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In this paper, we have studied the thermodynamics of Gauss-Bonnet black holes in D-dimensional anti–
de Sitter (AdS) spacetime. Here, the cosmological constant (Λ), Newton’s gravitational constant (G) and
the Gauss-Bonnet parameter (α) are varied in the bulk, and a mixed first law is rewritten considering central
charge (C) (of dual boundary conformal theory) and its conjugate variable utilizing the gauge-gravity
duality. A novel universal nature of central charge near the critical point of black hole phase transition in
Einstein’s gravity has been observed in Cong et al. [Phys. Rev. Lett. 127, 091301 (2021)]. We observe that
this universal nature breaks when such a phase transition is considered for black holes in the Gauss-Bonnet
gravity. Apart from this, treating the Gauss-Bonnet parameter as a thermodynamic variable as suggested in
Kastor et al. [Classical Quantum Gravity 27, 235014 (2010)] in light of the consistency between first law
and the Smarr relation leads to modified thermodynamic volume (conjugate to variable cosmological
constant), adding to a new understanding of the Van der Waals gas like behavior of the black holes in higher
dimensional and higher curvature gravity theories. Our analysis considers a general D-dimensional
background. We have then imposed a greater focus in the analysis of the phase structure of the five
dimensional Gauss-Bonnet spacetime. Our analysis also shows that the general universal nature of the
critical value of the central charge (which was present in four-dimensional AdS spacetime), breaks down in
case of five-dimensional AdS spacetime even in the absence of Gauss-Bonnet gravity. This finding
indicates the universal nature of the central charge may be a special feature of the four dimensional AdS
spacetime only.
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I. INTRODUCTION

Black holes are the most fascinating solutions of the
Einstein’s field equations in general relativity and have
been a part of active area of research since their discovery.
Macroscopically, these are very simple objects and need
only a few parameters to define completely. Most general
black holes are defined by a few parameters, mass (M),
charge (Q), and angular momentum (J) [1–6] together with
entropy [7,8] and Hawking temperature [9–11]. These
variables complete the thermodynamic description of a
black hole spacetime. However, very recently, black hole
thermodynamics has incorporated cosmological constant
(Λ) as another thermodynamic variable that has given
the pressure-volume term in the first law of black hole
thermodynamics [12–18]. This new paradigm has been
named black hole chemistry [19,20]. Here, a negative
cosmological constant has been realized as positive

thermodynamic pressure. Hence, black holes in AdS
(anti–de Sitter) spacetime have gained more attention.
The mass of the black hole is now interpreted as enthalpy
rather than conventional internal energy in this new setting.
Also, the new framework has resulted into new interpre-
tations of phase structure of black holes [21–27]. Most
importantly, a correspondence between a black hole space-
time and Van der Waals fluid has been established where
black holes are shown to undergo first order small to large
black hole phase transition and show similar critical
behavior [22,24]. Hence, under the discipline of black
hole chemistry, black holes have more resemblance to
standard thermodynamic systems and provide new explan-
ations to otherwise obscure thermodynamic properties of a
black hole.
A thermodynamic understanding of black holes is also

important from the AdS=CFT point of view [28–30].
According to this duality correspondence, a black hole in
AdS spacetime corresponds to a system described by
conformal field theory (CFT) at finite temperature. The
conjecture so far has been exploited to understandmany field
theory problems [31,32]. Varying cosmological constants in
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AdS spacetime changes the interpretations of boundary
theory. It has been shown that the variation in cosmological
constant correspond to change in boundary volume [33] as
well as variation in the central charge of the underlying CFT
[34]. Hence, the pressure-volume term of the first law in the
bulk corresponds to two terms in the holographic first law,
which is problematic. This issue is resolved in [35] by
making Newton’s constant (G) a thermodynamic variable in
the bulk which allows one to keep the central charge fixed.
This formalism results inmodification of the first law in bulk
which has a variable Newton’s constant and its conjugate
variable term. Exploiting the AdS=CFT dictionary one
replaces the variable Newton’s constant (δG) term by
variable central charge and its conjugate and the new form
of first law is termed as a “mixed first law” [36]. The most
important results of this formalism are the new definition
of the volume (conjugate variable of pressure) and phase
structure of the black hole. Free energy analysis reveals that,
at a critical point, the central charge is universal and does
not depend on G (and hence is independent of P as well).
Very recently, it has been shown in our recent work [37] that
the universality of critical central charge breaks when Born-
Infeld nonlinearity [38] is introduced in a black hole solution
[37]. All the results discussed so far are in Einstein’s gravity.
Hence, it is natural to ask about the validity of these in
modified theories of gravity. This paper discusses the
simplest extension in the form of Gauss-Bonnet gravity as
it also admits black hole solution in AdS spacetime [39].
Gauss-Bonnet gravity is the simplest extension to Einstein’s
gravity in the sense that no higher order derivatives than
second order appear in the equation of motion. The solutions
are nontrivial for spacetime dimensions five and more.
Gauss-Bonnet parameter being dimensionful enters in the
first law and Smarr relation [40] for the black hole [41].
Thermodynamics of Gauss-Bonnet black holes have been
studied extensively in [42–46] (see also references therein).
Our aim in this paper is to understand how theGauss-Bonnet
parameter changes the definition of the volume along with
the effects on the phase structure of the black hole especially
near the critical point when mixed first law is considered.
The paper is organized as follows. Section II discusses

thermodynamic properties of the black hole in general D
dimensions in Gauss-Bonnet gravity. Section III is devoted
to the calculations of mixed first law where the new
expression for volume of the black hole is derived. Free
energy analysis for dimensions five is done in Sec. IV and
the phase transition properties are studied. General dimen-
sion dependence of the phase transition is also shown.
Section V discusses the nature of the critical central charge
and its dependence on the Gauss-Bonnet parameter. We
summarize our results in Sec. VI.

