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T-duality has been shown to constrain the higher-derivative corrections of string theory. We revisit the
problem of understanding the T-duality constraints imposed on the o’ corrections using the language of a
torsionful connection. We find a convenient way to express the O(d, d) invariants in terms of linear
combinations of the metric and B-field for general d-dimensional torus compactifications, which we then
use to revisit the heterotic and bosonic ten-dimensional string action at order . We also comment on the

four-point functions for corrections of order o> in the type II string.
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I. INTRODUCTION

An outstanding problem in perturbative string theory is
to understand the structure of the higher-derivative terms
that appear as a series expansion in the string coupling o’.
Since technical challenges arise at higher orders in o/, it
becomes crucial to investigate if there are any additional
hidden structures that make the derivative corrections more
manifest. This would, for example, be useful for the o3
corrections in the type II string, as the full structure of these
eight-derivative couplings is still unknown.

One common approach is to take advantage of the mani-
fest symmetries to constrain the higher-derivative terms.
This includes making use of supersymmetry [1-10],
S-duality [11-13], and, what is relevant to this work,
T-duality. T-duality appears when compactifying on a circle,
or more generally some d-dimensional torus. This then
constrains the particular background to be O(d, d) invariant.
Restricting to the Neveu-Schwarz Neveu-Schwarz (NS-NS)
sector, the tree-level couplings are indistinguishable
between type IIA and type IIB string theories and T-duality
invariance is universal at tree level in the type II string. At
O(a') in the bosonic and heterotic string, the T-duality
transformation rules were explored in [14,15], and T-duality
invariants were constructed in [16,17] using double field
theory (DFT). Moreover, T-duality can be used to compute
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the corrections to black hole solutions as was done
in [18-25]. For the type II string, the higher-derivative
corrections at order O(a’*) have been investigated
in [26-30] and completed via T-duality in [31,32].

An additional computational advantage arises when
performing a “cosmological reduction” in which all but
the temporal dimension are compactified [33—35]. The only
fields that survive in this reduction are scalars, so this gives
us an opportunity to study the scalar sector, where we
have a nonzero dilaton, and internal metric and B-field
components g¢;; and b;;. This, for example, has been
investigated in [36], where it was then deduced what the
eight-derivative couplings quartic in the Riemann tensor
must be. This framework was then extended in the context
of a torsionful connection [37], where the O(1, 1) invar-
iants can be written as linear combinations of the metric and
B-field defined by a matrix N, = g~'0,(g + b). Then, the
T-duality invariant quantities are traces of even powers of
products of the matrices N with alternating signs. We may
then wonder if this structure appears for a d-dimensional
compactification, where there is a natural generalization of
Nito N, =g'o,(g£D).

We revisit the higher-derivative corrections at order
O(d') and O(a®) to investigate the hidden structures of
string theory for d-dimensional compactification. This is
similar to the work in [38], although here we use the
language of a torsionful connection. In this setup, we can
formulate building blocks that appear as O(d, d) invariant
quantities, allowing us to study the additional structures of
the string action that may become manifest. We find, as
expected, that we can characterize the T-duality invariants
formed out of first derivatives of g;; and b;; as products of
the generalized N, with alternating signs. However, the
situation for invariants constructed out of higher derivatives
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of g;; and b;; is less clear since the “alternating signs rule”
may no longer apply as some of the traces contain a product
of odd numbers of N, matrices.

With the building blocks we construct, we revisit the
first-order o corrections for the heterotic and bosonic string
action. We find that, indeed, we can write the entire first-
order corrections as traces of products of the N, matrices
with alternating signs, generalizing the results in the case of
the cosmological reduction [37]. However, one main
difference appears in that the linear combination of the
T-duality building blocks is not equivalent for the heterotic
and bosonic string, although this distinction vanishes for
the reduction to one temporal dimension. This provides an
example where the d-dimensional reduction provides more
information on the T-duality invariants than a cosmological
reduction alone would.

There is currently limited literature on string amplitudes
for various n-point functions for n > 5, mainly due to
technical challenges. However, even in the cosmological
reduction, we are still able to extract valuable information
about the couplings, which can then be matched via higher-
point string amplitudes. For example, it has been shown
in [37] that T-duality in the cosmological reduction can
constrain the five-point function of the form H>R>, which
were obtained via tree-level string amplitudes [30]. In this
example, there are eight coupling constants undetermined
by the four-point function, and five of them can be expli-
citly fixed via T-duality, leaving three unconstrained [37].
More generally, using DFT inspired objects, both H>R* and
H?>VH?R were fully constrained by O(d,d) invariance
in [39]. We may also wonder to what extent can we
learn about the four- and five-point functions with the
newly constructed building blocks in the context of the d-
dimensional reduction.

This paper is organized as follows. In Sec. I1, we review the
torus reduction using the framework of a torsionful con-
nection and introduce notation useful for constructing
T-duality building blocks. In Sec. III, we make use of these
building blocks to compute the O(«’) corrections to the
heterotic and bosonic strings. We then turn to the O(a?)
corrections to the type II string and make comments on the
structure of the four- and five-point couplings in Sec. [V and
end with concluding remarks and open directions in Sec. V.

II. THE TORUS REDUCTION WITH A
TORSIONFUL CONNECTION

In this section, we review the d-dimensional torus
reduction in the context of a torsionful connection. This
is a direct generalization of the cosmological reduction with
nonzero torsion [37], and therefore, as such we find a
convenient way to express the O(d, d) invariants in terms
of linear combinations of the metric and B-field. We then
discuss several identities that become useful in constructing
the higher-derivative corrections.

