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We analyze the general structure of the three-point functions involving conserved bosonic and fermionic
higher-spin currents in three-dimensional conformal field theory. Using the constraints of conformal
symmetry and conservation equations, we use a computational formalism to analyze the general structure
of (J;,J5,J5,), where J; , J5,, and J{, are conserved currents with spins sy, 5,, and s; respectively (integer
or half-integer). The calculations are completely automated for any chosen spins and are limited only by
computer power. We find that the correlation function is in general fixed up to two independent “even”
structures, and one “odd” structure, subject to a set of triangle inequalities. We also analyze the structure of

three-point functions involving higher-spin currents and fundamental scalars and spinors.
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I. INTRODUCTION

It is widely understood that in any conformal field theory,
the general structure of three-point correlation functions is
determined up to finitely many parameters by conformal
symmetry. However, it remains a nontrivial problem to
construct explicit solutions for three-point functions for
various classes of primary operators. Among the most
important primary operators are conserved currents, whose
scale dimension saturates the unitarity bound. The funda-
mental examples of conserved currents in any conformal
field theory are the energy-momentum tensor and vector
currents; the three-point functions of these currents were
analyzed in [1,2], where a systematic approach to study
correlation functions of primary operators was introduced
(see also Refs. [3—12] for earlier works).

The analysis was performed in general dimensions;
however, it did not consider higher-spin conserved currents,
which can exist in more general conformal field theories. It
also did not account for the possibility of parity-violating
structures, which appear in the three-point functions of
the energy-momentum tensor and vector currents in three
dimensions. These structures were found in [13], where
correlation functions of higher-spin conserved currents were
considered, and were also found to contain parity-violating
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structures. Soon after, it was proven in [14] that under certain
assumptions (which are, however, violated in the presence
of fermionic higher-spin currents) all correlation functions
involving the energy-momentum tensor and higher-spin
currents are equal to those of free theories. This is an
extension of the Coleman-Mandula theorem [15] to con-
formal field theories; it was originally proven in three
dimensions and was later generalized to four- and higher-
dimensional cases in [16-20].

There are also approaches to the construction of
correlation functions of conserved currents which make
use of embedding formalisms [21-26] (see also [27,28]
for supersymmetric extensions), while others carry out the
calculations in momentum space [29-38]. Results have
also been obtained within the framework of the AdS/CFT
correspondence (see e.g., [39-43]). The study of corre-
lation functions of conserved currents has also been
extended to superconformal field theories in diverse
dimensions [44-59].

The general structure of the three-point functions of
conserved higher-spin, bosonic, vector currents was pro-
posed by Giombi er al. [13] in three dimensions, and
further analysis was undertaken by Stanev [17,18,60]
(see also [61,62]) in the four-dimensional case, and by
Zhiboedov [16] in general dimensions. Despite the obvious
success, the analysis in [13,16,17] appears to have some
limitations. First, the results only apply to conserved
currents of integer spin. Second, it is unclear how the
results comprise all linearly independent structures for a
given choice of spins. In particular, in [16,17], the con-
served three-point functions are presented in the form of
generating functions which are proposed (to the best of our
understanding) without proof of the latter.

Published by the American Physical Society
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In this paper, we develop a formalism to study the
general structure of the three-point correlation function

{5, () I, (02) 5, (x3)) (1.1)
in three-dimensional conformal field theory, assuming
only the constraints imposed by conformal symmetry
and conservation equations. Here by J; we denote a
conserved current of spin s. Our formalism is suitable
for both integer and half-integer spin. Within our approach
we reproduce all known results concerning the structure of
three-point functions of bosonic conserved currents and
also extend the results to three-point functions involving
currents of an arbitrary half-integer spin. We also apply it
to correlation functions of scalar/spinor operators thus
covering essentially all possible three-point functions in
three-dimensional conformal field theory. Our method is
exhaustive; first we construct all possible structures for the
correlation function for a given set of spins sy, §,, and s3,
consistent with its conformal properties. We then system-
atically extract the linearly independent structures and then,
finally, impose the conservation equations and symmetries
under permutations of spacetime points. As a result we
obtain the three-point function in a very explicit form which
can be explicitly presented even for relatively high spins.'
Our method can be applied for arbitrary s, s,, and 55 and is
limited only by computer power. Due to these limitations
we were able to carry out computations up to s; = 20;
however, with a sufficiently powerful computer one could
probably extend our results up to s; ~50 as in [17]. We
demonstrate that in all cases with s; <20, including
examples involving conserved half-integer spin currents,
that the correlation function is fixed up to the following
form:

<Js1‘]§2‘]/s/3> = a1<Js1J§2J/S/3>E] =+ a2<J51JC¢2Jg3>E2

AN (1.2)

where (J,,J5,J{ ) g and (J, J5 JY ), are parity-even sol-
utions (in the bosonic case corresponding to free bosonic
and fermionic theories respectively), while (J, Ji J{.), is a
parity-violating (or parity-odd) solution. Parity-odd solu-
tions are unique to three dimensions and have been shown
to correspond to Chern-Simons theories interacting with
parity-violating matter [63-73].> Further, the existence of
the odd solution depends on a set of triangle inequalities:

'A similar analysis can also be done in the four-dimensional
case and will appear elsewhere.

The parity-odd terms in correlation functions involving
scalars and spinors can also arise in theories without a Chern-
Simons term, for example in theories with fermions in three
dimensions, because yy is a parity-odd pseudoscalar; see e.g.,
[74,75]. We are grateful to S. Prakash for pointing this out.

51 <55+ 83, 5y <81+ 83, 53 <s1+s,.  (1.3)
When the triangle inequalities are simultaneously satisfied
there are two even solutions, and one odd solution.
However, when any one of the above relations is not
satisfied there are only two even solutions; the odd solution
is incompatible with conservation equations.

The analysis quickly becomes cumbersome due to the
proliferation of tensor indices; to streamline the calcula-
tions we develop a hybrid, index-free formalism which
combines the approach of Osborn and Petkou [1] and a
method based on contraction of tensor indices with
auxiliary spinors. This method is widely used throughout
the literature to construct correlation functions involving
more complicated tensor operators. Our particular
approach, however, describes the correlation function
completely in terms of a polynomial which is a function
of a single conformally covariant three-point building
block, X, and the auxiliary spinor variables u, v, and w.
Hence, one does not have to work with the spacetime points
explicitly when imposing conservation equations. To find
all solutions for the polynomial, we construct a generating
function which produces an exhaustive list of all possible
linearly dependent structures for a given set of spins using
Mathematica. With the use of pattern-matching functions,
we then systematically apply linear dependence relations to
this set of structures to form a linearly independent ansatz
for the correlation function. Once this ansatz is obtained,
we impose conservation equations and any symmetries due
to permutation of spacetime points. The tensor structures
[related to the leading singular operator product expansion
(OPE) coefficient, as in [1]] may then be read off by acting
on the polynomials with appropriate partial derivatives in
the auxiliary spinors. The computational approach we have
developed is essentially automatic and limited only by
computer power; one simply chooses the spins of the fields
and the solution for the three-point function consistent with
conservation and point-switch symmetries is generated.

The results of this paper are organized as follows. In
Sec. II we review the essentials of the group theoretic
formalism used to construct correlation functions of primary
operators in three dimensions. In Sec. III we develop the
formalism necessary to impose all constraints arising from
conservation equations and point-switch symmetries on
three-point functions. In particular, we introduce an index-
free, auxiliary spinor formalism which allows us to construct
a generating function for the three-point functions, and we
outline the important aspects of our computational approach.
Section IV is then devoted to the analysis of three-point
functions involving bosonic conserved currents.

We show that we reproduce the known results previously
found and proposed in [13,14,16]. In Sec. V we analyze
the structure of correlation functions involving fermionic
currents. We present an explicit analysis for three-
point correlation functions involving combinations of a
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“supersymmetry-like” spin-3/2 current, the energy-
momentum tensor and the conserved vector current. The
results are then expanded to include higher-spin conserved
currents. In Sec. VI, for completeness, we perform the
analysis of correlation functions involving combinations of
scalars, spinors and conserved higher-spin currents. Finally,
in Sec. VII, we comment on the general results in the
context of superconformal field theories. The appendices
are devoted to mathematical conventions, various useful
identities and extra results for higher-spin conserved
currents. In particular, in Appendix B we present some
extra results for higher-spin three-point functions to illus-
trate that our method produces very explicit results even for
relatively high spins.

II. CONFORMAL BUILDING BLOCKS

In this section we will review the pertinent aspects of the
group theoretic formalism used to compute correlation
functions of primary operators in three-dimensional con-
formal field theories. For a more detailed review of the
formalism as applied to correlation functions of bosonic
primary fields, the reader may consult [1].

A. Two-point building blocks

Consider 3D Minkowski space M'!?, parametrized by
coordinates x™, where m = 0, 1, 2 are Lorentz indices.
Given two points, x; and x,, we can define the covariant
two-point function

Xy = (x —x)", xy = —xl. (2.1)
Next, following Osborn and Petkou [1], we introduce the
conformal inversion tensor, [,,, which is defined as
follows:

Imn(x) = Mmn — 2 2 Ima(x)lan(x) = 5% (22)

This object played a pivotal role in the construction of
correlation functions in [1], as the full conformal group
may be generated by considering Poincaré transformations
supplemented by inversions. However, in the context of
this work, we require an analogous operator for the spinor
representation. Hence, we convert the vector two-point
functions (2.1) into spinor notation using the conventions
outlined in Appendix A:
X12ap = (J’m)aﬁxlznw x?lzi = (r") " x12m>

1

X, = —§X7gxlza/3- (2.3)

In this form the two-point functions possess the following
useful properties:

X1208 = X12pa> X{3X120p = —X%25/0§- (2.4)
Hence, we find
x%
- 12
(x2)? = ==%. (2.5)
12

We also introduce the normalized two-point functions,
denoted by X5,

N _ Xl2ap
X12ap = (xzz)l/z’
1

56?32126/3 — —6Z (26)

From here we can now construct an operator analogous
to the conformal inversion tensor acting on the space of
symmetric traceless spin-tensors of arbitrary rank. Given a
two-point function x, we define the operator

Lakyp) (%) = Xy (8, - Fapi) (2.7)
along with its inverse
ZobbH) (x) = (@b 32060 (2.8)

The spinor indices may be raised and lowered using the
standard conventions as follows:

Ia(k)ﬁ<k) (x) = efin '-'Sﬂk”z-(l(k)}'(k) (x). (2.9)
Now due to the property
Lot (=%) = (=D Loy (x),  (2.10)

the following identity holds for products of inversion
tensors:

o b b
T oot (112) T7WP0) () = 500600,

(2.11)
The objects (2.7), (2.8) prove to be essential in the
construction of correlation functions of primary operators
with arbitrary spin. Indeed, the vector representation of the
inversion tensor may be recovered in terms of the spinor
two-point functions as follows:

1
Imn(x) = _ETI‘(Vm)AWnJ%)' (212)

B. Three-point building blocks

Given three distinct points in Minkowski space, x;, with
i=1, 2, 3, we define conformally covariant three-point
functions in terms of the two-point functions as in [1]
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X Xik x;
ik Xj i
Xj="%->7. X;i=-X; Xj=—5. (213)
IT 22 ] J Xl
ik Jjk ik” jk

where (i, j,k) is a cyclic permutation of (1, 2, 3). For
example we can have

m m 2
m 13 %23 2 Y 214
X" = =2 = ) (2.14)
12 2 2 12 2 2
X3 X3 X13X23

There are several useful identities involving the two- and
three-point functions along with the conformal inversion
tensor. For example one can prove the algebraic identities

Ima(xl?’)lan(xZ?s) = Ima(x12)lun(xl?a)7

X%z
Imn(xz3)X’1’2 = TX13m’

(2.15a)
13
Ima(x23>1an(xl3> = Ima(XZI)Ian(X32)’
n X%Z
Imn(xIS)XIZ = TX32m' (215b)
A3

The three-point functions also possess the following
differential properties:

1 1
OymXi2n = = Lnn(X13), 0ymXi2n = == Lyn(X23).
13 23

(2.16)

Converting to spinor notation, the three-point functions
may be represented as follows:

Xijap = = )aoXT] (45) -

(2.17)

Xij,a[} = (},m )a/szl 5

These objects satisfy properties similar to the two-point
functions, as in (2.4). It is also convenient to define the

normalized three-point functions, X;;, and the inverses,

(X3,
aff
. X:: X%
Ry = 2% (X = -—2. (2.18)
ij.op ( Xlgj) 1/2 ij Xlzj

Now given an arbitrary three-point building block, X, it
is useful to construct the following higher-spin inversion
operator:

A

Laqopn)X) = Xay 5, - Xaypi) (2.19)
along with its inverse
Ia(k)ﬂ(k)(x) _ X((z,(/}] ”‘Xvak)/;'k)' (220)

These operators possess properties similar to the two-point
higher-spin inversion operators (2.7), (2.8). There are also
some useful algebraic identities relating the two- and three-
point functions at various points, such as

Iav(x13>Iﬂy(x12)Iyﬂ(x23) = Iaﬁ(X12>7

I (x13) Loy (X12) T (x13) = Z%(X32). (2.21)
These identities (and cyclic permutations of them) are
analogous to (2.15a), (2.15b), and also admit higher-spin
generalizations, for example

70e® (x13>Ia(k)}’(k) (X12>Iy(k)ﬁ(k) (x13) = T0pk) (X32).
(2.22)

In addition, similar to (2.16), there are also the following
identities:

2

8

a(l)aﬂxqz == XTI(GV(x13)Iﬂ)5(x13),
13

2
dyapX'3 = 2L (o (%23)Z )" (x23). (2.23)
23

These identities allow us to account for the fact that
correlation functions of primary fields obey differential
constraints which can arise due to conservation equations.
Indeed, given a tensor field 7 4(X), there are the following
differential identities which arise as a consequence of (2.23):

1 0
a(l)aﬁTA(XD) = x*%}Iay(MS)Iﬁ&(xls)aXy(s T A(X12),
12

(2.24a)

1 d
0vasT 4(X12) = =T (x23)L 3% (x23) —= T 4(X12).
@apT 4(X12) 2, (x23)Z5°( 23)6)(}1"; A(X12)

(2.24b)

III. GENERAL FORMALISM FOR CORRELATION
FUNCTIONS OF PRIMARY OPERATORS

In this section we develop a formalism to construct
correlation functions of higher-spin primary operators in
3D conformal field theories. We utilize a hybrid method
which combines auxiliary spinors with the approach of
Osborn and Petkou [1].

A. Two-point functions

Let ® 4 be a primary field with dimension A, where A
denotes a collection of Lorentz spinor indices. The two-
point correlation function of ® 4 is fixed by conformal
symmetry to the form
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o X12
R s

2, (3.1)

where 7 is an appropriate representation of the inversion
tensor and c is a constant real parameter. The denominator
of the two-point function is determined by the conformal
dimension of ® 4, which guarantees that the correlation
function transforms with the appropriate weight under scale
transformations.