II. THERMODYNAMICS OF BLACK HOLES IN
GAUSS-BONNET AdS SPACETIME

In this section, we review charged black holes in Gauss-
Bonnet gravity and its thermodynamic properties in AdS

background. The action in general D-dimensional AdS
spacetime reads [39]

S ¼ 1

16πG

Z
dDx

ffiffiffiffiffiffi
−g

p ½R − 2Λþ αLGB þ LðFÞ�; ð1Þ

where the Gauss-Bonnet Lagrangian density (LGB) is of the
form

LGB ¼ R2 − 4RγδRγδ þ RγδλσRγδλσ: ð2Þ

In Eq. (1), LðFÞ ¼ −FμνFμν is the Maxwell field
Lagrangian with Fμν ¼ ∂μAν − ∂νAμ, Λ is the cosmological
constant, and α is the Gauss-Bonnet parameter. A black
hole solution consistent with the action in Eq. (1) reads [39]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
D−2; ð3Þ

where

fðrÞ ¼ 1þ r2

2α0

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4α0

l2
þ 4α0m

rD−1 −
4α0q2

r2D−4

s !
: ð4Þ

Here, m is related with the Arnowitt Deser Misner mass
(M) of the black hole as

M ¼ ðD − 2ÞωD−2

16πG
m ; ωD−2 ¼

2πðD−1Þ=2

ΓðD − 1Þ=2 ; ð5Þ

where ωD−2 is the volume of the unit sphere in D − 2
dimensions. In Eq. (4), α0 is a dimension dependent
parameter which is related to the Gauss-Bonnet parameter
α as α0 ¼ ðD − 3ÞðD − 4Þα. In Eq. (4), the parameter q is
related to the total electric charge (Q) of the black hole as

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðD − 2ÞðD − 3Þ

G

r
ωD−2q
8π

: ð6Þ

Event horizon of the black hole is obtained from the
relation fðrþÞ ¼ 0, which relates the mass M in terms of
the horizon radius (rþ) as

M ¼ ðD − 2ÞωD−2

16πG

�
rD−1þ
l2

þ rD−3þ þ α0rD−5þ þ q2

rD−3þ

�
: ð7Þ

The Hawking temperature of the black hole from Eq. (4)
reads
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T ¼ 1

4π

∂f
∂r

����
r¼rþ

;

¼ ðD − 1Þr3þ
4πl2ðr2þ þ 2α0Þ þ

ðD − 3Þrþ
4πðr2þ þ 2α0Þ þ

ðD − 5Þα0
4πrþðr2þ þ 2α0Þ

−
ðD − 3Þq2r7−2Dþ
4πðr2þ þ 2α0Þ : ð8Þ

Gauss-Bonnet gravity theory becomes nontrivial only for
spacetime dimensions D ≥ 5. Hence, we have carried out a
detailed analysis of the phase structure of an AdS black
hole in five dimensions (in Sec. IV). For D ¼ 5, the
Hawking temperature from Eq. (8) can be calculated as
follows

T5 ¼
r3þ

πl2ðr2þ þ 2α0Þ þ
rþ

2πðr2þ þ 2α0Þ −
q2r−3þ

2πðr2þ þ 2α0Þ : ð9Þ

By invoking the first law of black hole thermodynamics
(dM ¼ TdS) and utilizing Eqs. (7) and (8), we can
calculate the entropy of the black hole as

S ¼
Z

rþ

0

T−1
�
∂M
∂rþ

�
drþ ¼ ωD−2

4G
rD−2þ

�
1þ ðD − 2Þ2α0

ðD − 4Þr2þ

�
:

ð10Þ

Having calculated all the thermodynamic variables for the
black hole we are now in a position to find the “mixed first
law” of black hole thermodynamics [36] by utilizing inputs
from the conformal boundary field theory in the AdS=CFT
framework in the following section.

III. THE FIRST LAW OF THERMODYNAMICS
AND ITS MODIFIED FORM

In this section we shall try to compute the first law of
black hole thermodynamics in a mixed form. To do this we
shall consider additional inputs from the boundary CFT
theory and using them compute the effective volume and
chemical potential. At first we shall compute the conjugate
to the usual thermodynamic variables from the extended
first law of black hole thermodynamics. In recent works it
has been realized that one can induce a positive thermo-
dynamical pressure by using a negative cosmological
constant. For an underlying negative cosmological con-
stant, one can rewrite the thermodynamics pressure of a
black hole as follows [12]:

P ¼ −
Λ

8πG
; ð11Þ

where the cosmological constant has the form given by

Λ ¼ −
ðD − 1ÞðD − 2Þ

2l2
; ð12Þ

with l being the AdS radius. The other thermodynamic
variable and its conjugate are the Bekenstein-Hawking
entropy and the Hawking temperature of the AdS black
hole in Gauss-Bonnet gravity. The Bekenstein-Hawking
entropy in terms of A and the Newton’s gravitational
constant reads (in natural units) as [41]1

S ¼ A
4G

; ð13Þ

where

A ¼ ωD−2rD−2þ þ 2ðD − 2Þα0
D − 4

ωD−2rD−4þ : ð14Þ

In Eq. (14), the first term is equivalent to the area of the
event horizon of the black hole in D-dimensional AdS
spacetime and second term arises due to the consideration
of Gauss-Bonnet gravity. The Hawking temperature is the
conjugate variable to the Bekenstein-Hawking entropy. In
terms of the surface gravity κ of the black hole, we can
write the Hawking temperature as

T ¼ κ

2π
: ð15Þ

In this extended thermodynamics, using Eqs. (11), (13),
(15), the most general form of the first law of black hole
thermodynamics can be written as [12]

δM ¼ TδSþ VδPþΦδQþΩδJ;

