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Numerical methods in spin-foam models have significantly advanced in the last few years, yet
challenges remain in efficiently extracting results for amplitudes with many quantum degrees of freedom.
In this paper we sketch a proposal for a “hybrid algorithm” that would use both the full quantum
amplitude and its asymptotic approximation in the relevant regimes. As a first step toward the algorithm,
we derive a new representation of the partition function where each spin-foam vertex possesses its
own coherent data, such that it can be individually asymptotically approximated. We do this through
the implementation of gluing constraints between vertices, which we study numerically. We further
derive an asymptotic expression for the constraints for arbitrary boundary data, including data for which
there are no critical points. From this new representation we conjecture an intermediate quasigeometric
spin-foam regime describing a superposition of semiclassical vertices glued in a nonmatching way via the
gluing constraints.

DOI: 10.1103/PhysRevD.107.046002

I. INTRODUCTION

Among the multitude of existing approaches to the
problem that is constructing a quantum theory of gravity,
spin-foam models [1,2] stand out as a nonperturbative and
background independent path integral formulation closely
related to canonical loop quantum gravity [3,4]. Over recent
years the field has seen a resurgence in interest particularly
directed toward the numerical aspects of its models [5–13],
having as main motivation the need to elevate the abstract
theory to a computationally viable framework capable of
making consistent and physically meaningful predictions.
This objective is substantially more challenging than one
might expect at first sight, and the difficulty is rooted in the
intrinsic computational complexity of the spin-foam state-
sum. The present work intends to contribute to the effort of
making spin-foams computationally more viable in different
regimes of the models.
As previously mentioned, spin-foam models constitute a

class of theories for quantum gravity based on a path-
integral approach. While the different theories differ in a
number of key technical aspects [1], they all share a number
of common features: spin-foams are formulated over a
2-dimensional cell-complex (thought of as a dual object to
discrete space-time), to which one assigns group-theoretic
data, usually related to unitary and irreducible representa-
tions of the symmetry group of the underlying classical

gravity theory. The cell complex is commonly taken to be
the Poincaré dual of a triangulation of the classical
spacetime manifold, but generalizations to other types of
cell-complexes exist [14]. One can then assign a state-sum
to this combinatorial and group-theoretic construction, and
that state-sum defines the spin-foam amplitude character-
izing the system.
Currently, one of the most studied and best understood 4d

spin-foam model is perhaps the Engle-Pereira-Rovelli-
Livine/Freidel-Krasnov (EPRL/FK) simplicial model
[15–18], both in Euclidean and Lorentzian signatures. Its
particularity resides in the type of group-theoretic data
assigned to the cell-complex, which forms a subset of
unitary irreducible representations of either Spin(4) or
SLð2;CÞ, respectively, obtained via the so-called “simplic-
ity constraints.” Heuristically, in the Lorentzian case these
constraints are imposed by choosing a timelike normal for
each tetrahedron, rendering it spacelike, which singles out a
subgroup isomorphic to SU(2). This construction has the
additional advantage of recovering, at the boundary of
the spin-foam, similar states to the ones characterizing
the kinematical Hilbert space of loop quantum gravity.
The fundamental amplitudes of the EPRL/FK model,

and in particular the vertex amplitude assigned to a dual
4-simplex, is well understood in different regimes. In the
case of small representation labels, which we frequently
refer to as the deep quantum regime, this amplitude is
generically defined as a contraction of invariant tensors, i.e.,
intertwiners, which can only be efficiently computed
numerically. There has recently been a concentrated effort

*seth.asante@uni-jena.de
†j.d.simao@uni-jena.de
‡sebastian.steinhaus@uni-jena.de

PHYSICAL REVIEW D 107, 046002 (2023)

2470-0010=2023=107(4)=046002(27) 046002-1 © 2023 American Physical Society

https://orcid.org/0000-0003-4383-2168
https://orcid.org/0000-0003-0224-2188
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.046002&domain=pdf&date_stamp=2023-02-09
https://doi.org/10.1103/PhysRevD.107.046002
https://doi.org/10.1103/PhysRevD.107.046002
https://doi.org/10.1103/PhysRevD.107.046002
https://doi.org/10.1103/PhysRevD.107.046002


to systematically improve and optimize such numerical
algorithms [5], with a main focus on the Lorentzian
SLð2;CÞ EPRL model [6,7,19]. These developments cul-
minated in the creation of the efficient sl2cfoam-next
package [7], which, e.g., unlocked GPUs as computa-
tional resources, allowed for a comparison of the full vertex
amplitude with its asymptotic formula [5–7] and facilitated
numerical studies of 2-complexes with multiple simplices,
further clarifying the so-called “flatness problem” [20].
In addition to these numerical studies, our understanding

of the spin-foam vertex amplitude is complemented ana-
lytically through an asymptotic approximation for suffi-
ciently large spins. It was shown for a multitude of different
spin-foam models and space-time signatures that the vertex
amplitude possesses critical points, expressed in terms of
coherent boundary data, which dominate in the limit of large
representations [21–30]. Among other cases, these critical
points correspond to geometric 4-simplices, for which the
amplitude oscillates with a Regge-type action—a discrete
action of general relativity [31]. This robust result is a strong
indication that (discrete) gravity might be recovered from
spin-foams in an appropriate limit, and it crucially provides
a much more tractable analytical expression for the vertex
amplitude. These results were used in different contexts,
e.g., 2-complexes with multiple simplices, where all vari-
ables of the spin-foam—including bulk representations—
were treated using asymptotic expansions [32,33]. This
regime is considered to be semiclassical as it is dominated
by the solutions to the critical point equations of all
variables, up to small deviations away from these points.1

At this stage it is not clear how wide the gap is between
the quantum regime and the semiclassical one beyond
a single vertex amplitude, i.e., when it is that the
semiclassical regime becomes a valid approximation for
large 2-complexes. A few years ago, effective spin-foam
models [8,34–37] were proposed in the hope that they
could serve as a tool that would help bridge that gap. The
key idea is to consider each vertex as semiclassical, taking
the shape of a 4-simplex. Since spin-foams are defined with
area degrees of freedom and not edge lengths, neighboring
4-simplices might not glue properly along tetrahedra, which
is understood as a consequence of metric discontinuities or
torsion [37,38]. Shape matching is enforced weakly by so-
called gluing constraints, assumed to be Gaussians peaked
on equal shape of tetrahedra formulated in terms of dihedral
angles, ultimately deriving from to theweak implementation
of simplicity constraints. The authors of such models
studied triangulations of several simplices and identified
regimes in which they recover the classical solution of
(length) Regge calculus [34].

