jω̃jIm

�
1ffiffiffiffi
ω̃

p
��

¼ kN2
c

c
fgðω̃Þ; ð138Þ

with k being some overall constant.
Using (138), the other two functions can be read as

κ2ðω̃Þjc→∞ ¼ 9N2
cfkðω̃Þ

16π2c5
;

fkðω̃Þ ¼ Im

�
ω̃ððω̃3=2Þ� − ffiffiffiffi

ω̃
p

ω̃�Þ
ω̃5

�
ð139Þ

T2ðω̃Þjc→∞ ¼ 128kjω̃jπ2c2
27

f02g
fkfg

: ð140Þ

HOLOGRAPHIC DUALS OF N ¼ 1 QUIVERS ... PHYS. REV. D 107, 046010 (2023)

046010-15



Using the above set of data [(138)–(140)], the metric
functions (at any point ω̃ of the 2d Riemann surface Σð2Þ) in
the nonrelativistic limit could be formally as

f26 ¼ g6ðω̃Þ; f22 ¼
ffiffiffi
6

p

9c2
g2ðω̃Þ;

ρ2jdωj2 ¼ gρðω̃Þ
4c2jω̃j jdω̃j

2: ð141Þ

The details of these functions could be easily read using
the above data [(138)–(140)]:

g6ðω̃Þ ∼
�
fg
fk

�
1=4

jω̃j1=4
ffiffiffiffiffi
f0g

q
; g2ðω̃Þ ∼

f5=4g f3=4k

f03=2g jω̃j3=4
;

gρðω̃Þ ∼
�
fk
fg

�
3=4

jω̃j1=4
ffiffiffiffiffi
f0g

q
: ð142Þ

Considering Σð2Þ to be the upper half plane, it is trivial to
see that the pole (ω̃ ¼ 0) lies at the origin of the (complex)
coordinate system and in particular along the real axis of
the complex plane which is identified as the boundary of
the 2d Riemann surface.
It is trivial to see that the composite function G vanishes

identically along the real axis (or the boundary) of the
2d Riemann surface.9 In other words, the S2 (of the
internal manifold) shrinks to zero and as a result
the spacetime closes off. This further ensures the geodesic
completeness of the TSNC background like in the relativ-
istic scenario [20].
Using (141), the nonrelativistic metric in the large c limit

could be expressed as

ds2 ¼ 1

c2
ds̃2

¼ 1

c2

�
c2g6ðω̃Þds2AdS6 þ

ffiffiffi
6

p

9
g2ðω̃Þds2S2 þ

gρðω̃Þ
4jω̃j jdω̃j

2

�
:

ð143Þ

Clearly, the longitudinal cloak one forms (τAμ ) are
associated with the AdS6 factor. For example, the time
component of the one form can be expressed as τ0t ¼ffiffiffiffiffiffiffiffiffiffiffiffi
g6ðω̃Þ

p
and so on. Transverse vielbeins, on the other hand,

are associated with S2 and the 2d Riemann disk:

eaμ ¼
61=4

3

ffiffiffiffiffiffiffiffiffiffiffiffi
g2ðω̃Þ

p
; eãω̃ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
gρðω̃Þ
jω̃j

s
: ð144Þ

2. + Nc;M quivers

þNc;M quivers are described by the holomorphic func-
tions of the following form [24]:

A� ¼ 3

8π
ðiNcðlogð2ω − 1Þ − logðω − 1ÞÞ

�Mðlogð3ω − 2Þ − logωÞÞ; ð145Þ

which exhibitsM NS5 brane poles atω ¼ f0; 2
3
g andNc D5

poles at ω ¼ f1
2
; 1g.