¼ κ

8πG
δA −

V
8πG

δΛþΦδQþ ΩδJ: ð16Þ

A direct interpretation of the above first law of black hole
thermodynamics has some issues in the context of holog-
raphy [33,47–53]. It is observed that for a single pressure-
volume term in the first law of thermodynamics in the bulk,
there are two terms in the first law of thermodynamics of
the conformal field theory at the boundary, the central
charge and its conjugate variable, and the thermodynam-
ical pressure and its conjugate variable. In order to counter
this issue one uses the AdS=CFT dictionary. Via the
AdS=CFT correspondence one can relate the central
charge corresponding to the boundary field theory with
the AdS radius (l) and Newton’s gravitational constant (G)
in the bulk theory. The form of the central charge C is
given as follows [34]

C ¼ k
lD−2

16πG
: ð17Þ

In Eq. (17), the k factor is fixed by the details of the system
at the boundary. From the above equation it can be seen

1Note that the A in Eq. (14) should not be confused with the
area of the black hole.
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that by varying one of the bulk variables one cannot keep
the central charge fixed. Therefore, to keep C fixed, one
needs to vary not only the Newtonian gravitational
constant G but also the AdS radius l. In our analysis
all the thermodynamic variables being varied are all
dimensionful variables. Being a dimensionful parameter,
we shall extend our analysis by including the Gauss-
Bonnet parameter as a thermodynamic variable in the
mixed first law of thermodynamics as well. To begin our
analysis we write the mass of the black hole as

M ¼ MðA;G; J;Q;Λ; αÞ; ð18Þ

where we have considered the mass of the black hole as a
function of A, Newton’s gravitational constant (G),
angular momentum (J), total charge of the black hole
(Q), the cosmological constant (Λ), and the Gauss-Bonnet
parameter (α). Taking variation of both sides of Eq. (18),
we obtain

δM ¼ ∂M
∂A

δAþ ∂M
∂G

δGþ ∂M
∂J

δJ

þ ∂M
∂Q

δQþ ∂M
∂Λ

δΛþ ∂M
∂α

δα: ð19Þ

For a fixed value of the Gauss-Bonnet parameter (α) and
the Newton’s gravitational constant (G), the above form of
the first law of thermodynamics reduces to the known
extended first law of thermodynamics in the bulk theory.
Hence, by comparing Eq. (19) with Eq. (16) in this
scenario, we can obtain the following relations:

∂M
∂A

¼ κ

8πG
;

∂M
∂J

¼Ω;
∂M
∂Q

¼Φ;
∂M
∂Λ

¼ −
V

8πG
:

ð20Þ

We define the conjugate variables to the Newton’s
gravitational constant G and the Gauss-Bonnet parameter
(α) as

∂M
∂G

≡ −
ζ

G
;

∂M
∂α

≡A: ð21Þ

Using the analytical forms of the conjugate variables in
Eqs. (20) and (21), we can rewrite Eq. (19) as follows

δM ¼ κ

8πG
δAþΩδJ þΦδQ −

V
8πG

δΛ − ζ
δG
G

þAδα:

ð22Þ

In order to investigate the analytical form of the unknown
parameter ζ, we shall consider a modified mass term as
follows

GM ¼ M ¼ MðA;GJ;
ffiffiffiffi
G

p
Q;Λ; αÞ: ð23Þ

It is very important to observe that for the modified mass
term (M), the Newtonian gravitational constant no longer
acts as an independent variable rather it gets coupled to the
total charge and the angular momentum of the black hole.
Again taking a variation of Eq. (23), and some algebra, we
obtain the following result:

GδM þMδG ¼ ∂M
∂A

δAþ J
∂M
∂ðGJÞ δGþG

∂M
∂ðGJÞ δJ

þ
ffiffiffiffi
G

p ∂M

∂ð ffiffiffiffi
G

p
QÞ δQþ Q

2
ffiffiffiffi
G

p ∂M

∂ð ffiffiffiffi
G

p
QÞ δG

þ ∂M
∂Λ

δΛþ ∂M
∂α

δα: ð24Þ

Rearranging the above equation, we can obtain the
variation of the unmodified mass of the black hole (M)
as follows

δM ¼ 1

G
∂M
∂A

δAþ ∂M
∂ðGJÞ δJ þ

1ffiffiffiffi
G

p ∂M

∂ð ffiffiffiffi
G

p
QÞ δQþ ∂M

∂Λ
δΛ
G

þ ∂M
∂α

δα

G
þ
�
−
M
G

þ Q

2G
3
2

∂M

∂ð ffiffiffiffi
G

p
QÞ þ

J
G

∂M
∂ðGJÞ

�
δG:

ð25Þ

Now Eq. (22) along with Eq. (25) denotes the same first
law of thermodynamics. Hence, by comparing Eq. (25)
along with Eq. (22), we obtain the following results

∂M
∂A

¼ κ

8π
;

∂M
∂ðGJÞ ¼ Ω;

∂M

∂ð ffiffiffiffi
G

p
QÞ ¼

ffiffiffiffi
G

p
Φ;

∂M
∂Λ

¼ −
V
8π

;
1

G
∂M
∂α

¼ A: ð26Þ

We also obtain the analytical form of the unknown
parameter ζ as

ζ ¼ M −
Q

2
ffiffiffiffi
G

p ∂M

∂ð ffiffiffiffi
G

p
QÞ − J

∂M
∂ðGJÞ : ð27Þ

Using the values of ∂M
∂ð ffiffiffiGp

QÞ and
∂M
∂ðGJÞ from Eq. (26), we can

rewrite Eq. (27) as follows

ζ ¼ M −
QΦ
2

− ΩJ: ð28Þ

To proceed further we take the variation of Eq. (17) and
divide it by the form of the central charge to get

δC
C

¼ −
δG
G

þ ðD − 2Þ δl
l
: ð29Þ

Using the forms of the thermodynamic pressure (P) and
the cosmological constant (Λ), we obtain the form of δl

l as
follows
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δl
l
¼ −

δG
G

−
δP
2P

: ð30Þ

Using the above equation in Eq. (29), we obtain the
variation in G in terms of the variation of the central
charge and the thermodynamic pressure as follows