B. Three-point functions

Now concerning three-point correlation functions, let @,
W, I1 be primary fields with scale dimensions A;, A, and
A5 respectively. The three-point function may be con-
structed using the general ansatz

<q)A1 (xl)LPAz (xz)HA3 (x3))

. IO)A,A/‘ (XIS)I(Z)AZAZ (x23)

(x3) % (x33)%

The tensor H 4, 4, 4,(X) encodes all information about the
correlation function, and is related to the leading singular
OPE coefficient [1]. It is highly constrained by conformal
symmetry as follows:

(1) Under scale transformations of Minkowski space
x™ > x™ = )72x™, the three-point building blocks
transform as X" > X"™ = J2X™. As a consequence,
the correlation function transforms as

(D4, (x]) P 4, (65)TLg, (x5))
= (A2)MTAT A (D (x0)W 4, (200)TT 4, (x3)).

Hyaa,(X2).  (32)

(3.3)
which implies that H obeys the scaling property

Hop 4, (A2X) = (A7) 2780y 44, (X),

vV 1€ R\{0}. (3.4)
This guarantees that the correlation function trans-
forms correctly under scale transformations.

(ii) If any of the fields @, ¥, Il obey differential
equations, such as conservation laws in the case
of conserved currents, then the tensor H is also
constrained by differential equations which may be
derived with the aid of identities (2.24a), (2.24b).

(iii) If any (or all) of the operators @, W, I coincide, the
correlation function possesses symmetries under
permutations of spacetime points, e.g.,

(D4, (1) D 4, (32)TLa, (x3))
= (=)@ 4, (1)@ 4, (x1)Ty, (33)).
where ¢(®) is the Grassmann parity of ®. As a

consequence, the tensor 7 obeys constraints which
will be referred to as “point-switch identities.”

(3.5)

The constraints above fix the functional form of H (and
therefore the correlation function) up to finitely many
independent parameters. Hence, using the general for-
mula (3.2), the problem of computing three-point correla-
tion functions is reduced to deriving the general structure of
the tensor H subject to the above constraints.

1. Conserved currents

In this paper we are primarily interested in the structure
of three-point correlation functions of conserved currents.
In three-dimensional conformal field theory, a conserved
current with spin s (integer or half-integer) is defined as a
totally symmetric spin-tensor, J,, o, (X) = J(g,. a,)(X),
satisfying a conservation equation of the form:

(ym)a]%am‘]alaz‘..azx =0. (36)
Conserved currents are primary fields, as they possesses
the following infinitesimal conformal transformation
properties [76]:

5‘](1]4..(12& (x) = _5'](1]4..(12.\ (x) - AJG(X)J(II...(IZX (X)

+ 2sa)(al5()().](,2“_(,2&)5()(), (37)
where &£ is a conformal Killing vector field, and o(x),
@qp(x) are local parameters defined in terms of £, which are
associated with local scale and Lorentz transformations.
The dimension A; is uniquely fixed by the conservation
condition (3.6), as it may be shown that this condition is
primary provided that A; = s 4 1. This is also the dimen-
sion of the two-point correlation function (3.1), in the case
of conserved currents.

2. Comments on differential constraints

An important aspect of this construction which requires
further elaboration is that it is sensitive to the configuration
of the fields in the correlation function. Indeed, depending
on the exact way in which one constructs the general ansatz
(3.2), it can be difficult to impose conservation equations
on one of the three fields due to a lack of useful identities
such as (2.24a), (2.24b). To illustrate this more clearly,
consider the following example; suppose we want to
determine the solution for the correlation function
(D4, (1) W4, (x2)TT 4, (x3)), with the ansatz

(D4, (x1)¥ 4, (x2) Ly, (x3))
. I(I)A] A (3513)1(2>JL\ZA/2 (x23)

(x3)%1 (x35)%

All information about this correlation function is encoded
in the tensor H; however, this particular formulation of the
three-point function prevents us from imposing conserva-
tion on the field IT in a straightforward way. To rectify this

Huyaa,(X12). (3.8)
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issue we reformulate the ansatz with IT at the front as
follows:

IO A5 (030) P 4,2 (x01)
(x3))% (x3,) %

X Hoa, a1, (X32)-

(TLg, (3) 4, (x2) D g, (x1)) =

(3.9)

In this case, all information about this correlation function
is now encoded in the tensor 7{, which is a completely
different solution compared to H. Conservation on I can
now be imposed by treating x5 as the first point with the aid
of identities analogous to (2.23), (2.24a), and (2.24b). We
now require an equation relating the tensors  and H,
which correspond to different representations of the same
correlation function. Since the two ansatz above must be
equal, we obtain the following:

/

- 2 \As—A x5\ 4 ) A
Hoaan, (X32) = (x33)%~ ‘(T) ZW 4% (x13)

23
xI® , 2(x12> z¢ BZA’Z(xB)
X IO 4 A (ei3)Hog ap,(X12), (3.10)

where we have absorbed any signs due to Grassmann parity
into the overall normalization of 7. In general, this
equation is impractical to work with due to the presence
of both two- and three-point functions, hence, further
simplification is required. At this point it is convenient
to partition our solution into “even” and “odd” sectors as
follows:

Mottt X) = H O+ LX), (B

where H(*) contains all structures involving an even
number of spinor metrics, €,43, and H(=) contains structures
involving an odd number of spinor metrics. With this
choice of convention, as a consequence of (2.21), (2.22),
the following relation holds:

+ _
HE41),42A3(X32) = +(x},X3,) 7MW A (xy5)
x T@) 4 A (x)3) L) 4,7 (X13)
+
x Ho 4 4 (X12). (3.12)

This equation is an extension of (2.14) in [1] to spin-tensor
representations, and it allows us to construct an equation
relating the different representations of the correlation
function. After substituting (3.12) directly into (3.10),
we apply identities such as (2.21) to obtain the following
relation between H and 7:

F o, (X) = £ 8T A O, (X0,

(3.13)

We see here that 7 acts as an intertwining operator between
the different representations of the correlation function.
Once 7 is obtained we can then impose conservation on IT
as if it were located at the “first point,” using identities
analogous to (2.23). It is also important to note that the even
and odd sectors of the correlation function are linearly
independent, and therefore may be considered separately
in the constraint analysis. Another result that follows from
the properties (2.19), (2.20), and (2.22) of the inversion
tensor is

+ / i i
HO a, (X) = £T0 4 A(X)TR 4, A(X)ZO) 4 A (X)
+
x MGy 4 (%), (3.14)
That is, “even” structures are invariant under the action of

Z, while “odd” structures are pseudo-invariant under the
action of 7.

If we now consider the correlation function of three
conserved primaries J,), J) ) J! where I = 2s,,

pU 7(K)’
J = 2s,, K = 253, then the general ansatz is

<Ja(l) (x )J;}(]) (xz)J;,/(K) (x3))
_Z a0 D (x13) Ly P D (x23)

(xf3)%1 (x35)%

Hawp oy X)),  (3.15)

where A; = s;+ 1. The constraints on M are then as
follows:
(i) Homogeneity:

Heunypy k) (A2X) = (A2)8 22 H,,,

vV 1€ R\{0}.
(i1) Differential constraints: After application of the

identities (2.24a), (2.24b) we obtain the following
constraints:

conservation atx; : 0y “*Hy, v a(1-2)5)y (k) (X) = 0.

(3.17a)

conservation at x, : 0/‘/27{ O pap—-2) (k) (X) =0,
(3.17b)

conservation atxs : 0% Hu( 1)y, .r(x—2) (X) = 0.
(3.17¢)
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where

()

HetpnnX) = X))/ (X)

)
X o ) (X)- (3.18)

(iii) Point-switch symmetries: If the fields J and J’
coincide, then we obtain the following point-switch
identity

Hampmyx)(X) = (=1 DMy, m) (=X). (3.19)

where €(J) is the Grassmann parity of J. Likewise,
if the fields J and J” coincide, then we obtain the
constraint

(=DM, mpnamn (=X). (3.20)

In practice, imposing the constraints above on correla-
tion functions involving higher-spin currents quickly
becomes unwieldy using the tensor formalism, particularly
due to the sheer number of possible tensor structures for a
given set of spins. Hence, in the next subsections we will
develop an index-free formalism to handle the computa-
tions efficiently.

3. Auxiliary spinor formalism

To study and impose constraints on correlation functions
of primary fields with general spins it is often advantageous
to use the formalism of auxiliary spinors to streamline the
calculations. Suppose we must analyze the constraints on a
general spin-tensor H 4, 4, 4,(X), where A; = {a, ..., a;},
A, =A{p1, ...} As = {y1,....yx} represent sets of
totally symmetric spinor indices associated with the fields
at points xi, x,, and x5 respectively. We introduce sets of
commuting auxiliary spinors for each point; u at x;, v at x,,
and w at x5, where the spinors satisfy

2

u? = eaﬁuauﬂ =0, v = eaﬁv“vﬁ =0,

w? = gwwl = 0. (3.21)
Now if we define the objects

UA =0 =y oy, (3.22a)

VA = VAU = b P, (3.22b)

WA = WriK) = i gk, (3.22¢)

|

conservation at xj : ii

0X o Ou“*

0

ouP

then the generating polynomial for H is constructed as
follows:
H(X;u,0,w) = Hg 4,4, (X)UAVAWA L (3.23)
There is in fact a one-to-one mapping between the space
of symmetric traceless spin tensors and the polynomials
constructed using the above method. Indeed, the tensor H

is extracted from the polynomial by acting on it with the
following partial derivative operators:

0 0 1 o 0
aU.A] = aU(X([) = 7! au(ll ce w 3 (3.243)
0 0 1 0 0
VA2 = oVAW) = JlovP " ouhre (3.24b)
d 0 1 o 9
(3.240)

oW+ = oW (K) - Klow "~ owrk

The tensor H is then extracted from the polynomial as
follows:

9 9 9
~oUA gVA oW

Hoa, 4,4, (X) H(X;u,v.w).  (3.25)

Auxiliary vectors/spinors are widely used in the con-
struction of correlation functions throughout the literature
(see e.g., [13,16,17,23,50,61]); however, usually the entire
correlator is contracted with auxiliary variables and as a
result one produces a polynomial depending on all three
spacetime points and the auxiliary spinors. In contrast, our
approach contracts the auxiliary spinors with the tensor
H 4, 4,.4,(X), which depends on only a single variable. This
is advantageous as it becomes quite straightforward to
impose constraints on the correlation function (particularly
conservation), since H does not depend on any of the
spacetime points explicitly. After converting the constraints
summarized in the previous subsection into the auxiliary
spinor formalism, we obtain:

(i) Homogeneity:

HA2X;u(l), v(J), w(K))

= ()2~ MH (X u(l), v(J), w(K)), (3.26)
where we have used the notation u(1), v(J), w(K) to
keep track of the homogeneity of the auxiliary
spinors u, v and w.

(i1) Differential constraints:

HX; u(l), v(J), w(K)) = 0, (3.27a)
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0 d 0
conservation at x, : @WWH(X; u(l),v(J),w(K)) =0, (3.27Db)
conservation at Liiﬂ(X (I),v(J),w(K)) =0 (3.27¢)
X3 3X,.) o o su(l),v(J),w =0. .

In the auxiliary spinor formalism, 7 = HE) +HE)
is computed as follows:

HE (X u(l), v(J). w(K))
1
— iﬁ

x HE (X;u(l), t(J), w(K)),

(X*)4= (vko,)!

(3.28)
where (vX9,) = v°X,* 2.

Point-switch symmetries: If the fields @ and ¥

coincide (hence I = J), then we obtain the following
point-switch constraint

(iii)

H(X; u(l), v(I), w(K))

= (=D)*@PH(=X; v(I), u(I), w(K)). (3.29)
where, again, e(®) is the Grassmann parity of ®.
Similarly, if the fields ® and II coincide (hence
I = K) then we obtain the constraint

H(X:u(l), v(J).w(I))

= (=D @H(=X;w(),v(]),u(l)).  (3.30)

4. Generating function method

The approach outlined above proves to be quite tractable,
computationally speaking, as the polynomial, (3.23), is
now constructed out of scalar combinations of X, and the
auxiliary spinors #, v and w with the appropriate homo-
geneity. At this point it is convenient to introduce the
following “primitive” structures:

P 1= eaﬁvawﬁ s

P2 = eaﬂwauﬂ, P3 = E‘aﬂuaﬂﬁ,

(3.31a)

Ql = X{zﬁvawﬂ9 Q2 = X(lﬂwauﬂv Q3 = X{lﬁu”v/},

(3.31b)

A

Zl = Xa/iuauﬁ’

N

Zz = X(l/ﬂ}a’l)/}, Z3 = )A(a/,,w"w/’.

(3.31¢)

The most general ansatz for the polynomial H is comprised
of all possible combinations of the above structures which

possess the correct homogeneity in u, v and w. In general, it
is a nontrivial technical problem to come up with an
exhaustive list of possible solutions for the polynomial
‘H for a given set of spins. However, this problem can be
simplified by introducing a generating function for the
polynomial H(X; u, v, w):

F(X;T) = X°PY PR PR OV 02052 252 2, (3.32)
where 6 = A; — A, — Ay, and the non-negative integers,
I'={k;l;,m;}, i=1,2,3, are solutions to the following
linear system:

ko +hks+ 1L+ 1;+2m =1, (3.33a)
kl +k3+ll—|—l3+2m2:l, (333b)
kl +k2+ll —|—12—|—2m3 :K, (333C)

and I = 25, J = 2s,, K = 2s5 specify the spin structure of
the correlation function. These equations are obtained by
comparing the homogeneity of the auxiliary spinors u, v, w
in the generating function (3.32), against the index structure
of the tensor H. The solutions correspond to a linearly
dependent basis of possible structures in which the poly-
nomial H can be decomposed. Using Mathematica, it is
straightforward to generate all possible solutions to (3.33)
for fixed (and in some cases arbitrary) values of the spins.

Now let us assume there exists a finite number of
solutions I';, i =1,...,N to (3.33) for a given choice of
I, J, K. The set of solutions I' = {I';} may be partitioned
into “even” and “odd” sets I'" and I'~ respectively by
counting the number of spinor metrics, &,4, present in a
particular solution. Since only the P; contain g4, we define

7 = T, sty (mod 2)=1-
(3.34)

+ —
' = F|k1+k2+k3(mod 2)=0"

Hence, the even solutions are those such that k; + k, +
ky = even (i.e., contains an even number of spinor metrics),
while the odd solutions are those such that k; + k, + k3 =
odd (contains an odd number of spinor metrics).3 Let

3This convention agrees with the known result that “odd”
solutions typically contain the Levi-Civita tensor, while the
“even” solutions do not.
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Tt = N" and |I-| = N~, with N = N* + N~ then the
most general ansatz for the polynomial H in (3.23) is as
follows:

H(X;u, v,w) = HO (X u, v,w) + HO (X;u, v, w),
(3.35a)
(X u,v,w) = ZA]: (X;T),
HO(X u, v, w) = ZB,J-"(X; 7). (3.35b)
i=1

where A; and B; are a set of real constants. Since the even
and odd sectors of the correlation function do not mix with
each other, they may be considered independently.

Using the above method it is quite simple to generate all
the possible structures for a given set of spins {sy, 5, 53};
however, at this stage we must recall that the solutions
generated using this approach are linearly dependent. To
form a linearly independent set of solutions we must
systematically take into account the following nonlinear
relations between the primitive structures:

P\Zy+ P05+ P30, =0, (3.36a)

PyZy + P03+ P30, =0, (3.36b)

P3Z3+ P10y + P20 =0, (3.36¢)

QIZI - Q2Q3 - P2P3 = 0, (3.37&)

022, - 0105 — P1P3; =0, (3.37b)

Q3ZS - Q1Q2 - P1P2 =0, (3.37C)

Z,Z3+Pi - 0] =0, (3.38a)

Z\Zy+ P3— 02 =0, (3.38b)
Z\Z,+P}-0}= (3.38¢)

PPyP3+ P10,03 + P,0,05 + P30,0, =0 (3.39)

This appears to be an exhaustive list of relations, and
similar results have been obtained in other approaches
which make use of auxiliary spinors [13]. Applying the
relations above to a set of linearly dependent polynomial
structures is relatively straightforward to implement using
Mathematica’s built-in pattern matching capabilities.