This paper concerns itself with probing the intermediate
regime between the full spin-foam quantum amplitude and
the semiclassical one, with a special focus on SU(2) BF
theory and on the Lorentzian EPRL/FK model. We term
this interpolating regime quasigeometric (in contrast with
the quantum pregeometric and the semiclassical geometric
regimes), since it is dominated not only by critical points,
but also by neighborhoods of those points—where the
usual geometric interpretation does not strictly apply. We
shall provide throughout the paper numerical evidence
supporting the existence and importance of this domain.
Having argued for the relevance of the quasigeometric

regime, the problem arises of how to correctly take it into
account when performing spin-foam calculations. To this
end we sketch a proposal for a hybrid algorithm which,
when evaluating spin-foam amplitudes, would use the full
quantum amplitude at sufficiently small spins, and tran-
sition to an asymptotic approximation at larger spins
whenever possible. In order to make use of the usual
single-vertex asymptotic amplitude in the context of a
general 2-complex, we moreover restructure the spin-foam
partition function via the inclusion of gluing constraints,
analogous objects to their aforementioned namesakes
from effective spin-foams; such constraints benefit the
analysis by disentangling the boundary data of each
individual vertex.
The main focus of this article, as a first step toward the

eventual construction of the hybrid algorithm, is the study
of the gluing constraints we introduce. Our analysis is both
numerical and analytical: we provide a numerical charac-
terization of the gluing constraints for both the Lorentzian
EPRL/FK and SU(2) BF models, and, in order to under-
stand the structure of the constraints, we extend the usual
methods of asymptotic analysis of spin-foams to provide
also an asymptotic expression of the gluing constraints
away from the critical points—thus obtaining a function of
general boundary data. We conjecture that such an analysis
can perhaps be extended to the vertex amplitude itself, and
we leave the study of this possibility for the future.
The text is organized as follows: in Sec. II we begin with

a brief introduction of spin-foam models and discuss the
coherent state representation of their partition function.
From its structure we argue that the amplitude is not
immediately suitable for efficient numerical methods and
we propose to slightly rearrange it, explaining the notion of
gluing constraints and sketching the idea of the hybrid
algorithm. We define the gluing constraints for SU(2) BF
theory and for the Euclidean and Lorentzian EPRL models
in Sec. III. In Sec. IV we compute their asymptotic
expansion on and away from critical points, which we
compare to the full numerical results in Sec. V. We close
with a general discussion in Sec. VI. Technical details and
conventions, like the parametrization of Euclidean tetra-
hedra in terms of areas and angles, are relegated to the
appendix.

1Such deviations have been called complex critical points in
some of the literature [10].
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II. SPIN-FOAMS IN A NUTSHELL: COHERENT
STATE REPRESENTATION AND A HYBRID

ALGORITHM

In the following we give a broad and rather conceptual
overview of spin-foam models [1] in a model-agnostic
manner, as we will consider different theories throughout
this paper. Spin-foam models define a transition amplitude
for gravity using representation labels of a gauge group G,
which color a 2-dimensional cell-complex Δ� dual to a
triangulation Δ of the underlying space-time manifold M.
See Table I for a dictionary between the 2-complex and its
dual triangulation. In four dimensions one assigns to every
face dual to a triangle a label χt of the unitary irreducible
representation Dχt of G. One also considers holonomies
from one vertex to another via assignments of group
elements gτ ∈ G to edges dual to tetrahedra. Each of these
edges is shared by four faces, corresponding to the four
triangles of a tetrahedron in Δ. Therefore each edge inΔ� is
associated with a tensor product of four representation
spaces on which the single holonomy gτ acts. Since we are
considering a path integral, we integrate over all possible
holonomies per edge, such that to each edge the following
object is assigned:

Pfχtg ¼
Z
G
dμðgτÞ⊗

4

t¼1

DχtðgτÞ: ð2:1Þ

Here dμðgτÞ denotes the Haar measure of G. The map P
constitutes a projector onto the gauge-invariant subspace of
the tensor product of representation spaces. We represent
this object pictorially by four wires and a box over the
wires: the wires stand for group representations, while the

box denotes the group integration, as in the diagram .

The explicit form of these projectors differs depending on
the model in question.
At the vertices of the spin-foam, which are dual to

4-simplices, five edges meet. When represented pictorially
as wires, we connect up the wires at the vertex according to
the same combinatorial structure of tetrahedra at the
boundary of a 4-simplex; wires corresponding to the same
triangle get connected. Here connecting means identifica-
tion and summation over indices of representation spaces.
The group integrations associated to edges of Δ� can be
explicitly performed, giving rise to a sum over orthonormal
invariant tensors and their duals, the intertwiners ιτ, which
are then split and associated to the vertices. Hence, for a

given choice of representations and intertwiner labels, we
assign a particular contraction of intertwiners to a vertex,
resulting in a vertex amplitude. In the intertwiner basis,
frequently called the spin-network basis, the partition
function is then given by

Z ¼
X

fχtg;fιτg

Y
t

dχt
Y
σ

Aσ; ð2:2Þ

where Aσ denotes the vertex amplitude dual to the simplex
σ and dχt denotes the dimension of the representation χt
(or some appropriate notion of dimension in case the
representation space is infinite-dimensional).