δG
G

¼ −
2

D
δC
C

−
D − 2

D
δP
P

: ð31Þ

Now by substituting Eqs. (26), (28), (31) in Eq. (25), we
obtain the following form of the modified first law:

δM ¼ κ

8πG
δAþΩδJ þΦδQ −

V
8πG

δΛþAδαþ 2ζ

DC
δC

þD − 2

D
ζ
δP
P

;

¼ TδSþΩδJ þΦδQþ
�
2ζ

DC
−
2ðTSþ PVÞ

DC

�
δC

þAδαþ
�
V þD − 2

DP
ζ −

D − 2

DP
ðTSþ PVÞ

�
δP;

ð32Þ

where we have made use of Eqs. (11), (13), (15), (31). We
can rewrite Eq. (32) as follows:

δM ¼ TδSþΩδJ þΦδQþAδαþ VCδPþ μCδC; ð33Þ

where VC and μC gives the effective thermodynamic
volume and chemical potential given by

VC ¼ V þD − 2

DP
ζ −

D − 2

DP
ðTSþ PVÞ; ð34Þ

μC ¼
2ζ

DC
−
2ðTSþ PVÞ

DC
: ð35Þ

We can see that the form of the first law of black hole
thermodynamics obtained in Eq. (33) contains contribu-
tions from the bulk and boundary variables. Therefore, we
call it a mixed form of the first law of thermodynamics for
a Gauss-Bonnet AdS black hole.

A. Extended black hole thermodynamics
and the Smarr relation

Using the extended first law of black thermodynamics
and the Smarr relation, we would now like to obtain the
analytical form of V in terms of the mass M of the black
hole, angular momentum J, total chargeQ of the black hole
and the Gauss-Bonnet parameter α. The extended first law
of black hole thermodynamics for a Gauss-Bonnet AdS
black hole is given by

δM ¼ TδSþΦδQþΩδJ þ VδPþAδα: ð36Þ

It is pretty straightforward to infer the following relations:

T ¼ δM
δS

; Φ ¼ δM
δQ

; V ¼ δM
δP

;

Ω ¼ δM
δJ

; A ¼ δM
δα

: ð37Þ

Here we have considered the black hole mass to be a
function of the entropy (S), angular momentum (J),
thermodynamic pressure (P), charge (Q), and the Gauss-
Bonnet parameter (α) [M ¼ MðS; J; P;Q; αÞ]. M; S; J;
P;Q; α have the following dimensions (in terms of L) in
generalized D-dimensions (with G being considered as a
dimensionless quantity):

½M� ¼ LD−3; ½S� ¼ LD−2; ½J� ¼ LD−2;

½P� ¼ L−2; ½Q� ¼ LD−3; ½α� ¼ L2: ð38Þ

Now making use of Euler’s theorem of quasihomogeneous
functions, we get the following relation

ðD − 3ÞM ¼ ðD − 2ÞS δM
δS

þ 2α
δM
δα

− 2P
δM
δP

þ ðD − 3ÞQ δM
δQ

þ ðD − 2ÞJ δM
δJ

: ð39Þ

Substituting the forms of the conjugate variables to S,Q, P,
J, α in Eq. (39), we get the desired Smarr relation as

ðD − 3ÞM ¼ ðD − 2ÞTSþ 2Aα − 2PV

þ ðD − 3ÞΦQþ ðD − 2ÞΩJ: ð40Þ

Rearranging the above equation, one can obtain the volume
of the black hole in terms of T; S; P;A; α; Q;M;Ω, and J as
follows

V ¼ D − 2

2P
TSþAα

P
þD − 3

2P
ΦQ −

D − 3

2P
M þD − 2

2P
ΩJ:

ð41Þ

Replacing the form of V from Eq. (41) in Eq. (34), we get

VC ¼
2M þ 4Γαþ ðD − 4ÞQΦ

2DP
: ð42Þ

VC is now the new thermodynamical volume for the Gauss-
Bonnet AdS black hole that depends on the Gauss-Bonnet
parameter α, which enters through the expression for V
obtained from the Smarr formula. This new definition of
the thermodynamic volume on account of modification to
the gravity theory should have effects on the phase structure
of the black holes. Black holes in extended phase space in
Gauss-Bonnet gravity are known to have Van der Waals gas
like behavior [23] and show critical behavior. Our next goal
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is to understand the effects on the critical behavior of the
black hole in this new setup of mixed first law and the
possible phase transition structure.

IV. PHASE TRANSITION STRUCTURE

In this section, we will try to investigate the phase
transition structure of the black hole. We shall be interested
in the dependence of the phase transition on parameter α.
The free energy of the black hole can be computed using
Eqs. (8) and (12) along with the entropy formula derived in
Eq. (10) as follows:

F¼M−TS;

¼ ðD− 2ÞωD−2

16πG

�
rD−1þ
l2

þ rD−3þ þα0rD−5þ þ q2

rD−3þ

�

−
ωD−2rD−3

16πGðr2þ þ 2α0Þ
�ðD− 4Þr2þ þ 2ðD− 2Þα0

ðD− 4Þr2þ

�

×

�ðD−1Þr4þ
l2

þðD− 3Þr2þ þðD− 5Þα0 − ðD− 3Þq2
r2D−8þ

�
:

ð43Þ

Specifically, for a five-dimensional AdS spacetime, the
form of free energy becomes

F5 ¼
3π

8G

�
r4þ
l2

þ r2þ þ α0 þ q2

r2þ

�
−

πðr2þ þ 6α0Þ
4Gðr2þ þ 2α0Þ

×

�
2r4þ
l2

þ r2þ −
q2

r2þ

�
: ð44Þ

Here, we can express the free energy as a function of T, P,
Q, C, and α. In Fig. (1), we have plotted the free energy (F)
with respect to the temperature (T) for different values of
the central charge (C) keeping Q, k, α, and P fixed. From
Fig. (1), we observe that above a certain critical value of the
central charge, the free energy curve attains a swallow-tail-
like structure with respect to change in the temperature T.
The behavior is similar to black holes in Einstein’s gravity
as discussed in [36,54]. In Fig. (1), we have used
Q ¼ 1.0l2