A. The torus reduction

We begin with a review of the reduction of the NS-NS
sector of string theory on a d-dimensional torus. The fields
we consider are the metric g,;y, B-field By, and ten-
dimensional dilaton ¢, with string frame two-derivative
NS-NS sector Lagrangian

1
E7'Liy=e?? R+ 40y,p0M ¢ — EHMNPHMNP . (1)

We take a standard torus reduction,
ds* = g, dx*dx* + g;;Dy' Dy, Dy' = dy' 4+ Al dx*,
1 1 ) .
B = Ebﬂydx”dx” + B”idxﬂDyl + Eb”Dyl A Dy'],
1
4):<I>+Zlogdetg,~j, (2)

where the latin indices (i, j, ...) denote the 7¢ indices and
the greek indices (u,v,...) are the indices of the lower-
dimensional spacetime. Here @ is the lower-dimensional
dilaton. We use capital latin indices (M, N, ...) to denote
the D-dimensional indices. This metric admits a natural
vielbein basis,

ds® = nopE"EP + 5, E°E", 3)

where
E* = eldx*, E* = e¢(dy" + Aldx"). (4)
While the vector fields are an integral part of the reduction,
we focus only on T-duality in the scalar sector, and hence

set AL = 0 from now on. In this case, the two-derivative
Lagrangian reduces to

e Ligg
1 1
— o ® {R + 0,00 D — 5 Py + gTr(@,,?‘[r]d"?‘(ﬂ)} ,
(5)

where H is the (2d) x (2d) scalar matrix
—1 _ —lb
H= ( T ) (6)
byt g—bg'b
and 7 is the O(d, d) metric

- (2 (1)) )

T-duality invariance of this two-derivative Lagrangian is
well established.
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Higher-derivative corrections to the two-derivative
Lagrangian are built out of gauge-invariant combinations
of the Riemann tensor, three-form field strength H, and
derivatives of the dilaton ¢. The torus reduction of H and ¢
is straightforward, leaving only Riemann to consider. For
this, we choose to use a torsionful connection given by
|

af
QAB — @4
= 711 iagp j
7€ (gij + bij)dy

We can then compute the curvature of this torsionful
connection given by

1
Ryne(Qy) = Ryn™2(Q) £ Vi Hy "2 + EH[MPRHN]RQ-

(10)
The components of the Riemann tensor are then
R, (Qs) = Ry (wy),
R ™ (Qy) = _i(gikNﬁ:klNgéj — 9N NY,).
R,7(Q.) =~ 411 Ny Nysr = Ni:FkN]/jil)glj’
R (Qu) = = VNS, + NN ),
RyY(Qy) = —}L(ngkNngl_nglNé‘ﬂk)’ (11)
where we have defined the matrix
Ny = 19, (a1 % by). (12

Note that the covariant derivative Vl(,i) is with respect to the
torsionful connection. In particular,

4 ] .
VIINE L =V N &5 NG (13)

We recall that the symmetries of R, ;P (Q, ) differ from
its torsion-free counterpart. More specifically, the first pair
and the second pair are both separately antisymmetric,
while pairwise interchanges give

RupP(Qy) = RP 45(Q2). (14)

One of our main observations is that the torsionful Riemann
tensor and T-dual invariant quantities can be written in

terms of Ni. ;. Note that this generalizes the N'; =

g (g + blj) of the cosmological reduction [37], in which

1 1
Qi:a)iEH:a)ABiEHMAdeM, (8)

where H is the three-form field strength, H = dB. The
torus reduction of Q. is straightforward and, with AL =0,
we find

—5¢"0"(g;; F bij)dy’ ) 9)

1(eide;, — eide;, + el db;))

the O(d, d) invariants were composed of traces of products
of N’s with alternating signs.

B. Forming T-duality invariants

As demonstrated above, torus reduced higher-derivative
couplings can be written in terms of N /lt +j» ®,and h = db,
as well as the lower-dimensional Riemann tensor and the
field strengths F' = dA’. Focusing on the O(d, d) scalars,
we only concern ourselves with invariants built out of N L e
However, this N matrix by itself does not have any obvious
O(d, d) transformation properties.

To make contact with the O(d, d) invariants, we define
the O(d, d) matrix

bg™' g-bg'b
S=nH= ( _] O , (15)
g —g~b
where H is given in (6). This matrix transforms as
S ¢ 'Sg. where gng' =1, (16)

under O(d,d) transformations. Hence invariants are
formed by taking traces of products of S and its derivatives.
Note, however, that S has the property that

§*=1, (17)

which gives us insight on the types of invariants we can
build out of S and its derivatives. First, there can be, at
most, one S separating derivative terms inside the trace.
Furthermore, from S* = 1, we can form the projections

P.=-(1£8). (18)

N[ =

Expanding out 9,(S*) =0 gives 89,8 =—(9,5)S,
which is equivalent to P, 9,8 = 9,5P_. This shows that
(P, 0,8)? = 0, which in turn allows us to transform P, 9,8
into an upper triangular matrix. Working this out, we find
the elegant result
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N,
9,S=W w1,
N,
N,
§0,S=W w-l, (19)
# N
pt
where

W:

1(@?@ 1

V2
This relation between 9,5 and N, allows us to com-

pletely characterize single trace invariants formed out of S
and d,S. Starting with single derivatives only, we have

-%g—m>' (20)

Tr(9,,89,,S---0,, S) = (=1)"[Tr(N,, _N

/42+ o .Nﬂ2u+)

+Tr(N,  N,_---N,, ). (21)
If we replace any number of the 9,S terms with §9,S, then
we flip the sign of the corresponding N, term in the trace.
Depending on how many such sign flips there are, we could
flip the sign of the first trace or second trace or both traces in
the above. In the end, there are only two inequivalent
possibilities. So we might as well take only a single 59,5
in the trace to get the second invariant,

Tr(S9,,89,,S---0,, S) = (=1)*[Tr(N,, N1 -~ Ny, +)
— Tr(N

-+ Nup= Ny, )]
(22)

As an example, for the cosmological reduction, both
terms on the right-hand side of (22) are equivalent as all the
derivatives become time derivatives. Hence (22) vanishes in
the cosmological reduction case, leaving only the T-duality
invariant (21),

Te(E) = 2= Te(N.N)"). (n20).  (23)
which was found in [37].

We now move on to second derivatives on S, where the

invariants explicitly break the alternating signature of the

matrices N. To see this more clearly, we first summarize the
quantities built out of S and its derivatives as

1 0
s=w(y 5w
0 -1

0 N,
0,8 =W )Wﬂ
“N, 0
v v S —_ W( N(/’_N”)+ v(”NU)_ + Y/'”-’_ ) W_l
o VN =Yy =NNy-

(24)

where we have defined

(NpxNyys = NeNy)1). (25)

N —

Y;wi =

We can build invariants by multiplying these quantities
together and taking the trace. However, the difficulty in
characterizing these invariants lies in the off-diagonal terms
of V,V,S. While the diagonal terms follow the alternating
N,_N,, or N, N,_ pattern of the first-derivative invari-
ants, the Y, terms involve two N’s which breaks the
even/odd N structure of the diagonal/off-diagonal entries.
Moreover, the structure of Y, explicitly breaks the
alternating =+ structure of the N’s. In the absence of a
systematic treatment of second-derivative of S invariants,
we consider several examples in Sec. III when we examine
the O(a’) corrections to the bosonic and heterotic string.