A. Coherent state representation

Instead of performing the integration over group ele-
ments explicitly and using the thus obtained intertwiners to
split the partition function into local vertex amplitudes, one
may also parametrize the amplitude in a different manner
by inserting resolutions of identity in the middle of wires
connecting different vertices. A specially useful basis for
these identities is the coherent state one, which, for the class
of spin-foam models considered here, is constructed via
SU(2) states. In the vector space Hj associated to the
unitary and irreducible representation of SU(2), one has the
relation

ð2:3Þ

where dj ¼ 2jþ 1 is the dimension of Hj and jj; hi are
coherent states, i.e., states of the form

ð2:4Þ

It is common to take the reference state jrefji to be either a
maximal weight state jj; ji or a lowest one jj;−ji, though
the identity holds generally. Although such coherent states
form a basis only of the representation spaces of SU(2),
they turn out to induce bases for all spaces relevant for the
spin-foam models studied in this article, where the gauge
group is either SLð2;CÞ or SU(2). The construction for the
special linear group is reviewed in Sec. III C.
Choosing to expand the spin-foam amplitudes in terms of

SU(2) coherent states, the partition function generally reads

Z ¼
X
fχtg

Z Y
t

Y
t;τ

dχtdht;τ
Y
σ

Aσ; ð2:5Þ

where there is a coherent state label per pair of triangle t and
tetrahedron τ. The coherent vertex amplitude Aσ is in turn
given by

TABLE I. Cells of a 2-complex Δ� dual to a triangulation Δ.

2-complex Δ� Triangulation Δ

Vertex v Simplex σ
Edge e Tetrahedron τ
Face f Triangle t
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ð2:6Þ

On the right-hand side stands the standard graphical
representation (ignoring orientations) of the coherent vertex
amplitude. The lines with dots at the ends represent inner
products of coherent states connecting different faces. Solid
rectangles represent group integrations over the group
representations, as mentioned previously. We remind the
reader that the above expression is only schematic, as a
number of technical details must be observed depending on
the model at hand (e.g., one needs to regulate the SLð2;CÞ
model by removing one of the group integrations).
The coherent state parametrization is useful for studying

the asymptotics of vertex amplitudes [23–25,27–29,39],
often also referred to as the semiclassical limit or “large j/
large representation limit”. There one considers the partition
function (2.5) for a single vertex and fixed boundary and
computes the stationary phase approximation of the integral
over (several copies of) the group G. To this end the inner
product of coherent states is exponentiated to an action,
whose critical and stationary points dominate if all repre-
sentations χt are large. It is a robust and frequently derived
result that these critical points correspond to the boundary
data of geometric 4-simplices (among other solutions
called vector geometries [5,24]), where the associated
vertex amplitude oscillates with the Regge action of this
4-simplex [31]. This is an encouraging finding and an
indication that continuum gravity might be recovered from
spin-foams in a suitable limit.
We now comment on the practical matter of evaluating

the coherent amplitude for multiple vertices. Each inte-
gration over the coherent state variables dht in the partition
function (2.5) is performed over a pair of vertex ampli-
tudes, since for two vertices σ; σ0 sharing a common edge τ
both vertex amplitudes Aσ and Aσ0 carry the same label ht;τ.
Computing these integrals is challenging for two reasons:
the primary reason are the integrals themselves, which are
multidimensional and highly oscillatory, in particular for
large representations; for SU(2) the labels hτ are normal-
ized vectors h⃗ ∈ S2 [40], and hence there is an eight-
dimensional integral per bulk edge. Clearly this gets
quickly overwhelming. The second reason has to do with
the nonlocality of coherent data integrations, which makes
it difficult to study the asymptotic regime of the full spin-
foam amplitude for more than one vertex. As an example,
consider an equilateral vertex amplitude, i.e., all the spins
are equal. One dominant contribution is an Euclidean
equilateral 4-simplex [5], whose five tetrahedra are also

equilateral. Consider gluing this vertex to another vertex,
whose remaining representations are not the same, poten-
tially giving rise to a critical point in which the shared
tetrahedron is not equilateral. In the coherent state repre-
sentation the coherent data of glued vertex amplitudes
must be equal, such that the dominant contribution from
the integral over coherent data is determined by the overlap
of both vertex amplitudes. This contribution might well
come from a configuration which agrees with neither
critical point of the vertex amplitudes. While accounting
for this is not impossible, it requires one to compute the
overlap of glued coherent vertex amplitudes, which in turn
must be known sufficiently away from their critical points,
and to repeat this procedure for all remaining neighboring
vertex amplitudes—but, as far as we are aware, a general
asymptotic formula for the coherent vertex amplitude away
from its critical points is currently not known. One could
alternatively study the asymptotic amplitude of the full
2-complex, but this is only possible in a case-by-case basis.
On the other hand, the insights from the asymptotic
analysis of single vertex amplitudes, i.e., the dominance
of critical points, suggest that it should be possible to
optimize these integrations, e.g., identify regions of coher-
ent data that more significantly contribute. In this article
we present a proposal for such a method, which might
eventually lead to an efficient numerical hybrid algorithm.
We discuss its idea in the following.

