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T-duality has been shown to constrain the higher-derivative corrections of string theory. We revisit the
problem of understanding the T-duality constraints imposed on the α0 corrections using the language of a
torsionful connection. We find a convenient way to express the Oðd; dÞ invariants in terms of linear
combinations of the metric and B-field for general d-dimensional torus compactifications, which we then
use to revisit the heterotic and bosonic ten-dimensional string action at order α0. We also comment on the
four-point functions for corrections of order α03 in the type II string.
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I. INTRODUCTION

An outstanding problem in perturbative string theory is
to understand the structure of the higher-derivative terms
that appear as a series expansion in the string coupling α0.
Since technical challenges arise at higher orders in α0, it
becomes crucial to investigate if there are any additional
hidden structures that make the derivative corrections more
manifest. This would, for example, be useful for the α03
corrections in the type II string, as the full structure of these
eight-derivative couplings is still unknown.
One common approach is to take advantage of the mani-

fest symmetries to constrain the higher-derivative terms.
This includes making use of supersymmetry [1–10],
S-duality [11–13], and, what is relevant to this work,
T-duality. T-duality appears when compactifying on a circle,
or more generally some d-dimensional torus. This then
constrains the particular background to beOðd; dÞ invariant.
Restricting to the Neveu-Schwarz Neveu-Schwarz (NS-NS)
sector, the tree-level couplings are indistinguishable
between type IIA and type IIB string theories and T-duality
invariance is universal at tree level in the type II string. At
Oðα0Þ in the bosonic and heterotic string, the T-duality
transformation rules were explored in [14,15], and T-duality
invariants were constructed in [16,17] using double field
theory (DFT). Moreover, T-duality can be used to compute

the corrections to black hole solutions as was done
in [18–25]. For the type II string, the higher-derivative
corrections at order Oðα03Þ have been investigated
in [26–30] and completed via T-duality in [31,32].
An additional computational advantage arises when

performing a “cosmological reduction” in which all but
the temporal dimension are compactified [33–35]. The only
fields that survive in this reduction are scalars, so this gives
us an opportunity to study the scalar sector, where we
have a nonzero dilaton, and internal metric and B-field
components gij and bij. This, for example, has been
investigated in [36], where it was then deduced what the
eight-derivative couplings quartic in the Riemann tensor
must be. This framework was then extended in the context
of a torsionful connection [37], where the Oð1; 1Þ invar-
iants can be written as linear combinations of the metric and
B-field defined by a matrix N� ¼ g−1∂tðg� bÞ. Then, the
T-duality invariant quantities are traces of even powers of
products of the matrices N� with alternating signs. We may
then wonder if this structure appears for a d-dimensional
compactification, where there is a natural generalization of
N� to Nμ� ≡ g−1∂μðg� bÞ.
We revisit the higher-derivative corrections at order

Oðα0Þ and Oðα03Þ to investigate the hidden structures of
string theory for d-dimensional compactification. This is
similar to the work in [38], although here we use the
language of a torsionful connection. In this setup, we can
formulate building blocks that appear as Oðd; dÞ invariant
quantities, allowing us to study the additional structures of
the string action that may become manifest. We find, as
expected, that we can characterize the T-duality invariants
formed out of first derivatives of gij and bij as products of
the generalized Nμ� with alternating signs. However, the
situation for invariants constructed out of higher derivatives
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of gij and bij is less clear since the “alternating signs rule”
may no longer apply as some of the traces contain a product
of odd numbers of Nμ� matrices.
With the building blocks we construct, we revisit the

first-order α0 corrections for the heterotic and bosonic string
action. We find that, indeed, we can write the entire first-
order corrections as traces of products of the Nμ� matrices
with alternating signs, generalizing the results in the case of
the cosmological reduction [37]. However, one main
difference appears in that the linear combination of the
T-duality building blocks is not equivalent for the heterotic
and bosonic string, although this distinction vanishes for
the reduction to one temporal dimension. This provides an
example where the d-dimensional reduction provides more
information on the T-duality invariants than a cosmological
reduction alone would.
There is currently limited literature on string amplitudes

for various n-point functions for n ≥ 5, mainly due to
technical challenges. However, even in the cosmological
reduction, we are still able to extract valuable information
about the couplings, which can then be matched via higher-
point string amplitudes. For example, it has been shown
in [37] that T-duality in the cosmological reduction can
constrain the five-point function of the form H2R3, which
were obtained via tree-level string amplitudes [30]. In this
example, there are eight coupling constants undetermined
by the four-point function, and five of them can be expli-
citly fixed via T-duality, leaving three unconstrained [37].
More generally, using DFT inspired objects, bothH2R3 and
H2∇H2R were fully constrained by Oðd; dÞ invariance
in [39]. We may also wonder to what extent can we
learn about the four- and five-point functions with the
newly constructed building blocks in the context of the d-
dimensional reduction.
This paper is organized as follows. InSec. II,we review the

torus reduction using the framework of a torsionful con-
nection and introduce notation useful for constructing
T-duality building blocks. In Sec. III, we make use of these
building blocks to compute the Oðα0Þ corrections to the
heterotic and bosonic strings. We then turn to the Oðα03Þ
corrections to the type II string and make comments on the
structure of the four- and five-point couplings in Sec. IVand
end with concluding remarks and open directions in Sec. V.

II. THE TORUS REDUCTION WITH A
TORSIONFUL CONNECTION

In this section, we review the d-dimensional torus
reduction in the context of a torsionful connection. This
is a direct generalization of the cosmological reduction with
nonzero torsion [37], and therefore, as such we find a
convenient way to express the Oðd; dÞ invariants in terms
of linear combinations of the metric and B-field. We then
discuss several identities that become useful in constructing
the higher-derivative corrections.

A. The torus reduction

We begin with a review of the reduction of the NS-NS
sector of string theory on a d-dimensional torus. The fields
we consider are the metric gMN , B-field BMN , and ten-
dimensional dilaton ϕ, with string frame two-derivative
NS-NS sector Lagrangian

E−1L10 ¼ e−2ϕ
�
Rþ 4∂Mϕ∂

Mϕ −
1

12
HMNPHMNP

�
: ð1Þ

We take a standard torus reduction,

ds2 ¼ gμνdxμdxν þ gijDyiDyj; Dyi ¼ dyi þ Ai
μdxμ;

B ¼ 1

2
bμνdxμdxν þ BμidxμDyi þ 1

2
bijDyi ∧ Dyj;

ϕ ¼ Φþ 1

4
log det gij; ð2Þ

where the latin indices ði; j;…Þ denote the Td indices and
the greek indices ðμ; ν;…Þ are the indices of the lower-
dimensional spacetime. Here Φ is the lower-dimensional
dilaton. We use capital latin indices ðM;N;…Þ to denote
the D-dimensional indices. This metric admits a natural
vielbein basis,

ds2 ¼ ηαβEαEβ þ δabEaEb; ð3Þ

where

Eα ¼ eαμdxμ; Ea ¼ eai ðdyi þ Ai
μdxμÞ: ð4Þ

While the vector fields are an integral part of the reduction,
we focus only on T-duality in the scalar sector, and hence
set Ai

μ ¼ 0 from now on. In this case, the two-derivative
Lagrangian reduces to

e−1L10−d

¼ e−Φ
�
Rþ ∂μΦ∂

μΦ −
1

2
hμνρhμνρ þ

1

8
Trð∂μHη∂μHηÞ

�
;

ð5Þ

where H is the ð2dÞ × ð2dÞ scalar matrix

H ¼
�

g−1 −g−1b
bg−1 g − bg−1b

�
; ð6Þ

and η is the Oðd; dÞ metric

η ¼
�
0 1

1 0

�
: ð7Þ

T-duality invariance of this two-derivative Lagrangian is
well established.
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Higher-derivative corrections to the two-derivative
Lagrangian are built out of gauge-invariant combinations
of the Riemann tensor, three-form field strength H, and
derivatives of the dilaton ϕ. The torus reduction ofH and ϕ
is straightforward, leaving only Riemann to consider. For
this, we choose to use a torsionful connection given by