Now that we have taken care of linear dependence, it
now remains to impose conservation on all three points
in addition to the various point-switch symmetries.
Introducing the P, O and Z objects proves to streamline
this analysis significantly. First let us consider conserva-
tion; we define the following three differential operators:

0 9 0 9 0 9
10X 0u® ouP 20Xy 007 P

0 9 0
Dy=——— 3.40
30X 45 0w on? (3.40)

To impose conservation on x; (for either sector) we
compute

DH(X;u,v,w) =

{Zc]—'(X I, }

= Zc,»le(X; r). (3.41)

We then solve for the ¢; such that the result above vanishes.
It is apparent that it would be extremely useful to obtain an
explicit expression for D F (X;T'), as this would allow us
to impose conservation in a simple manner; this proves to
be very cumbersome to carry out by hand; however it is
possible to obtain an exact result computationally (which
we will not present here as it is ~200 terms long). Hence,
given a particular solution F(X;I';), we can compute
D, F(X;T;). The fact that D F (X;T) can also be expressed
using the primitive structures (3.31) is due to the following
reasoning: let P[X(8); u(I), v(J), w(K)] represent the space
of polynomials which are homogeneous degree 6 in X, [ in
u, J in v, and K in w; any polynomial in this space can
naturally be constructed in terms of the primitives (3.31).
The operator D; may then be interpreted as follows:

Dy PIX(8);u(l), v(J). w(K)]
—P[X(5 = 1);u(l —2).0(J). w(K)].  (3.42)

Hence, D, is a map from P[X(8);u(I),v(J).w(K)] to
PX(6—1);u(l-2),v(J),w(K)], that is, the space of
polynomials homogeneous degree 6 — 1 in X, I — 2 in u,
J in v and K in w. Any polynomial in this space can
naturally be constructed using the same primitives defined
in (3.31). Analogous results also apply for D, F(X;T).

However, to impose conservation on x;3 we must first
obtain an explicit expression for H in terms of H, that is,
we must compute (e.g., for the even sector)

FX:u(D), 0(), w(K)) = 73 () A(080,)!
x H(X;u(I),t(J),w(K)).

(3.43)
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Recalling the fact that any solution for H can be written in the form of the generating function F(X;I"), we compute

FIX:T) = 5, (8P (k0 F(X:T)

1 N
_ F (XZ)A]—A3 (UX()t)j{X5P]](]P§2P§3 l]] 122 QI33ZTIZ?ZZ?3}

1 o
Lt p Qb iz (uR0,) P P 0l 0422

J!

Since P;, P3, Oy, O3, and Z, are the only objects with ¢
dependence, if we make use of the fact that
ki + k3 + [ + I3 + 2m, = J, in addition to the identities

(Uf(aﬁpl =-0y, (”5(0:)}5 = 03, (3.45a)
(Uf{at)Ql =—Py, (UXO,)Q3 = Ps, (3~45b)
(vX0,)%Z, = 27,, (3.45¢)

then it may be shown that

7 5 ky Ak b, ply >m; »m
F(X;T) = X°(=0)" Py 03 (=P\)" Q5 P 2Y" 257 Z5",
_ (—1)k1+11XSPiI P/2€2P133 11<1 122 Q?ZT'Z;”ZZ?},
(3.46)

where 6 = A; — A, — A;. Hence we arrive at the following
result:

FX:T) = (=D FXT) 5254, 00, (3.47)

k3<elyt

Therefore the computation of 7 is actually quite straight-
forward: we take each term in the ansatz for H and make
appropriate swaps of the primitive structures. This also
simplifies imposing conservation at x3, as we can now use
the same generating function that we used for conservation
at x; and x, as follows:

Dy F(X:T) = (_1)kl+llD3f(X;F)|5—>5,k1<—>ll,k3<—>l3' (3.48)

Now that we have exact expressions for D;F(X;T),
it remains to find out how point-switch symmetries act
on the primitive structures. For permutation of space-
time points x; and x,, we have X - —X, u <> v. This
results in the following replacement rules for the basis
objects (3.31):

Py - =P, Py, - =Py, P; —» —P5, (3.49a)
Q) = -0, 0, = -0y, Q3 - —03,  (3.4%9)
Z, = =7, Zy » =7y, Zy — —Z;. (3.49c¢)

(3.44)

|
Likewise, for permutation of spacetime points x; and x3
we have X — —X, u <> w, resulting in the following
replacements:

Py — —P5, Py = =Py, P3 — —Py, (3.50a)
0, — —-0;s, 0, = =0, 03— —0;, (3.50b)
Zy = =23, Zy = =7, VAR AD (3.50¢)

We have now developed all the formalism necessary to
analyze the structure of three-point correlation functions in
3D CFT. In the remaining sections of this paper we will
analyze the three-point functions of conserved higher-spin
currents (for both integer and half-integer spin) using the
following method:

(1) We construct all possible (linearly dependent) struc-
tures for H(X; u, v, w) for a given set of spins, which
is governed by the solutions to (3.33). The solutions
are sorted into even and odd sectors and analyzed
separately.

(2) In each sector, we apply an algorithm to the set of
dependent structures which systematically reduces
it to a linearly independent set through repeated
application of the identities (3.36a), (3.37a), (3.38a),
and (3.39). This is sufficient to form the most
general linearly independent ansatz.

(3) Using the method outlined in Sec. III B 4, we impose
the conservation equations (3.27) on each sector.

(4) Once the general form of the polynomial
H(X;u,v,w) (associated with the conserved
three-point function (J J,J¥ )) is obtained for a
given set of spins {s;, 55, 53}, we then impose any
symmetries under permutation of spacetime points,
that is, (3.29) and (3.30) (if applicable). In certain
cases, imposing these constraints can eliminate the
remaining structures.

Due to computational limitations such as CPU clock speed
and available RAM, we could carry out this explicit
analysis up to s; = 20; however, with more optimization
of the code and sufficient computational resources this
approach should hold for arbitrary spins. Since there are an
enormous number of possible three-point functions with
s; <20, we present the final results for H(X;u, v, w) for
some particularly interesting examples, as the solutions and
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coefficient constraints become cumbersome to present
beyond low spin cases. We are primarily interested in
counting the number of independent tensor structures after
imposing all the constraints.

The results in the next sections are organized as follows:
in Sec. IV we analyze the correlation functions involving
bosonic conserved currents, commenting on some of the
general features. Many of these results are known in the
literature [13,16]; however, they have not been derived
explicitly using this construction based on the conformal
inversion tensor. In addition, within the framework of the
generating function methods used in [16,17], it is unclear
how the generating functions in these works are derived
and how they produce an exhaustive list of independent
structures. It is in this regard that our analysis is very
explicit, as we find all possible structures for a given set of
spins and systematically apply linear dependence relations
to them. In Sec. V we analyze the mixed three-point
functions involving fermionic conserved currents; these
results are new and are naturally of interest within the
context of superconformal field theories. Finally, in
Sec. VI, we analyze correlation functions involving com-
binations of higher-spin currents and fundamental scalars/
spinors. We stress that our analysis is based only on
symmetries and conservation equations and does not take
into account any other features of local field theory. The
results are completely analytic and we present explicit
formula for H(X; u, v, w) in all cases; the results are copied
directly from the Mathematica code.

IV. CORRELATION FUNCTIONS INVOLVING
BOSONIC CURRENTS

Three-point correlation functions of conserved bosonic
currents have been extensively studied in 3D CFT. In
particular, it has been shown that the general structure of the
three-point correlation function (J; J5,J5,) is fixed up to
the following form [13,14,16]:

(I I3, 05) = ai(J 5 I3, 5 ) p + a5 T, TS, )

+b<Js|J{sz{Y/3>0dd' (41)
The solutions (J,,J5,J5,) g, (Js,J5,J5, ) are generated by
theories of a free-boson and free-fermion respectively,
while the “odd” structure, (J, J§,J ) o4, is not generated
by a free CFT; instead it is generated by a Chern-Simons
theory interacting with parity-violating matter [63-73].
Furthermore, the existence of the odd solution depends
on the following set of triangle inequalities:

SISS2+S3, S2SS1+S3, S3SS1+S2. (42)
When the triangle inequalities are simultaneously satisfied,
there are two even solutions and one odd solution; however,
if any of the inequalities above are not satisfied then the

odd solution is incompatible with current conservation.”
Further, if any of the J, J', J” coincide (i.e., in cases where
the currents are unique and have the same spin), then the
resulting point-switch symmetries can kill off the remain-
ing structures. Our comments on the general results for
three-point functions of bosonic currents are summa-
rized below:

(i) When the triangle inequalities are simultaneously
satisfied, each polynomial structure in the solution
for all three-point functions can be written as a
product of at most 5 of the P;, Q;, with the Z;
completely eliminated.

(ii) For the three-point functions (J, J§, JY,), for arbi-
trary integer s, and s,: when the triangle inequalities
are satisfied there are two even solutions and one
odd solution, otherwise there are only two even
solutions. After imposing J = J’ the solutions exist
only when s, is an even integer. Note that for s; > s,
the triangle inequalities are always satisfied.

(iii) For the three-point functions (J.J,J,), with s an
integer, there are two even solutions and one odd
solution; however they exist only for s even. For s
odd the solutions survive only if the currents carry a
flavor index associated with a non-Abelian sym-
metry group.

Another observation is that the triangle inequalities can be
encoded in a discriminant, o, which we define as follows:
o(s1,52,83) = 419293, gi=si—sj—sp— 1, (43)
where (i, j,k) is a cyclic permutation of (1, 2, 3). For
o(sy,52,83) <0, there are two even solutions and one odd
solution, while for 6(s, 55, s3) > O there are only two even
solutions. The origin of this discriminant equation is
actually quite simple within the framework of this formal-
ism: recall that the correlation function can be encoded in a
tensor 7, which is a function of a single three-point
covariant, X. There are three different (but equivalent)
representations of a given correlation function, call them
H@, where the superscript i denotes which point we set to
act as the “third point” in the ansatz (3.2). As shown in
Sec. III B 2, the representations are related by the inter-
twining operator Z, with each H() being homogeneous
degree ¢;. After exhaustive analysis of the three-point
functions with s; < 20, a clear pattern emerges: the odd
structure survives if and only if V i, ¢; < 0. In other words,
each H) must be a rational function of X with homo-
geneity g; < 0. The discriminant (4.3) simply encodes
information about whether the () are simultaneously
of negative homogeneity.

*Existence and uniqueness of the parity-odd solution (inside and
outside triangle inequalities) has been proven in the “lightlike”
limit in [69]. Similar arguments can be made to show there are only
two forms for the parity-even solutions; these are sketched [14].
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In the next subsections we analyze the structure of
three-point functions involving conserved bosonic currents.
As a test of our approach we begin with an analysis of
correlation functions involving low-spin currents such as
the energy-momentum tensor and vector current.

A. Energy-momentum tensor and vector current
correlators

The conserved currents which are fundamental in any
conformal field theory are the conserved vector current, V,,,,
and the symmetric, traceless energy-momentum tensor, 7,,,,,.
The vector current has scale dimension Ay, = 2 and satisfies
0"V, =0, while the energy-momentum tensor has scale
dimension Ay = 3 and satisfies the conservation equation
0"T,,, = 0. Converting to spinor notation we have

<V(1(2) (X )Vﬁ(z) (xz)Vy(z) (x3)),

(T (x1)Tpay(x2)Vy2) (x3)),

In all cases, we note that the triangle inequalities (4.2) are
simultaneously satisfied, hence, we expect that each of
these correlation functions should possess a parity-odd
solution after imposing conservation on all three points.
The analysis of these three-point functions is quite simple
using our computational approach. Let us first consider
(VVV); within the framework of our formalism we study
the three-point function (J,J1J7).

1. Correlation function (J1J\JY)

The general ansatz for this correlation function, accord-
ing to (3.15), is

Ia(z)d(z) (x13)Iﬂ(2)ﬂl(2) (x23)
(x%3 )2 (x§3 )2

X Hy@p o) (Xin). (47)

|

(Ja2) (%1 )J/ﬂ(z) (xz)J;/(z) (x3)) =

even: {Z,Z,Z3, 0373, 03Z,,0,0,03, Q3Z,, P3Z3, P,P3Q,, P3Z,, P\P30Q,, P\P,03, P3Z, },

odd: {P303Z3,P30,0,.P,0,Z,,P,0,03,P0,05.P,0,Z,, P, P,Ps}.

Next, we systematically apply the linear dependence
relations (3.36a) to these lists, reducing them to the
following sets of linearly independent structures:

even: {P,P30,,P1P30Q,, P P,05.0,0,0;}, (4.10a)

odd: {P30,0,,P20,03, 10205} (4.10b)

Ve, (¥) = (") gy, Vin (%)

T(Z](lzll3(14 ()C) = (ym)(a]az (yn)ayu) Tmn (x) . (44)

These objects possess fundamental information associated
with internal and spacetime symmetries, hence, analysis
of their three-point functions is of great importance. The
general structure of correlation functions involving these
fields has been widely studied throughout the literature of
conformal field theory; here we present the solutions for
them using our formalism. The possible three-point func-
tions involving the conserved vector current and the energy-
momentum tensor are

(Va@) (x1) V) (02) Tya) (x3)),

(T aa) (1) T piay (x2) Ty (x3))-

[

Using the formalism outlined in Sec. III B, all information
about this correlation function is encoded in the following
polynomial:

H(X;u(2),v(2),w(2)) = Happa)y o) (X)UP VR W),
(4.8)

where here and in all examples that follow we make the
replacement X, — X where X is some representative three-
point building block which has no explicit dependence on
the spacetime points. This may be done without loss of
generality as the conservation equations (3.27), and algebraic
constraints on H depend only on X. Using Mathematica we
solve (3.33) for the chosen spins and substitute each solution
into the generating function (3.32). This provides us with the
following list of (linearly dependent) polynomial structures
in the even and odd sectors respectively:

(4.9a)

(4.9b)

[

Note that application of the linear-dependence relations
eliminates all terms involving Z; in this case. Next we
construct an ansatz out of the linearly independent struc-

tures, see (3.35), where H,(-i) denotes a structure at position
“i” in the even/odd list respectively. After imposing
conservation on all three points using the methods outlined
in Sec. III B 4, we obtain the following relations between

the coefficients:
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even: {A; - A;,A, > A|,A; > A3, A, > A}, (4.11a)

odd: {B] —)Bl,Bz—)O,B?’—)O}. (411b)

Hence, the final solutions for the even and odd sectors are

A A
even: X—;P1P2Q3 +X_]2(P2P3Ql + P1P30, + 0,050)),

(4.12a)

BIP3Q1Q2_

odd: X2

(4.12b)

After imposing symmetries under permutation of space-
time points, e.g., J =J = J”, the remaining structures
vanish unless the currents possess a flavor index associated
with a non-Abelian symmetry group, in which case all three
structures survive. The next example to consider is the
mixed correlator (VVT). To study this case we may
examine the correlation function (J,JJ%).

|

2. Correlation function (J1J\J})

Using the general formula, the ansatz for this three-point
function reads

oy (510 (52) g (x3))

_Z a2 P (x13) L sy P (x23)
(x13)%(x33)?