B. Idea of a hybrid algorithm

To disentangle the coherent data of neighboring vertices,
we adopt the concept of gluing constraints from effective
spin-foam models [8,34–36], and rewrite the partition
function of the model in terms of such constraints.
Starting from the coherent state representation, we again
insert a resolution of identity on each edge. This procedure
doubles the coherent data (and integrations) per edge, such
that each vertex amplitude carries its own set of data nτ. In
this manner every pair of vertices in the bulk is connected
by an object which encodes how well their respective
boundary data fit together: the gluing constraints. Such a
pair of vertices would then schematically take the form

ð2:7Þ
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with the middle diagram representing the constraints. In
Sec. III we will clarify the diagram above by explicitly
defining different variants of these constraints, specifically
gauge-variant and gauge-invariant types (equivalent at the
level of the partition function), for different symmetry
groups and spin-foam models. The doubling of coherent
data per edge (together with the associated integrals) might
appear counterproductive at first, as it seemingly compli-
cates the structure of the partition function. Yet, having
each vertex amplitude equipped with its own set of coherent
data, one can apply the well-studied asymptotic analysis
per vertex: for sufficiently large spins—a condition the
precise meaning of which must be carefully studied—the
integral over coherent data should only receive contribu-
tions from (small regions around) the critical points of the
vertex amplitudes, which can furthermore be approximated
by the semiclassical formula on the critical points.
We propose an algorithm to aid in the computation of

spin-foam amplitudes of 2-complexes made up of multiple
vertices. If all spins associated to a given 2-complex are
sufficiently small, then the spin-foam amplitude can be
computed directly, for example using the sl2cfoam-
next package. On the other hand, if the 2-complex
contains vertices with large spins, then a direct computa-
tion of the amplitude will be very expensive. We therefore
propose to switch to the coherent representation of the
amplitude and apply the asymptotic formula to the coher-
ent vertices with sufficiently large spins. In general, the
critical points of vertices will not match, i.e., the tetrahedra
shared by two spin foam vertices will not be geometrically
equivalent; the gluing constraints account for this mis-
match.2 Hence we conjecture the existence of an additional
regime in spin-foams models, where the vertices exhibit
semiclassical, geometric features, but the overall geometry
still fluctuates and shape matching of glued vertices is not
strongly enforced. We thus expect that the landscape of
spin-foam configurations can be split roughly into three
domains:

(i) Pregeometric regime—superposition of quantum
geometric building blocks;
For the smallest representations, spin-foam am-

plitudes describe genuine quantum geometric objects
best understood in the orthonormal spin network
basis. The vertex amplitudes must be numerically
computed for all representation and intertwiner labels
and summed over. This process gets more costly with
increasing representation labels.

(ii) Quasigeometric regime—superposition of semi-
classical geometries;

For large enough spins, the vertex amplitudes can
be approximated by their asymptotic expansion and
only small regions around critical points contribute.
Therefore, we have a superposition of local critical
point configurations, corresponding to degenerate,
vector and Regge geometries, glued in a nonmatch-
ing way. For an appropriate domain of representa-
tion labels, nonmatching vertices corresponding to
small neighborhoods around critical points are non-
negligible in the amplitude.

(iii) Geometric regime—globally semiclassical geom-
etries;

Increasing representation labels further eventually
results in only shape-matching configurations con-
tributing to the path integral substantially. The
amplitude of the full 2-complex is dominated
by the global critical points, i.e., those of the entire
2-complex. As before, for finite representations small
regions around these global critical points might still
be non-negligible.

Partial evidence for the existence of a quasigeometric
regime already exist in the literature. The convergence of
the semiclassical approximation of the vertex amplitude to
the full coherent amplitude was shown in recent years [5,7]
for different models, as was numerically proven the expo-
nential suppression of amplitudes without a critical point. In
Sec. II C we expand on this by considering configurations
around critical points, finding they are progressively less
suppressed the closer they are to criticality. While more
evidence is required to determine when quasigeometry
arises, we hope to use this regime to help bridge the gap
between quantum and semiclassical physics and augment
existing numerical algorithms. Our proposal is to develop a
“hybrid algorithm,” following the idea of the “Chimera”
algorithm in loop quantum cosmology [41], which uses the
full quantum dynamics when necessary and switches over to
semiclassical, less costly, algorithms as soon as those
provide a good approximation. In this regime, the hybrid
algorithm would compute the semiclassical amplitudes
vertex-wise, and then pair-wise match them using the gluing
constraints.

C. Numerical studies of coherent vertex amplitude

The purpose of this subsection is twofold: first, we
compare the full coherent amplitude of SU(2) BF to its
semiclassical approximation, in order to recover existing
results and emphasize our argument3; for the Lorentzian
EPRL model, convergence with the asymptotic approxi-
mation was studied in great detail in [6,7]. Second, for
both types of models, we parametrize slight deviations of

2Note that the main purpose of the gluing constraints is to
enable straightforward application of the asymptotic formula.
Without the constraints, tetrahedra shared by two simplices match
by definition, yet it is difficult to determine for which shape the
product of vertex amplitudes contributes the most. If their critical
points do not agree, we must evaluate the amplitudes away from
their critical points.

3First comparisons for higher-valent building blocks were also
recently presented in [13].
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boundary data away from the critical points and demon-
strate the exponential suppression of the vertex amplitude
as representations are scaled up uniformly. All numerical
results for the SU(2) BF model were obtained from a
numerical code written in the Julia programming language,
by contracting a SU(2) f15jg-symbol against the overlap
of coherent and spin network intertwiners. The simula-
tions were performed on the Ara Cluster at FSU Jena.
For the Lorentzian EPRL model, we used the package
sl2cfoam-next [7] and performed the calculations on
a consumer level laptop.