Before moving on, however, we summarize several
identities involving second derivatives on S which translate
into 0N type terms. In order to manipulate these terms, it is
useful to consider the transpose relation

g'(V,N)"9g=V,Nxz+L,Nz—N,zL,. (26)
as well as the derivative swapping relation
V,N,,-V,N,y =LN, —L,N,.. (27)
Here we have defined
Li=g'09=3 N+ N0 (28

As for manipulations of & and its derivatives, note that
50,8 = —(9,S5)S. (29)

This allows us to move S around in single-derivative
expressions.

C. General approach to verifying T-duality

With the above setup in mind, we now turn to the general
framework for investigating the T-duality properties of tree-
level higher-derivative corrections. The general starting
point is to focus on a particular order in the string o
expansion, say O(«’) in the bosonic or heterotic string, or
O(a®) for the type II string. If the higher-derivative
couplings are already known, then the reduction serves
as a useful consistency check, while providing additional
geometric insight on the reduction. On the other hand, if the
couplings are undetermined or only partially determined,
then one can introduce a complete basis of linearly
independent terms modulo field redefinitions. In this case,
T-duality invariance can narrow down the undetermined
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coefficients and, in some cases, even select out a unique
invariant [31,32].

In any case, the starting point is a set of higher-derivative
couplings in the ten-dimensional Lagrangian. After reduc-
tion on T, and focusing only on the O(d, d) scalars, the
resulting Lagrangian will be written in terms of N, and its
derivatives. Assuming the ten-dimensional couplings are
given by no more than second derivatives, the lower-
dimensional Lagrangian then admits an expansion of the
schematic form

L")~ (@)=1e®[(VN)" + NX(VN)-!
+ NYVN)"2 + ...+ N*|, (30)

where we are considering a (2n)-derivative coupling. In the
cosmological reduction case, all nontrivial derivatives are
time derivatives, and we may use a combination of

equations of motion for N and integration by parts to

rewrite the entire expression as Egazn) ~ () Te=®N?",
which only involves first derivatives of the scalars [35,40].
T-duality invariance then requires that the N’s enter as
traces of alternating strings of N, and N_, so as to form
invariants of the form (23) as in [37]. It is worth emphasiz-
ing here that use of the two-derivative equations of motion
amounts to a field redefinition so in fact, the basic torus
reduction (2) necessarily receives higher-order corrections
if we wish to retain a manifestly O(d, d) invariant toroi-
dally reduced Lagrangian.

The situation is more complicated for general d-
dimensional reductions as the derivative V,N,, is no
longer an equation of motion, except in the case V¥N,,,.
Thus there does not appear to be a general means of
reducing (30) to eliminate all second derivatives of the
scalars. This, of course, does not signify a failure of
O(d,d), as invariants can be formed out of V,V,S.
However, the presence of Y,,. in (24) complicates the
assembly of the N and VN terms into good invariants.

Even without a systematic approach to identifying
invariants, it is natural to follow a general approach of
working from left to right in the schematic expression (30).
With a slight abuse of notation, we denote terms of O(N¥)
as k-point functions. Then the first term in (30) corresponds
to an n-point function, while the last one corresponds to a
(2n)-point function. We start with the n-point function and
make the identification

(VN)" = (VVS)". (31)

Note that this shifts the higher point functions in (30) since
VVS involves both VN and N2. The reduced Lagrangian
now takes the form

L) ~ (o)1 [(VVS)" + N2 (VN)-!

+ N*(VN)""2 + ... + N*1], (32)

where the first term is manifestly O(d, d) invariant. It is
worth pointing out that this identification, (31), requires
that VN_ enters with alternating signs, which provides an
immediate constraint on O(d, d) invariance.

It is now suggestive that we could use a similar approach
to rewriting the (n+ 1)-point term as N*(VN)""! -
N?(VVS)"! = (08)?(VVS)"~!. This would then lead
to a general algorithm to start with the n-point function
and rewrite things order by order until we arrive at the (2n)-
point function. At each step along the way, we may find
additional constraints imposed by O(d, d) invariance from
the requirement of alternating signs on the N..

While this is indeed a reasonable approach in the general
sense, there are some important details that complicate the
actual implementation of such an algorithm. One major
difficulty is the necessity of integration of parts and use of
the equations of motion, as evidenced in the cosmological
reduction. At the (n + k)-point function level, the term
N?(VN)"=* could either correspond directly to an O(d, d)
invariant (0S)*(VVS)"~* or could be shifted to a higher
(n + k + 1)-point function of the form N*+2(VN)r—#-1
using integration by parts and the equations of motion,
depending on how the spacetime indices are arranged.
Although it may be possible to find a general procedure for
splitting N**(VN)"=* into an (n + k)-point invariant plus
higher point functions, in practice, we have only been able
to work with this on a case by case basis.

In the next section, we consider four-derivative invariants
for the bosonic and heterotic string. In this case, we
start with

LO) ~ae®[(VN)? + N?UN +N*.  (33)

The two-point term (VN)? is obtained from the reduction
of (Rynpg)* and automatically takes the O(d, d) invariant
form Tr(V,N,, V¥N“), which we rewrite as (V,VuS)?
along with additional N>VN and N* terms. We then work
with the three-point term N>VN and use field redefinitions
to shift it completely to the four-point N* level. In
particular, we do not introduce any invariants of the form
(08)*VVS. The resulting expression is then of the form

LY~ e=®(V,V,8)? + N4, (34)

It is now clear from the pattern of the signs of the N, which
terms are T-duality invariant and which are not.