0, k ¼ 16π, Pl2
0 ¼ 15, α ¼ 0.001l2

0, and D ¼
5 for an arbitrary length scale l0. One crucial difference in
our analysis is that the critical central charge value is not
universal any more. This breaking of universality is
attributed to the Gauss-Bonnet term and higher dimensions
as discussed in the following section. Hence, from Fig. 1
we observe that, for AdS black holes in Gauss-Bonnet
gravity, there exists a critical value of the central charge for
fixed values of pressure and the Gauss-Bonnet parameter
above which there exists a small to large black hole phase
transition. For the next part of our analysis, we have
concentrated on the dependence of the critical value of
the central charge on the Gauss-Bonnet parameter α. We
have plotted free energy with respect to the temperature for

different values of the Gauss-Bonnet parameter α for a
fixed value of the central charge. From Fig. 2, we observe
that the presence of the parameter α shifts the critical point.
The values of the parameters used in Fig. 2 are
Q ¼ 1.0l2

0; k ¼ 16π; Pl2
0 ¼ 15; C ¼ 500l3

0, and D ¼ 5

for an arbitrary length scale l0. In Fig. 2, the decrease
in the Gauss-Bonnet parameter results in the increase of the

FIG. 1. Free energy versus temperature for different values of
the central charge:Q ¼ 1.0l2

0, k ¼ 16π, Pl2
0 ¼ 15, α ¼ 0.001l2

0,
and D ¼ 5.

FIG. 2. Free energy versus temperature for different values of
the Gauss-Bonnet parameter: Q ¼ 1.0l2

0, k ¼ 16π, Pl2
0 ¼ 15,

C ¼ 500l3
0, and D ¼ 5.
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critical temperature (Tc) values. Hence, the Gauss-Bonnet
parameter has a significant effect near the critical point.
In Fig. 3, we have plotted the free energy of the black

hole with respect to the temperature for different values of
the thermodynamic pressure. We have used Q ¼ 1.0l2

0,
k ¼ 16π, α ¼ 0.001l2

0, and C ¼ 300l3
0 as the values of the

other parameters. It is very important to observe that with
the increase in the thermodynamic pressure the phase
transition point shifts more to the higher temperature
region. Therefore, to obtain a phase transition behavior
in lower temperature region, one needs to lower the
thermodynamic pressure as well, which is proportional
to the negative value of the cosmological constant
[Eq. (11)]. This pressure dependence reaffirms the Van
der Waals gas like behavior. Till now we have exploited the
phase transition behavior in five-dimensional spacetime
only. Since, our analysis is done in general D-spacetime
dimensions, we are in a position to analyze the phase
transition behavior for different values of D. Figures 4–6
show the behavior of free energy with the Hawking
temperature of the black hole for D ¼ 5, 6, 7. In these
three figures we have plotted the free energy behavior with
respect to the temperature around the critical value of the
central charge in different dimension. It is very important to
observe that the critical behavior is attained at higher values
of the temperature when in higher dimensions.
It is important to note that our finding here is very similar

to what we obtained in our earlier work [37]. We also
observe some differences within the results as well. There
we observed that for a Born-Infeld AdS black hole in four
spacetime dimensions, a no-black hole region below a
critical temperature with a sufficiently small value of the

Born-Infeld parameter in the case of the free energy versus
temperature plot. Here, in the case of Gauss-Bonnet gravity
in five spacetime dimensions, we observe no such region
even with the increase in the Gauss-Bonnet parameter α.
We would like to make another comment. The phase

transition structure that we observe here is very similar to
that obtained in [23]. However, the structure found here

FIG. 3. Free energy versus temperature for different values of
pressure: Q ¼ 1.0l2

0, k ¼ 16π, α ¼ 0.001l2
0, C ¼ 300l3

0,
and D ¼ 5.

FIG. 4. Free energy versus temperature in five spacetime
dimensions: Q ¼ 1.0l2

0, k ¼ 16π, α ¼ 0.001l2
0, C ¼ 300l3

0,
and D ¼ 5.

FIG. 5. Free energy versus temperature in six spacetime
dimensions: Q ¼ 1.0l3

0, k ¼ 16π, α ¼ 0.001l2
0, C ¼ 450l4

0,
and D ¼ 6.
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differs from that in [23] due to the involvement of the
central charge in the first law of black hole thermodynam-
ics, also referred to as the mixed first law. The phasespace is
even more extended now, and the critical point of phase
transition involves an additional parameter Cc (critical
central charge) along with pressure, volume, and temper-
ature. The qualitative behavior of the black hole phase
transition is still the same as the Van der Waals fluid. The
role of the central charge is to shift the phase transition
point that in principle can be a detectable signature.

V. BREAKING OF THE UNIVERSAL
NATURE OF THE CENTRAL CHARGE

We shall calculate the critical value of the central charge
forD ¼ 5 spacetime dimensions. In order to find this value,
we will use the following two equations [36]:

∂T5

∂rþ
¼ 0; ð45Þ

∂
2T5

∂r2þ
¼ 0: ð46Þ

Using Eq. (9) in the above two equations, we get

2r8þðcÞ þ ð12α0 − l2cÞr6þðcÞ þ 2l2cα0r4þðcÞ þ 5l2cq2r2þðcÞ

þ 6l2cq2α0 ¼ 0 ð47Þ

and

ðl2c − 4α0Þr8þðcÞ þ ð24α02 − 6α0l2cÞr6þðcÞ − 15q2l2cr4þðcÞ

− 34α0q2l2cr2þðcÞ − 24α02q2l2c ¼ 0: ð48Þ

Here, c in the subscript of rþðcÞ and lc is denoting the
critical value of these parameters. These two equations are
difficult to solve exactly; however, we are interested in the
qualitative behavior of the solution in order to understand
the universal behavior of central charge and its dependence
on the parameter α. Hence, we solve these to first order in α0
perturbatively. We take a solution of the form

rþðcÞ ≅ rð0ÞþðcÞ þ α0rð1ÞþðcÞ; lc ≅ lð0Þc þ α0lð1Þc : ð49Þ

Putting these back in Eqs. (47) and (48), we determine the

forms of rð0ÞþðcÞ and lð0Þc to be

rð0ÞþðcÞ ¼ 151=4
ffiffiffi
q

p
; lð0Þc ¼ 33=451=4

ffiffiffi
q

p
: ð50Þ

Using the values of rð0ÞþðcÞ and l
ð0Þ
c from Eq. (50) in Eqs. (45),

(46) and solving it perturbatively up to OðαÞ, one can

obtain the forms of rð1ÞþðcÞ and lð1Þc as follows:

rð1ÞþðcÞ ¼
3
3
44

5
5
4
ffiffiffi
q

p ; lð1Þc ¼ 3
1
424

5
5
4
ffiffiffi
q

p : ð51Þ

The value of the parameter q in terms of net electric charge
on the black hole is given by Eq. (6), which for a five-
dimensional AdS spacetime reduces to the following form:

q ¼ 2

ffiffiffiffi
G

p
Qffiffiffi

3
p

π
: ð52Þ

Using the form of q from Eq. (52) and the parameter α0 in
terms of α in D ¼ 5, we obtain the critical values of rþ and
l as follows:

rþðcÞ ¼ 5
1
4

ffiffiffi
2

π

r ffiffiffiffi
Q

p
G

1
4 þ 12α

ffiffiffiffiffiffi
2π

p

5
5
4

ffiffiffiffi
Q

p
G

1
4

; ð53Þ

lc ¼ 5
1
4

ffiffiffi
6

π

r ffiffiffiffi
Q

p
G

1
4 þ 24

ffiffiffiffiffiffi
6π

p
α

5
5
4

ffiffiffiffi
Q

p
G

1
4

: ð54Þ

Putting the values of rþðcÞ and lc in Eq. (9), we can obtain
the critical value of the temperature up to OðαÞ. However,
the most important result is the value of the critical central
charge which can be obtained using the form of lc from
Eq. (54) in Eq. (17) forD ¼ 5. Up toOðαÞ, the value of the
central critical charge becomes

FIG. 6. Free energy versus temperature in seven spacetime
dimensions: Q ¼ 1.0l4

0, k ¼ 16π, α ¼ 0.001l2
0, C ¼ 600l5

0,
and D ¼ 7.
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Cc ¼ k
l3c

16πG

⇒Cc ≅ k
lð0Þ

3

c þ3α0lð1Þc

16πG
¼ k

3
3
25

3
4Q

3
2

ð2πÞ52G1
4

þαk
27

ffiffiffi
6

p ffiffiffiffi
Q

p

5
3
4G

3
4π

3
2

: ð55Þ

It is quite clear from Eq. (55) that unlike the expression of
critical central charge in [36], which just depends on charge
Q, this has dependence on G and the Gauss-Bonnet
parameter α. Hence, the universal nature of the central
charge at critical point breaks. This is an important finding
in this paper.
An important remark about the critical central charge in

higher dimensions in general relativity is made in [36]. It
was speculated that the universality of central critical
charge breaks in higher dimensions. Here, we are in a
position to check this fact. In the limit α → 0, Cc becomes
(in D ¼ 5 spacetime dimensions)

Cc ¼ k
lð0Þ

3

c

16πG
: ð56Þ

Using Eqs. (50) and (52) in the above equation, we get

Cc ¼ k
3
3
25

3
4Q

3
2

ð2πÞ52G1
4

: ð57Þ

It gives the form of the critical charge in terms of Q and G
which manifests the speculation made in [36] about break-
ing of the central charge criticality in higher dimensions
due the presence of G besides Q.
Thus, the result in Eq. (55) manifests that central charge

criticality breaks in Gauss-Bonnet gravity. Also, in the limit
(α → 0) we get the behavior of central charge near the
critical point in Einstein’s gravity in spacetime dimension
five. Universal nature of the critical central charge is seen to
break here as well Eq. (57). In the Appendix, we investigate
whether the universality of the critical central charge
remains in dimensions greater than four or not.
If we compare this result with the Born-Infeld case [37],

then we observe that the universal nature of the central
charge broke there only due to the inclusion of the Born-
Infeld parameter. Here, in case of five-dimensional Gauss-
Bonnet gravity even without the Gauss-Bonnet parameter
the central charge has no universal behavior. Hence, the
universal nature of the critical value of the central charge
seems to be a special feature of Einstein-Hilbert action with
Maxwell fields and cosmological constant in (3þ 1)-
spacetime dimensions as it has been shown to break in
higher dimensions and also with nonlinear gauge fields and
higher curvature terms.

VI. CONCLUSION

In this work we have investigated the thermodynamics of
a Gauss-Bonnet AdS black holes in general D dimensions.