1. Brief recap of numerical tests of semiclassical formula

Before we explore the exponential suppression away
from critical points, let us begin with a consistency check of
our new algorithm to compute the coherent SU(2) vertex
amplitude. We compare the (rescaled) coherent amplitude to
its semiclassical approximation for equilateral boundary
data with spins up to j ¼ 40 in Fig. 1, where we have
multiplied both amplitudes by j6 to compensate the poly-
nomial suppression of the vertex amplitude. The agreement
rapidly improves as we increase all spins, and both
amplitudes are only distinguishable at the maxima of
oscillations. These results are in agreement with the findings
in [5]. We have additionally studied isosceles 4-simplices as
boundary data, the results for which we omit since they also
agree with previous reports. Again, for the case of the
Lorentzian EPRL model we refer to [7].

2. Examples of suppression

At the level of a single vertex amplitude, little is known
about an analytical formula away from the critical points.
Interestingly, such an analysis was done for bulk represen-
tations in spin-foams consisting of multiple vertices in the
context of the so-called “flatness problem” [42–48]. In [10]
the authors show in case of the Δ3-triangulation (where
three 4-simplices share one bulk triangle and all edges are

part of the boundary) that for large but finite representations
there are non-negligible contributions from configurations
away from critical points, interpreted as complex critical
points. In contrast to real critical points, which enforce a
vanishing deficit angle in the associated triangulation, the
complex ones allow for small but nonvanishing angles and
contribute significantly to the path integral in an appropriate
regime. This is in line with numerical results in [7,20],
where exponential suppression was shown for boundary
data with a nonvanishing deficit angle in the bulk. We stress
however that these complex critical points are subleading
relative to the actual critical configurations, and they must
eventually become negligible as the representations are
further increased.
In order to explore the amplitudes around critical points,

deviations from criticality are understood as follows:
starting from a critical configuration, e.g., an equilateral
Euclidean 4-simplex or an isosceles Lorentzian 4-simplex,
we modify the boundary data in two different ways. The
first variant introduces a violation of the closure condition
in the normal vectors associated to a tetrahedron. These
violations get more and more severe, leading to a stronger
exponential suppression. In the second case we demand
closure for all tetrahedra, but change their dihedral angles
away from the critical point.4 Thus the shapes of triangles
of glued tetrahedra do not match, resulting in an exponen-
tial suppression. Such geometries are also known as a
twisted geometries [5,49]. Again, we expect a more severe
violation to result in a stronger exponential suppression
compared to the critical point. The parameters used for
nonclosing data are collected in Table II, and the ones used
for nonmatching data can be found in Table III.

In SU(2) BF theory.—As a first example, consider an
equilateral Euclidean 4-simplex, in which all tetrahedra
deviate from equilateral tetrahedra, either by nonclosure or
nonmatching. While the deviations are rather small, we
expect a significant decline of the amplitude, since all five
tetrahedra deviate. The results for nonclosing tetrahedra are
shown in Fig. 2, and those for nonmatching ones (i.e.,
twisted geometries) can be found in Fig. 3. As expected, the
exponential suppression is clear for nonclosing data: the
two larger deviations suffer a very strong suppression, such
that the amplitudes are roughly an order of magnitude
smaller compared to the equilateral case already at j ¼ 10.
Moreover, the oscillations cease in these cases. For the
smallest nonclosing deviation studied, however, we see a
much weaker exponential suppression compared to the
rescaled critical amplitude and persisting oscillations,
which will probably only seize at even larger spins.

FIG. 1. Comparison of the full coherent amplitude and its
semiclassical approximation for equilateral boundary data up
to j ¼ 40.

4To be precise, nonclosing data also violate nonmatching; thus
we expect nonclosing data to show more suppression, but both
cases cannot be readily compared.
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For nonmatching data we observe a similar behavior, but
overall with less exponential suppression. Indeed, for the
smallest deviation studied, barely any decay is visible even
though we deviate all tetrahedra and study the amplitude up
to spins j > 30. These numerical results thus suggest that
for a single vertex amplitude and large but finite repre-
sentations we can always find a (sufficiently) small region
around the critical points in which the exponential sup-
pression is (still) negligible, which is in line with the results
found in [10] for the bulk deficit angle of the Δ3

triangulation. As we increase the spins the region around
the critical point shrinks, since stronger deviations get more
and more suppressed. Note that in particular the cases we
studied in Fig. 2 are still close to equilateral tetrahedra, and
the exponential suppression for strongly violating data is
more severe.

The final case we consider is an unusual one. In [6], the
authors study the SLð2;CÞ EPRL coherent vertex ampli-
tude for a Lorentzian isosceles 4-simplex, whose tetrahedra
are all spacelike. The boundary data corresponding to this
4-simplex is a critical point for Lorentzian EPRL, and
below we will recover some of the authors’ results. Before
doing so, we consider the same boundary data in the
context of SU(2) BF theory, where it does not correspond to
a critical point and is exponentially suppressed. Still, this
data is interesting for a different reason: a key ingredient in
efficiently computing the SLð2;CÞ EPRL vertex amplitude
is to express it as a sum of SU(2) f15jg symbols for
auxiliary labels contracted with matrices encoding the
action of boosts [50]. The infinite sum over the auxiliary
labels starts at the label j of the boundary spins. Therefore,
a SU(2) f15jg symbol evaluated for Lorentzian boundary
data is related to the first term appearing in the expansion
the full SLð2;CÞ vertex amplitude.
In Fig. 4 we plot the coherent SU(2) vertex amplitude

evaluated for the isosceles Lorentzian 4-simplex, labeled by
a set of ten spins f5; 5; 5; 5; 2; 2; 2; 2; 2; 2g. The first four
spins correspond to an equilateral tetrahedron, while the
remaining spins label four isosceles tetrahedra with spins
f5; 2; 2; 2g. We have additionally considered two configu-
rations, in which we replace the equilateral tetrahedron
either by the largest nonclosing or nonmatching configu-
rations used before. Since none of these configurations
correspond to a critical point of SU(2) BF theory, none of
them oscillate and they all decay exponentially. Still this

TABLE II. Parametrization of nonclosing boundary data with respect to an equilateral tetrahedron.