Considering a large c limit, one finds

A�jc→∞ ¼ 3iðNc log 2 ∓ iM log 3Þ
8π

þ∓ 4M þ 3iNc

16πc
ffiffiffiffĩ
ω

p

þ∓ 16M þ 27iNc

192πc2ω̃
þ � � � : ð146Þ

(p, q) five brane web in the nonrelativistic limit.—Clearly,
the differential of the holomorphic function (146)

∂ωA�jc→∞ ¼ �4M − 3iNc

16πc2ω̃
þOðc−3Þ ð147Þ

exhibits a zero pole in the complex plane which corresponds
to a collapsed (p, q) five brane web like in the previous
example. In other words, the nonrelativistic scaling brings
all the four (p, q) five brane poles to the zero of the
complex plane.
The five brane charges could be estimated by computing

the residue at the pole [27]

Resð∂ωA�Þjc→∞ ¼ �4M − 3iNc

16πc2
¼ �4ÑNS5 − 3iÑD5

16πc2
:

ð148Þ

This clearly indicates that, like in the electrostatic
scenario, the number of NS5 branes is preserved
ÑNS5 ¼ M. In fact, using the identification M ¼ P [28],
this is precisely what we identify as the NS5 brane Page
charge derived previously using the electrostatic descrip-
tion. On a similar note, ÑD5 ¼ Nc is the D5 brane charge
associated with the pole.

Background geometry.—The background data can be
obtained pretty much in a way similar to those obtained
in the previous example. The B function, in the non-
relativistic limit, yields a differential equation of the form

∂ωBðω̃Þjc→∞ ¼ −
3iMNc logð432Þ

64π2c2ω̃
þOðc−3Þ; ð149Þ

9On a similar note, one can show that κ2j
∂Σ ¼ 0 which ensures

the boundary conditions of [19] to be valid in the nonrelativistic
limit of type IIB solutions.
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which upon integrating once yields the following solution:

Bðω̃Þjc→∞ ¼ 3iMNc logð432Þ
64π2c

ffiffiffiffi
ω̃

p : ð150Þ

The rest of the composite functions could be obtained in
a straightforward manner:

Gðω̃Þjc→∞ ¼ 3MNc logð432Þ
32π2cjω̃j

�
Imð ffiffiffiffi

ω̃
p Þ − jω̃jIm

�
1ffiffiffiffi
ω̃

p
��

¼ sMNc

c
fgðω̃Þ; ð151Þ

which is of similar structure as that of (138).
The remaining functions can be expressed as

κ2ðω̃Þjc→∞ ¼ 5MNcfkðω̃Þ
64π2c5

;

fkðω̃Þ ¼ Im

�ðsgnðω̃Þ − 1Þsgnðω̃Þ2
ω̃5=2

�
ð152Þ

T2ðω̃Þjc→∞ ¼ 512sjω̃jπ2c2
15

f02g
fkfg

: ð153Þ

The rest of the analysis can be carried out precisely in a
straightforward manner and the results agree qualitatively
to those obtained in the previous section. For example, the
cloak one form is given by τ0t ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
g6ðω̃Þ

p
with the function

fkðω̃Þ as given in (152).

C. QFT observables

1. ðp;qÞ loops
Let us now calculate the couplings associated with ðp; qÞ

strings wrapping the AdS2 ⊂ AdS6 and thereby taking its
nonrelativistic limit. Considering half BPS embeddings
which are restricted to the boundary of the disk (∂Σð2Þ),
one finds [24]

Sðp;qÞ ¼ 2πTjðpþ iqÞðAþ − Ā−Þ þ ðp − iqÞðĀþ −A−Þj:
ð154Þ

In the nonrelativistic limit, one simply makes the
replacements A� → A�ðω̃solÞ where ω̃sol is determined
considering a nonrelativistic limit of the BPS condition [24]

ðpþ iqÞ∂ωAþjc→∞ ¼ ðp − iqÞ∂ωA−jc→∞: ð155Þ

Upon solving (155) for TNc
quivers, one finds

ω̃sol ¼
q2

c2ðq − 2pÞ2 ¼
ω2
rel

c2
; ð156Þ

whereωrel is the solution obtained in a relativistic five brane
web scenario [24].
Using (156), the action (154) in the nonrelativistic limit

turns out to be

S̃ðp;qÞjω̃¼ω̃sol
¼ −

3NcT̃
2qc2

���� ðq − 2pÞ2
q

þ 2q log 2

����þOðc−3Þ:

ð157Þ
Clearly, (1,0) strings can be embedded at the (zero) pole

of the collapsed (p, q) five brane web. The expectation
value of the corresponding loop operator vanishes:

loghWð1;0Þðz̃FÞijc→∞ ¼ −∞ ⇒ hWð1;0Þðz̃FÞijc→∞ ¼ 0:

ð158Þ
On a similar note, (0,1) strings are also embedded at the

zero pole, ω̃sol ∼ 1
c2 ∼ 0. The expectation value of the

associated loop operator is given by

loghWð0;1Þðz̃DÞijc→∞ ¼ −
3NcT̃
2c2

ð1þ 2 log 2Þ
⇒ hWð0;1Þðz̃DÞijc→∞ ¼ 1 −Oðc−2Þ: ð159Þ
Under S duality the above expectation values must

exchange. This is achieved considering the following
transformation on the (p, q) string charges:

p̂ ¼ 1 − p; q̂ ¼ 1 − q; ð160Þ
where hat represents string charges in the S-dual picture.
The corresponding S-dual action is represented as

Ŝðp̂;q̂Þ ¼ −
3NcT̃

2ð1 − q̂Þc2
���� ð1þ q̂ − 2p̂Þ2

1 − q̂
þ 2ð1 − q̂Þ log 2

����;
ð161Þ

as, for example, the F strings in the S-dual picture are
represented by p̂ ¼ 1 and q̂ ¼ 0. The expectation value for
the corresponding loop operator is hŴð1;0Þi ∼ 1. This is
precisely the expectation value associated with D-string
operators in (159). On a similar note, one can show that
(1,1) strings are mapped into (1;−1) strings under S duality.

2. Antisymmetric Wilson loops and D3 branes

We revisit the calculation of Wilson loops which were
obtained previously using the electrostatic description of
N ¼ 1 quivers.
Wilson loops in the antisymmetric representation are

given by the D3 branes [24]

loghWðzÞi ¼ −
2

3
TD3VolAdS2VolS2G; ð162Þ

where G is given by (130).
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For TNc
quivers, it is quite straightforward to evaluate

these loops in the nonrelativistic limit. For example,
using (138), one finds at any point (ω̃) of the upper
half plane,

loghWðz̃Þijc→∞ ¼ −
2kN2

cfgðω̃Þ
3πα02NRc

5

⇒ hWðz̃Þijc→∞ ≃ 1 −Oðc−5Þ; ð163Þ

which reveals identical results which were obtained pre-
viously using the electrostatic approach. Clearly, in the
strict nonrelativistic limit, the expectation values of these
Wilson loops are one and they are mapped into themselves
under the S duality.
On a similar note, one can show that in the nonrelativistic

limit of the (p, q) five brane web, the F1 and D1 charges of
the D3 brane at any point (ω̃) on Σð2Þ turn out to be

NF1jc→∞ ¼ −
Nc

πc

sin
�
argðω̃Þ

2

�
ffiffiffi
4

p
ω̃2

þOðc−3Þ; ð164Þ

ND1jc→∞ ¼ 2Nc

πc

sin
�
argðω̃Þ

2

�
ffiffiffi
4

p
ω̃2

þOðc−3Þ; ð165Þ

where one needs to take into account only the real values on
the rhs of (164) and (165).
This also scales the field theory direction associated with

the dual quiver [24] as

z̃ ¼ ND1

Nc

����
c→∞

¼ 2

πc

sin
�
argðω̃Þ

2

�
ffiffiffi
4

p
ω̃2

þOðc−3Þ; ð166Þ

where one needs to take into account the real value on the
rhs of (166).
Combining the above two expressions (164) and (165), it

is quite instructive to note the following identity:

ðNF1 þ iND1Þjc→∞ ¼ 4

3
Fðω̃ÞðAþ þ Ā−Þjc→∞; ð167Þ

where Fðω̃Þ ¼ jω̃j sinðargðω̃Þ
2

Þffiffi
4

p
ω̃2Imð ffiffiffĩ

ω
p Þ. The above relation (167) is the

nonrelativistic counterpart of the identity derived in the
relativistic theory [24].

D. Large c limits of YNc
quivers

Nonrelativistic data for unbalanced quivers like YNc
and

XNc
can be obtained following a similar analysis. These are

the examples where the central node involves a Chern-
Simons term and the effective number of flavor (Nf) is less
than 2Nc.