Using the formalism outlined in Sec. III B, all information

about this correlation function is encoded in the following
polynomial:

Hop@yp@)(Xn2).  (4.13)

H(X;u(2),v(2),w(4)) = H{l(2>ﬂ(2)7(4) (X)U“<2)Vﬁ(2)W7(4).
(4.14)
After solving (3.33), we find the following linearly depen-

dent polynomial structures in the even and odd sectors
respectively:

even: {Z,Z,73, 0373, 037,75, 010,037, Q3Z,Z5, 0303, P3Z3, P,P3Q,Z3, P32, 75, P30%, P P30, 73,

PP,0375, P1P,0,0,, P3Z,Z5, P03, P2P3},

(4.15a)

odd: {P30373, P3010:Z5, Py0,Z,Z5, Py 010573, Py037 05, P10,0:Z5. P10, Z,Z5, P10, 03,

P\PyP3Z5, P\ P30, P1P,0,}.

(4.15b)

Next we systematically apply the linear dependence relations (3.36a) to these lists, reducing them to the following linearly

independent structures:
even: {P307.P\P,0,0,. P103. P1P3. 0103},

odd: {P,010,,P,0,03.P\P30,. PiP,0,}.

(4.16a)

(4.16b)

After constructing an appropriate ansatz for each sector, we then impose conservation on all three points using the methods
outlined in Sec. III B4 and obtain the following relations between the coefficients:

3A
even. {Al > AL A > Ay Ay > ALAL > Ay —3A L As > _?1}

odd: {Bl d BI,BZ d BI,B3 d —BI,B4 g _Bl}

Hence, the final solutions for the even and odd sectors are

A A 3
even: 2 (P1P20,0; + PiP3) + (P%Q% + P03 - 3PIPI < Q%Q%) :

B
odd: 7‘ (=P,P}0, + P1Q,03 — P3P, Q, + P,03}0,).

(4.17a)

(4.17b)

(4.18a)

(4.18b)

All structures survive after setting J = J'. Hence, this correlation function is fixed up to two independent even structures,

and one odd structure.
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Since the number of tensor structures rapidly increases with spin, we will skip the technical details for the other
correlation functions and present only the final results after imposing conservation. For (TTV) we may consider the
correlation function (J,J5J7), for which we find the solution:

A, (5
even: X_i (§P1P2Q§ + P,P30,0% + P, P;0,03 +P§Q1Q2Q3>
A 23 7
+X_‘]‘ <P2P§Q1 + P1 P30, — 6P,P30,03 — 6P P;0,03 —;PleQi —ngQng), (4.19a)
B
odd: X_j;(PngQz — P,P30,0; — P1P30,05 — 3P30,0,03). (4.19b)

In this case, all structures vanish after setting J = J’ and imposing the required symmetries under the exchange of x; and x;.
Hence, the correlation function (77V) vanishes in any CFT. Finally, to study (77T) we can analyze the correlation function
(J,J5J5), which has the solution:

A 9
even 13 (PI0IO0T + PaP10:0107 + PiP10:010, + PIPA030,0: ~ S FiP3Q3 + P30S
Al 22230222 2223222 20202
+F P2P3Ql_7P3Q2Ql+P1P3Q2+§P1P2Q3+Q2Q3Ql ’ (4203)
B
odd: 5 (PaP3020% + P3030: 01 + PIP3Q30)). (4.20b)

In all cases, it is clear that the general solutions are determined up to two independent even structures, and one odd structure.
These results are consistent with [13] in terms of the number of independent polynomial structures; however it is difficult to
make a direct comparison.

B. Higher-spin correlators

In this subsection we obtain explicit results for three-point functions involving higher-spin currents. We present the final
results after imposing conservation on all three points.

1. Correlation function (J1J}J3): 6=0

3
Even: A, (P%Q%Z3 + P¥Q3Z; - 5P2P3Z5 — 7 02 §Z3> + Ay (P, P,0,0,Z5 + PIP3Z5), (4.21a)
odd: 0. (4.21b)

This is an instance in which one of the triangle inequalities is not satisfied, and we can see here that the odd solution
vanishes. The even structures vanish after imposing J = J'.

2. Correlation function (J1J1J}): 6 >0

1
Even: A, (P%Q%Z_% + P3Q37% - 1P3P3Z5 - 3 02 gzg) + XA, (P1P,0,0,73 + P3P373), (4.22a)

odd: 0. (4.22b)
3. Correlation function (J1J5J}): 6 <0

A 7 7 Ay (21 112
Even: = <—§P2P~?Q1 Oy + P3P0t + P2P1070; — §P%Pi‘> +5 (; P03 -5 P2Pi010, + 14P3P10]
42 7 301
- reia-lrot - prt 013, (4.23%)
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B
odd: Yl (2P,P1Q, —4P30,0} + 2P3P3Q, — 6P,P20}Q, — 2P3P, 03 + 2P, 030} + P, 01 0,). (4.23b)

4. Correlation function (J,J52J5): 6 <0

47 7 7
Even: <15P3P3Q3 —P,P30305 - P2 10103 + = P2P2Q1Q2Q3+Pz 1Q2Q2Q3>

A ( 9 276 117

81
+ P2P3Q2Q3 + 9P2Q1Q2Q3 P2P2Q1Q2Q3

1 PP% __P3P3
x2\ 53 10 5 Os + 5~
117

+15P3P, 0305 + ?P* 10305 — 9P2P3Q3 +15P,P30303 +9P303 0,05 + Q*Q2Qg> (4.24a)

B 2
odd: X; (1’3Q2Q3 —*1’21’3Q2Q3 P3Q3Q3 +z P2Q2Q3Q3 +3 tp 1030507 — *P 1P30,0307

2 2
—§P P3050, - —P2P2Q2Q2Q1 P Q2Q3> (4.24b)

5. Correlation function (J,J5)J}): 6 <0

Ay 9 9 29 9 9
Even: X4<—5P2P4Q2 —PPI0 03 +— s P3Pi0,0, - P4P2Q2+ P§P2Q2Q2+P2P,Q 03

9 99 1278 288 384 54
~<PiPI0I0; + 5P3P‘1‘) ¥ ( PIO} = - PIPIO3 - 51 PaP10103 + 75 PIPI0,0: - T PROT O
1278 324 288 99

54
~ 35 PRI} + 5 PAPIOT03 - S PIPI010; + o POt - —P%Q‘I‘Q%+81P‘2‘P‘1‘+Q‘1‘Q3)’ (4.252)

B, (5 5
odd: x] (3 P,P}Q3 — P3P0, — §PfQ1 03+ 6P3P30,03 — P3P0, — 6P,P10303 + 6P3P1030,

5 5
+ P10103 + 3 PIP10} - 6P3P 0103 + P, 0103 - gP%Qi‘Qz) (4.25b)

6. Correlation function (J,J5J%): 6=0

41 9 5
—P3P30,0,Z5 + P3PI03Z; — — P3P30303Z; — — P,P, 0] 03 Z;

Even: A, (PgP‘f 325+ PyP0, 0575 — 1 11 11

37 224
+PPQI0:Z, -1 PPz ) + 4 (P03~ 140l + T

30
T PAP1010:22 - 3 PIOT 032,

252 160
- 14P3P303 75 + TR PiP2Q03Z5 — Ve 030375 + P301Z; — — P2 2010375
+ 38 papaz 4 32 pap (4.26a)
T 143 ’ '
odd: 0. (4.26b)
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A,
Even:

odd: 0.

A2
Even: —<
X3

odd:

B 10
o (~sp.ri0i0t + P0s030! +

7. Correlation function (J3J3J}): 6 <0

33
( P30,0307 1o Pﬂ”stQzQ3 P3P3Q3Q3 +P3050;0] - PZIDZQzQzQ3 P 1P30307

349 33
+ 5o P1P205030] t1oF 1"3Q2Q3Q2 + P2Q2Q3Q1 P2P2Q2Q3Q1 P2P2Q2Q3Q1

70
3191P3P303 67 LA 159 105
7__P'%P P3P P3P3 3 _P2 33
0. 33 PiP0301 - S5 PIP0303 ) + T ( PIPAQT + 1 PR0:0301 -
2123 24 3 3 2 p2 3 5 3 2 135 3 2
+24P2P3Q2Q3Q1 11P P3Q3Q _7PPQ2Q3Q PPQ2Q _7PPQ3Q

342 159 35 24
+ = P1P,05030] + 24P, P;050307 + —P2Q2Q3Q1 P2P2Q2Q3Q1 PZPZQngQl

11
1062 135 24
+ PiP305 + 7anzQz _ _P%p2Q2Q% _ _P3P3Q%Q§ + Q%Q%Q?) , (4.27a)

—=P,P}030}

(4.27b)

8. Correlation function (J4J,J;): 6 <0

_ P‘P 3 4 P2 4 4
1428 4284 4284 o1y P2P3 220301 + P303030;
143P3P30%301 2189P3P20Q30301 11 143P3P30,0,0* 1195

s = - - —P,P3 4 2734034 PP 413
4284 4284 gg 2102001 + 4284 +55y PIP203030]

2165P,P30,0307 14513P P;050507 11 421 10229P2 Q%04 0?
— > __P P3 4 3 P2P4 4 2 1X2¥X3¥1]
1428 + 4284 68 Q20:01 + 476 Q301+ 4284
2189P2P204020% 2165P3P,030%0, 421 407
_ P2P2 40?2 113031 112%5%3%1 _Psz 4 P%P
476 1030501 - 4284 1428 T 76 112220 — o 302030,
143PIPI030;01  933TPIP;Q5  451PI0305 | 421 MW#wmﬁ

_ _ P4P 4
4284 12852 1428 476 20303+ 4284

(_ 451P1010] | 10229P303010]  14513P,P; 030301 407

1293

T (P4P4Q4 @P“Q“Q“ EP“Q“Q4 + 030307 + —P 3030101 + 5813 P2P3Q2Q3Q4

1209 499 147
P PP0,0301 - S PPAQIOY 4 #22¢—%P@@£&M——&#Q%@
83 511 2727 581 3 147
+ s PIPI0:20:01 + 7 PLP2030Y0} - Z i PIPY0, 0101 + 705" PP 03010} + oo PiPI0I0: 0]

84 16()1 877 4891 4
?P2P4Q4Q2 + o P2P4Q4Q2 + P2Q4Q4Q2 _ o5 P2P2Q2Q4Q2 _ 99 P2P2Q4Q3 Q%
2727 1601 1209 83

25 ——PiP,03030 + —— 35 P3P3Q2Q4Q1 P3P3Q4Q3Q1 t3s P3P3Q2Q3Q1 + P1P30;

_3938 4P4Q4 EP4Q4Q4 1601 P4P2Q2Q4+ P4P2Q2Q3>

42
255 (4.282)

5
3 P,P3030301 + P3P30,01 - §P§Q‘2‘Q3Q‘11 —5P\P{030}

10

PRI+ Prieio, ). (4.280)
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The solutions quickly become cumbersome to present
beyond these cases; however, our method effectively
produces explicit results for any chosen spins within the
confines of our computational limitations. We have explic-
itly tested our approach up to s; = 20, and we present
additional results in Appendix B.

V. MIXED CORRELATORS INVOLVING
FERMIONIC CURRENTS

In this section we will evaluate three-point functions
involving conserved fermionic currents. To the best of our
knowledge, these correlation functions have not been
studied in much detail in the literature, particularly in
three dimensions. The most important example of a
fermionic conserved current is the supersymmetry current,
Q,n.a» Which is prevalent in N -extended superconformal
field theories. Such a field is primary with dimension
Ap=5/2, and satisfies the conservation equation
0"Q,,. = 0. In spinor notation, we have

Qa(S) ()C) = (ym)(alaz Qm,a;)(x)' (51)

Recall that in three-dimensional superconformal field
theory, the supersymmetry current and the energy-
momentum tensor are contained in the supercurrent
multiplet, Ju3)(z), where 74 = (x%,0%) is a point in
N =1 superspace. The supersymmetry current, Qg 3),
and the energy-momentum tensor, 7,4, are extracted
through bar-projection as follows:

Qu3) (%) = Jo(3)(2) 90
Ta(4) ()C) = D(alJa2a3a4)(Z)|9:O’ (52)
where
0 0
Dy =——+i(y"™) 0" — :
a 00~ +1(}’ )aﬂe ox™ (5 3)

is the standard spinor-covariant derivative [76]. Likewise,
the conserved vector current, Va(z), is contained within
the flavor current multiplet, L,(z), and is extracted as
follows:

Va(2)(%) = D, Ligy)(2)]g—0- (5.4)

Since the supersymmetry current is a conserved current
associated with supersymmetry transformations, it is inter-
esting to study the correlation functions involving the
supersymmetry current, the vector current and the
energy-momentum tensor. The two three-point functions
involving Q, V and T which are of interest in N = 1
superconformal field theories are

(5.5)

These correlation functions are naturally contained in the
following supersymmetric three-point functions:

<Ja(3) (Zl)Jﬁ(B) (ZZ>Ly<Z3)>7
<Ja(3) (z1 )Jﬂ(3) <Z2>Jy(3) (z3))-

In three dimensions, (JJL) vanishes, while (JJJ) is fixed
up to a single tensor structure [50,51,54]. Therefore,
since the component correlators (5.5) are obtained by
bar-projecting the supersymmetric correlation functions,
we find (QQV) = 0, while (QQT) is fixed up to a single
tensor structure.

However, in this paper we do not assume supersym-
metry. Our goal is to find the most general structure of the
correlation functions consistent with only conformal sym-
metry. Hence, in the next subsection we will evaluate the
correlation functions

(5.6)

(Qu(3)(x1) Qi3 (¥2) Viy(2) (%3)),

(Qa(3)(*1) Qlpiay (¥2) Ty a) (X)) (5.7)

where in this case Qa(3) and Q’ﬁ(3) now denote

“supersymmetry-like” currents; that is, they possess iden-
tical properties to supersymmetry currents but are not
necessarily equal to them. It is of interest to us to examine
the number of independent tensor structures contained
within these three-point functions to see if they are
consistent with the supersymmetric results. A similar
analysis was recently carried out in four dimensions
[62], where it was found that the number of independent
structures is, in general, inconsistent with supersymmetry.
In the next subsections we use our formalism to constrain
the general form of correlation functions involving
supersymmetry-like currents consistent with conservation
equations and point-switch symmetries. This is followed by
an analysis of correlation functions involving conserved
fermionic higher-spin currents. Our comments on the
results for correlation functions involving fermionic sym-
metry currents for general spins are summarized below:
(1) In general, the structure of the three-point function
(J;,J5,J5,), for arbitrary half-integer s;, s, and
integer s3, adheres to the triangle inequalities (4.2),
the same as the bosonic case. That is, if the triangle
inequalities are satisfied we obtain two even struc-
tures and one odd structure. Otherwise, there are just
two even structures.

(ii) For the three-point functions (J; J5 JY,), for arbi-
trary half-integer s; and integer s,: when the triangle
inequalities are satisfied there are two even solutions
and one odd solution, otherwise there are only two
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even solutions. After imposing J = J' the solutions
exist only when s, is an even integer. Note that for
s1 > s, the triangle inequalities are always satisfied.