Case h⃗1 h⃗2 h⃗3 h⃗4

Equilateral (0, 0, 1) ð0.0; 0.9428;−0.3333Þ ð0.8165;−0.4714;−0.3333Þ ð−0.8165;−0.4714;−0.3333Þ
Nonclosing 1 (0, 0.1411, 0.99) ð0.0; 0.9428;−0.3333Þ ð0.8165;−0.4714;−0.3333Þ ð−0.8165;−0.4714;−0.3333Þ
Nonclosing 2 (0, 0.4359, 0.9) ð0.0; 0.9428;−0.3333Þ ð0.8165;−0.4714;−0.3333Þ ð−0.8165;−0.4714;−0.3333Þ
Nonclosing 3 (0, 0.6, 0.8) ð0.0; 0.9428;−0.3333Þ ð0.8165;−0.4714;−0.3333Þ ð−0.8165;−0.4714;−0.3333Þ

TABLE III. Parametrization of nonmatching boundary data
with respect to an equilateral tetrahedron. A coherent tetrahedron
is parametrized by the areas of its four triangles, here all
equilateral, and two dihedral angles, as defined in the Appendix.

Case Φ1 Φ2

Equilateral − 1
3

− 1
3

Nonmatching 1 − 1
3

− 1
3
þ 0.01

nonmatching 2 − 1
3

− 1
3
þ 0.1

Nonmatching 3 − 1
3
þ 0.1 − 1

3
þ 0.1

FIG. 2. Comparison of coherent SU(2) BF theory vertex amplitudes for equilateral and nonclosing boundary data (close to
equilateral).
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Lorentzian 4-simplex is singled out even in SU(2) BF
theory; deviating away from it results in an even stronger
exponential decay, in particular for the nonclosing con-
figuration. From this we can draw several conclusions. The
first term in the infinite sum over auxiliary SU(2) spins of
the SLð2;CÞ EPRL vertex amplitudes contributes signifi-
cantly. While it decays exponentially, its suppression is less
than one might have naively expected. However, it is also
clear that this single term is not sufficient to recover the
oscillatory nature of Lorentzian EPRL vertex amplitudes,
as observed in [6], and additional terms are necessary to get
the correct polynomial scaling behavior. It would be
interesting to better understand how the full SLð2;CÞ
amplitude emerges as a sum over SU(2) f15jg symbols,
e.g., to learn whether the infinite sum can be truncated with
little error.

In Lorentzian EPRL.—We study the coherent vertex
amplitudes for both an equilateral Euclidean 4-simplex
and the aforementioned isosceles Lorentzian 4-simplex in

the SLð2;CÞ EPRL model using the sl2cfoam-next
package. We ran the code on a consumer laptop, such that
we were not able to probe large values of λ or shells s
(encoding the truncation of the infinite sum over virtual
spins), but we believe the domain we considered is
sufficient to clearly show the exponential suppression away
from the critical points of the vertex amplitude. For both
sets of boundary data we modify only a single tetrahedron
by the same deviations as above. Both simulations were run
for a Barbero-Immirzi parameter of γ ¼ 0.5. Regarding the
shell number, we chose s ¼ 1 for the Euclidean simplex
and s ¼ 4 for the Lorentzian one. Due to the similarity of
results, we only plot the nonclosing deviations; qualita-
tively, the nonmatching cases are similar to the previous
SU(2) ones and simply show less exponential decay.
In Fig. 5 we plot the coherent vertex amplitude for an

equilateral Euclidean 4-simplex, where we can recognize
an exponential decay away from the critical point at already
fairly small representations. For the smallest nonclosing
deviation, increasing λ further would be necessary to

FIG. 3. Comparison of coherent SU(2) BF theory vertex amplitudes for equilateral and nonmatching boundary data / twisted geometry
(close to equilateral). Left: rescaled vertex amplitude. Right: logarithmic plot of absolute value of rescaled amplitude.

FIG. 4. Comparison of SU2 BF theory vertex amplitudes for boundary data corresponding to an isosceles Lorentzian 4-simplex and
nonclosing/nonmatching deviations away from it on a single tetrahedron. Left: rescaled vertex amplitude. Right: logarithmic plot of
rescaled vertex amplitude.
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capture more half periods and clearly see the exponential
suppression. Note that, since we only deviate a single
tetrahedron rather than all five of them, the suppression is
less accentuated than in the SU(2) case.
In Fig. 6 we plot the amplitude for boundary data

corresponding to an isosceles Lorentzian 4-simplex, now
also for nonclosing boundary data for a single tetrahedron.
We find a far stronger suppression compared to the
Euclidean case, yet this is due to the different boundary
data. At λ ¼ 10 we are computing the vertex amplitude for
representations ðρ; nÞ ¼ ð50; 20Þ (see Sec. III C for the
necessary representation theory), which is significantly
larger than 10 for the same λ in the equilateral case.
Again, for the smallest nonclosing deviation, this small λ is
not sufficient to observe an exponential decay. Still, these
results confirm again our expectation that for increasing
spins all vertex amplitudes that significantly contribute to
the path integral are located in a small but nonsingular
region around the critical points.

All the above results support the heuristic expectation
that spin-foam models should possess a regime in which
only small regions around the critical points of each vertex
amplitude contribute to the path integral. At the same time,
it is clear that more thorough investigations are necessary to
make qualitative statements more quantitatively precise,
e.g., by identifying for which representations this statement
is valid. We leave this for future research.