YNc
solutions are characterized by holomorphic func-

tions of the form [24]

A� ¼ 3Nc

8π
½ð�1þ iÞ logðω − 1Þ þ ð�1 − iÞ logðωþ 1Þ

∓ 2 logð2ωÞ; ð168Þ

whose poles are clearly located at f0;�1g.
Considering a large c limit, one finds

A�jc→∞ ¼¼∓ Nc log 8
4π

−
3iNc

4πc
ffiffiffiffĩ
ω

p ∓ 3Nc

8c2πω̃
þ � � � ; ð169Þ

which clearly exhibits a zero pole at ω̃ ∼ 0 while taking the
following differential:

∂ωA�jc→∞ ¼ 3iNc

4πc2ω̃
þOðc−3Þ: ð170Þ

Like before, the charges associated at the pole of the
(p, q) five brane web could be estimated by knowing the
residue [27],

Resð∂ωA�Þjc→∞ ¼ 3iNc

4πc2
¼ 3iÑ

4πc2
; ð171Þ

which shows that Ñ ¼ Nc is the effective number of branes
at the zero pole.

1. Background geometry

Following our previous discussion, below we estimate
the nonrelativistic background data for YNc

quivers. Like
before, the first step is to obtain the composite function B
which obeys a differential equation of the form

∂ωBðω̃Þjc→∞ ¼ −
3iN2

c log 8
8π2c2ω̃

þOðc−3Þ; ð172Þ

which upon integration yields

Bðω̃Þjc→∞ ¼ 3iN2
c log 8

8π2c
ffiffiffiffi
ω̃

p : ð173Þ

Using (173), it is straightforward to obtain the remaining
functions:

Gðω̃Þjc→∞ ¼ 3N2
c log 8
4π2c

fgðω̃Þ ¼
lN2

c

c
fgðω̃Þ; ð174Þ

κ2ðω̃Þjc→∞ ¼ 9N2
cfkðω̃Þ
8π2c5

; ð175Þ

T2ðω̃Þjc→∞ ¼ 64ljω̃jπ2c2
27

f02g
fkfg

: ð176Þ
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The rest of the discussion follows qualitatively in a way
similar to those for the balanced quivers. For example, the
composite function (G) vanishes along the boundary of the
upper half plane thereby ensuring the geodesic complete-
ness of the associated TSNC manifold. The TSNC data
for YNc

quivers turn out to be identical to those of the
balanced quivers.

2. ðp;qÞ loops
Let us now explore the nonrelativistic limit of the BPS

condition of [24] which for the present example reveals a
solution of the form

ω̃sol ¼
p2

c2q2
¼ ω2

rel

c2
; ð177Þ

which clearly scales the previous solution of [24] by a
factor of 1=c2.
The corresponding (p, q) string action can be

expressed as

S̃ðp;qÞjω̃¼ω̃sol
¼−

3NcT̃
c2

����ðq2−2p2 log2Þ
p

����þOðc−3Þ: ð178Þ

Clearly, the (0,1) strings are located at the zero pole
while, on the other hand, (1,0) strings are embedded away
from the pole. Clearly, under S duality, the expectation
values of the (0,1) and (1,0) loops are exchanged. This is
precisely achieved following (160), which leads to an
S-dual action of the following form:

Ŝðp̂;q̂Þ ¼ −
3NcT̃
c2

���� ðð1 − q̂Þ2 − 2ð1 − p̂Þ2 log 2Þ
ð1 − p̂Þ

����: ð179Þ

3. Antisymmetric Wilson loops and D3 branes

Like in the previous examples, the (antisymmetric)
Wilson loop in the nonrelativistic limit can be obtained as

loghWðz̃Þijc→∞ ¼ −
2lN2

cfgðω̃Þ
3πα02NRc

5

⇒ hWðz̃Þijc→∞ ≃ 1 −Oðc−5Þ; ð180Þ
which corresponds to D3 branes embedded at any point (ω̃)
of the upper half plane.
Finally, we note the associated F1 and D1 charges of

the D3 brane,

NF1jc→∞ ¼ −
2Nc

πc

sin
�
argðω̃Þ

2

�
ffiffiffi
4

p
ω̃2

þOðc−3Þ; ð181Þ

ND1jc→∞ ¼ 0; ð182Þ

which clearly reveals a difference when compared with the
previous examples.