Ω� ¼ ω� 1

2
H ¼ ωAB � 1

2
HM

ABdxM; ð8Þ

where H is the three-form field strength, H ¼ dB. The
torus reduction of Ω� is straightforward and, with Ai

μ ¼ 0,
we find

ΩAB
� ¼

 
ωαβ
� − 1

2
eib∂αðgij ∓ bijÞdyj

1
2
eia∂βðgij ∓ bijÞdyj 1

2
ðeiadeib − eibdeia � eiaejbdbijÞ

!
: ð9Þ

We can then compute the curvature of this torsionful
connection given by

RMN
PQðΩ�Þ ¼ RMN

PQðΩÞ �∇½MHN�PQ þ 1

2
H½MPRHN�RQ:

ð10Þ

The components of the Riemann tensor are then

Rρσ
μνðΩ�Þ ¼ Rρσ

μνðω�Þ;

Rij
μνðΩ�Þ ¼ −

1

4
ðgikNμk

� lN
νl∓j − gjkN

μk
� lN

νl∓iÞ;

Rμν
ijðΩ�Þ ¼ −

1

4
ðNi

μ∓kN
k
ν�l − Ni

ν∓kN
k
μ�lÞglj;

Rνj
μiðΩ�Þ ¼ −

1

4
ð2∇ð�Þ

ν Nμi∓j þ Ni
ν�kN

μk∓ jÞ;

Rkl
ijðΩ�Þ ¼ −

1

4
ðNμi∓kN

j∓μl − Nμi∓lN
j∓μkÞ; ð11Þ

where we have defined the matrix

Ni
μ�j ¼ gil∂μðglj � bljÞ: ð12Þ

Note that the covariant derivative∇ð�Þ
ν is with respect to the

torsionful connection. In particular,

∇ð�Þ
ν Nμi∓j ¼ ∇νN

μi∓j �
1

2
hνμρN

ρi∓j: ð13Þ

We recall that the symmetries of RAB
CDðΩ�Þ differ from

its torsion-free counterpart. More specifically, the first pair
and the second pair are both separately antisymmetric,
while pairwise interchanges give

RAB
CDðΩ�Þ ¼ RCD

ABðΩ∓Þ: ð14Þ

One of our main observations is that the torsionful Riemann
tensor and T-dual invariant quantities can be written in
terms of Ni

μ�j. Note that this generalizes the Ni
�j ¼

gilð_glj � _bljÞ of the cosmological reduction [37], in which

the Oðd; dÞ invariants were composed of traces of products
of N ’s with alternating signs.

B. Forming T-duality invariants

As demonstrated above, torus reduced higher-derivative
couplings can be written in terms of Ni

μ�j, Φ, and h ¼ db,
as well as the lower-dimensional Riemann tensor and the
field strengths Fi ¼ dAi. Focusing on the Oðd; dÞ scalars,
we only concern ourselves with invariants built out ofNi

μ�j.
However, this N matrix by itself does not have any obvious
Oðd; dÞ transformation properties.
To make contact with the Oðd; dÞ invariants, we define

the Oðd; dÞ matrix

S ¼ ηH ¼
�
bg−1 g − bg−1b

g−1 −g−1b

�
; ð15Þ

where H is given in (6). This matrix transforms as

S → g−1Sg; where gηgt ¼ η; ð16Þ

under Oðd; dÞ transformations. Hence invariants are
formed by taking traces of products of S and its derivatives.
Note, however, that S has the property that

S2 ¼ 1; ð17Þ

which gives us insight on the types of invariants we can
build out of S and its derivatives. First, there can be, at
most, one S separating derivative terms inside the trace.
Furthermore, from S2 ¼ 1, we can form the projections

P� ¼ 1

2
ð1� SÞ: ð18Þ

Expanding out ∂μðS2Þ ¼ 0 gives S∂μS ¼ −ð∂μSÞS,
which is equivalent to Pþ∂μS ¼ ∂μSP−. This shows that
ðPþ∂μSÞ2 ¼ 0, which in turn allows us to transform Pþ∂μS
into an upper triangular matrix. Working this out, we find
the elegant result
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∂μS ¼ W

�
Nμ−

−Nμþ

�
W−1;

S∂μS ¼ W

�
Nμ−

Nμþ

�
W−1; ð19Þ

where

W ¼ 1ffiffiffi
2

p
� ðgþ bÞ −ðg − bÞ

1 1

�
: ð20Þ

This relation between ∂μS and Nμ� allows us to com-
pletely characterize single trace invariants formed out of S
and ∂μS. Starting with single derivatives only, we have

Trð∂μ1S∂μ2S � � �∂μ2nSÞ ¼ ð−1Þn½TrðNμ1−Nμ2þ � � �Nμ2nþÞ
þTrðNμ1þNμ2− � � �Nμ2n−Þ�: ð21Þ

If we replace any number of the ∂μS terms with S∂μS, then
we flip the sign of the corresponding Nμþ term in the trace.
Depending on how many such sign flips there are, we could
flip the sign of the first trace or second trace or both traces in
the above. In the end, there are only two inequivalent
possibilities. So we might as well take only a single S∂μS
in the trace to get the second invariant,

TrðS∂μ1S∂μ2S � � � ∂μ2nSÞ ¼ ð−1Þn½TrðNμ1−Nμ2þ � � �Nμ2nþÞ
− TrðNμ1þNμ2− � � �Nμ2n−Þ�:

ð22Þ

As an example, for the cosmological reduction, both
terms on the right-hand side of (22) are equivalent as all the
derivatives become time derivatives. Hence (22) vanishes in
the cosmological reduction case, leaving only the T-duality
invariant (21),

Trð _S2nÞ ¼ 2ð−1ÞnTrððNþN−ÞnÞ; ðn ≥ 0Þ; ð23Þ

which was found in [37].
We now move on to second derivatives on S, where the

invariants explicitly break the alternating signature of the
matrices N. To see this more clearly, we first summarize the
quantities built out of S and its derivatives as

S ¼ W

�
1 0

0 −1

�
W−1;

∂μS ¼ W

�
0 Nμ−

−Nμþ 0

�
W−1;

∇μ∇νS ¼ W

� Nðμ−NνÞþ ∇ðμNνÞ− þ Yμν−

−∇ðμNνÞþ − Yμνþ −NðμþNνÞ−

�
W−1;

ð24Þ

where we have defined

Yμν� ¼ 1

2
ðNðμ∓NνÞ� − Nðμ�NνÞ�Þ: ð25Þ

We can build invariants by multiplying these quantities
together and taking the trace. However, the difficulty in
characterizing these invariants lies in the off-diagonal terms
of ∇μ∇νS. While the diagonal terms follow the alternating
Nμ−Nνþ or NμþNν− pattern of the first-derivative invari-
ants, the Yμν� terms involve two N’s which breaks the
even/odd N structure of the diagonal/off-diagonal entries.
Moreover, the structure of Yμν� explicitly breaks the
alternating � structure of the N’s. In the absence of a
systematic treatment of second-derivative of S invariants,
we consider several examples in Sec. III when we examine
the Oðα0Þ corrections to the bosonic and heterotic string.
Before moving on, however, we summarize several

identities involving second derivatives on S which translate
into ∂N type terms. In order to manipulate these terms, it is
useful to consider the transpose relation

g−1ð∇μNν�ÞTg ¼ ∇μNν∓ þ LμNν∓ − Nν∓Lμ; ð26Þ

as well as the derivative swapping relation

∇μNν� −∇νNμ� ¼ LνNμ� − LμNν�: ð27Þ

Here we have defined

Lμ ¼ g−1∂μg ¼
1

2
ðNμþ þ Nμ−Þ: ð28Þ

As for manipulations of S and its derivatives, note that

S∂μS ¼ −ð∂μSÞS: ð29Þ

This allows us to move S around in single-derivative
expressions.