III. GLUING CONSTRAINTS

In this section we shall formally introduce and define
the gluing constraints for the SU(2) BF and Lorentzian
EPRL-FK spin-foam models. As mentioned in Sec. II B,
the gluing constraints appear through the process of fully
disentangling the coherent vertex amplitudes assigned to
vertices of a 2-complex via insertions of identities
expressed in terms of the coherent states. We shall consider

FIG. 5. Comparison of SLð2;CÞ vertex amplitudes for boundary data corresponding to an equilateral Euclidean 4-simplex and
nonclosing deviations of a single tetrahedron away from those data. The Immirzi parameter is chosen to be γ ¼ 0.5, the number of shells
is s ¼ 1.

FIG. 6. Comparison of SLð2;CÞ vertex amplitudes for boundary data corresponding to Lorentzian isosceles 4-simplex and nonclosing
deviations of one tetrahedron away from this critical point. The Immirzi parameter is chosen to be γ ¼ 0.5, the number of shells is s ¼ 4.
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the case where the 2-complex is dual to a triangulation by simplices; the vertex amplitudes are thus associated to 4-simplices
of the dual triangulation.
In the coherent state representation, the partition function associated to a 2-complex can be expressed as a product of the

vertex amplitudes after doubling the gauge group integration and inserting resolutions of the identity on the representation
spaces of that group, expressed in terms of coherent states. The partition function would then take the schematic form

ð3:1Þ

As one may see, the resulting vertex amplitudes are not all independent, as the same coherent data associated to a common
edge is shared between a pair of vertices. There is however a straightforward way to gain better control over the mutual
dependence of the vertices. We can isolate the vertex amplitudes by inserting at the common edge an extra identity (2.3) in
terms of coherent states,

ð3:2Þ

such that now every vertex amplitude carries its own coherent data at the boundary. In this manner we get for every (bulk)
edge shared by a pair of vertices a term which is represented by the four lines in-between the amplitudes in (3.2). It is a
tensor product of inner products between coherent states associated to the edges belonging to the pair of vertices. We refer to
the extra terms as gluing constraints as they specify how pairs of vertices glue or fit together.
As it stands, the gluing constraints do not share any of the symmetry properties of the vertex amplitude. Since these are

ultimately derived from the symmetries of the Haar measure, we may remedy this by proposing a definition of the gluing
constraints which involves an integration over the gauge group of the theory. We chose to do so, and define the gluing
constraints to generally be given by

ð3:3Þ

We would like to remark that the particular symmetry
properties of Gτ depend on what one considers to be
its domain of definition. Indeed, if one takes the boundary
data of the constraints to be general group elements
ht; kt ∈ SUð2Þ, then the constraints are invariant under
the action of g; g0 ∈ SUð2Þ by virtue of the bi-invariance of
the Haar measure, i.e., Gτðght; g0ktÞ ¼ Gτðht; ktÞ. On the
other hand, if one considers the boundary data to be given
by coherent states [which, we remind the reader, are
constructed from a reference state as jχ; hi ¼ hjrefχi;
DχðhÞ ∈ SUð2Þ=Uð1Þ], then the gluing constraints are only
invariant up to a phase factor (a property which extends to
the coherent vertex amplitude), and this has been termed
covariance in the literature [5] for the case of the vertex
amplitude. The reason is that the group action on a coherent
state results in a second coherent state up to a phase, as
SUð2Þ=Uð1Þ is not closed under multiplication. Thus it
holds only that jGτðg⊳ h⃗t; g0 ⊳ k⃗tÞj ¼ jGτðh⃗t; k⃗tÞj. In order
to avoid having to deal with multiplicative phase factors we
will, for the rest of the paper, take Gτ ¼ Gτðht; ktÞ.

Although including a group integration in the definition
of the constraints can be argued to increase its computa-
tional complexity, it has the advantage of allowing the
constraints to more closely resemble the structure of a
vertex amplitude. The gluing constraints may then serve as
a testing ground for properties of the actual vertex (we shall
see in Sec. IV that these objects share the same qualitative
behavior in the asymptotic limit), and we further speculate
that the gauge invariance afforded by the group integration
may be potentially useful in the construction of the hybrid
algorithm.
Before moving on toward the explicit definition of the

gluing constraints for different classes of models, we would
like to point out that such objects have already made an
appearance in the literature to some extent. The gluing
constraint of Eq. (3.3) involves two coherent intertwiners
(not necessarily the same) associated to every bulk edge. In
the special case when the two coherent intertwiners are the
same, the gluing constraint becomes the norm of that
coherent intertwiner. The asymptotics of the norm of
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coherent intertwiners has been studied in [40] for
G ¼ SUð2Þ. The gluing constraints appear also in [51] as
a special case of general invariants of SLð2;CÞ, and the
authors have studied some of its asymptotic properties. In
the remainder of this paper we complement these previous
results by studying the constraints in detail for different
spin-foam models.

A. Gluing constraints for SU(2) BF theory

We shall first consider the gluing constraints for the
SU(2) BF spin-foam model with compact SU(2) as its
gauge group. The boundary data associated to the gluing
constraint induces SU(2) coherent states, which in turn
serve as a basis for the construction of several other
coherent states appearing in spin-foam models.
As usual, we label the unitary and irreducible represen-

tations of SU(2) by spins j ∈ N
2
. The canonical basis states

are taken to be jj; mi, for integers m ¼ −j;…; j. An SU(2)
coherent state is defined by a group action on the highest or
lowest weight states, i.e.,

jj; hi ¼ DjðhÞjj; ji; jj; h� ≔ DjðhÞjj;−ji; ð3:4Þ

where Dj denotes a Wigner representation matrix.
Although it is usual to define such coherent states by
restricting to the quotient space k ∈ SUð2Þ=Uð1Þ, we will
allow for any k ∈ SUð2Þ according to the discussion of the
previous section. We further introduce a complex structure
on R4, inducing the antilinear map