E. Large c limits of XNc
quivers

The corresponding supergravity solution is characterized
by a pair of holomorphic functions of the following
form [24]:

A� ¼ 3Nc

8π
½ð�1þ iÞðlogð3ω − 2Þ − logωÞ

þ ð�1 − iÞðlogðω − 1Þ − logð2ω − 1ÞÞ�; ð183Þ
whose poles are clearly located at f0; 2

3
; 1
2
; 1g.

Considering a large c limit, one finds

A�jc→∞ ¼ C� ∓
�

7
16
� i

16

�
Nc

πc
ffiffiffiffi
ω̃

p ∓
�

43
192

∓ 11i
192

�
Nc

πc2ω̃
þ � � � ;

ð184Þ
where we define the constants as

Cþ ¼ 3Nc

8π
ð1þ iÞðlog 3þ i log 2Þ; ð185Þ

C− ¼ 3Nc

8π
ð1þ iÞði log 3þ log 2Þ: ð186Þ

Taking the differential of the holomorphic function, one
finds

∂ωA�jc→∞ ¼
�

7
16
� i

16

�
Nc

πc2ω̃
þOðc−3Þ; ð187Þ

which clearly reveals a pole associated with the five
brane web located at ω̃ ¼ 0. As before, the charges
associated with the nonrelativistic five brane junction
can be estimated through residues evaluated at the pole
which shows Ñ ¼ Nc.

1. Background geometry

The TSNC data follow trivially like in the previous
examples. Below, we calculate the composite functions
which are relevant for our subsequent analysis.
The B function can be expressed as

Bðω̃Þjc→∞ ¼
3N2

c log
�
81
8

�
32π2c

ffiffiffiffi
ω̃

p : ð188Þ

Using (188), the G function, in its nonrelativistic limit,
can be expressed as

Gðω̃Þjc→∞ ¼ 3N2
c

16π2c

	
logð432ÞImð ffiffiffiffi

ω̃
p Þ

jω̃j

þ log

�
81

8

�
Re

�
1ffiffiffiffi
ω̃

p
�


¼ 3N2
c

16π2c
fxðω̃Þ: ð189Þ
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The remaining functions follow trivially as before which we therefore do not list here. Likewise, one can also obtain the
corresponding nonrelativistic geometry and the associated background data (τAμ , eaμ) associated with the 10d background.

2. ðp;qÞ loops
The BPS equation, in its nonrelativistic limit, yields a solution of the form

ω̃sol ¼
ð43pþ 11qÞ2
36c2ðq − 7pÞ2 : ð190Þ

Using (190), the corresponding (p, q) string action can be expressed as

S̃ðp;qÞ
3NcT̃
c2

¼ ðp2ð172 coth−1 5 − 49Þ − 2pqð−7þ 54 log 2þ 32 log 3ÞÞ
2ð43pþ 11qÞ −

q2ð1þ 22 log 6Þ
2ð43pþ 11qÞ þ ðq − 7pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð43pþ11qÞ2
ðq−7pÞ2

q þOðc−3Þ: ð191Þ

Clearly, the F strings are embedded at ω̃F ¼ 1849
1764c2. On

the other hand, D strings are embedded at ω̃D ¼ 121
36c2.

Below, we enumerate the expectation values of the corre-
sponding loop operators in the nonrelativistic limit:

loghWð1;0Þðz̃FÞijc→∞ ¼ e
−3.91151NcT̃

c2

⇒ hWð1;0Þðz̃FÞijc→∞ ¼ 1 −Oðc−2Þ; ð192Þ

loghWð0;1Þðz̃DÞijc→∞ ¼ e
−5.23891NcT̃

c2

⇒ hWð0;1Þðz̃DÞijc→∞ ¼ 1 −Oðc−2Þ: ð193Þ

Clearly, in the strict nonrelativistic (c → ∞) limit, the
expectation values for both (1,0) and (0,1) loop operators
are trivially one. This further ensures the invariance of these
loop operators under S duality. In other words, the S duality
exchanges these operators and the entire XNc

quiver is
mapped into itself.