C. General approach to verifying T-duality

With the above setup in mind, we now turn to the general
framework for investigating the T-duality properties of tree-
level higher-derivative corrections. The general starting
point is to focus on a particular order in the string α0
expansion, say Oðα0Þ in the bosonic or heterotic string, or
Oðα03Þ for the type II string. If the higher-derivative
couplings are already known, then the reduction serves
as a useful consistency check, while providing additional
geometric insight on the reduction. On the other hand, if the
couplings are undetermined or only partially determined,
then one can introduce a complete basis of linearly
independent terms modulo field redefinitions. In this case,
T-duality invariance can narrow down the undetermined
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coefficients and, in some cases, even select out a unique
invariant [31,32].
In any case, the starting point is a set of higher-derivative

couplings in the ten-dimensional Lagrangian. After reduc-
tion on Td, and focusing only on the Oðd; dÞ scalars, the
resulting Lagrangian will be written in terms of Nμ� and its
derivatives. Assuming the ten-dimensional couplings are
given by no more than second derivatives, the lower-
dimensional Lagrangian then admits an expansion of the
schematic form

Lð∂2nÞ
10−d ∼ ðα0Þn−1e−Φ½ð∇NÞn þ N2ð∇NÞn−1

þ N4ð∇NÞn−2 þ � � � þ N2n�; ð30Þ
where we are considering a ð2nÞ-derivative coupling. In the
cosmological reduction case, all nontrivial derivatives are
time derivatives, and we may use a combination of
equations of motion for _N and integration by parts to

rewrite the entire expression as Lð∂2nÞ
1 ∼ ðα0Þn−1e−ΦN2n,

which only involves first derivatives of the scalars [35,40].
T-duality invariance then requires that the N’s enter as
traces of alternating strings of Nþ and N−, so as to form
invariants of the form (23) as in [37]. It is worth emphasiz-
ing here that use of the two-derivative equations of motion
amounts to a field redefinition so in fact, the basic torus
reduction (2) necessarily receives higher-order corrections
if we wish to retain a manifestly Oðd; dÞ invariant toroi-
dally reduced Lagrangian.
The situation is more complicated for general d-

dimensional reductions as the derivative ∇μNν� is no
longer an equation of motion, except in the case ∇μNμ�.
Thus there does not appear to be a general means of
reducing (30) to eliminate all second derivatives of the
scalars. This, of course, does not signify a failure of
Oðd; dÞ, as invariants can be formed out of ∇μ∇νS.
However, the presence of Yμν� in (24) complicates the
assembly of the N and ∇N terms into good invariants.
Even without a systematic approach to identifying

invariants, it is natural to follow a general approach of
working from left to right in the schematic expression (30).
With a slight abuse of notation, we denote terms of OðNkÞ
as k-point functions. Then the first term in (30) corresponds
to an n-point function, while the last one corresponds to a
ð2nÞ-point function. We start with the n-point function and
make the identification

ð∇NÞn → ð∇∇SÞn: ð31Þ
Note that this shifts the higher point functions in (30) since
∇∇S involves both ∇N and N2. The reduced Lagrangian
now takes the form

Lð∂2nÞ
10−d ∼ ðα0Þn−1e−Φ½ð∇∇SÞn þ N2ð∇NÞn−1

þ N4ð∇NÞn−2 þ � � � þ N2n�; ð32Þ

where the first term is manifestly Oðd; dÞ invariant. It is
worth pointing out that this identification, (31), requires
that ∇N� enters with alternating signs, which provides an
immediate constraint on Oðd; dÞ invariance.
It is now suggestive that we could use a similar approach

to rewriting the (nþ 1)-point term as N2ð∇NÞn−1 →
N2ð∇∇SÞn−1 → ð∂SÞ2ð∇∇SÞn−1. This would then lead
to a general algorithm to start with the n-point function
and rewrite things order by order until we arrive at the ð2nÞ-
point function. At each step along the way, we may find
additional constraints imposed by Oðd; dÞ invariance from
the requirement of alternating signs on the N�.
While this is indeed a reasonable approach in the general

sense, there are some important details that complicate the
actual implementation of such an algorithm. One major
difficulty is the necessity of integration of parts and use of
the equations of motion, as evidenced in the cosmological
reduction. At the (nþ k)-point function level, the term
N2kð∇NÞn−k could either correspond directly to an Oðd; dÞ
invariant ð∂SÞkð∇∇SÞn−k or could be shifted to a higher
ðnþ kþ 1Þ-point function of the form N2kþ2ð∇NÞn−k−1
using integration by parts and the equations of motion,
depending on how the spacetime indices are arranged.
Although it may be possible to find a general procedure for
splitting N2kð∇NÞn−k into an (nþ k)-point invariant plus
higher point functions, in practice, we have only been able
to work with this on a case by case basis.
In the next section, we consider four-derivative invariants

for the bosonic and heterotic string. In this case, we
start with

Lð∂4Þ
10−d ∼ α0e−Φ½ð∇NÞ2 þ N2∇N þ N4�: ð33Þ

The two-point term ð∇NÞ2 is obtained from the reduction
of ðRMNPQÞ2 and automatically takes the Oðd; dÞ invariant
form Trð∇μNνþ∇μNν

−Þ, which we rewrite as ð∇μ∇νSÞ2
along with additional N2∇N and N4 terms. We then work
with the three-point term N2∇N and use field redefinitions
to shift it completely to the four-point N4 level. In
particular, we do not introduce any invariants of the form
ð∂SÞ2∇∇S. The resulting expression is then of the form

Lð∂4Þ
10−d ∼ α0e−Φ½ð∇μ∇νSÞ2 þ N4�: ð34Þ

It is now clear from the pattern of the signs of the N� which
terms are T-duality invariant and which are not.
Similarly, we can do this at the eight-derivative level for

the type II string starting at the four-point function level and
include higher-point couplings order by order to ensure
invariance under Oðd; dÞ. However, without a systematic
approach, the number of terms to consider rapidly
increases, making it difficult to extract simple T-duality
invariant expressions formed out of S and its derivatives
from the N and ∇N starting point.
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III. T-DUALITY INVARIANCE UP TO Oðα0Þ
In this section, we consider T-duality invariant expres-

sions built out of traces of S, ∂S, and ∇∇S up to Oðα0Þ. In
particular, we consider traces of two-derivative terms and
four-derivative terms. We then discuss possible field
redefinitions and reexamine the heterotic and bosonic string
at order α0.

A. Two-derivative invariants

At the two-derivative level, we can generate two
elements, ∇∇S and ð∂SÞ2, along with any number of
undifferentiated S insertions. It is then straightforward to
show that

Trð∇μ∇νSÞ ¼ 0; TrðS∇μ∇νSÞ ¼ 2TrðNðμþNν−ÞÞ;
Trð∂μS∂νSÞ ¼ −2TrðNðμþNν−ÞÞ;

TrðS∂μS∂νSÞ ¼ 2TrðN½μþNν−�Þ: ð35Þ

However, with the transpose property of the trace, we find

TrðNμþNν−Þ ¼ TrðNνþNμ−Þ ⇒ TrðN½μþNν−�Þ ¼ 0: ð36Þ

This indicates that, at the two-derivative level, there is only
a single invariant, which we can take to be

Trð∂μS∂νSÞ ¼ −2TrðNμþNν−Þ: ð37Þ
This invariant corresponds to the last term in the two-
derivative Lagrangian in (5). Note, also, that this implies
the second-derivative invariant TrðS∇μ∇νSÞ, when expan-
ded, consists only of first derivatives of the scalars gij � bij.