A. Spin-3/2 current correlators

In this subsection we present an explicit analysis of the
general structure of the correlation functions involving Q,
V and T that are compatible with the constraints of

|

Zo3)” P (x13)Zp)” @ (x23)

conformal symmetry and conservation equations. Let us
first consider (QQ'V), for which we may analyze the
general structure of the correlation function (J5,,.J% /ZJ’I’ ).

1. Correlation function (J3/2J%,J7)

Using the general formula, the ansatz for this three-point
function reads

sy 001y (2275 () =

( %3)5/2( 23

L «@p e (X1). (5.8)

Using the formalism outlined in Sec. III B, all information about this correlation function is encoded in the following

polynomial:

H(X;u(3),v(3),w(2))

= Ha@p)y2) (X) U VO W),

(5.9)

After solving (3.33), we find the following linearly dependent polynomial structures in the even and odd sectors

respectively:

even: {Q3Z122Z3,

3Z5. 030325, 01022, Zy, 010,03, 0103Z1, P305Z5, P30, Q,. PaP30,Z,, P, P30, 053, P50 25,
P\P30,05, P\P30\Zy, P\ PyZ\Z,, P1P, 03, P1P,P3, P105Z, },

(5.10a)

odd: {P3ZIZZZ31P3Q%ZB»P3Q%ZZ’P3Q1Q2Q3vP3Q%Zl’P%Z?nPZQZQBZZ’PZQlZlePZQIQ?vP2P§Q1’P%P3221

P\0yZ,Z,, P10,03, P10,03Z,, P1P50,, P\ P,P303, PiP3Z, }.

(5.10b)

Next we systematically apply the linear dependence relations (3.36a) to these lists, reducing them to the following linearly

independent structures:

even: {P30,0,.P,P;0,0;. P P;0,0;. P P,03, 0,0,03}.
odd: {P,P30,, P\ P3Q,,P;0,0,03,P,0,03, P,0,03%}.

(5.11a)

(5.11b)

After constructing an appropriate ansatz for each sector, we obtain the following relations between the coefficients after

imposing conservation on all three points:

174,
9

10A
even: {Al S AL Ay > Ay Ay = Ay Ay — —— +

odd: {Bl d BI?BZ g BI,B3 i 3Bl,B4 g O,BS g O}

The final solutions for the even and odd sectors are

even:

9

B
odd: x_; (P,P30, + P\ P50, +3P30,0,05).

’

17 A 5
3 ( P P,03 + P,P30,03 + P P30,05 + 2 Q1Q2Q2) X; (P§Q1Q2+3P1P2Q§—§

5A, 5A,
_>9_9}, (5.12a)
(5.12b)
10
Q1Q2Q%),
(5.13a)
(5.13b)

Hence, we see that the correlation function (J/3/,J,J7), and therefore (QQ'V) is fixed up to two even structures and one
odd structure. It may be shown that all structures vamsh for J = J' as they do not possess the correct symmetry under
permutation of points x, and x,; therefore, we find that the correlation function (QQV) vanishes.
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Next we will analyze the general structure of (QQT), which is associated with the correlation function (J3,J% 12J5)
using the ansatz (3.15).

2. Correlation function (J3,J’, /2 5

According to the general formula (3.15), the ansatz for this three-point function is

Zaz)* ) (013) Ly (x23)
a(3) 13)+5(3) 23
<‘]a(3)('x1)‘]2{(3)(x2)‘];l(4) (X3)> = ()C13)5/2( 23)5/2 Ha’(3)ﬂ’(3)y(4) (XIQ)' (514)

Using the formalism outlined in Sec. III B, all information about this correlation function is encoded in the following
polynomial:

H(X:u(3), v(3).w(4)) = Hogpa)y@) (X)UC VO Wrd), (5.15)

After solving (3.33), we find the following linearly dependent polynomial structures in the even and odd sectors

respectively:

even: {032,2,73, 0373, 030:2,Z5, 0102Z,2,Z5, 00,0375, 010325, 01052, Z5, 0703053, 010,71, P30 73,
P3010,Z3, PyP302Z,Z5, PyP30,03Z5, PyP30% 05, P303Z,Z5, P30,0,Z,, P303 03, P1P30,0;5Z5,
P\P30,Z,Z5, P\P3Q,03. P\PyZ,Z,Z5, P\P,Q3Z5, P\P,03Z,, P\P,0,0,05. P\P,03Z,, P, P,P3Z;,
PP3P30Qy, P1P3Z,, P103Z1Z5, P10305, P1010yZy, P1P2P3 05, PIP303, PIPyZ, }, (5.16a)

odd: {P3Z,Z,73, P3Q373, P303Z,Z5, P30,0,05Z5, Py031Z,Z5, P30 03, P3Z3. Py0,032,Z5, P10, Z,Z,Z5,
Py0,03Z5, P,0,03Z,, P,030,05. Py 01 Z,, PyP301 Z3, PAP3Z, 75, P3P30%, P301Z,, P10yZ, 2,75,

P10,03Z5, P\03Z,, P10,03Z,Z5, P10,0305. P10} 0,Z,, P1P50,Z5, P P,P30,0,. P P30, 2Z,.
PP30,03, PiP3Z,Z3, PP303, PAP,0,03, PP, Z|, PiP3P3, P02 Z, P1 PPy 0325}, (5.16b)

Next we systematically apply the linear dependence relations (3.36a) to these lists, reducing them to the following linearly
independent structures:

even: {P,P30710,, P\P30,03, P30703, P1P,0,0,03, P1030;, PIP303, 010505}, (5.17a)

odd: {P%P3 %,P3Q%Q%,P2Q%Q2Q3,P1Q1Q§Q3,P%P3Q%7P1P%Q1Q3,P%P2Q2Q3}- (5.17b)

After constructing an appropriate ansatz for each sector, we obtain the following relations between the coefficients after
imposing conservation on all three points:

TA, 4A 14A, 53A A A

even: {A1—>A1,A2—>A1,A3 —>A3,A4—>1—51—1—53,A5 —>A3,A6—> 151— 153, 7—>?1—?3}, (5183)
odd: {Bl — BI,BZ - —4B1,B3 - —2B1,B4 - —ZBI,BS — BI’B6 g 0,B7 - O} (Slgb)
Therefore the final solutions for the even and odd sectors are

Aj 53 2 p2 2 N2 2 4 212
even: X2 151) P30; + P3030; + P1030; — P 1P20,0,03 — *Q1Q2Q3

Al 14 ., 5 7 »
+ 15P P503 + P3P,070, + 5P 1P2010,03 + Py P%Q1Q2+ Q 030; |, (5.19a)

B

odd: -3 (~4P3Q30% + P3P30] = 2P,0,050F — 2P1 03030, + PiP303). (5.190)
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Hence, we note that the three-point function (J3,,.J% /21” ), and therefore (QQ'T) is fixed up to two independent “even”
structures and one “odd” structure. In this case, both structures survive after imposing the symmetry under the exchange of

x, and x,, that is, when J = J'. Hence, the correlation function (QQT) is also fixed up to two even structures and a single
odd structure.

B. Higher-spin correlators

In this subsection we compile some results for three-point correlation functions involving fermionic higher-spin currents.
We present only the final results after imposing conservation on all three points.

1. Correlation function (J3,,J’, /2J3> c<0

A 7 4 7 59
Even: 73 <—§P2P?Q§ + §P%P%Q1Q2 —§P3P1Q% + PP QY Q%+ > P3P3>
A 14 21 14 21 56
+ Yl <—?P2P3Q2 —P2Q1Q2 +21P3P20,0, - P3P1Q2 - —P2Q3Q2 += 3 P3P+ Q%Qi), (5.20a)

B 2 2
odd: 71(-gP?QiJrP%P?Qz—3P2P%Q1Q%+P3P?Q1+P1Q?Q§-3P§P1Q?Q2—§P%Q?+P2Q?Q§>- (5.20b)

Imposing the symmetry under permutation of spacetimes points x; and x,, i.e., when J = J', requires that the three-point
function must vanish.

2. Correlation function (J3/2J,,J7): 6=0

4 29
Even: A2 <—P2P?Q%Z3 +§P%P%Q1Q2Z3 - P%PIQ%Z?, + PzPlQ%Q%Z:; +3P%P?Z3>

2 2 56 5
+ A (gPZP%Q%Z3 + P10,03Z; — TP3P10,0,Z; +§P3P1Q%Zs + P3030,7; —;PSP% —ﬁQ?ngs)v
(5.21a)
odd: 0. (5.21b)

This correlation function is compatible with the symmetry under permutation of spacetimes points x; and x,.

3. Correlation function (J3,,J’, /2J5> c>0

4 11 41
~P3P10,0,7} — — P3P 03175 + PP Q10373 + —

. 11 31272
Even: XA2 —3P2P1Q2Z3 +3 9 9

@mﬁ)

2 2 5
+ XA, <§ PP} 0573 + P1Q, 0375 — 9P3P10, 0,75 + ngplQ%Zg + P3070,75 - 8P3P{Z5 - gQ?Q%Z§>,
(5.22a)
odd: 0. (5.22b)
4. Correlation function (J5/2J5,,J7): 6 <0
A 1 1
Even: ij ( 5 —P,P}Q, — 7P2P2Q3 + P,P30,0% + P2Q3>
A 12 9 pap2 22 203 203

"‘F 35 —P,P30, + P5P305 — P3Q2Q3 - 3P;035 + 0503 (5.23a)

B 2 4 2 2 1
odd: X—; (——P3Q2 +3 Py,P30,0;5 — —P2P3Q3 + P;030% - P2Q2Q§ - §P§P§>. (5.23b)
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5. Correlation function (Js,,J /2J/2’>: c<0

A 29 7 26 16
Even: X—§ (—?P P303 - P3P3Q1Q% + PZQ1Q2Q2 PzP%Qle +—= 5 P\P,0305 4+ — 5 P3P,0,030;5
P30,03 + P, P;03 all EP P3 5P;P3 0 p2 EPP 3
+ P30,05 + P1P30505 | + X3 7 303 —-5P3P30,0; + 3010,03 + 0303
90 5 15 3 3,2
+7P3P2Q1Q2Q3 +7P1P3Q2Q3 + 00,0503 |, (5.24a)
B2, 4, 2 ) 2 1m0, | 23 3
odd: X —§P3P2Q1 —§P3P2Q1Q2Q3 +2P3P,0,05 —§P2Q1Q2Q3 +§P1P3QQ + P30:10503 ). (5.24b)
6. Correlation function (Js;J,J5): 6 <0
Ay (107 P2P 2 2 39 o 22 2
Even: — % P30; —— zQ 03 — —P3P303 Q2+ P P30,0,0;5 ——P P3030; + P303030; + P3P,0303
23 3 2 Al 2 pa 402 3
35P 1P20,030; + 10P 1P30,03 + P 1030, X2 —43P1P;05 +9P;0703 — 8P P;0,0,0;
226 , ., 22 24 204
+TP P Q2Q3 - 10P5 0 Q2Q3 + P P2Q1Q2Q3 —-3P1050;5 + 070503 (5.25a)
B, (2 4 12 32 2 N2 2 2 2 2
odd: X2 9P3P 07— P 5010,03 — —PzP 0103 - P P30,050; - —P 1P030; + < PzQ 030,
4 4
+P3070; - S PIP30y + ¢ P1Q1Q2Q3> (5.25b)

7. Correlation function (Js;3J5,,Jy): 6 <0

Ay (33 24 58 18 8 3
Even:74< PIPIQ} - 5 PIPI010: + TS PIPI0} = = PIPIOT0} + S PIP3QI 03 — S P03 + PI P2 010}

25

2 1

-3 Pirs) + 5 (G5 PP+ P00, - S PiPi0,0: + 43P1P3Q3 - 5 P00
90 18 558

— = P3Q103 +54P1P30,03 — = PiP203 - —P2Q1Q2 P3P5+Q3Q2> (5.26a)

By
X

10
odd: (PSQ‘ PIP301 = PiP30; + 5P\P;010, — = P30103 + 6P1P30,03 + 2P1P30; — 6P P01 0;

1 3
+P,0108 —sP%Pzglgg—gP%Q;+§PIQ%Q;). (5:260)
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8. Correlation function (J5/2J5,,J5): 6=0

83 1 3 3 10
b 1P303Z, +=P 1070,Z5 + PIP30,0,Z5 — = PIP303Z5 + = P\ P30 037, ——P2Q3

Even: A
ven 2< ) )

1 135 41 55
+ZP?P2Q§Z3 _ﬁPIPZQ%ngB —9—1P%Q1sz3 +20P2PSZ3 +mQ3Q223> +A4< 56P 1P301Z5

11 11 110 11 35
+ P4Q3Q223 + PP QZQ%23 73 ——P30}03Z; + PiP30,03Z; + 24P3P2Q4Z3 773 ——P\P,0i03Z,
2 55 3 b5 3057 25 ipa
9—1P]Q1Q223+24P P Z3+ Q Q 3—EP P QZZ3 s (5273)
odd: 0. (5.27b)
9. Correlation function (Js,,J /2J1> c<0
A, 3 2 7 4
Even: A 10 Pi0,0, - P2P3Q1Q3 EP 1P30,05 + P30,0,03 + P,P30,05 + P P3Q2Q3+ P P,05
Ay 4 3 3 10 3 10 3 29 4 4
+)? ﬁPngQz — P,P30,03 — P1P30,03 +?P2P3Q1Q3 +?P1P3Q2Q3 +?P1P2Q3 + 010,03 |,
(5.28a)
. By 1 4 3 1 2 » 1 2 2 3
odd: A 10 P30, - P P30, - P3Q1Q2Q3 +§P2P3Q1Q3 +§P1P3Q2Q3 + P30:10,05 ). (5.28b)

10. Correlation function (Js),J /2J’2’ o <0

A 7 7 7 7 40
Even: X—i( 55 PIPA0103 = 55 P2PA0T 0> = 55 P30T 0s — 55 PR3 030 + PR0TQ30s + 1 P13 01 303

22 2 2 11

40 75 29 A 125

T P,P3070,05 - —P2P2Q3 ST P2Q2Q3 + P2Q2Q3 +5 P1P2Q1Q2Q§) X—All ( ETd 1P30,03
125 100 100 1850 1850

— 33 2P 3010, - —P§ 30105 - 99 oo PIP3030s +—o- 99 PP30,0305 + 99 oo P2P3010,03
184 1300 1300 01

- ﬁPszQ3 + WPzQZQg + 7P2Q2Q3 5 7 1P20,0,03 + Q2Q2Q3> (5.292)
L opig L pops 9 p3yp 3 20 02 3 b P22 20202

odd: 5PP 301+ PP Qz—fP 0103 +35P1P3010705 + 5 PaP3070:05 + P3 010205 |- (5.29b)
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11. Correlation function (Js;,J /2J/3/>" c<0

O 27 373

1
1Q2 QzQz P3P Q2Q3 70P2P2Q1Q2 + PleQzQ; 245

A 2253
: —3»< = P3P}0:0,0%

490
107 _, 2 97 5 33 ) 5 23 . D
_gPP1QQ3 P2 1QQ2Q3+ P3 1QQ2Q3—|—PQQ2+ PQQ2Q3_—PPQQ2
27
"~ 70
305 1511 430 757 125
+—P2Q1Q2Q3 _—P2P2Q1Q2Q3 P3P1Q2Q2 5 P2P1Q2Q2Q2 P3 1Q2Q2Q3