Similarly, we can do this at the eight-derivative level for
the type II string starting at the four-point function level and
include higher-point couplings order by order to ensure
invariance under O(d, d). However, without a systematic
approach, the number of terms to consider rapidly
increases, making it difficult to extract simple T-duality
invariant expressions formed out of S and its derivatives
from the N and VN starting point.
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III. T-DUALITY INVARIANCE UP TO O(«)

In this section, we consider T-duality invariant expres-
sions built out of traces of S, S, and VVS up to O(«). In
particular, we consider traces of two-derivative terms and
four-derivative terms. We then discuss possible field
redefinitions and reexamine the heterotic and bosonic string
at order o'

A. Two-derivative invariants

At the two-derivative level, we can generate two
elements, VVS and (0S)?, along with any number of
undifferentiated S insertions. It is then straightforward to
show that

Tr(V,V,S) =0, Tr(SV,V,S) = 2Tr(N (4 N,-),

Tr(aﬂS()yS) = —2TI‘(N<”+NU_)),
Tr(80,50,S) = 2Tr(N, N,). (35)
|

Tt(0,89,50,50,8) = Tr(N,_N, . N,_

Tr(50,50,50,50,8) = Tr(N,_N,.N,_N,,)

However, with the transpose property of the trace, we find
Tr(N,4N,-) = Tr(N,, N,_) = Tr(NN,) = 0. (36)

This indicates that, at the two-derivative level, there is only
a single invariant, which we can take to be

Tt(0,89,8) = —2Tr(N, N,_). (37)

This invariant corresponds to the last term in the two-
derivative Lagrangian in (5). Note, also, that this implies
the second-derivative invariant Tr(SV,V,S), when expan-
ded, consists only of first derivatives of the scalars g;; & b;;.

B. Four-derivative invariants
At the four-derivative level, we can consider terms of the
form (VVS)?, (VVS)(0S)?, and (aS)* with any number of
S insertions. Invariants formed out of dS only can be read
off from (21) and (22),

Na+) + TF(NM+NU_N/,+N”_),
— Tr(N

M+NU—N/1+N6—)' (38)

For invariants built from 0ddS, we find it convenient to rewrite the last line of (24) in the asymmetric form

V.V, = W(_v . ;(V 1(\};__1\1]\;” e Vil +5 _(xw\lf\;-_— Ny-Ny-) ) W, (39)
pNv+ =3 NNy vVt (u+1V0)
As a result, we see that
T(V,V,S8V,V,S) = -Tr(V,N,_V,N,.) = Tr(V,N,,V,N,_) +---, (40)
where we have focused on the (VN)? terms only. Taking a transpose of the second term using (26) then gives
™(V,V,S8V,V,S) = -2Tr(V,N,_V N, ) + - - -, (41)

where - - - indicates terms of the form (VN)N? and N*. In fact, what we see is that there are many transformations that can be
used to move terms around, so many expressions may be redundant or linearly dependent. It would be useful to choose a
canonical basis in some way to eliminate such redundancies. For example, for (VVS)?, we can bring it into the form
Tr(VN_VN,) + - - -, while (VVS)(dS)? can always be brought into the form Tr(VN_N N, ) + - - -., where the = signs
are uncorrelated.

Instead of enumerating all the (VVS)? possibilities, we consider the combination that naturally arises from
RMNPQ(Q+)2. In particular, using both the transpose relations (26) and swapping relations (27), we can obtain

Tr(VFV* SV, V,S) = =2Tt(VEN“V,N,.) — Tr((V*N*)(N,_N,, + N, N, —2N,.N,.))
1
5 TE(NENYN, Ny + NENEN, Ny + 2NENSN, N, )

1
+ 5 (VN NYN, -+ NEN, NN, = 2NEN, NiN,-). (42)

This expression allows us to rewrite the Tr(VNVN) that shows up in Ryypo ()2, in terms of the T-duality invariant
Tr(VVSVVS) along with higher-point terms of the form (VN)N? and N*.
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Following the rewriting of (VN)?, we would then turn to
terms of the form (VN)N?. Since there are an odd number
of N. matrices, it cannot have alternating signs. More
problematically, however, it cannot appear from any
combination of § and its derivatives. Superficially, it seems
it can come from an invariant of the form Tr((VVS)(dS)?).
However, we can check from (24) that

Tr((VVS)(0S)?) ~ Tr(N.N_N_N_). (43)
While the right-hand side has the proper alternating
combination of N, and N_ for O(d, d) invariance, it does
not have the form of Tr((VN)N?). This can also be seen
more abstractly from (24) where the VN terms enter off
diagonally in VVS, while the N? terms enter diagonally in
(0S)?. The general pattern, which persists beyond the four-
derivative level, is that the combination VN + Y can only
enter in even powers regardless of whether there are an even
or odd number of VVS factors in the trace. Thus, at the
lowest order in the n-point function expansion, we have the
even/odd split

(VVS)%*(38)*
(vv3)2k+1 (08)21

NN21(VN)2I< 4o
~NHFZ(VN)k .0 (44)

In both cases, the right-hand side starts as an even-point
function.

The consequence of this is that, once the Tr(VNVN)
terms are rewritten in terms of the Tr(VVSVVS) invariant,
the remaining Tr((VN)N?) terms cannot form an invariant
and must be dealt with using integration by parts and the
equations of motion. This is an example where field
redefinitions are required in order to rewrite the higher-
derivative couplings in a more canonical form.

Note that, for the cosmological reduction, we can obtain
two independent invariants,

Tr(8?) = —2Tr(N,.N_) = Tr(N_N_N_)
+ Tr(N_N?%) + Tr(N,.N2)
+2Tr(N_.N_N_N_) — Tr(N2N2)

—Tr(N,N,N_)

1 1
+ 5TI'(N+N§) + ETr(N_Ni),

Tr(S*) = 2Tr(N,N_N,N_). (45)
These correspond to (38) and (42).

1. Field redefinitions

As indicated above, we have to handle terms such as
Tr((VN)N?) that do not directly correspond to any
T-duality invariants using integration by parts and the
lower-order equations of motion. This amounts to perform-
ing a field redefinition. To motivate how this arises, we first
write down the lower-dimensional equations of motion for

the scalar sector coupled to gravity. In particular, ignoring
Kaluza-Klein (KK) and winding gauge fields and the
antisymmetric tensor, we have

1
OZEWZR +VV<I> 4T (N(”+NU)_),

1
0=&=R+200 - (30) ~  Tr(N'N,.).