In our analysis we have varied the Newton’s gravitational
constant, AdS radius, and the Gauss-Bonnet parameter. Our
central analysis involves the derivation of the mixed first
law of black hole thermodynamics involving thermody-
namic variables from both the boundary and the bulk. As
an additional input we have considered the Gauss-Bonnet
parameter as a thermodynamic variable as well. Being a
dimensionful variable we have considered the Gauss-
Bonnet parameter while writing the modified Smarr rela-
tion and as a result the Gauss-Bonnet parameter appeared in
the analytical form of the modified thermodynamical
variables VC and μC. Due to this modification the central
charge has a direct dependence on the Gauss-Bonnet
parameter. It is very important to observe that in D ¼ 5
spacetime dimensions the critical value of the central
charge is no more universal even for a vanishing value
of the Gauss-Bonnet parameter. Hence, we can conclude
that the universality of the critical value of the central
charge is an unique property of the D ¼ 4 spacetime
dimensions [36]. This is one of the most important results
in our paper. Next we have plotted the free energy vs
temperature for a fixed value of the thermodynamical
pressure. We observe that due to the inclusion of the
Gauss-Bonnet parameter, the phase transition structure
undergoes crucial change. Free energy analysis is done
for D ¼ 5 since the Gauss-Bonnet gravity has nontrivial
contribution only in dimensions D ≥ 5. It implies that the
inclusion of the Gauss-Bonnet term results in some
significant change in the overall free energy behavior of
the black hole with respect to the change in the Hawking
temperature.

APPENDIX: BREAKING OF THE UNIVERSAL
NATURE OF CRITICAL CENTRAL CHARGE IN

DIMENSIONS GREATER THAN FOUR

The Hawking temperature in general D-dimensional
Einstein gravity can be obtained from Eq. (8) in the limit
α → 0 and reads

T ¼ 1

4π

�ðD − 1Þrþ
l2

þ ðD − 3Þ
rþ

−
ðD − 3Þq2
r2D−5þ

�
: ðA1Þ

The critical point of the phase transition corresponds to
the point given by

∂T
∂rþ

¼ ∂
2T
∂r2þ

¼ 0: ðA2Þ

Solving the above equations, we get

rc ¼ ½ð2D − 5ÞðD − 2Þq2�1=ð2D−6Þ ðA3Þ

and
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lc ¼ hðDÞq1=ðD−3Þ ðA4Þ
where

hðDÞ ¼ ðD − 1Þ1=2ð2D − 5Þ1=2ðD−3ÞðD − 2ÞðD−2Þ=2ðD−3Þ

ðD − 3Þ :

ðA5Þ
Substituting the value of lc in Eq. (17) and using Eq. (6), we
get the critical central charge of the form

Cc ¼ κ
gðDÞGðD−2Þ=2ðD−3ÞQðD−2Þ=ðD−3Þ

16πG
: ðA6Þ

Here, the dimension dependent factor is given by

gðDÞ ¼ hD−2
�

8π

ωD−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðD − 2ÞðD − 3Þp

�ðD−2Þ
ðD−3Þ

: ðA7Þ

Equation (A6) is G independent only for dimensions
D ¼ 4. Hence, the universal nature of the critical central
charge is a feature of 4D-Einstein gravity and breaks for
dimensions greater than four.
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(2008).
[7] J. D. Bekenstein, Lett. Nuovo Cimento 4, 737 (1972).
[8] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
[9] S. W. Hawking, Nature (London) 248, 30 (1974).

[10] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).
[11] S. W. Hawking, Phys. Rev. D 13, 191 (1976).
[12] D. Kastor, S. Ray, and J. Traschen, Classical Quantum

Gravity 26, 195011 (2009).
[13] M.M. Caldarelli, G. Cognola, and D. Klemm, Classical

Quantum Gravity 17, 399 (2000).
[14] B. P. Dolan, Classical Quantum Gravity 28, 125020

(2011).
[15] B. P. Dolan, Classical Quantum Gravity 28, 235017 (2011).
[16] B. P. Dolan, Phys. Rev. D 84, 127503 (2011).
[17] M. Cvetič, G. Gibbons, D. Kubizňák, and C. Pope, Phys.

Rev. D 84, 024037 (2011).
[18] H. Lü, Yi Pang, C. N. Pope, and J. F. Vázquez-Poritz, Phys.

Rev. D 86, 044011 (2012).
[19] D. Kubizňák, R. B. Mann, and M. Teo, Classical Quantum

Gravity 34, 063001 (2017).
[20] D. Kubizňák and R. B. Mann, Can. J. Phys. 93, 999

(2014).
[21] B. P. Dolan, Open Questions in Cosmology (IntechOpen,

2012), 10.5772/52455.
[22] D. Kubizňák and R. B. Mann, J. High Energy Phys. 12

(2012) 33.
[23] R. G. Cai, L. M. Cao, L. Li, and R. Q. Yang, J. High Energy

Phys. 09 (2013) 005.
[24] S. Gunasekaran, D. Kubiznak, and R. B. Mann, J. High

Energy Phys. 11 (2012) 110.
[25] Jie-Xiong Mo, Gu-Qiang Li, Shan-Quan Lan, and Xiao-Bao

Xu, Phys. Rev. D 98, 124032 (2018).

[26] A. Anabalón, F. Gray, R. Gregory, D. Kubizňák, and R. B.
Mann, J. High Energy Phys. 04 (2019) 96.

[27] Yan-Gang Miao and Zhen-Ming Xu, Phys. Rev. D 98,
08405 (2018).

[28] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
[29] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys.

Lett. B 428, 105 (1998).
[30] Jens L. Petersen, Int. J. Mod. Phys. A 14, 3597 (1999).
[31] E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998).
[32] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Phys. Rev.

Lett. 101, 031601 (2008).
[33] C. V. Johnson, Classical Quantum Gravity 31, 205002

(2014).
[34] A. Karch and B. Robinson, J. High Energy Phys. 12 (2015)

073.
[35] M. R. Visser, Phys. Rev. D 105, 106014 (2022).
[36] W. Cong, D. Kubiznak, and R. B. Mann, Phys. Rev. Lett.