305 125
+7P2Q3Q2Q3 5P3P;030; +T

33
—P3P;0i0; +

1501 430
0&&@%&)——@—%?@2 == PyPY030% - 5P3PY030;

21 9

P2P3Q?Q%Q3 + Q?Q%Q%) (5.30a)

B,

odd: e

1
(571701 - 3P:PI0301 + 2P,030301 + 101001 - PEP10:0,01 ~ 3P PA0I0S

1
+w@mm&m%@mgw—ﬁ@@) (5.30b)

3
12. Correlation function (J5/2J5,,J7): 6 <0

211 3
Pz 1Q1Q2Q3

11 90 11 10
Even: 5| ——1 4P4Q% P4Q4Q3 +4 P3P3Q1Q2 Pzp Q1Q2Q3 147

Pipi
X2\ 441 9 1030; - 49

123 01
P3PIOT05 — —P2P2Q2Q2Q3 + P3P0705 + o3 P2 070505 — P3P 1070,05

9
10943

11
49 —P3P;010, - P4Q4Q3 + P2Q4Q2Q3> X2 (TP4P4Q3 —P?QZ‘Qs

710 80 1744 710
——P3P{030; - 7 — PyP{01 0305 + —— o1 P3P{0,0,0; — 10P10]050;5 ——~ P3P1070;

7 7
3 80 , 3 55 44 2 14 2 4 4
PP 030305 - —P2P1Q1Q2Q3 +7P2Q1Q3 —10P5070505 + Q70505 |,

732 16
(5.31a)

Ag ( 1367

90
+PIOI030s + 5

+ P,P;0103 —

+7P2P2Q2Q2Q3 += 9

B, /1 5 25
odd: — (28 P2P4Q4 + P2P4Q2Q% —P3Q1Q4Q% + P2P3Q1Q2Q3 —P3P2Q2Q4 —2—8P2P2Q2Q2Q3

25 1
P3P,0}05 — == P3P, 01030, +2 P3P;01 + P30103

5 13 5
P3P 2 P 3 4
+55 QQ2Q3+ 1QQQ3+8 73 g

28 4

1
—§P2P3Q4Q2 2Q4Q2Q3 —Z—SP%Q?Q2Q3>~ (5.31b)
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13. Correlation function (Js;,J /2J/5’>: <0

143 1254 176 92 22 1254
Even: P, P5 pap—— 2§ X ——PZP4 P4P4 —P P3 204 ——P5P3 2
ven: (175 275 PP — 3 PRI + Q1@ = P10y ~ s IR0
492 16 176 143 22
+¥P3P3Q2Q2 —P3P3Q303 ——P4 P30i0, + 175P5P1Q4 + PP, 0105 —7P3P1Q4Q2
11563 572 10516 715 11770 3135
+WP P ) +=L <63P2P5Q4 & 203 +—P4Q1Q2 ———P3P10,03 +TP4P4Q,Q2
1100 10516 1760 100 1770
_HPZP?Q%Qz_TPS}ﬁQZ+TP3P?Q2Q2__ 2Q3Q2+_P2P2Q3Q2_TP4P2Q3Q2
572 1100 110 715 11528
+— 63 P3P0} - 3 ——P3P,010% - _P2Q5Q2 +—P4Q5Q2 +?P5P5 + Q5Q§> (5.32a)
BT s s 2 p5 )3 4 p5 15 4 4 3 p4 2 5 pd 325 2 P32 3
odd: X EPle = 3P3Py05 + P3P0, + 7P2P1Q1Q2 —10P;P{Q0,05 + P3P{Q —3P{0703 + 20P;P1070;

— 10P4P; 030, — 10P,P2 03 03

7
#1300+ 20703 - 3110703 )

15
- 3P3P1Q7 4+ 20P3P1Q703 + P 0103 — 10P3P, 0105 + —

5 PiP1010,

(5.32b)

14. Correlation function (Js)J /2 ¢):6=0

3 43 8 248 43
Even: A, (-EP2P§Q§Z3 + E1D§1ﬂ>§Q§Z3 + §P§P‘1‘Q1Q%Z3 T ——PiP10,02Zs + PLP3 030375 + — 5 P3P30%Z,
P 3P0} s —PiPI0i03Z 8P4P2 20,7, — 2 PSP,0YZ, — | P,P,QY0YZ, + P3P, 04032
o5 D2 01037 13 10105 3 T35 PaP1Q102 25 — 1o PaP1 Q123 — 5o PP Q1075 + Py P 910775
3703 2 72 573
6mPW?Q+m@&ﬁ%a—g@ﬁ%a+ﬁ@@a—w%ﬁ@@&+BP@@@ﬂa
72 216 14 180 2
?P5P3Q223 +0 P3P}0I03Z; — P%Q?ng3 +3 P3PIQ303Z; — 18P5P1 070,75 +5P5 10175
14 1 10878
- —P,PQ103Z P2 103Z; + P3070,Z P3PZ; + 1032 5.33
3002 1010325 — Q0375 + P07 0075 + — 35 3 325Q 03 3) (5.33a)
odd: 0. (5.33b)

Additional results for three-point functions involving fer-
mionic higher-spin currents are contained in Appendix B.

VI. CORRELATORS INVOLVING SCALARS
AND SPINORS

In this section, for completeness, we analyze some of the
important three-point correlation functions involving scalar
and spinor fields. The results are interesting because the
correlation functions can contain parity-odd solutions, with
their existence depending on both triangle inequalities and
the scale dimensions of the scalars/spinors. The correlation

|
functions are analyzed using the same methods as in the
previous sections; the full classification of the results is
presented below:

(i) The three-point function (yy'O), where v,y are
fundamental fermions and O is a fundamental scalar,
is fixed up to one even structure and one odd
structure. All structures remain after impos-
ingy =y’

(ii) The three-point function (O0'J,), where O, O’ are
fundamental scalars with dimension §,5 respec-
tively: for 6 = &, there is a single even solution
compatible with conservation which survives after
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imposing O = O’ only for even s. For § # § there
are no solutions.

(iii) The three-point function (ywy'J), where v, y are
fundamental fermions with dimension 8,5 respec-
tively: when s =1, the triangle inequalities are
satisfied, and for 6 = &' there are two even solutions
and one odd solution. For § # & there is one even
solution and one odd solution. In both cases, the
three-point function vanishes after imposing y = y'.
For s > 1, the triangle inequalities are not satisfied,
and for § = & there are two even solutions which
survive after imposing y =y’ provided that s is
even. For § # & there are no solutions for general s.

(iv) The three-point function (yJ,0), for half-integer
s >3/2, where y is a fundamental fermion with
dimension &, and O is a scalar with dimension §': the
triangle inequalities are not satisfied for any s, and in
general there are no solutions after imposing con-
servation for arbitrary &, 8. However, there are two
special cases; for 6 = 3/2 there is an even solution
for & =1 and an odd solution for § = 2.

(v) For three-point functions of the form (J, J{, O),
where O is a scalar field with dimension 8, 51, and s,
must be simultaneously integer/half-integer for there
to be a solution. For s; > s,, the triangle inequalities
are not satisfied and there is no solution for general
S; however, there is an even solution for § = 1, and
an odd solution for § = 2. For s; = s,, the triangle
inequalities are satisfied and there exists an even and
odd solution for general 6. The solutions also survive
after imposing the symmetry J = J'.

(vi) For three-point functions of the form (yJ, Ji,), for
half-integer s; > 3/2 and integer s,, where y is a
fundamental fermion with dimension &: for § = 3/2
there are two even solutions and one odd solution
provided that the triangle inequalities are satisfied,
otherwise, there are only two even solutions. In
addition, for § = 5/2 there is one even solution and
one odd solution when the triangle inequalities are
satisfied, otherwise, there is a single odd solution.
For general 6, an even and odd solution exists if the
triangle inequalities are satisfied, otherwise, there
are no solutions.

In the next subsections we present explicit solutions for
some of the above cases.

A. Low-spin correlators

1. Correlation function (yy'0)

For A, =6, A, = 8], Ay = 5,, there is always one
even and one odd solution,
even: A;Q;X 010110, (6.1a)

odd: By PyX %0110z, (6.1b)

2. Correlation function (00'],)

An even solution exists for Ay = Ay = 6:

even: A;Z;X*7%, (6.2a)

odd: 0. (6.2b)

The solution vanishes upon imposing the symmetry
between x; and x,, i.e., when the fields O, O’ coincide.

3. Correlation function (00'],)
An even solution exists for Ap = Ay = 6:
even: A;Z3X3%,

(6.3a)

odd: 0. (6.3b)

In general, for (0O0'J;) there is always an even solution;

however, it only survives the O = O’ point-switch sym-
metry for even s.

4. Correlation function (yy'J,)

Even: X2_25(A2P1P2 ‘I‘AlQle), (643)

odd: Bl(Ple + P1Q2)X2_25. (64b)

In this case the triangle inequalities are satisfied and there

are two even solutions and one odd solution. All structures
vanish after imposing y = y/'.

5. Correlation function (yy'],)

Even: X3_26(A1P1P223 +A2Q1QQZ3), (653)

odd: 0. (6.5b)
In this case the triangle inequalities are not satisfied and
there are two even solutions. All structures survive after

imposing w = y/'.

6. Correlation function (J,J,0)

. 5—4 5P% 2
Even: A X 54 + 03, (6.6a)
odd: B]P3Q3X6_4. (66b)

In this case the triangle inequalities are satisfied and there is
one even solution and one odd solution. The structures
survive after imposing J = J'.
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7. Correlation function (J,J,0)

In this case there is a single even solution for A, = 1:

A(P3Z, -503Z))

even: e , (6.7a)
odd: 0. (6.7b)
There is also a single odd solution for A, = 2:
even: 0, (6.8a)
B\ P;03Z
odd: D171 (6.8b)

X3

However, there are no solutions for arbitrary A,. The same
results were found in [13].

8. Correlation function (J3,,J /20>

oP
Even: A; X% <35 105 + Q3> (6.9a)

(6+1)P3

24 P3Q§>. (6.9b)

dd: B, x*5( 205
ode- ; (3(5—5)

9. Correlation function (J,J,0)

. 1 6—6 (5 + 2)P§ 2 )2 (5 B 8>Q§
(6.10a)
5+ 1)P3
odd: B X% (% + P3Q§> . (6.10b)

10. Correlation function (yJ3,,0)

For A, = 3/2, there is an even solution for A, = I:

even: %, (6.11a)
odd: 0. (6.11b)
There is also an odd solution for A, = 2:
even: 0, (6.12a)
odd: B1BsZ%2 (6.12b)

X2

11. Correlation function (yJ3,,J,)

In this case there is an even and odd solution for
general A

2(9-25)
25+3

(26-9)

DA X0
even- A < 25+3

P\P3Q| +——+" P2Q3+Q3>
(6.13a)

25— 11)P3 P>

odd: le—é—%<( 51 —2P,0,0; +P3Q%).

(6.13b)

There is also an additional even solution for A, = 3/2:

A A
even: X%(P%Q3 + P3P, Q) +X*12(Q%Q3 —3P103),
(6.14a)
B
odd: x% (=2P,0,05 + P30 —2P;P?). (6.14b)

12. Correlation function (yJ3,,J,)

In this case there is one even and one odd solution for
general A

(13 -25)P,P3  3(25—13)P2Q,0,

even: A, X0 (

2643 2643
— 3PP, 07 + Q?Q2>, (6.15a)
X0
odd: B, (26 + 1)P,0, (65 — 33) P2

(26 + 1)(25 +5)
+(25+5)0%) -
+3(26+1)0%)).

(26— 11)P,0,((25 — 15) P2
(6.15b)

However, there is an additional even solution for AW =3/2:

A, 5 A
even: < (P P,0} - —P3P2> —1—71 <—5P%Q1Q2

(6.16a)

10
—?Pzp? + Q?Q2>,

B,
odd: ( —-3P}Q, —3P,P1Q; +3P,070, + P,03}).
(6.16b)

B. Higher-spin correlators

In this subsection we provide some more examples of
three-point correlation functions involving combinations of
scalars, spinors, and higher-spin conserved currents.
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1. Correlation function (J5/3J5,,0)

2 ((6+2)P305 (6-10)03
. 5-17 3 203 - =3
Even: A,X < 2(6-3) + P503 + 106 ), (6.17a)
) L (B+1D)(E+3)P3 28+ 1)P303
5-7 L 4
odd: B; X (5(6—9)(5—7) 5-9 + P303 ). (6.17b)

2. Correlation function (J;,J, /20)

56+2)Pi0F (6+2)(6+4)PS0 (6—14)0]
Even: A,X*~ 33 323 L POy 6.18
ven- < 36-12) " 3G-126-10) ST ) (6.18)
§+3)(6+5)P, 3(6+3)P3035 (§—13)P308
ad: Byx | ! e =3+ P30%). 6.18b
odd- > (%@—1U®—9) 56— 11) ser1) a9 (6.18b)
3. Correlation function (J5J50)
EWWALAX&Q(5+ﬁ@+4x&+®w+swy+Aﬂ5+MQ+AX&+®@Q§+mW5+a®+4wx§
T 4577 (6—18)(6—16)(6—14)(6 — 12) (6—18)(6 —16)(6 — 14) (6—18)(6 - 16)
21005+ P05 | <o e | (52000
sig o TASPIOY , (6.19a)
odd: B.X12 (5+3)(8+5)(+T)P305  (6+3)(5+5)PI03 21(6+3)P305 (6—19)P;0;3 PiOT
C 2 12(6 = 17)(6 = 15)(6 — 13) (6—17)(6 - 15) 10(6 - 17) 12(6+1) =3 )
(6.19b)
4. Correlation function (Jo/,J; /20>
In this case the triangle inequalities are not satisfied, and there is an even solution for A, = 1:
Ay (143 143
even. X—; <TP% ng — llpg %Zl —+ PgQ3Zl —7ngl>, (6203)
odd: 0. (6.20Db)
There is also an odd solution for A, = 2:
even: 0, (6.21a)
. B 502 3 )4 429 6 7
odd: e =27P303Z, +99P303Z, —?P3Q3Zl +P3Z, ). (6.21b)

5. Correlation function (yJ;,J})

In this case the triangle inequalities are satisfied. For A, = 3/2, we see there are two even solutions and one odd solution:

A, (99 429 A 429 396
even. Yz (?PQP?Q% —9P2P?Q‘1‘ +P2P1Q(1) —gpzpz) +Yl <—TP?Q1Q2 +?P2P?Q% +99P111QTQ2

2574

—mgﬁﬁ—mﬁ@@—gygﬂ+mg> (6.22a)
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B
odd: Yl (—35PZQ2 —35P,P$Q, + 105P; 030,

175
+ o PaPLO] (6.22b)
175 5 4 2 A5 6 7
—TP1Q1Q2—21P2P1Q1 +7P, 070, + P07 ).
(6.22¢)

VII. DISCUSSION

The purpose of this paper is to develop a formalism to
determine the general form of the three-point correlation
functions of conserved currents with arbitrary spins in
three-dimensional conformal field theory. Our method
gives explicit results and is limited only by computer
power. We managed to find solutions for spins up to
s; = 20, but the pattern of the number of independent
structures is very clear and allows us to conclude that it
holds in general. We demonstrate that in all cases where the
triangle inequalities are simultaneously satisfied, there are
two even solutions and one odd solution for (J, J5,J5,),
otherwise, there are only two even solutions. Although the
results for three-point functions involving bosonic currents
have been proposed previously [13,14,16], we believe that
our analysis stands on its own merit, as our method for
imposing conservation on all three points is very explicit
and analytic at every step of the computations. In addition,
we construct a discriminant equation which governs the
existence of the odd structure, and we extend the scope of
our analysis to include correlation functions of conserved
fermionic currents. Another benefit of our approach is that
it can be directly generalized to four- and higher-dimen-
sional conformal field theories as well as to (extended)
superconformal field theories in diverse dimensions. We
intend to explore these ideas in future works.