B. Four-derivative invariants

At the four-derivative level, we can consider terms of the
form ð∇∇SÞ2, ð∇∇SÞð∂SÞ2, and ð∂SÞ4 with any number of
S insertions. Invariants formed out of ∂S only can be read
off from (21) and (22),

Trð∂μS∂νS∂ρS∂σSÞ ¼ TrðNμ−NνþNρ−NσþÞ þ TrðNμþNν−NρþNσ−Þ;
TrðS∂μS∂νS∂ρS∂σSÞ ¼ TrðNμ−NνþNρ−NσþÞ − TrðNμþNν−NρþNσ−Þ: ð38Þ

For invariants built from ∂∂S, we find it convenient to rewrite the last line of (24) in the asymmetric form

∇μ∇νS ¼ W

 
Nðμ−NνÞþ ∇μNν− þ 1

2
ðNμþNν− − Nν−Nμ−Þ

−∇μNνþ − 1
2
ðNμ−Nνþ − NνþNμþÞ −NðμþNνÞ−

!
W−1: ð39Þ

As a result, we see that

Trð∇μ∇νS∇ρ∇σSÞ ¼ −Trð∇μNν−∇ρNσþÞ − Trð∇μNνþ∇ρNσ−Þ þ � � � ; ð40Þ

where we have focused on the ð∇NÞ2 terms only. Taking a transpose of the second term using (26) then gives

Trð∇μ∇νS∇ρ∇σSÞ ¼ −2Trð∇μNν−∇ρNσþÞ þ � � � ; ð41Þ

where � � � indicates terms of the form ð∇NÞN2 andN4. In fact, what we see is that there are many transformations that can be
used to move terms around, so many expressions may be redundant or linearly dependent. It would be useful to choose a
canonical basis in some way to eliminate such redundancies. For example, for ð∇∇SÞ2, we can bring it into the form
Trð∇N−∇NþÞ þ � � �, while ð∇∇SÞð∂SÞ2 can always be brought into the form Trð∇N−N�N�Þ þ � � �., where the � signs
are uncorrelated.
Instead of enumerating all the ð∇∇SÞ2 possibilities, we consider the combination that naturally arises from

RMNPQðΩþÞ2. In particular, using both the transpose relations (26) and swapping relations (27), we can obtain

Trð∇μ∇νS∇μ∇νSÞ ¼ −2Trð∇μNν
−∇μNνþÞ − Trðð∇μNν

−ÞðNμ−Nνþ þ NμþNν− − 2NμþNνþÞÞ

þ 1

2
TrðNμ

−NνþNμ−Nνþ þ Nμ
−Nν

−NμþNνþ þ 2Nμ
−NνþNμþNνþÞ

þ 1

2
TrðNμ

þNμ−NνþNν− þ Nμ
−NμþNν

−Nνþ − 2Nμ
−NμþNνþNν−Þ: ð42Þ

This expression allows us to rewrite the Trð∇N∇NÞ that shows up in RMNPQðΩþÞ2, in terms of the T-duality invariant
Trð∇∇S∇∇SÞ along with higher-point terms of the form ð∇NÞN2 and N4.
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Following the rewriting of ð∇NÞ2, we would then turn to
terms of the form ð∇NÞN2. Since there are an odd number
of N� matrices, it cannot have alternating signs. More
problematically, however, it cannot appear from any
combination of S and its derivatives. Superficially, it seems
it can come from an invariant of the form Trðð∇∇SÞð∂SÞ2Þ.
However, we can check from (24) that

Trðð∇∇SÞð∂SÞ2Þ ∼ TrðNþN−NþN−Þ: ð43Þ

While the right-hand side has the proper alternating
combination of Nþ and N− for Oðd; dÞ invariance, it does
not have the form of Trðð∇NÞN2Þ. This can also be seen
more abstractly from (24) where the ∇N terms enter off
diagonally in ∇∇S, while the N2 terms enter diagonally in
ð∂SÞ2. The general pattern, which persists beyond the four-
derivative level, is that the combination ∇N þ Y can only
enter in even powers regardless of whether there are an even
or odd number of ∇∇S factors in the trace. Thus, at the
lowest order in the n-point function expansion, we have the
even/odd split

ð∇∇SÞ2kð∂SÞ2l ∼ N2lð∇NÞ2k þ � � � ;
ð∇∇SÞ2kþ1ð∂SÞ2l ∼ N2lþ2ð∇NÞ2k þ � � � : ð44Þ

In both cases, the right-hand side starts as an even-point
function.
The consequence of this is that, once the Trð∇N∇NÞ

terms are rewritten in terms of the Trð∇∇S∇∇SÞ invariant,
the remaining Trðð∇NÞN2Þ terms cannot form an invariant
and must be dealt with using integration by parts and the
equations of motion. This is an example where field
redefinitions are required in order to rewrite the higher-
derivative couplings in a more canonical form.
Note that, for the cosmological reduction, we can obtain

two independent invariants,

TrðS̈2Þ ¼ −2Trð _Nþ _N−Þ − Trð _N−N−NþÞ − Trð _NþNþN−Þ
þ Trð _N−N2þÞ þ Trð _NþN2

−Þ
þ 2TrðNþN−NþN−Þ − TrðN2þN2

−Þ

þ 1

2
TrðNþN3

−Þ þ
1

2
TrðN−N3þÞ;

Trð _S4Þ ¼ 2TrðNþN−NþN−Þ: ð45Þ

These correspond to (38) and (42).

1. Field redefinitions

As indicated above, we have to handle terms such as
Trðð∇NÞN2Þ that do not directly correspond to any
T-duality invariants using integration by parts and the
lower-order equations of motion. This amounts to perform-
ing a field redefinition. To motivate how this arises, we first
write down the lower-dimensional equations of motion for

the scalar sector coupled to gravity. In particular, ignoring
Kaluza-Klein (KK) and winding gauge fields and the
antisymmetric tensor, we have

0 ¼ Eμν ≡ Rμν þ∇μ∇νΦ −
1

4
TrðNðμþNνÞ−Þ;

0 ¼ E ≡ Rþ 2□Φ − ð∂ΦÞ2 − 1

4
TrðNμ

þNμ−Þ;

0 ¼ E� ≡∇μNμ� − ∂
μΦNμ� ∓ 1

2
ðNμ

þ − Nμ
−ÞNμ�: ð46Þ

We now consider the total derivative,

∇μ½e−ΦTrðNμãNν
b̃
Nνc̃Þ� ¼ Trð∇μðe−ΦNμãÞNν

b̃
Nνc̃Þ

þ e−ΦTr½ð∇μNν
b̃
ÞNνc̃Nμã

þ ð∇μNνc̃ÞNμãNν
b̃
�; ð47Þ

where ã, b̃, and c̃ denote � (and should not be confused
with the Td indices). We can use the scalar equation of
motion E� to rewrite this as

Tr½ð∇μNν
b̃
ÞNνc̃Nμã þ ð∇μNνc̃ÞNμãNν

b̃
�

¼ eΦ∇μ½e−ΦTrðNμãNν
b̃
Nνc̃Þ� − TrðEãNν

b̃
Nνc̃Þ

− aTrðMμNμãNν
b̃
Nνc̃Þ: ð48Þ

The left-hand side is a sum of two terms of the form
ð∇NÞN2. However, they can be disentangled by making
use of the transpose and swapping relations and taking
appropriate linear combinations of the resulting expres-
sions. The first term on the right-hand side is a total
derivative when used in the tree-level four-derivative
action, while the second term can be removed by a field
redefinition. This leaves the final term, so we may write

Tr½ð∇μNν
b̃
ÞNνc̃Nμã þ ð∇μNνc̃ÞNμãNν

b̃
�

→ −ãTrðMμNμãNν
b̃
Nνc̃Þ; ð49Þ

where → indicates equivalence up to a total derivative and
field redefinition. In general, we can write down 2 · 23 ¼
16 possible terms of the form Trðð∇NÞNNÞ, where the first
2 comes from the choice of index structure, being either
μνμν or μννμ, and the 23 comes from the � choices on the
three N’s. Note that we ignore the μμνν index structure as
that can be reduced by the E� equation of motion.
However, we can reduce these 16 possible combinations
to a set of only four linearly independent expressions by
use of transposing via (26) and index swapping via (27).
In particular, by transposing, we can choose to write
ð∇μNν

−ÞNN and keep only the ∇N term with a minus
sign. In addition, by index swapping, we can reduce to the
μνμν index structure. We are thus left with four indepen-
dent terms of the form Trðð∇μNν

−ÞNμaNνbÞ.