1
OZEiEV”Nﬂi—aﬂ(DNﬂi :Fz(Nli—Nﬁ)Nﬂi (46)

We now consider the total derivative,

% [e_(DTr<Nﬂ&NZNDE)] = Tr(vﬂ( _(DN ) ch)

+ e PTr[(VANY)N Nz
+ (VAN )N a5, (47)

where @, b, and ¢ denote + (and should not be confused
with the T¢ indices). We can use the scalar equation of
motion £, to rewrite this as

Tr[(VﬂNg)N Nya+ (VAN N, NY]
V¥[e=®Tr(N,aN4N,)] — Tr(EN4N ;)
— aTr(M*N,zNYN,;). (48)

The left-hand side is a sum of two terms of the form
(VN)N?. However, they can be disentangled by making
use of the transpose and swapping relations and taking
appropriate linear combinations of the resulting expres-
sions. The first term on the right-hand side is a total
derivative when used in the tree-level four-derivative
action, while the second term can be removed by a field
redefinition. This leaves the final term, so we may write

Tr[(vﬂNl[;)NuENﬂZl + (VMNDE)N/‘[’N%]
— —aTr(M*N,;N“N,z). (49)

where — indicates equivalence up to a total derivative and
field redefinition. In general, we can write down 2 - 23 =
16 possible terms of the form Tr((VN)NN), where the first
2 comes from the choice of index structure, being either
pvpv or uvvp, and the 23 comes from the + choices on the
three N’s. Note that we ignore the uuvy index structure as
that can be reduced by the &£, equation of motion.
However, we can reduce these 16 possible combinations
to a set of only four linearly independent expressions by
use of transposing via (26) and index swapping via (27).
In particular, by transposing, we can choose to write
(VENY)NN and keep only the VN term with a minus
sign. In addition, by index swapping, we can reduce to the
uvuv index structure. We are thus left with four indepen-
dent terms of the form Tr((VFNY)N,,N,;).
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We choose b and & to be various combinations of =+ in (49) and canonicalize the resulting expressions. This lets us obtain
1
2Tr((VANY)N,_N,_) — ETr[(NiN”_ +NEN, )N“N,_ — (N .N“ + N NY)N,_N,_],
1
Tr((VKNL)(NyyNyo + NN, )) = ETr[(N’iNﬂ_ + NEN, )N“N,_ — (N N“. + NEN“)N,_N,.],
1
Tr((VAN2)(NysNyy +Ny_Nyy)) = iTr[(N’iNﬂ_ + NEN, )N4N,_ — (NYNY + N NY)N, N, .],
1
Tr((V*N2)(NysNyy + Ny N, )) = ETr[(NiN,,_ + NEN, )N“N,,. — (N N* + N*N“)N,. N,_]. (50)
Finally, we can take linear combinations of the last three expressions to obtain
1
2Tr((VANL)N N, ) — ETr[(N’iN,,_ + NEN, )(NYN,_ +N“N,. —N“N,_)
— (N{NY + NENY)(N,4 N,y + Ny N,_ —=N,_N,. )],
1
2Tr((VANL)N, N,_) = ETr[(N’iNM_ + NEN, . )(=N%N,_ +N“N,. +N“N,_)
— (NA.N“ + NENY)(-N,4N, + N, N,_+N,_N,.)],
1
2Tr((VANY)N,_N,.) = ETr[(N’iNﬂ_ +NEN, )(NYN,_ —N“N,, +N“N,_)
— (M.N“ + NENY)(NyyN, =N, N,_+N,_N,.)]. (51)

We are now ready to revisit the four-derivative couplings in the heterotic and bosonic strings, making use of these field
redefinitions.

C. The heterotic string at O(«’)

The gravitational sector of the heterotic string action at the four-derivative level [41-44] is given by
1 A A 1
Su = / d"Ox\/=ge <R +4(0g)* ~ EHABCHABC + 8a/RABCD(Q+)RABCD(Q+))’ (52)
where we have ignored the heterotic gauge fields. Here, the three-form field strength A has a nontrivial Bianchi identity,

1
dil = =2 d TIR(2,) A R(Q,), (53)

corresponding to the addition of the Lorentz Chern-Simons term

/
[:I =dB - %603L(Q+), (54)
where

2
w3L(Q+)—Tr<Q+/\dQ++§Q+/\Q+/\Q+>. (55)

By expanding A’ perturbatively up to O(c’), we see that the effective four-derivative Lagrangian at this level is
given by

1 1
eIy = ga/e_Z(/) <RABCD(Q+)RABCD(Q+) T3 HABCw?EC(QJr)) . (56)
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There are two terms to reduce on the torus. For the Riemann-squared term, the direct reduction (11) gives

Rapen(Q)RPP(Q.) = Ry (@, )R (@) + Tr((VONL)g™ VN, ) )
1 3
+ Tr((V+) NY)N, N,_) + gTr(N’iNi)Tr(N”_NH) - gTr(N’iNU_Nﬂ+NZ,_)
3 1
+ gTr(N’iN,HNZNH) + gTr(N’iNﬂ_NiN,,_). (57)
After rewriting V,(,+) in terms of V, and h,,,, using (13) and using the transpose relation, (26), we end up with the second-

derivative terms in the canonical form Tr(V*N“V,N, ). This, in turn, can be replaced by Tr(VVSVVS) using (42). The
result is

1
RABCD(Q+>RABCD (Q+) - Rﬂvpa(w+)pr6( ) + 4 hﬂpdhp ( /4+N ) - EhﬂypTr(Nﬂ+Nv—Np )

1
- ETI‘(V"V”SV”VDS) + Tr((vﬂN’i)Nﬂ+NU+)
1 1 1
+ g TINEN)TE(N, N, .) +  Tr(NENEN, N, ) + 5 Te(NENEN,N,.)

)
%T (N“N, NN,.). (58)

3 3
+ g TE(NEN, NN, ) + S Te(NEN, NEN,.,) =

After writing the two-point contribution as Tr(VVSVVS), there is still a three-point contribution of the form Tr((VN)N?)
left over. As discussed above, this does not form an O(d, d) invariant, but can be removed by a field redefinition as given by
the first line of (51). After doing so, we arrive at the result,

1
RABCD (Q+ )RABCD (Q-‘r) - Rﬂl/pﬁ(a)+ )Rm/po_ (w-‘r) + Z hﬂpghvpoTr(N/t-‘va—)

1 1

=5 Tr(VIVASV, Y, 8) +  Tr(NENY)Tr(N,, N,
5 5 1

+ S TENEN, NN, ) + S Tr(NEN, NN, ) = o Tr(NENEN N, )
1 " v 1 H v 1 " v

+ 3 TE(NEN, NN, ) = S TE(NEN, NEN,-) = S Tr (NN, N2N,)

1 1
+{ Te(VINEN, N, ) =3 W/ Te(N,. N, N, ). (59)

We have written the terms such that the first three lines on the right-hand side are explicitly T-dual invariant,
while the remaining two lines are not. This demonstrates that the Riemann-squared term by itself is not a good
invariant.