Finally, let us remark on three-point functions of
fermionic, spin-3/2 currents. These currents naturally
appear as supersymmetry currents in (extended) super-
conformal field theories, hence, it is also interesting to
understand the general structure of correlation functions of
spin-3/2 currents when supersymmetry is not manifest. In a
superconformal theory the correlation functions (5.5) are
contained within the following supersymmetric three-point
functions:

(Ja)(2)dp3)(22) Ly (23)),
(7.1)

In three dimensions, (JJL) vanishes, while (JJJ) is
fixed up to a single parity-even tensor structure [50,51,54].
Hence, it appears that supersymmetry imposes additional
restrictions on the general structure of three-point

Ja) (2)dp3)(22)d53)(23))-

correlation functions. It then follows that the general form
of the correlation functions (5.7) is inconsistent with
supersymmetry in the sense that they are fixed up to more
tensor structures than (7.1). Similar phenomenon was also
found in four-dimensional (super)conformal field theories
in [55,62].
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APPENDIX A: 3D CONVENTIONS AND
NOTATION

For the Minkowski metric we use the “mostly plus”
convention: 7,,, = diag(—1, 1, 1). Spinor indices are then
raised and lowered with the SL(2,R) invariant antisym-
metric e-tensor

0 -1 0 1
Eaqp = s 8(1[3 == P Eq eﬂi = 6aﬂ’
/ <1 0 ) <—1 o> 7

(A1)

¢a = Saﬂd)ﬂ? ¢a = gaﬂ¢ﬂ' (AZ)

The y-matrices are chosen to be real, and are expressed in
terms of the Pauli matrices ¢ as follows:

(ro)e” = —ioy = <(1) —01> () =03 = <(1) _01>

(A3a)
(r2) = —01 = ( o > (A3b)
-1 0

Tmap = €ps(Tm)a’s () = %(rm)s’-  (A4)

The y-matrices are traceless and symmetric
)% =0 (rmdap = (Vm) s (AS)

and also satisfy the Clifford algebra

Ym¥n + Ya¥m = 2Mn. (A6)

For products of y-matrices we make use of the identities
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(ym)ap(yn> s = nmn(Saﬂ + emnp (yp)aﬂ’ (A7a)

P

(ym)ap(Yn)pg(yp)aﬂ = ”mzz(}/p)aﬂ - nmp(yn)aﬂ + nnp(}/m)aﬂ
+ Emnp0a’, (A7b)

where we have introduced the 3D Levi-Civita tensor ¢, with
€"?2 = —¢y;, = 1. We also have the orthogonality and
completeness relations for the y-matrices

(ym)a/i (ym )p
(J/m)aﬁ (Vn)aﬁ = =2 n-

0 = —8,/8,° — 5,76,
(A8)

Finally, the y-matrices are used to swap from vector to
spinor indices. For example, given some three-vector x,,,, it
may equivalently be expressed in terms of a symmetric
second-rank spinor x,; as follows:

1
det(x,5) = Ex"/"xa/} = —x"x, = —x*.  (A10)

The same conventions are also adopted for the spacetime
partial derivatives d,,

1
Opp = (ym)a/iam’ Oy = _E(ym)aﬂaaﬂ’ (All)
Ox" = 8l 0 = —5,55 — 858 (Al2)
1
0, = -Le0,, (A13)

APPENDIX B: MORE EXAMPLES
OF HIGHER-SPIN CORRELATORS

In this appendix we provide further examples of three-

1 . . . . .
af _ (,m\ap __2 ap A point functions of higher-spin currents using our
X (7/ ) Xms Xm 2(7m) xaﬂ7 ( 9) formalism.
|
1. Correlation function (JsJ3Jz)
As [ 38177 39002P30,030; 715865P,P;03030;  151915P3P5050%07 250
E .23 P2 54 2 31 33 2323__P5P 45
e xe ( sa6 T2ORQ301 550 7098 6006 23112059
_ 36594P305030] | 35065P3P3050307  4475P3P30,030% N 565 PPI0I00T + 425P3P30303
1183 2002 2002 91 ~ ¥ 32 6006
10225P3P3050303 425P4P40,0,07 5417P,P3Q30*
B é0(3)6 = +P4Q2Q3Q5_7P2P4Q2Q3Q5 268062 = 12)021 —
_ 840319P,P,030501 | 282400P, P3030307 715865P,P303030] +§P P03020!
6006 5577 7098 91 2%3
38177 - 965766PIP3030507  829960PIP30,0307 35065PP3030307 50 , 3
- - 3XL_—pp
546 PIO30307 + 13013 39039 2002 91 1030501
407434P1P30307 | 282400P}P, 030307 206951P{P3030307 | 151915PP3 030507
39039 5577 5577 6006
10225P3P303020%  39002P4 Q303 829960P1P203 03 407434P4P%0Q, 03
_ 1 3Q2Q3Q1 1Q2Q3Ql _ 1 2Q2Q3Ql 1 2Q2Q3Ql
6006 3003 39039 39039
_44T5PIPIQ3030, | 425P1PI030501  9627521PI P05  5417PP,Q303 | 407434PIP30303
2002 6006 1431430 1001 39039
250 425P3P30503
PSP 4 3¥2%3 PSPS 5 55 5__P2 5 5__P4 5
~33 30305 + —6006 +X6 3071 + 0,030 3 5030307 323 70,0307
30030 77755P,P;Q%0%03 325 30 24750P203030°
P. P3040 21735, 350 p3p 45 —P 4.5 30 ¥3Y
gy PO 4199 3372 3030305 11353 2P 0501 = 4199
1780 25 495 32175
P2P2 5 7P4P2 5 7P3 PS 5 P P3 4 5 PS P3 5
~ %3 12 303030] 3 30,0307 30307 - 303 12 030307 T 10307
2420 2475 30030 0
P3P3 5 P2P4 5 P4P4 5 - p 54 P PS 54
+—323 3030203 +—323 1030;0} + 30,0307 + 3 1 P30301 - 73 50307
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1145 1675P, P302030%  77755P,P;03040% 32175 530
P P 4 NS N4 11 2X2¥3% 113%2X3¥1 P P3 5204 _ P2 503
33 2050307 — 4199 + 4199 33 1 305050 1050304

323
1920PEP3Q30307 _ 225P1P30,0307 _ 1780 2475 95
- - - P2p? 3 —p2 P 3 P3 PS0SO2
4199 4199 323 1030501 + 323 3050507 - 3050

35PIP30307  1675P1P,050307  320P1P3030507 2420

— B — _P3P 5S4 )32 P%P 50202
4199 4199 4199 + 353 PP 020301 + 57 PP 0,050
40 225P1P3050301 _ 35P{P10:030: _ 25

5
4 _ _ P4P2 P4P4
- 53 Pl0I030, - T e = 2 PIPR0I030, + 5 PPI030:0,

P5P5 5 1 P5P3 5
63 1 2Q3 —0P5P2Q4Q5 35 Q2Q —|——P5P3Q2Q4+ P5P3Q2Q3> (Bla)

46189 323 4199 323

+ P{P30; —

147
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2. Correlation function (J4J¢J¢)
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3. Correlation function (J7/5J’,J¢)
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4. Correlation function (Jy,J; 2d &)

Even:

P2Q Q2Q3PS

PSQI03P} + — 486P30%050;P}

P3030803P;

e P3070,03P

Ay (5251373P3Q§P? 130220503 P§ N 32501P30303P%  139294P50303P8 N 323P30505P%
323P30,05P; —ﬂp 0,0503P% + 92858P30,0503P;  1810849P30,0,03P) 2601P3Q,Q505P;
9438 221%2%3 7865 613470 1573
9438 B 7865 a 7865 306735
_ 3451P3010805P) 85 26072P 0 O30IP — 3261463P303 03 03P} N 92858P3030,03P3
3146 234 2212225 1
54511P300505P] 3355 Q4Q 01 + 32501P50Q103P% N 267967P3010;03P7  250872P30103 03P}
2%3 4719 4290 7865
220 73729 26072
+=—P301050;P? +P§Q?Q§P1 258 ——P,0]0303P, + 05
20363 85 13022P80%03 3355
oo PRQTQBQ3P1 + PaPI0Y03 — 2 PIPI0T0; — —— = — o= P3070503
_ P,P-.0° _
9438 300 [2F3012205 3146 1573 9438
323P8P3000; 46 20 3451P4P20°0%20;\ A, [21005503PSQ3 PO
27 3¥1 203X 1 X2 o1 235 1
6108 780066 10029132 1 935172
935 5155 P31 0303P] + 7515070303
_ 1640196 10029132 271628769P4 03 Q303 P4
2179008 26059876P3030303P3 6686424 166212
P 35 3P3_ 21 xX2X3% ] PS 3 3P3
g5 [210:0P 1105 T35 201Q03P 7
O10803P} + 1 PROTOIPE + === P01 003P} -
40095 2179008 935172
2400354 6108 415674
s Ps010803P, — == POS 0} + 010501 -~ %m%@+wm@m@@
5 P10+ — 1P, 010303 - T
24324 4
_ 343 0095 PiP208030; — 486P4P2Q"Q2Q;> (B4a)

x4 368082 14157 4719 B 7865 9438
119731Q§Q§Q§P;‘ 250872P3020303P1  139294PSQ2 03P} N 11317369P403 0303 P}
_P'i 3 6P")
10 605 83655 7865
3146
91
39 ———P30;0303P, - 1P§Q?Q2Q3P1
234
119731P5000303 20363 54511P3P;080303 2601P§P3Q?Q2Q§ 323P3P3050,
6 _PZPZ 6 N4 _
9438 P301030; + 010205 3146 x4 2431
6686424 21729462P30,0,03P> 10530
P30\ 0303P] - 55T
P2 2 N4 3P4_
85 2010:05P1 935 12155
415674 780066 3165261 1640196
- P301 0I03P}
+———P301050;P% — 48846P,0703 03P + <5 P3070303 %7
2400354 166 10530 71
- ———P3P;000,0% + PGPZQGQz
25 P300050; + ——— 7

046007-33



EVGENY 1. BUCHBINDER and BENJAMIN J. STONE

PHYS. REV. D 107, 046007 (2023)

odd: f;i( 375 FA0308 + 25 132133Q2Q6 P%I;;Qﬁ P,Q3030% ~ 245P§2Q§1QgQ? 18P§2%§5Q%Q?
317P4P’Q2Q6+P3Q2Q3Q6 21P2P3Q4Q3Q6 1835P4P3Q2Q3Q6 %ff@—i—; PLP1030:08
—%P PR030,01 + o PP050} —%P2P2Q5Q3Q4 + 4017 PIPI01030} ~ 22 PP 030301
_25P10,0:0, izszlQSQ3+mP3P2Q4Q3Q3+ 2 PIPR030,01 - 55 PiP0s0} + PTITEO0G P?’;gfngQ%
+ 11835 P{P; 080303 + 18P?2%§5Q§Q1 - 28P?1;%0%Q3Q1 P?lngg - 3P?§53Q52Q%> ' (B40)

[1] H. Osborn and A.C. Petkou, Implications of conformal
invariance in field theories for general dimensions, Ann.
Phys. (N.Y.) 231, 311 (1994).

[2] J. Erdmenger and H. Osborn, Conserved currents and the
energy momentum tensor in conformally invariant theories
for general dimensions, Nucl. Phys. B483, 431 (1997).

[3] A. M. Polyakov, Conformal symmetry of critical fluctua-
tions, JETP Lett. 12, 381 (1970).

[4] E.J. Schreier, Conformal symmetry and three-point func-
tions, Phys. Rev. D 3, 980 (1971).

[5] A. A. Migdal, On hadronic interactions at small distances,
Phys. Lett. 37B, 98 (1971).

[6] A.A. Migdal, Conformal invariance and bootstrap, Phys.
Lett. 37B, 386 (1971).

[7] S. Ferrara, A. F. Grillo, and R. Gatto, Manifestly conformal-
covariant expansion on the light cone, Phys. Rev. D §, 3102
(1972).

[8] S. Ferrara, A. F. Grillo, and R. Gatto, Tensor representations
of conformal algebra and conformally covariant operator
product expansion, Ann. Phys. (N.Y.) 76, 161 (1973).

[9] K. Koller, The significance of conformal inversion in
quantum field theory, Commun. Math. Phys. 40, 15 (1974).

[10] G. Mack, Convergence of operator product expansions on
the vacuum in conformal invariant quantum field theory,
Commun. Math. Phys. 53, 155 (1977).

[11] E.S. Fradkin and M. Y. Palchik, Recent developments in
conformal invariant quantum field theory, Phys. Rep. 44,
249 (1978).

[12] Y. S. Stanev, Stress—Energy tensor and U(1) current oper-
ator product expansions in conformal {QFT}, Bulg. J. Phys.
15, 93 (1988).

[13] S. Giombi, S. Prakash, and X. Yin, A note on CFT
correlators in three dimensions, J. High Energy Phys. 07
(2013) 105.

[14] J. Maldacena and A. Zhiboedov, Constraining conformal
field theories with a higher spin symmetry, J. Phys. A 46,
214011 (2013).

[15] S.R. Coleman and J. Mandula, All possible symmetries of
the S matrix, Phys. Rev. 159, 1251 (1967).

[16] A. Zhiboedov, A note on three-point functions of conserved
currents, arXiv:1206.6370.

[17] Y. S. Stanev, Correlation functions of conserved currents in
four dimensional conformal field theory, Nucl. Phys. B865,
200 (2012).

[18] Y.S. Stanev, Constraining conformal field theory with
higher spin symmetry in four dimensions, Nucl. Phys.
B876, 651 (2013).

[19] V. Alba and K. Diab, Constraining conformal field theories
with a higher spin symmetry in d = 4, arXiv:1307.8092.

[20] V. Alba and K. Diab, Constraining conformal field theories
with a higher spin symmetry in d > 3 dimensions, J. High
Energy Phys. 03 (2016) 044.

[21] S. Weinberg, Six-dimensional methods for four-dimensional
conformal field theories, Phys. Rev. D 82, 045031 (2010).

[22] M.S. Costa, J. Penedones, D. Poland, and S. Rychkov,
Spinning conformal blocks, J. High Energy Phys. 11 (2011)
154.

[23] M. S. Costa, J. Penedones, D. Poland, and S. Rychkov,
Spinning conformal correlators, J. High Energy Phys. 11
(2011) 071.

[24] S. Weinberg, Six-dimensional methods for four-dimensional
conformal field theories II: Irreducible fields, Phys. Rev. D
86, 085013 (2012).

[25] M. S. Costa and T. Hansen, Conformal correlators of mixed-
symmetry tensors, J. High Energy Phys. 02 (2015) 151.