T-DUALITY BUILDING BLOCKS FOR α0 STRING … PHYS. REV. D 107, 046008 (2023)

046008-7



We choose b̃ and c̃ to be various combinations of� in (49) and canonicalize the resulting expressions. This lets us obtain

2Trðð∇μNν
−ÞNμ−Nν−Þ →

1

2
Tr½ðNμ

þNμ− þ Nμ
−NμþÞNν

−Nν− − ðNμ
þNν

− þ Nμ
−Nν

−ÞNμ−Nν−�;

Trðð∇μNν
−ÞðNμþNν− þ Nμ−NνþÞÞ →

1

2
Tr½ðNμ

þNμ− þ Nμ
−NμþÞNν

−Nν− − ðNμ
þNν

− þ Nμ
−Nν

−ÞNμ−Nνþ�;

Trðð∇μNν
−ÞðNμþNνþ þ Nμ−NνþÞÞ →

1

2
Tr½ðNμ

þNμ− þ Nμ
−NμþÞNνþNν− − ðNμ

þNν
− þ Nμ

−Nν
−ÞNμþNνþ�;

Trðð∇μNν
−ÞðNμþNνþ þ NμþNν−ÞÞ →

1

2
Tr½ðNμ

þNμ− þ Nμ
−NμþÞNν

−Nνþ − ðNμ
þNν

− þ Nμ
−Nν

−ÞNμþNν−�: ð50Þ

Finally, we can take linear combinations of the last three expressions to obtain

2Trðð∇μNν
−ÞNμþNνþÞ →

1

2
Tr½ðNμ

þNμ− þ Nμ
−NμþÞðNνþNν− þ Nν

−Nνþ − Nν
−Nν−Þ

− ðNμ
þNν

− þ Nμ
−Nν

−ÞðNμþNνþ þ NμþNν− − Nμ−NνþÞ�;

2Trðð∇μNν
−ÞNμþNν−Þ →

1

2
Tr½ðNμ

þNμ− þ Nμ
−NμþÞð−NνþNν− þ Nν

−Nνþ þ Nν
−Nν−Þ

− ðNμ
þNν

− þ Nμ
−Nν

−Þð−NμþNνþ þ NμþNν− þ Nμ−NνþÞ�;

2Trðð∇μNν
−ÞNμ−NνþÞ →

1

2
Tr½ðNμ

þNμ− þ Nμ
−NμþÞðNνþNν− − Nν

−Nνþ þ Nν
−Nν−Þ

− ðNμ
þNν

− þ Nμ
−Nν

−ÞðNμþNνþ − NμþNν− þ Nμ−NνþÞ�: ð51Þ

We are now ready to revisit the four-derivative couplings in the heterotic and bosonic strings, making use of these field
redefinitions.

C. The heterotic string at Oðα0Þ
The gravitational sector of the heterotic string action at the four-derivative level [41–44] is given by

SH ¼
Z

d10x
ffiffiffiffiffiffi
−g

p
e−2ϕ

�
Rþ 4ð∂ϕÞ2 − 1

12
ĤABCĤ

ABC þ 1

8
α0RABCDðΩþÞRABCDðΩþÞ

�
; ð52Þ

where we have ignored the heterotic gauge fields. Here, the three-form field strength Ĥ has a nontrivial Bianchi identity,

dĤ ¼ −
1

4
α0TrRðΩþÞ ∧ RðΩþÞ; ð53Þ

corresponding to the addition of the Lorentz Chern-Simons term

Ĥ ¼ dB −
α0

4
ω3LðΩþÞ; ð54Þ

where

ω3LðΩþÞ ¼ Tr

�
Ωþ ∧ dΩþ þ 2

3
Ωþ ∧ Ωþ ∧ Ωþ

�
: ð55Þ

By expanding Ĥ2 perturbatively up to Oðα0Þ, we see that the effective four-derivative Lagrangian at this level is
given by

e−1L∂
4

H ¼ 1

8
α0e−2ϕ

�
RABCDðΩþÞRABCDðΩþÞ þ

1

3
HABCω

ABC
3L ðΩþÞ

�
: ð56Þ
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There are two terms to reduce on the torus. For the Riemann-squared term, the direct reduction (11) gives

RABCDðΩþÞRABCDðΩþÞ ¼ RμνρσðωþÞRμνρσðωþÞ þ Trðð∇μðþÞNν
−Þg−1ð∇ðþÞ

μ Nν−ÞTgÞ

þ Trðð∇μðþÞNν
−ÞNνþNμ−Þ þ

1

8
TrðNμ

−NνþÞTrðNμ−NνþÞ −
3

8
TrðNμ

þNν
−NμþNν−Þ

þ 3

8
TrðNμ

−NμþNν
−NνþÞ þ

1

8
TrðNμ

þNμ−NνþNν−Þ: ð57Þ

After rewriting ∇ðþÞ
μ in terms of ∇μ and hμνρ using (13) and using the transpose relation, (26), we end up with the second-

derivative terms in the canonical form Trð∇μNν
−∇μNνþÞ. This, in turn, can be replaced by Trð∇∇S∇∇SÞ using (42). The

result is

RABCDðΩþÞRABCDðΩþÞ ¼ RμνρσðωþÞRμνρσðωþÞ þ
1

4
hμρσhνρσTrðNμþNν−Þ −

1

2
hμνρTrðNμþNν−Nρ−Þ

−
1

2
Trð∇μ∇νS∇μ∇νSÞ þ Trðð∇μNν

−ÞNμþNνþÞ

þ 1

8
TrðNμ

−NνþÞTrðNμ−NνþÞ þ
1

8
TrðNμ

þNν
−NμþNν−Þ þ

1

2
TrðNμ

þNν
−Nμ−Nν−Þ

þ 3

8
TrðNμ

þNμ−NνþNν−Þ þ
3

8
TrðNμ

−NμþNν
−NνþÞ −

1

4
TrðNμ

−NμþNνþNν−Þ: ð58Þ

After writing the two-point contribution as Trð∇∇S∇∇SÞ, there is still a three-point contribution of the form Trðð∇NÞN2Þ
left over. As discussed above, this does not form anOðd; dÞ invariant, but can be removed by a field redefinition as given by
the first line of (51). After doing so, we arrive at the result,

RABCDðΩþÞRABCDðΩþÞ → RμνρσðωþÞRμνρσðωþÞ þ
1

4
hμρσhνρσTrðNμþNν−Þ

−
1

2
Trð∇μ∇νS∇μ∇νSÞ þ

1

8
TrðNμ

−NνþÞTrðNμ−NνþÞ

þ 5

8
TrðNμ

þNμ−NνþNν−Þ þ
5

8
TrðNμ

−NμþNν
−NνþÞ −

1

8
TrðNμ

þNν
−NμþNν−Þ

þ 1

4
TrðNμ

−NμþNνþNν−Þ −
1

4
TrðNμ

þNμ−Nν
−Nν−Þ −

1

4
TrðNμ

−NμþNν
−Nν−Þ

þ 1

4
TrðNμ

þNν
−Nμ−Nν−Þ −

1

2
hμνρTrðNμþNν−Nρ−Þ: ð59Þ

We have written the terms such that the first three lines on the right-hand side are explicitly T-dual invariant,
while the remaining two lines are not. This demonstrates that the Riemann-squared term by itself is not a good
invariant.
To complete the heterotic four-derivative invariant, we also need the second term in (56). Using the torus reduction of the

torsionful spin connection (9), we can obtain the reduction of the Lorentz Chern-Simons term,