3. Antisymmetric Wilson loops and D3 branes

Wilson loops, in the antisymmetric representation, fol-
low trivially as before. Using (189), one finds away from
the pole

loghWðz̃Þijc→∞ ¼ −
N2

cfxðω̃Þ
8π3α02NRc

5

⇒ hWðz̃Þijc→∞ ≃ 1 −Oðc−5Þ: ð194Þ

Finally, we note the (p, q) string charges of the D3 brane
in the nonrelativistic limit of the five brane web. A
straightforward analysis shows

ðÑD1 þ ÑF1Þjc→∞ ¼ Nc

πc

sin
�
argðω̃Þ

2

�
ffiffiffi
4

p
ω̃2

þOðc−3Þ; ð195Þ

ðÑD1 − ÑF1Þjc→∞ ¼ 4Nc

3πc

sin
�
argðω̃Þ

2

�
ffiffiffi
4

p
ω̃2

þOðc−3Þ; ð196Þ

where one has to take into account only real values on the
rhs of the above expressions.
The corresponding Wilson loop parameter for the D3

brane can be expressed as

z̃ ¼ ND1

Nc

����
c→∞

¼ 7

6πc

sin
�
argðω̃Þ

2

�
ffiffiffi
4

p
ω̃2

þOðc−3Þ: ð197Þ

VI. CONCLUDING REMARKS AND
FUTURE DIRECTIONS

The present paper is all about learning lessons on
the nonrelativistic limits of 5d N ¼ 1 SCFTs using tor-
sional string Newton-Cartan (TSNC) sigma models
which are obtained considering a large c → ∞ limit of
AdS6 × S2 × Σð2Þ geometry in type IIB supergravity. These
nonrelativistic backgrounds possess a nontrivial profile for
the cloak one form (τAμ ) which results in a nonvanishing
torsion two form τμν ¼ 2∂½μτν� ≠ 0.
Our analysis reveals a mutual compatibility between the

original DGKU formulation [18] of N ¼ 1 quivers and the
recently proposed electrostatic description [28] of 5d SCFTs
in their respective nonrelativistic limits. In particular, the
zero pole associated with the differential of the holomorphic
functions translates into a corresponding picture of collaps-
ing five brane web near the origin (η̃ ∼ 0) of the holographic
axis in the electrostatic description.
On top of this, taking a large c → ∞ limit of the

relativistic expressions, we are able to show that the total
number of five branes is preserved in the nonrelativistic
description. These numbers (modulo an overall scaling)
are shown to be conserved in both descriptions. In the

DIBAKAR ROYCHOWDHURY PHYS. REV. D 107, 046010 (2023)

046010-20



electrostatic approach, these are precisely given by the
Page charges. On the other hand, in the DGKU formalism
of [18] these numbers are obtained by estimating the
residues associated with the differentials of the holomor-
phic functions.
The present paper offers a tremendous possibility for

further investigations on the nonrelativistic limits of
electrostatic descriptions and the associated quiver struc-
ture for the unbalanced sector [24] and compare it with the
results which were obtained using holomorphic functions.
This includes examples like XNc

and YNc
quivers.

The first step towards understanding these limits would
be to identify a potential function Vðσ; ηÞ for unbalanced
quivers and thereby rediscover the physical phenomena of
collapse like in the case of the balanced quivers. This will
complete the electrostatic picture and will shed light on the
associated S-duality properties for the unbalanced sector.
It would be an interesting future project to decode the

TSNC data corresponding to the RR sector and thereby
construct a supersymmetric version of the F-string Galilei
algebra in the nonrelativistic limits ofN ¼ 1 backgrounds.
Another interesting direction would be to explore the
nonrelativistic limits of type IIB supergravity equations
which were outlined in the Introduction and find their
compatibility with the beta function calculations.
We leave all these issues for future investigations.
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APPENDIX A: A NOTE ON RR FIELDS AND
MATCHING RELATIONS IN THE c → ∞ LIMIT