[26] J.-F. Fortin, W.-J. Ma, V. Prilepina, and W. Skiba, Con-
formal conserved currents in embedding space, J. High
Energy Phys. 01 (2022) 185.

[27] W.D. Goldberger, W. Skiba, and M. Son, Superembedding
methods for 4d N =1 SCFTs, Phys. Rev. D 86, 025019
(2012).

[28] W.D. Goldberger, Z. U. Khandker, D. Li, and W. Skiba,
Superembedding methods for current superfields, Phys.
Rev. D 88, 125010 (2013).

046007-34


https://doi.org/10.1006/aphy.1994.1045
https://doi.org/10.1006/aphy.1994.1045
https://doi.org/10.1016/S0550-3213(96)00545-7
https://doi.org/10.1103/PhysRevD.3.980
https://doi.org/10.1016/0370-2693(71)90583-1
https://doi.org/10.1016/0370-2693(71)90211-5
https://doi.org/10.1016/0370-2693(71)90211-5
https://doi.org/10.1103/PhysRevD.5.3102
https://doi.org/10.1103/PhysRevD.5.3102
https://doi.org/10.1016/0003-4916(73)90446-6
https://doi.org/10.1007/BF01614094
https://doi.org/10.1007/BF01609130
https://doi.org/10.1016/0370-1573(78)90172-2
https://doi.org/10.1016/0370-1573(78)90172-2
https://doi.org/10.1007/JHEP07(2013)105
https://doi.org/10.1007/JHEP07(2013)105
https://doi.org/10.1088/1751-8113/46/21/214011
https://doi.org/10.1088/1751-8113/46/21/214011
https://doi.org/10.1103/PhysRev.159.1251
https://arXiv.org/abs/1206.6370
https://doi.org/10.1016/j.nuclphysb.2012.07.027
https://doi.org/10.1016/j.nuclphysb.2012.07.027
https://doi.org/10.1016/j.nuclphysb.2013.09.002
https://doi.org/10.1016/j.nuclphysb.2013.09.002
https://arXiv.org/abs/1307.8092
https://doi.org/10.1007/JHEP03(2016)044
https://doi.org/10.1007/JHEP03(2016)044
https://doi.org/10.1103/PhysRevD.82.045031
https://doi.org/10.1007/JHEP11(2011)154
https://doi.org/10.1007/JHEP11(2011)154
https://doi.org/10.1007/JHEP11(2011)071
https://doi.org/10.1007/JHEP11(2011)071
https://doi.org/10.1103/PhysRevD.86.085013
https://doi.org/10.1103/PhysRevD.86.085013
https://doi.org/10.1007/JHEP02(2015)151
https://doi.org/10.1007/JHEP01(2022)185
https://doi.org/10.1007/JHEP01(2022)185
https://doi.org/10.1103/PhysRevD.86.025019
https://doi.org/10.1103/PhysRevD.86.025019
https://doi.org/10.1103/PhysRevD.88.125010
https://doi.org/10.1103/PhysRevD.88.125010

THREE-POINT FUNCTIONS OF CONSERVED CURRENTS IN 3D ...

PHYS. REV. D 107, 046007 (2023)

[29] A. Bzowski, P. McFadden, and K. Skenderis, Implications
of conformal invariance in momentum space, J. High
Energy Phys. 03 (2014) 111.

[30] C. Coriand and M.M. Maglio, Exact correlators from
conformal ward identities in momentum space and the
perturbative TJJ vertex, Nucl. Phys. B938, 440 (2019).

[31] A. Bzowski, P. McFadden, and K. Skenderis, Renormalized
3-point functions of stress tensors and conserved currents in
CFT, J. High Energy Phys. 11 (2018) 153.

[32] H. Isono, T. Noumi, and T. Takeuchi, Momentum space
conformal three-point functions of conserved currents and a
general spinning operator, J. High Energy Phys. 05 (2019)
057.

[33] T. Bautista and H. Godazgar, Lorentzian CFT 3-point
functions in momentum space, J. High Energy Phys. 01
(2020) 142.

[34] S. Jain, R.R. John, and V. Malvimat, Constraining mo-
mentum space correlators using slightly broken higher spin
symmetry, J. High Energy Phys. 04 (2021) 231.

[35] S. Jain, R.R. John, and V. Malvimat, Momentum space
spinning correlators and higher spin equations in three
dimensions, J. High Energy Phys. 11 (2020) 049.

[36] S. Jain and R.R. John, Relation between parity-even and
parity-odd CFT correlation functions in three dimensions,
J. High Energy Phys. 12 (2021) 067.

[37] S. Jain, R.R. John, A. Mehta, A. A. Nizami, and A. Suresh,
Higher spin 3-point functions in 3D CFT using spinor-
helicity variables, J. High Energy Phys. 09 (2021) 041.

[38] S. Jain, R.R. John, A. Mehta, A. A. Nizami, and A. Suresh,
Momentum space parity-odd CFT 3-point functions, J. High
Energy Phys. 08 (2021) 089.

[39] D.Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli,
Correlation functions in the CFT(d)/AdS(d+ 1) corre-
spondence, Nucl. Phys. B546, 96 (1999).

[40] S. Giombi and X. Yin, Higher spin gauge theory and
holography: The three-point functions, J. High Energy
Phys. 09 (2010) 115.

[41] A.L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju, and B. C.
van Rees, A natural language for AdS/CFT correlators,
J. High Energy Phys. 11 (2011) 095.

[42] V.E. Didenko and E.D. Skvortsov, Exact higher-spin
symmetry in CFT: All correlators in unbroken Vasiliev
theory, J. High Energy Phys. 04 (2013) 158.

[43] E. Skvortsov and Y. Yin, On (spinor)-helicity and bosoni-
zation in AdS,/CFTj;, arXiv:2207.06976.

[44] J.H. Park, N =1 superconformal symmetry in four-
dimensions, Int. J. Mod. Phys. A 13, 1743 (1998).

[45] H. Osborn, N =1 superconformal symmetry in four-
dimensional quantum field theory, Ann. Phys. (N.Y.) 272,
243 (1999).

[46] J.-H. Park, Superconformal symmetry in six-dimensions
and its reduction to four-dimensions, Nucl. Phys. B539, 599
(1999).

[47] J. H. Park, Superconformal symmetry and correlation func-
tions, Nucl. Phys. B559, 455 (1999).

[48] J.-H. Park, Superconformal symmetry in three-dimensions,
J. Math. Phys. (N.Y.) 41, 7129 (2000).

[49] S.M. Kuzenko and S. Theisen, Correlation functions of
conserved currents in N =2 superconformal theory,
Classical Quantum Gravity 17, 665 (2000).

[50] A.A. Nizami, T. Sharma, and V. Umesh, Superspace
formulation and correlation functions of 3D superconformal
field theories, J. High Energy Phys. 07 (2014) 022.

[51] E.I. Buchbinder, S.M. Kuzenko, and I.B. Samsonov,
Superconformal field theory in three dimensions: Correla-
tion functions of conserved currents, J. High Energy Phys.
06 (2015) 138.

[52] E.I. Buchbinder, S.M. Kuzenko, and I.B. Samsonov,
Implications of A/ = 4 superconformal symmetry in three
spacetime dimensions, J. High Energy Phys. 08 (2015) 125.

[53] S. M. Kuzenko and 1. B. Samsonov, Implications of N' = 5,
6 superconformal symmetry in three spacetime dimensions,
J. High Energy Phys. 08 (2016) 084.

[54] E. 1. Buchbinder and B.J. Stone, Mixed three-point func-
tions of conserved currents in three-dimensional super-
conformal field theory, Phys. Rev. D 103, 086023 (2021).

[55] E. 1. Buchbinder, J. Hutomo, and S. M. Kuzenko, Correla-
tion functions of spinor current multiplets in A" = 1 super-
conformal theory, J. High Energy Phys. 07 (2021) 165.

[56] E.I. Buchbinder, J. Hutomo, and S. M. Kuzenko, Three-
point functions of higher-spin spinor current multiplets in
N =1 superconformal theory, J. High Energy Phys. 10
(2021) 058.

[57] E. 1. Buchbinder and B. J. Stone, Three-point functions of a
superspin-2 current multiplet in 3D, N = 1 superconformal
theory, Phys. Rev. D 104, 106004 (2021).

[58] A. Jain and A. A. Nizami, Superconformal invariants and
spinning correlators in 3d A" = 2 SCFTs, Eur. Phys. J. C 82,
1065 (2022).

[59] E.1. Buchbinder, J. Hutomo, and G. Tartaglino-
Mazzucchelli, Three-point functions of higher-spin super-
currents in 4D N = 1 superconformal field theory, Fortschr.
Phys. 70, 2200133 (2022).

[60] Y.S. Stanev, Correlation functions of conserved currents in
four dimensional conformal field theory with higher spin
symmetry, Bulgarian Journal of Physics 40, 147 (2013).

[61] E. Elkhidir, D. Karateev, and M. Serone, General three-point
functions in 4D CFT, J. High Energy Phys. 01 (2015) 133.

[62] E.I. Buchbinder and B. J. Stone, Three-point functions of a
fermionic higher-spin current in 4D conformal field theory,
Phys. Rev. D 105, 125004 (2022).

[63] O. Aharony, G. Gur-Ari, and R. Yacoby, d = 3 bosonic
vector models coupled to Chern-Simons gauge theories,
J. High Energy Phys. 03 (2012) 037.

[64] S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R.
Wadia, and X. Yin, Chern-Simons theory with vector
fermion matter, Eur. Phys. J. C 72, 2112 (2012).

[65] J. Maldacena and A. Zhiboedov, Constraining conformal
field theories with a slightly broken higher spin symmetry,
Classical Quantum Gravity 30, 104003 (2013).

[66] S. Jain, S.P. Trivedi, S.R. Wadia, and S. Yokoyama,
Supersymmetric Chern-Simons theories with vector matter,
J. High Energy Phys. 10 (2012) 194.

[67] G. Gur-Ari and R. Yacoby, Correlators of large N fermionic
Chern-Simons vector models, J. High Energy Phys. 02
(2013) 150.

[68] O. Aharony, G. Gur-Ari, and R. Yacoby, Correlation
functions of large N Chern-Simons-matter theories and
bosonization in three dimensions, J. High Energy Phys.
12 (2012) 028.

046007-35


https://doi.org/10.1007/JHEP03(2014)111
https://doi.org/10.1007/JHEP03(2014)111
https://doi.org/10.1016/j.nuclphysb.2018.11.016
https://doi.org/10.1007/JHEP11(2018)153
https://doi.org/10.1007/JHEP05(2019)057
https://doi.org/10.1007/JHEP05(2019)057
https://doi.org/10.1007/JHEP01(2020)142
https://doi.org/10.1007/JHEP01(2020)142
https://doi.org/10.1007/JHEP04(2021)231
https://doi.org/10.1007/JHEP11(2020)049
https://doi.org/10.1007/JHEP12(2021)067
https://doi.org/10.1007/JHEP09(2021)041
https://doi.org/10.1007/JHEP08(2021)089
https://doi.org/10.1007/JHEP08(2021)089
https://doi.org/10.1016/S0550-3213(99)00053-X
https://doi.org/10.1007/JHEP09(2010)115
https://doi.org/10.1007/JHEP09(2010)115
https://doi.org/10.1007/JHEP11(2011)095
https://doi.org/10.1007/JHEP04(2013)158
https://arXiv.org/abs/2207.06976
https://doi.org/10.1142/S0217751X98000755
https://doi.org/10.1006/aphy.1998.5893
https://doi.org/10.1006/aphy.1998.5893
https://doi.org/10.1016/S0550-3213(98)00720-2
https://doi.org/10.1016/S0550-3213(98)00720-2
https://doi.org/10.1016/S0550-3213(99)00432-0
https://doi.org/10.1063/1.1290056
https://doi.org/10.1088/0264-9381/17/3/307
https://doi.org/10.1007/JHEP07(2014)022
https://doi.org/10.1007/JHEP06(2015)138
https://doi.org/10.1007/JHEP06(2015)138
https://doi.org/10.1007/JHEP08(2015)125
https://doi.org/10.1007/JHEP08(2016)084
https://doi.org/10.1103/PhysRevD.103.086023
https://doi.org/10.1007/JHEP07(2021)165
https://doi.org/10.1007/JHEP10(2021)058
https://doi.org/10.1007/JHEP10(2021)058
https://doi.org/10.1103/PhysRevD.104.106004
https://doi.org/10.1140/epjc/s10052-022-11016-2
https://doi.org/10.1140/epjc/s10052-022-11016-2
https://doi.org/10.1002/prop.202200133
https://doi.org/10.1002/prop.202200133
https://doi.org/10.1007/JHEP01(2015)133
https://doi.org/10.1103/PhysRevD.105.125004
https://doi.org/10.1007/JHEP03(2012)037
https://doi.org/10.1140/epjc/s10052-012-2112-0
https://doi.org/10.1088/0264-9381/30/10/104003
https://doi.org/10.1007/JHEP10(2012)194
https://doi.org/10.1007/JHEP02(2013)150
https://doi.org/10.1007/JHEP02(2013)150
https://doi.org/10.1007/JHEP12(2012)028
https://doi.org/10.1007/JHEP12(2012)028

EVGENY 1. BUCHBINDER and BENJAMIN J. STONE

PHYS. REV. D 107, 046007 (2023)

[69] S. Giombi, V. Gurucharan, V. Kirilin, S. Prakash, and
E. Skvortsov, On the higher-spin spectrum in large N
Chern-Simons vector models, J. High Energy Phys. 01
(2017) 058.

[70] S.D. Chowdhury, J. R. David, and S. Prakash, Constraints
on parity violating conformal field theories in d = 3, J. High
Energy Phys. 11 (2017) 171.

[71] E. Sezgin, E.D. Skvortsov, and Y. Zhu, Chern-Simons
matter theories and higher spin gravity, J. High Energy
Phys. 07 (2017) 133.

[72] E. Skvortsov, Light-front bootstrap for Chern-Simons
matter theories, J. High Energy Phys. 06 (2019) 058.

[73] K. Inbasekar, S. Jain, V. Malvimat, A. Mehta, P. Nayak, and
T. Sharma, Correlation functions in A/ = 2 supersymmetric
vector matter Chern-Simons theory, J. High Energy Phys. 04
(2020) 207.

[74] S. Prakash and R. Sinha, A complex fermionic tensor model
in d dimensions, J. High Energy Phys. 02 (2018) 086.

[75] S. Prakash, The spectrum of a Gross-Neveu Yukawa model
with flavor disorder in d = 3, arXiv:2207.13983.

[76] I. Buchbinder and S. Kuzenko, Ideas and Methods of
Supersymmetry and Supergravity: Or a Walk Through
Superspace (Institute of Physics Publishing, Bristol and
Philadelphia, 1998).

046007-36


https://doi.org/10.1007/JHEP01(2017)058
https://doi.org/10.1007/JHEP01(2017)058
https://doi.org/10.1007/JHEP11(2017)171
https://doi.org/10.1007/JHEP11(2017)171
https://doi.org/10.1007/JHEP07(2017)133
https://doi.org/10.1007/JHEP07(2017)133
https://doi.org/10.1007/JHEP06(2019)058
https://doi.org/10.1007/JHEP04(2020)207
https://doi.org/10.1007/JHEP04(2020)207
https://doi.org/10.1007/JHEP02(2018)086
https://arXiv.org/abs/2207.13983