ω3LμνρðΩþÞ ¼ ω3LμνρðωþÞ − 3Trðe−1∂½μee−1∂νee−1∂ρ�eÞ þ 3∂½μTrðe−1∂νeMρ�Þ þ
1

4
Trð3N½μþNν−Nρ�− þ N½μ−Nν−Nρ�−Þ

ω3Lμ
i
jðΩþÞ ¼ ½Nνþ∇ðþÞ

μ Nν− þ 1

2
NνþNμþNνþ�

i

j
: ð60Þ

Contracting with HMNP then gives
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HMNPω
MNP
3L ðΩþÞ ¼ hμνρðω3LμνρðωþÞ − 3Trðe−1∂½μee−1∂νee−1∂ρ�eÞ þ 3∂½μTrðe−1∂νeMρ�Þ

þ 1

4
Trð9N½μþNν−Nρ�− þ N½μ−Nν−Nρ�−ÞÞ −

3

2
Trðð∇μNν

−ÞNμþNνþÞ þ
3

2
Trðð∇μNν

−ÞNμ−NνþÞ

−
3

4
TrðNμ

þNνþNμþNν−Þ þ
3

4
TrðNμ

−NνþNμþNν−Þ:

As mentioned above, field redefinitions are required to write the Trðð∇NÞN2Þ terms in a more canonical way. Using (51),
we find

HMNPω
MNP
3L ðΩþÞ → hμνρ

�
ω3LμνρðωþÞ − 3Trðe−1∂½μee−1∂νee−1∂ρ�eÞ þ 3∂½μTrðe−1∂νeMρ�Þ

þ 1

4
Trð9N½μþNν−Nρ�− þ N½μ−Nν−Nρ�−Þ

�

þ 3

4
TrðNμ

þNν
−NμþNν−Þ −

3

4
TrðNμ

−NμþNν
−NνþÞ þ

3

4
TrðNμ

−NμþNν
−Nν−Þ

−
3

4
TrðNμ

−NμþNνþNν−Þ −
3

4
TrðNμ

þNνþNμþNν−Þ þ
3

4
TrðNμ

þNμ−Nν
−Nν−Þ: ð61Þ

A quick inspection of this expression shows that the first two TrðN4Þ terms are in the T-dual invariant form of alternating
signs of N while the rest are not.
Combining (59) and (61), we can now see that the reduced four-derivative Lagrangian is given by

e−1L∂
4

H ¼ α0

8
e−Φ
�
RμνρσðωþÞ2 þ

1

3
hμνρWμνρ þ

1

4
hμρσhνρσTrðNμþNν−Þ

−
1

2
Trð∇μ∇νS∇μ∇νSÞ þ

1

8
TrðNμ

−NνþÞTrðNμ−NνþÞ

þ 5

8
TrðNμ

þNμ−NνþNν−Þ þ
3

8
TrðNμ

−NμþNν
−NνþÞ þ

1

8
TrðNμ

þNν
−NμþNν−Þ

�
; ð62Þ

where we have defined the shifted Chern-Simons term

Wμνρ ¼ ω3LμνρðωþÞ − 3Trðe−1∂½μee−1∂νee−1∂ρ�eÞ þ 3∂½μTrðe−1∂νeMρ�Þ þ
1

4
Trð3N½μþNν−Nρ�− þ N½μ−Nν−Nρ�−Þ: ð63Þ

Note that this is manifestly Oðd; dÞ invariant, except for the hμνρWμνρ term, as can be seen from the structure of the
alternating signs. Written in terms of the scalar matrix S, we find

e−1L∂
4

H ¼ α0

8
e−Φ
�
RμνρσðωþÞ2þ

1

3
hμνρWμνρ −

1

8
hμρσhνρσTrð∂μS∂νSÞ−

1

2
Trð∇μ∇νS∇μ∇νSÞþ

1

32
Trð∇μS∇νSÞTrð∇μS∇νSÞ

þ 1

2
Trð∇μS∇μS∇νS∇νSÞ−

1

8
TrðS∇μS∇μS∇νS∇νSÞþ

1

16
Trð∇μS∇νS∇μS∇νSÞ

�
; ð64Þ

where we have used (38).
Turning now to the hμνρWμνρ term, we see that the

final term in (63) breaks Oðd; dÞ invariance. However,
as noted in [38], Oðd; dÞ can be restored by a Green-
Schwarz-like mechanism, where Wμνρ is absorbed into a
shifted h-field,

ĥμνρ ¼ 3∂½μbνρ� −
α0

4
Wμνρ; ð65Þ

in analogy with the original ten-dimensional expression
(54). Moreover, the Wess-Zumino-Witten (WZW) term in
(63), as well as the following term, are locally total
derivatives and can be removed by shifting bμν. After
doing so, we have explicitly

ĥμνρ ¼ 3∂½μb̂νρ� −
α0

4
ðω3LμνρðωþÞ þ ω3NμνρÞ; ð66Þ

where
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ω3Nμνρ ¼
1

4
Trð3Nμ

þNν
−Nρ

− þ Nμ
−Nν

−Nρ
−Þ: ð67Þ

The shifted b̂μν then transforms nontrivially under Oðd; dÞ to compensate for the transformation of ω3Nμνρ [38].

D. The bosonic string at Oðα0Þ
We now examine the bosonic string at Oðα0Þ, whose action at this order is [41],

Z
dDx

ffiffiffiffiffiffi
−g

p
e−2ϕ

1

4
α0
�
RABCDRABCD −

1

2
HABEHCD

ERABCD þ 1

24
H4 −

1

8
ðH2

ABÞ2
�
; ð68Þ

where we have defined H4 and H2
AB as

H4 ≡HABCHA
D
EHB

E
FHC

F
D; H2

AB ≡HA
CDHBCD; ðH2

ABÞ2 ≡H2
ABH

2AB: ð69Þ

We convert the torsion-free Riemann curvature to Riemann curvature with torsion, which allows us to make contact with the
N matrices that appear in the T-dual invariants. The Lagrangian can then be rewritten as [37]

e−1L∂
4

B ¼ 1

4
α0e−2ϕ

�
RMNPQðΩþÞ2 − RMNPQðΩþÞHMNRHPQ

R −
1

3
H4

�
: ð70Þ

We now follow a similar procedure as for the case of the heterotic string using the methodology outlined in Sec. II C.
We find

H4 ¼ h4 þ hμνρTrð3NμþNν−Nρ− − Nμ−Nν−Nρ−Þ þ
3

8
TrðNμ

−Nν
−Nμ−Nν−Þ

−
3

2
TrðNμ

þNν
−Nμ−Nν−Þ þ

3

8
TrðNμ

þNν
−NμþNν−Þ þ

3

4
TrðNμ

þNνþNμ−Nν−Þ: ð71Þ

Note that we did not need field redefinitions as there were no terms involving∇N. On the other hand, RðΩþÞH2 requires us
to utilize the field redefinitions (51) such that