To complete the heterotic four-derivative invariant, we also need the second term in (56). Using the torus reduction of the
torsionful spin connection (9), we can obtain the reduction of the Lorentz Chern-Simons term,

1
D31,p(Q4) = @31,y (@,) — 3Tr(e 'O ee™'d,ee7'0,1e) + 30, Tr(e ' d,eM ) + ZTr(3N[ﬂ+ND_ o= F Np—N,_N,_)

o3, (Qs) = N VDN, +

1 i
SNEN,N,] E (60)

Contracting with H,,yp then gives
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HynpoiNP(Q,) = W (w31, (0,) = 3Tr(e™'d,ee™d,ee7'0,)e) + 30, Tr(e™'0,eM )

1 3 3
+ 3 TrON Ny Ny + Ny N, N, ) = STE((VENN N, ) + S TH(PANYN, N, )

3 3
= Tr(NINGN, N,) + S Tr(NENSN, N, ).

As mentioned above, field redefinitions are required to write the Tr((VN)N?) terms in a more canonical way. Using (51),

we find

HynpiNP(Q, ) — e <a)3LWp(a)+) —3Tr(e~'d,ee ' d,ee7'd,e) + 30, Tr(e™d,eM )

1
+ ZTI(9N[},+ND_N/,]_ + N[},_ND_N/,]_)>

4

3 3 3
+  TH VNN, N,o) = ZTH(NEN, NEN, ) + S TH(NEN,  NEN,-)

3 3 3
= JTo(NEN, NN, ) = S Te(NG NS N, N,-) + S Te(NEN, NEN,-). (61)

4

A quick inspection of this expression shows that the first two Tr(N*) terms are in the T-dual invariant form of alternating

signs of N while the rest are not.

Combining (59) and (61), we can now see that the reduced four-derivative Lagrangian is given by

o

1
eI LY == e ®|Rypu(wy)? + gh"””W

8

1
+ g WR T (N, N, )

1 1
=5 TH(VV'SV,V,8) + S Tr(NENL)Te(N,,-N,.)

5 3 1
+ g THNVEN,-NYN,2) + S TH(NEN, NEN, ) + S THNE NN, N,)| (62)

where we have defined the shifted Chern-Simons term

14

8

1
wp = a)3LﬂW,(a}+) - 3Tr(e‘1%ee‘labee‘la,,]e) + 36[,,Tr(e‘ldl,eM,,]) + ZTr(sN[ﬂ+NV—Nﬂ]— + N[ﬂ_NZ,_N/,]_). (63)

Note that this is manifestly O(d, d) invariant, except for the h/“’pW,“,p term, as can be seen from the structure of the
alternating signs. Written in terms of the scalar matrix S, we find

a/

1 1 1 1
1LY = §e“b Rypo(@, ) + S Wiy =IO 1 T0(0,80,8) =S T (VVY SV, V,8) 4+ - Tr(V, SV, ) Tr(VHSV-S)

Jr%Tr(V”SVMSV”SVDS) —éTr(SV”SV#SV”SVyS) +%Tr(V#SVDSV”SV”S) : (64)

where we have used (38).

Turning now to the W*’W,, term, we see that the
final term in (63) breaks O(d,d) invariance. However,
as noted in [38], O(d,d) can be restored by a Green-
Schwarz-like mechanism, where W,,, is absorbed into a
shifted h-field,

~ o

Py = 30[”171,/,] 4 Wops (65)

|
in analogy with the original ten-dimensional expression
(54). Moreover, the Wess-Zumino-Witten (WZW) term in
(63), as well as the following term, are locally total
derivatives and can be removed by shifting b,,. After
doing so, we have explicitly

/

A N a
h/u/p = 36[;41714)] - Z (a)3Luz/p (w+) + w3N;wp)’ (66)

where
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1
The shifted lA)M,, then transforms nontrivially under O(d, d) to compensate for the transformation of wsy,,, [38].

D. The bosonic string at O(a’)

We now examine the bosonic string at O(a’), whose action at this order is [41],

1 1 1 1
/de —ge™? Za/ <RABCDRABCD - EHABEHCDERABCD + ﬂl'ﬂ g (Hfm)z)’ (68)
where we have defined H* and H?, as
H*=HypcH P HP P HO P, Hip = HyPHpep,  (Hip)® = HipH™P. (69)

We convert the torsion-free Riemann curvature to Riemann curvature with torsion, which allows us to make contact with the
N matrices that appear in the T-dual invariants. The Lagrangian can then be rewritten as [37]

1 1
6_1[,?; = Za/e_zdl <RMNPQ(Q+)2 - RMNPQ(Q+)HMNRHI[;Q - 3H4> . (70)

We now follow a similar procedure as for the case of the heterotic string using the methodology outlined in Sec. II C.
We find

3
H* = h* + *Tr(3N,,N,_N, —N,_ N, N, )+ g TH(NENEN, N,)

3 3 3
=S TH(NLNEN,N,2) + S Te(NENEN, N,) +  Tr (N NEN, N, ). (71)

Note that we did not need field redefinitions as there were no terms involving VN. On the other hand, R(€2, ) H? requires us
to utilize the field redefinitions (51) such that

1 1
Rugnpg(Qu)HYNRHP g = Ry pg 407, = 2y Tr(TNY NN = NENEN2) + S Tr(N' N, -N* N, )
1 M v 1 H v 1 H v 1 H v
+ g TNEN NN, )+ THNE N, NEN,) = Tr(NVG N, NEN,-) = S Tr(NEN, NN, )
3 1 3 1
~ g TH VNN, N,) = To(NANSN, N, ) + T TH(NENEN, N, = S Tr(NENEN, N,.).