127, 091301 (2021).
[37] N. Kumar, S. Sen, and S. Gangopadhyay, Phys. Rev. D 106,

026005 (2022).
[38] M. Born and L. Infeld, Proc. R. Soc. A 144, 425 (1934).
[39] D. L. Wiltshire, Phys. Lett. 169B, 36 (1986).
[40] L. Smarr, Phys. Rev. Lett. 30, 521 (1973).
[41] D. Kastor, S. Ray, and J. Traschen, Classical Quantum

Gravity 27, 235014 (2010).
[42] R. C. Myers and J. Z. Simon, Phys. Rev. D 38, 2434

(1988).
[43] Rong-Gen Cai, Phys. Rev. D 65, 084014 (2002).
[44] N.Kumar and S. Gangopadhyay, Gen. Relativ. Gravit. 53,

35 (2021).
[45] T. Clunan, S. F. Ross, and D. J. Smith, Classical Quantum

Gravity 21, 3447 (2004).
[46] W. Xu, H. Xu, and L. Zhao, Eur. Phys. J. C 74, 2970

(2014).
[47] B. P. Dolan, J. High Energy Phys. 10 (2014) 179.
[48] D. Kastor, S. Ray, and J. Traschen, J. High Energy Phys. 11

(2014) 120.
[49] J.-L. Zhang, R.-G. Cai, and H. Yu, J. High Energy Phys. 02

(2015) 143.

KUMAR, SEN, and GANGOPADHYAY PHYS. REV. D 107, 046005 (2023)

046005-10

https://doi.org/10.1103/PhysRev.164.1776
https://doi.org/10.1007/BF01645859
https://doi.org/10.1007/BF00758075
https://doi.org/10.1103/PhysRevLett.26.331
https://doi.org/10.1103/PhysRevLett.34.905
https://doi.org/10.1007/BF02757029
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1038/248030a0
https://doi.org/10.1007/BF02345020
https://doi.org/10.1103/PhysRevD.13.191
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/17/2/310
https://doi.org/10.1088/0264-9381/17/2/310
https://doi.org/10.1088/0264-9381/28/12/125020
https://doi.org/10.1088/0264-9381/28/12/125020
https://doi.org/10.1088/0264-9381/28/23/235017
https://doi.org/10.1103/PhysRevD.84.127503
https://doi.org/10.1103/PhysRevD.84.024037
https://doi.org/10.1103/PhysRevD.84.024037
https://doi.org/10.1103/PhysRevD.86.044011
https://doi.org/10.1103/PhysRevD.86.044011
https://doi.org/10.1088/1361-6382/aa5c69
https://doi.org/10.1088/1361-6382/aa5c69
https://doi.org/10.1139/cjp-2014-0465
https://doi.org/10.1139/cjp-2014-0465
https://doi.org/10.5772/52455
https://doi.org/10.1007/JHEP12(2012)033
https://doi.org/10.1007/JHEP12(2012)033
https://doi.org/10.1007/JHEP09(2013)005
https://doi.org/10.1007/JHEP09(2013)005
https://doi.org/10.1007/JHEP11(2012)110
https://doi.org/10.1007/JHEP11(2012)110
https://doi.org/10.1103/PhysRevD.98.124032
https://doi.org/10.1007/JHEP04(2019)096
https://doi.org/10.1103/PhysRevD.98.084051
https://doi.org/10.1103/PhysRevD.98.084051
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1142/S0217751X99001676
https://doi.org/10.4310/ATMP.1998.v2.n3.a3
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1088/0264-9381/31/20/205002
https://doi.org/10.1088/0264-9381/31/20/205002
https://doi.org/10.1007/JHEP12(2015)073
https://doi.org/10.1007/JHEP12(2015)073
https://doi.org/10.1103/PhysRevD.105.106014
https://doi.org/10.1103/PhysRevLett.127.091301
https://doi.org/10.1103/PhysRevLett.127.091301
https://doi.org/10.1103/PhysRevD.106.026005
https://doi.org/10.1103/PhysRevD.106.026005
https://doi.org/10.1098/rspa.1934.0059
https://doi.org/10.1016/0370-2693(86)90681-7
https://doi.org/10.1103/PhysRevLett.30.521
https://doi.org/10.1088/0264-9381/27/23/235014
https://doi.org/10.1088/0264-9381/27/23/235014
https://doi.org/10.1103/PhysRevD.38.2434
https://doi.org/10.1103/PhysRevD.38.2434
https://doi.org/10.1103/PhysRevD.65.084014
https://doi.org/10.1007/s10714-021-02808-0
https://doi.org/10.1007/s10714-021-02808-0
https://doi.org/10.1088/0264-9381/21/14/009
https://doi.org/10.1088/0264-9381/21/14/009
https://doi.org/10.1140/epjc/s10052-014-2970-8
https://doi.org/10.1140/epjc/s10052-014-2970-8
https://doi.org/10.1007/JHEP10(2014)179
https://doi.org/10.1007/JHEP11(2014)120
https://doi.org/10.1007/JHEP11(2014)120
https://doi.org/10.1007/JHEP02(2015)143
https://doi.org/10.1007/JHEP02(2015)143


[50] J.-L. Zhang, R.-G. Cai, and H. Yu, Phys. Rev. D 91, 044028
(2015).

[51] B. P. Dolan, Entropy 18, 169 (2016).
[52] F. McCarthy, D. Kubizňák, and R. B. Mann, J. High Energy

Phys. 11 (2017) 165.

[53] C. V. Johnson, V. L. Martin, and A. Svesko, Phys. Rev. D
101, 086006 (2020).

[54] W. Cong, D. Kubizňák, R. B. Mann, and M. R. Visser,
J. High Energy Phys. 08 (2022) 174.

BREAKING OF THE UNIVERSAL NATURE OF THE CENTRAL … PHYS. REV. D 107, 046005 (2023)

046005-11

https://doi.org/10.1103/PhysRevD.91.044028
https://doi.org/10.1103/PhysRevD.91.044028
https://doi.org/10.3390/e18050169
https://doi.org/10.1007/JHEP11(2017)165
https://doi.org/10.1007/JHEP11(2017)165
https://doi.org/10.1103/PhysRevD.101.086006
https://doi.org/10.1103/PhysRevD.101.086006
https://doi.org/10.1007/JHEP08(2022)174