RMNPQðΩþÞHMNRHPQ
R → Rμνρσhμνλhρσλ −

1

4
hμνρTrð7Nμ

þNν
−Nρ

− −Nμ
−Nν

−Nρ
−Þ þ

1

8
TrðNμ

þNμ−NνþNν−Þ

þ 1

8
TrðNμ

−NμþNν
−NνþÞþ

1

4
TrðNμ

þNμ−Nν
−NνþÞ−

1

4
TrðNμ

þNμ−Nν
−Nν−Þ−

1

4
TrðNμ

−NμþNν
−Nν−Þ

−
3

8
TrðNμ

þNν
−NμþNν−Þ−

1

4
TrðNμ

þNνþNμ−Nν−Þ þ
3

4
TrðNμ

þNν
−Nμ−Nν−Þ−

1

8
TrðNμ

−Nν
−Nμ−Nν−Þ:

ð72Þ

Combining (59), (71), and (72), we find

e−1L∂
4

B ¼ 1

4
α0e−Φ½RμνρσðωþÞ2 − RμνρσðωþÞhμνλhρσλ −

1

3
h4 −

1

8
hμρσhνρσTrð∂μS∂νSÞ

þ 1

3
hμνρω

μνρ
3N −

1

2
Trð∇μ∇νS∇μ∇νSÞ þ

1

32
Trð∇μS∇νSÞTrð∇μS∇νSÞ þ

1

2
Trð∇μS∇μS∇νS∇νSÞ

þ 1

16
Trð∇μS∇νS∇μS∇νSÞ�; ð73Þ

whereωμνρ
3N is defined in (67). This expression is explicitlyOðd; dÞ invariant except for the hμνρωμνρ

3N term. However, it can be
treated just as in the heterotic case by defining a shifted h-field [38],
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h̃μνρ ¼ 3∂½μbνρ� −
α0

2
ω3N
μνρ: ð74Þ

This torus reduced Lagrangian, (73), agrees with [34] as
well as [38] after appropriate field redefinitions.
Note that the bosonic string correction, (73), does not

precisely match the heterotic string correction, (64). The
differences are that the heterotic case has an additional
TrðS∇μS∇μS∇νS∇νSÞ coupling in (64) as well as the
lower-dimensional Lorentz Chern-Simons term ω3L in
(66). Since this additional term vanishes in the cosmologi-
cal reduction, in that case there is no distinction between
the reduced heterotic and bosonic string cases.

IV. THE TYPE II STRING AND CONTACT
TERMS AT Oðα03Þ

As we have shown so far, the scalar Oðd; dÞ invariants
are built out of the traces of N�, which are ultimately linear
combinations of the internal metric and antisymmetric
tensor field and their derivatives. At order α0, we find that
the building blocks composed of N� are a convenient way
to study the structure of the higher-derivative terms that

ensure T-duality. In this section, we promote the use of the
N� matrices to investigate the structure of higher-derivative
corrections to the tree-level Oðα03Þ couplings of the type II
string.
The general strategy is as before, where we first write the

torus compactified action using theN� building blocks. We
then look to replace ∇N and N by ∇∇S and ∇S starting
from the four-point contact terms and working up to the
eight-point terms. In practice, since only partial results are
known at five and higher points, we focus mostly on the
four-point terms.
For the type II string, the first correction arises at the

eight-derivative level. In the NS-NS sector, the tree-level
four-point couplings take the form [45,46]

e−1LRðΩþÞ4 ∼ α0e−2ϕ
�
t8t8RðΩþÞ4 −

1

4
ϵ8ϵ8RðΩþÞ4

�
: ð75Þ

While the ϵ8ϵ8RðΩþÞ4 term does not actually contribute to
the four-point function, its presence can be deduced from
the structure of the string scattering amplitude. The explicit
expression for t8t8RðΩþÞ4 is given by

t8t8RðΩþÞ4 ¼ 24Rμ6μ5
ν8ν7ðΩþÞRμ8μ7

ν6ν5ðΩþÞRμ5μ6
ν5ν6ðΩþÞRμ7μ8

ν7ν8ðΩþÞ
þ 12Rμ6μ5

ν6ν5ðΩþÞRμ8μ7
ν8ν7ðΩþÞRμ5μ6

ν5ν6ðΩþÞRμ7μ8
ν7ν8ðΩþÞ

þ 192Rμ4μ5
ν4ν5ðΩþÞRμ3μ4

ν3ν4ðΩþÞRμ5μ6
ν5ν6ðΩþÞRμ6μ3

ν6ν3ðΩþÞ
þ 384Rμ8μ3

ν8ν5ðΩþÞRμ3μ5ν6ν7ðΩþÞRμ5μ7ν5ν6ðΩþÞRμ7μ8
ν7ν8ðΩþÞ

− 48Rμ6μ5
ν8ν3ðΩþÞRμ8μ7ν3ν4ðΩþÞRμ5μ6ν4ν7ðΩþÞRμ7μ8

ν7ν8ðΩþÞ
− 32Rμ6μ5

ν8ν5ðΩþÞRμ8μ7
ν6ν7ðΩþÞRμ5μ

ν5ν6
6

ðΩþÞRμ7μ8
ν7ν8ðΩþÞ

− 48Rμ8μ3
ν6ν5ðΩþÞRμ3μ4ν8ν7ðΩþÞRμ4μ7ν5ν6ðΩþÞRμ7μ8

ν7ν8ðΩþÞ
− 96Rμ8μ5

ν6ν5ðΩþÞRμ6μ7
ν8ν7ðΩþÞRμ5μ6

ν5ν6ðΩþÞRμ7μ8
ν7ν8ðΩþÞ: ð76Þ

Note that the structure of the t8t8 invariant ensures that this expression only contains Riemann tensors in various
combinations and no Ricci contractions. On the other hand, ϵ8ϵ8RðΩþÞ4 contains both Riemann and Ricci curvatures,

ϵ8ϵ8RðΩþÞ4 ¼ −1536Rμ1μ2μ3μ4ðΩþÞRμ3
μ5

μ1
μ6ðΩþÞRμ4

μ7
μ5

μ8ðΩþÞRμ6μ8μ2μ7ðΩþÞ
− 1536Rμ1μ2μ3μ4ðΩþÞRμ3μ4

μ5μ6ðΩþÞRμ5
μ7

μ1
μ8ðΩþÞRμ6μ8μ2μ7ðΩþÞ

þ 768Rμ1μ2μ3μ4ðΩþÞRμ3
μ5

μ1
μ6ðΩþÞRμ4

μ7
μ2

μ8ðΩþÞRμ6μ8μ5μ7ðΩþÞ
þ 96Rμ1μ2μ3μ4ðΩþÞRμ3μ4

μ5μ6ðΩþÞRμ5μ6
μ7μ8ðΩþÞRμ7μ8μ1μ2ðΩþÞ

− 768Rμ1μ2μ3μ4ðΩþÞRμ3μ4μ1
μ5ðΩþÞRμ5

μ6μ7μ8ðΩþÞRμ7μ8μ2μ6ðΩþÞ
þ 48Rμ1μ2μ3μ4ðΩþÞRμ3μ4μ1μ2ðΩþÞRμ5μ6μ7μ8ðΩþÞRμ7μ8μ5μ6ðΩþÞ þ � � � ; ð77Þ

where the ellipses denote invariant combinations involving

the Ricci terms.
At the level of the four-point function, we only need the

linearized reduction of Riemann. Examination of (11)

shows that the only component that contributes a scalar
is the mixed index,

Rνj
μiðΩþÞ ¼ −

1

2
∇νNμi

− j: ð78Þ
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Moreover, the t8t8RðΩþÞ4 term in (76) contains one t8
contracted with the i-type indices, while the other is
contracted with the j-type indices. Then, the resulting
four-point expression automatically takes the form of a
trace over ∇N� with alternating signs, written schemati-
cally as

t8t8RðΩþÞ4 ∼ Trð∇Nþ∇N−∇Nþ∇N−Þ
þ Trð∇Nþ∇N−ÞTrð∇Nþ∇N−Þ þ � � � ;