4
(72)
Combining (59), (71), and (72), we find
-1 pot 1/—d) 2 UVA T, po 14 1;4/)0'1/
e 1LY = Zae Ryvpo(@1)* = Ry o (@ ) RF4 1P, _§h —gh n* ,,T1(0,50,S)
1 1 1 1
+ 3 hwpa)’;;’\f - ETr(V”V”SV”VUS) + 3—2Tr(V"SV”S)Tr(VﬂSVDS) + ETr(V”SV”SV”SVDS)
1
+ 1—6Tr(V"SV”SVﬂSVDS)], (73)

where oy, is defined in (67). This expression is explicitly O(d, d) invariant except for the &
treated just as in the heterotic case by defining a shifted A-field [38],

vp .
Lwp®@sy term. However, it can be
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/

w3N

Py = 30byy) — pp- (74)
This torus reduced Lagrangian, (73), agrees with [34] as
well as [38] after appropriate field redefinitions.

Note that the bosonic string correction, (73), does not
precisely match the heterotic string correction, (64). The
differences are that the heterotic case has an additional
Tr(SV*SV,SV*SV,S) coupling in (64) as well as the
lower-dimensional Lorentz Chern-Simons term ws; in
(66). Since this additional term vanishes in the cosmologi-
cal reduction, in that case there is no distinction between

the reduced heterotic and bosonic string cases.

IV. THE TYPE II STRING AND CONTACT
TERMS AT O(a?)

As we have shown so far, the scalar O(d, d) invariants
are built out of the traces of N, which are ultimately linear
combinations of the internal metric and antisymmetric
tensor field and their derivatives. At order o/, we find that
the building blocks composed of N are a convenient way
to study the structure of the higher-derivative terms that
|

a1 R(Q, ) = 24R0s, , (Q )RIH

+ 192RH#5, , (Q,)R
+ 384Rﬂ8mv Us (Q+)
— 48Rﬂ6ﬂs

— 32Rﬂsﬂ5 _Q‘+ Rﬂsmy

+)
)
st Ugls )
)R

— 48R
—96R

HgHs

b (2
s (
gion
105 (Q) Ry,

Note that the structure of the #gfg invariant ensures that

combinations and no Ricci contractions. On the other hand,

€8€8R(Q+)4 — —1536RH1H2H3Hs (Q+>Rﬂ3ﬂsﬂ|

— 1536RH1H2H3H4 (Q+)Rﬂ3m

+ 768 RH1H2H3Hs (Q+)Rﬂ3”5ﬂl

+ QG RH1H2H3H4 (QJF)RMM
— 768 RH1H2H3 M4 (Q+)R
+ 48 RH1H2H3H4 (QJr )R

where the ellipses denote invariant combinations involving

the Ricci terms.
At the level of the four-point function, we only need the

linearized reduction of Riemann. Examination of (11)

Vels (Q+)R#Sﬂoy ve (Q+ )R#Wx
+ 12R¥oHs Vgls (Q+)R#8ﬂ7 vgUy (Q+ )R

H3Hs

H3HsVel7 (
RHsH1V3V4 (

RH3Havgy7 (

vguy (Q Rﬂs%ysvﬁ (

HsHe (Q+)R

H3papt

H3Hapt1 12 (

ensure T-duality. In this section, we promote the use of the
N matrices to investigate the structure of higher-derivative
corrections to the tree-level O(a®) couplings of the type IT
string.

The general strategy is as before, where we first write the
torus compactified action using the N . building blocks. We
then look to replace VN and N by VVS and VS starting
from the four-point contact terms and working up to the
eight-point terms. In practice, since only partial results are
known at five and higher points, we focus mostly on the
four-point terms.

For the type 1II string, the first correction arises at the
eight-derivative level. In the NS-NS sector, the tree-level
four-point couplings take the form [45,46]

1
_IER 4""6{6 —2¢ tgth(Q )4—Z€8€8R(Q+)4 . (75)

While the egegR(Q, )* term does not actually contribute to
the four-point function, its presence can be deduced from
the structure of the string scattering amplitude. The explicit
expression for 7g7gR(Q,)* is given by

Q)
P (QL )R, (24
Yo (Q RIS, (L)
o (C24)
Ry pvars (20 )R, 778 (1)
piso (Q )R, (Q4)

HsHe

PR

Q )Rﬂslhl’sl/ﬁ (Q+)R

6V7 (Q+ Mg

)RMﬂg 1z (Q+ )
)Rﬂ7ﬂ8 v7Ug (Q+) .

R

+ ) M g 7'/5V6(

) (76)
this expression only contains Riemann tensors in various
egegR(Q.)* contains both Riemann and Ricci curvatures,

+)
+)

#6(Q )R 12 5148 (Q+)R
Hshe (Q )R 147 M (
He (Q+)Rﬂ4ﬂ7y2”8 (Q+)

HsHe Hatts (QJF)R/MMXIM#Z (

Hs (Q+)R#5”6/‘7/‘8 (Q+)R

HeHgH2H7 (

)Rﬂsﬂsllzlh (

HeHsHsH7 <Q+)
Q.)

HaksHole (Q+)

Q+)Rﬂ5ﬂsﬂ7ﬂ3(QJF)R#WMS% (Q+) 4. (77)

tl

shows that the only component that contributes a scalar
is the mixed index,
R#(Qy) =

1 )
AL (78)

046008-12



T-DUALITY BUILDING BLOCKS FOR « STRING ...

PHYS. REV. D 107, 046008 (2023)

Moreover, the fgtgR(Q,)* term in (76) contains one fg
contracted with the i-type indices, while the other is
contracted with the j-type indices. Then, the resulting
four-point expression automatically takes the form of a
trace over VN, with alternating signs, written schemati-
cally as

tstsR(Q,)* ~ Tr(VN,VN_VN_VN_)
+ Tr(VN.VN_)Tr(VN,VN_) + - - -,
(79)

where we have omitted coefficients, as well as the space-
time indices, and the ellipses indicate terms beyond the
four-point function.