We consider the nonrelativistic limit of rest of the fields in
the supergravity solution which are listed in (9)–(16). These
include the RR sector and the dilaton of the NS sector.
Considering TNc;P quivers, one finds the following

expressions near σ ∼ 0:

e−2ϕjc→∞ ¼ 13π2η2

72P2
þOðNcc−4Þ; ðA1Þ

C0jc→∞ ¼ −
π3Ncη

2σ

72c2P3 logð2Þ ; ðA2Þ

C2jc→∞ ¼ −
π2Ncη

3χ

P2 logð64Þ dχ ∧ dξþOðc−4Þ; ðA3Þ

where we scale P → c2P and remove tildes on the rhs of the
above set of relations.
As we mentioned previously, a complete understanding

of these nonrelativistic limits in terms of the TSNC data is
not known yet. In other words, an analogous relation to that
of (31) is yet to be settled down.
Under S duality, these backgrounds transform into a

different AdS6 vacuum in its nonrelativistic limit. Our
purpose would be to identify this new type IIB vacuum
obtained via S duality. To this end, we choose to work with
the type IIB background of [30] as presented by authors
in [28].
Taking a nonrelativistic limit, one finds (modulo an

overall scaling that may be absorbed into the definition of
the background fluxes)

B̂2jc→∞ ¼ −C2jc→∞; Ĉ2jc→∞ ¼ B2jc→∞; ðA4Þ

where hatted fields correspond to a nonrelativistic limit of
type IIB solutions of [30].

1. Matching relations in the nonrelativistic limit

We now discuss the nonrelativistic limits of the matching
relations which were presented in [28]. These matching
relations precisely serve as the dictionary between the two
parallel descriptions of N ¼ 1 quivers.
For TNc;P quivers, the mapping is given by the following

relation:

ω ¼ coth

�
2πz
9Nc

�
; ðA5Þ

where z ¼ σ − iη [28].
In the nonrelativistic limit, we introduce the scaling

relation of the following form:

z ¼ 1

cz̃
; ðA6Þ

which in the large c limit yields a map of the following
form:

ω̃ ¼ 81N2
cz̃2

4π2
þOðc−2Þ: ðA7Þ

Clearly, the zero pole of the holomorphic function
corresponds to setting z̃ ¼ 0. Considering an expansion
near σ̃ ¼ 0 corresponds to setting η̃ ¼ 0. This is precisely
the origin of the holographic axis in the nonrelativistic limit
of the electrostatic description.
On a similar note, for þM;Nc

quivers one finds [28]

ω ¼ 2

3

�
1þ 1

3e4πz=9M − 1

�
: ðA8Þ
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Considering a nonrelativistic expansion of the form

z ¼ ðz̃ − z0Þ=c; z0 ¼ −
9Mc
2π

; ðA9Þ

one finds the following mapping between the variables in two descriptions:

ω̃ ≈
4π2z̃2

81M2c4
: ðA10Þ

APPENDIX B: DETAILED EXPRESSIONS FOR THE METRIC FUNCTIONS IN REGION III

The individual functions aiðηÞ and biðηÞ read as

a1ðηÞ ¼ −ðη2 þ 1Þ log
�
ηþ 1

η − 1

�
þ ηð−2 log ðη2 − 1Þ þ 6þ log 16Þ − 4η log

�
π

P

�
; ðB1Þ

b1ðηÞ ¼ log

�
ηþ 1

η − 1

�
; ðB2Þ

a2ðηÞffiffiffi
3

p
π
¼

�
ðη2 þ 1Þ log

�
ηþ 1

η − 1

�
− 2ηð− log ðη2 − 1Þ þ 3þ log 4Þ þ 4η log

�
π

P

��
2

; ðB3Þ

b2ðηÞ ¼ c2ðηÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ðη2 þ 1Þ log

�
ηþ1
η−1

�
þ 4ηð− log ðη2 − 1Þ þ 3þ log 4Þ − 8η logðπPÞ

log
�
ηþ1
η−1

�
vuuut ; ðB4Þ

c2ðηÞ ¼ −2ðη2 þ 3Þ log2
�
ηþ 1

η − 1

�
þ ð−2 log ðη2 − 1Þ þ 4þ log 16Þ2 þ 16 log2

�
π

P

�
; ðB5Þ

a3ðηÞ ¼
ffiffiffi
3

2

r
π log

�
ηþ 1

η − 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðη2 þ 1Þ logðηþ1

η−1Þ þ ηð−2 log ðη2 − 1Þ þ 6þ log 16Þ − 4η logðπPÞ
logðηþ1

η−1Þ

vuut ; ðB6Þ

b3ðηÞ ¼ ðη2 þ 1Þ log
�
ηþ 1

η − 1

�
− 2ηð− log ðη2 − 1Þ þ 3þ log 4Þ þ 4η log

�
π

P

�
: ðB7Þ
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