ð79Þ

where we have omitted coefficients, as well as the space-
time indices, and the ellipses indicate terms beyond the
four-point function.
On the other hand, from the structure of ϵ8ϵ8RðΩþÞ4 in

(77), we see that some of the i-type indices in (78) will be
contracted with j-type indices. This would lead to combi-
nations of ∇N�, where the signs do not alternate, hence
giving an expression that is not manifestly T-duality
invariant,

ϵ8ϵ8RðΩþÞ4 ∼ Trð∇N1∇N2∇N3∇N4Þ þ � � � : ð80Þ

Here the subscripts denote the � sign of N, and in some
cases they do not alternate, signifying a potential issue with
T-duality. The resolution of this T-duality puzzle is that
the ϵ8ϵ8RðΩþÞ4 term is actually a five-point (and higher)
coupling. Focusing only on the linearized mixed compo-
nent Riemann, (78), we can write ϵ8ϵ8R4 in an unexpanded
form,

ϵ8ϵ8RðΩþÞ4

¼ 1

16
ϵμ1μ2μ3μ4ϵ

ν1ν2ν3ν4ϵi1i2i3i4ϵ
j1j2j3j4

× ð∇ν1N
μ1i1− j1Þð∇ν2N

μ2i2− j2Þð∇ν3N
μ3i3− j3Þð∇ν4N

μ4i4− j4Þ:
ð81Þ

Making use of the antisymmetry of ϵμνρσ, we can rewrite
this as

ϵ8ϵ8RðΩþÞ4

¼ 1

16
ϵμ1μ2μ3μ4ϵ

ν1ν2ν3ν4ϵi1i2i3i4ϵ
j1j2j3j4

× ½∇ν1ðNμ1i1− j1ð∇ν2N
μ2i2− j2Þð∇ν3N

μ3i3− j3Þð∇ν4N
μ4i4− j4ÞÞ

þ � � ��; ð82Þ

where the additional terms are five-point couplings of the
form RN2ð∇NÞ2 with the Riemann tensor being obtained
from the commutator of two covariant derivatives acting on
N. When this is inserted into the tree-level effective action,
the total derivative term can be integrated by parts. This hits
the dilaton factor e−Φ and hence is also a five-point

coupling of the form Nð∇ΦÞð∇NÞ3. The end result is that
ϵ8ϵ8RðΩþÞ4 does not contribute to the four-point contact
term, although it will become important at the five-point
level and beyond.
Returning to the form of the expanded ϵ8ϵ8RðΩþÞ4 term

in (77), it is still the case that a straightforward reduction
would yield a sum of terms of the form (80). However,
as in (82), a judicial rearrangement of terms would allow it
to be rewritten as a total derivative plus higher-point
contributions,

ϵ8ϵ8RðΩþÞ4 ∼∇TrðN1∇N2∇N3∇N4Þ þ � � � : ð83Þ

This indicates that the generic procedure outlined in
Sec. II C, starting with the four-point function and rewriting
ð∇NÞ4 → ð∇∇SÞ4, must be applied judiciously, as in
some cases ð∇NÞ4 will instead be pushed to a higher-
point coupling through field redefinitions.
At the four-point level, we have verified that the

t8t8RðΩþÞ4 coupling is compatible with T-duality, while
no constraints are placed on ϵ8ϵ8RðΩþÞ4. Although perhaps
straightforward, this is nevertheless a nontrivial check
since the four-point function is nonvanishing for the
torus reduction. This is in contrast to the cosmological
reduction where the only possible derivative is the time
derivative. In that case, _N can be replaced schematically by
N2 using the lower-order equations of motion. Thus the
four-point function vanishes, and nontrivial checks can
only be performed at the level of the eight-point function of
order N8.

V. DISCUSSION

We have investigated T-duality building blocks in the
context of higher-derivative corrections. With a torsionful
connection, the linear combination of the metric and B-field
readily appear in Oðd; dÞ invariants. Indeed, this has
already been shown at order α0 and α03 in the cosmological
reduction [37], and this work generalizes the framework for
d-dimensional compactifications. The use of the matrix N�
makes manifest which terms can be T-duality invariant
from the order of the signs for each product of traces that
appear in the action. This also suggests that there are, in
fact, some hidden generalized geometrical structures that
appear when there is a nonzero torsion.
We have then used these building blocks to construct

the first order α0 corrections to both the heterotic and
bosonic string action. Field redefinitions were required
to write the action in a canonical form of the form
TrðN4Þ. We find that at this order the T-duality invariant
action is written in terms of the trace of the products of
N matrices with alternating signs. However, in contrast
to the cosmological reduction, the two actions do not
have the same form as the linear combination of the
Oðd; dÞ invariants.
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There are several interesting open problems in the
context of constructing these T-duality building blocks
when the torsion is nonzero. Our general framework has
been to start with a set of higher-derivative couplings and
then to reduce them on a torus, yielding expressions written
in terms of traces of N� and ∇N�. We then aim to rewrite
these expressions using the manifestly Oðd; dÞ scalar
matrix S and its derivatives. However, ideally, we would
like to start with manifestly T-dual building blocks made
out of traces of ∇S and ∇∇S and then lift them to a
corresponding set of ten-dimensional higher-derivative
couplings. Of course, it is easy to go from S to N�. But
going from N� to covariant and gauge invariant ten-
dimensional expressions looks to be highly nontrivial.
We have also focused only on the reduced scalar sector,

while ignoring the Kaluza-Klein and winding gauge fields.
T-duality acting on the gauge fields can be highly con-
straining. Reduction on a single circle is sufficient to
constrain the full set of NS-NS couplings of the type II
string at Oðα03Þ, provided one makes full use of the gauge
fields [31]. The Oðα0Þ reduction with gauge fields was
worked out in [38] for the bosonic and heterotic cases.
It isworth emphasizing that, when discussingT-duality for

the type II string, we actually only considered the NS-NS
sectorwhere theOðd; dÞ properties are neatly capturedby the
scalarmatrixS.While T-duality extends to the full theory, the
picture is rather more complicated in the Ramond-Ramond
(RR) sector, where the full set ofOðd; dÞ transformations can
map between IIA and IIB theories, while SOðd; dÞ trans-
formations stay within a single theory. Nevertheless, the T-
duality properties of the RR fields have been worked out
[47,48] and are perhapsmost naturally formulated in terms of
bispinors ofOðd; dÞ [49–51]. T-duality of the two-derivative
RR action is highly constraining [52], and it would be
interesting to extend this to higher-derivative corrections in
the RR sector as well.

One way to make T-duality manifest is through DFT,
which involves manifest OðD;DÞ invariant objects with
D ¼ 10 or D ¼ 26. While we have not taken a DFT
approach, and instead chose to focus on the decomposition
into N� matrices, it is worth emphasizing that DFT leads to
an elegant description of the Oðα0Þ [16,17] and Oðα02Þ
[53,54] invariants. However, an obstruction arises atOðα03Þ
[55]. Although an Oðd; dÞ invariant certainly exists at this
order, it cannot be made OðD;DÞ invariant in the language
of DFT. It would be curious to see if this has any
implications in connecting the torus reduced expressions
involving N� with the T-dual invariants built out of traces
of S and its derivatives when going beyond Oðα02Þ.
Finally, although the four-point couplings in the type II

case are easily explored, we would naturally wish to extend
the analysis to higher-point couplings. This was done for
the cosmological reduction case all the way to the eight-
point coupling in the absence of the B-field [36] and up to
order H2R3 when the B-field is included [37]. While the
expressions for a d-dimensional reduction are more chal-
lenging to manipulate, the five-point couplings not involv-
ing the dilaton were determined in [39], and perhaps the
higher-point couplings could also be tackled. This would
already be sufficient to yield new insights on the structure
of the Oðα03Þ couplings of the type II string.
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