On the other hand, from the structure of egegR(Q,)* in
(77), we see that some of the i-type indices in (78) will be
contracted with j-type indices. This would lead to combi-
nations of VN, where the signs do not alternate, hence
giving an expression that is not manifestly T-duality
invariant,

€8€8R(Q+)4 ~ Tr(VN1VN2VN3VN4) + LR (80)

Here the subscripts denote the 4 sign of N, and in some
cases they do not alternate, signifying a potential issue with
T-duality. The resolution of this T-duality puzzle is that
the egegR(Q,)* term is actually a five-point (and higher)
coupling. Focusing only on the linearized mixed compo-
nent Riemann, (78), we can write egegR* in an unexpanded
form,

egegR(Q,)*
1

T 16 Crarakams
X (vy]Nlililjl )(VyzN’izizjz)(VUSN’i-3i3j3)(VI,AN’14i4_,-4).
(81)

Making use of the antisymmetry of ¢€,,,,, we can rewrite
this as

UIU3ly . . . oJ1J2J3)
€’ €iliyizis€ : ¢

egegR(Q,)*
1

~ 16 Cptpapspy

x [V, (Nt (V,,N25 ) ) (V,, NES ) (V, N2 )

3

+ -, (82)

DD L
elivals 4€ili2i3i4€]1]2]3j4

where the additional terms are five-point couplings of the
form RN?(VN)? with the Riemann tensor being obtained
from the commutator of two covariant derivatives acting on
N. When this is inserted into the tree-level effective action,
the total derivative term can be integrated by parts. This hits
the dilaton factor e™® and hence is also a five-point

coupling of the form N(V®)(VN)3. The end result is that
egegR(Q,)* does not contribute to the four-point contact
term, although it will become important at the five-point
level and beyond.

Returning to the form of the expanded egegR(Q2+)* term
in (77), it is still the case that a straightforward reduction
would yield a sum of terms of the form (80). However,
as in (82), a judicial rearrangement of terms would allow it
to be rewritten as a total derivative plus higher-point
contributions,

€8€8R<Q+)4 ~ VTI'<NIVNQVN3VN4) + LR (83)

This indicates that the generic procedure outlined in
Sec. II C, starting with the four-point function and rewriting
(VN)* = (VVS)*, must be applied judiciously, as in
some cases (VN)* will instead be pushed to a higher-
point coupling through field redefinitions.

At the four-point level, we have verified that the
tgtgR(Q.)* coupling is compatible with T-duality, while
no constraints are placed on egegR(Q,, )*. Although perhaps
straightforward, this is nevertheless a nontrivial check
since the four-point function is nonvanishing for the
torus reduction. This is in contrast to the cosmological
reduction where the only possible derivative is the time
derivative. In that case, N can be replaced schematically by
N? using the lower-order equations of motion. Thus the
four-point function vanishes, and nontrivial checks can
only be performed at the level of the eight-point function of
order N8.

V. DISCUSSION

We have investigated T-duality building blocks in the
context of higher-derivative corrections. With a torsionful
connection, the linear combination of the metric and B-field
readily appear in O(d,d) invariants. Indeed, this has
already been shown at order ' and o in the cosmological
reduction [37], and this work generalizes the framework for
d-dimensional compactifications. The use of the matrix N
makes manifest which terms can be T-duality invariant
from the order of the signs for each product of traces that
appear in the action. This also suggests that there are, in
fact, some hidden generalized geometrical structures that
appear when there is a nonzero torsion.

We have then used these building blocks to construct
the first order & corrections to both the heterotic and
bosonic string action. Field redefinitions were required
to write the action in a canonical form of the form
Tr(N*). We find that at this order the T-duality invariant
action is written in terms of the trace of the products of
N matrices with alternating signs. However, in contrast
to the cosmological reduction, the two actions do not
have the same form as the linear combination of the
0O(d, d) invariants.
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There are several interesting open problems in the
context of constructing these T-duality building blocks
when the torsion is nonzero. Our general framework has
been to start with a set of higher-derivative couplings and
then to reduce them on a torus, yielding expressions written
in terms of traces of N and VN . We then aim to rewrite
these expressions using the manifestly O(d,d) scalar
matrix S and its derivatives. However, ideally, we would
like to start with manifestly T-dual building blocks made
out of traces of VS and VVS and then lift them to a
corresponding set of ten-dimensional higher-derivative
couplings. Of course, it is easy to go from S to N. But
going from N, to covariant and gauge invariant ten-
dimensional expressions looks to be highly nontrivial.

We have also focused only on the reduced scalar sector,
while ignoring the Kaluza-Klein and winding gauge fields.
T-duality acting on the gauge fields can be highly con-
straining. Reduction on a single circle is sufficient to
constrain the full set of NS-NS couplings of the type II
string at O(a?), provided one makes full use of the gauge
fields [31]. The O(a’) reduction with gauge fields was
worked out in [38] for the bosonic and heterotic cases.

Itis worth emphasizing that, when discussing T-duality for
the type II string, we actually only considered the NS-NS
sector where the O(d, d) properties are neatly captured by the
scalar matrix S. While T-duality extends to the full theory, the
picture is rather more complicated in the Ramond-Ramond
(RR) sector, where the full set of O(d, d) transformations can
map between ITA and IIB theories, while SO(d, d) trans-
formations stay within a single theory. Nevertheless, the T-
duality properties of the RR fields have been worked out
[47,48] and are perhaps most naturally formulated in terms of
bispinors of O(d, d) [49-51]. T-duality of the two-derivative
RR action is highly constraining [52], and it would be
interesting to extend this to higher-derivative corrections in
the RR sector as well.

One way to make T-duality manifest is through DFT,
which involves manifest O(D, D) invariant objects with
D =10 or D =26. While we have not taken a DFT
approach, and instead chose to focus on the decomposition
into NV, matrices, it is worth emphasizing that DFT leads to
an elegant description of the O(«’) [16,17] and O(a?)
[53,54] invariants. However, an obstruction arises at O(a?)
[55]. Although an O(d, d) invariant certainly exists at this
order, it cannot be made O(D, D) invariant in the language
of DFT. It would be curious to see if this has any
implications in connecting the torus reduced expressions
involving N with the T-dual invariants built out of traces
of § and its derivatives when going beyond O(a'?).

Finally, although the four-point couplings in the type 11
case are easily explored, we would naturally wish to extend
the analysis to higher-point couplings. This was done for
the cosmological reduction case all the way to the eight-
point coupling in the absence of the B-field [36] and up to
order H?>R3 when the B-field is included [37]. While the
expressions for a d-dimensional reduction are more chal-
lenging to manipulate, the five-point couplings not involv-
ing the dilaton were determined in [39], and perhaps the
higher-point couplings could also be tackled. This would
already be sufficient to yield new insights on the structure
of the O(a’®) couplings of the type II string.
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