J∶ C2 → C2

v ↦ −iσ2v̄; ð3:5Þ

which can be used to invert and conjugate-transpose any
GLð2;CÞ matrix g by JgJ−1 ¼ det gðg†Þ−1, and which can
be canonically extended to C2n. Due to the standard
Clebsh-Gordan isomorphism jj; ji ≃ j 1

2
; 1
2
i2j, it moreover

holds that J2 ¼ ð−1Þ2j. Finally, note that the complex
structure J has an important geometric meaning, which
justifies its use in the spin-foam models: while a coherent
state jj; hi is associated to the vector h⃗, the state Jjj; hi is
associated to its symmetric vector −h⃗.
Having reviewed the necessary representation theory, the

gluing constraint for SU(2) associated to an edge dual to a
tetrahedron τ with four faces is defined by

ð3:6Þ

DjiðgÞ is the Wigner matrix associated to g and dμðgÞ is
the SU(2) bi-invariant Haar measure.5 Recalling the
isomorphism jj; ji ≃ j 1

2
; 1
2
i2j, the constraint may also be

formulated as

GSUð2Þ
τ ¼

Z
SUð2Þ

dμðgÞ
Y4
i¼1

hJhijgjkii2ji ; ð3:7Þ

where g is now in its defining representation. This gives an
integral expression for the gluing constraint.6 The function

GSUð2Þ
τ can also be expressed as a sum through the Peter-

Weyl theorem for compact groups. The SU(2) integrals
can be decomposed in terms of an intertwiner basis, which
for a four-valent node is given by

Z
dμðgÞ⊗

4

i¼1

DjiðgÞ ¼
X
ι

dιjji; ιihji; ιj; ð3:8Þ

where dι ¼ 2ιþ 1 are dimension factors and the orthogo-
nal basis states

jji; ιi¼
X
mi

�
j1 j2 j3 j4
m1 m2 m3 m4

�ðιÞ
jj1;m1i � � � jj4;m4i ð3:9Þ

are expressed in terms of the Wigner 4jm symbols.
Another formulation of the constraint is thus given by a
sum over intertwiner labels

ð3:10Þ

5The definition of the gluing constraint can be easily generalized to any n-valent node associated to a polygon with n faces.
6One can also consider using the coherent states jhi�.
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where we have defined cιðji; kiÞ ≔ hji; ιjji; kii as the
coherent 4j symbol (the coherent states expressed in the
basis of the invariant subspace). The integral expression
(3.7) is usually useful for performing critical point analysis
while the summation expression (3.10) is useful for
numerical computations, e.g., when computing the vertex
amplitude for coherent boundary data [5] as we did in
Sec. II.

B. Gluing constraints for Euclidean EPRL/FK models

Next, we consider the gluing constraints for the Euclidean
EPRL and FK spin-foam models, for which the associated
group is Spin(4). The Spin(4) group is well known as
the spin covering of SO(4), and under the classification
of simple Lie groups via Dynkin diagrams it is isomorphic
to SUð2Þ × SUð2Þ. The group isomorphism leads to an
isomorphism between the irreducible representations
Dðjþ;j−Þ ≃Djþ ⊗ Dj− labelled by spins. For the definition

of the EPRL and FK spin-foam models one also requires an
additional constant γ, known as the Barbero-Immirzi
parameter. In these models the intertwiners of Spin(4) are
derived from those of SU(2) using an injection (see [24] for
more details) constructed from a Clebsch-Gordan intertwin-
ing map Cjþ;j−

j , which maps the SU(2) representation Dj

into the highest spin j ¼ jþ þ j− and lowest spin j ¼
jþ − j− subspace of Dðjþ;j−Þ for γ < 1 and γ > 1, respec-
tively. The spins j� are related to γ by

j� ¼ j
2
j1� γj: ð3:11Þ

Starting from SU(2) coherent states jji; kii one can con-
struct coherent states for Spin(4) usingCjþ;j−

j , and we define
the gluing constraints associated to a four-valent node to be

GSpinð4Þ
τ ≔

Z
Spinð4Þ

dμðgÞ⊗
4

i¼1

hJ⊳ ji; hi ∘Cjþi j
−
i

ji
jDjþðgþÞDj−ðg−ÞjCjþi j

−
i

ji
∘ ji; kii; ð3:12Þ

having denoted dμðgÞ ¼ dμðgþÞdμðg−Þ. The cases for both models are considered separately.
(i) Euclidean EPRL model

For γ < 1, the Clebsch-Gordan map injects into the highest spin subspace ji ¼ jþi þ j−i . The symmetrizers of jþi
and j−i can be absorbed into the symmetrizer of highest spin ji, so that the tensor product property allows the gluing
constraint to be split into a product as

GEPRL
γ<1 ¼

Z
Spinð4Þ

dμðgÞ
Y4
i¼1

hJ⊳ jþi ; hijgþjjþi ; kii2j
þ
i hJ⊳ j−i ; hijg−jj−i ; kii2j−i : ð3:13Þ

Hence we simply get that for γ < 1 the gluing constraint

satisfies GEPRL
γ<1 ¼ GSUð2Þ

τþ ×GSUð2Þ
τ− .

In the case for γ > 1, the Clebsch-Gordanmap now injects
into the lowest spin subspace ji ¼ jþi − j−i . The symmetrizers
of ji and j−i can be absorbed into that of jþi . Following the
construction in [24], the gluing constraints can be defined by
insertions of identity over SU(2) coherent states.
(ii) FK model

For the FK spin-foam model [18], SO(4) coherent
states are given in terms of SU(2) coherent states
through jjþ; hþi ⊗ jj−; h−i and jjþ; hþi ⊗ jj−; h−i
for γ < 1 and γ > 1, respectively, where hþ ¼ h−.
For γ < 1, this leads to the same gluing constraints
(3.13) as for the γ < 1 EPRL model. If one takes
γ > 1, the FK gluing constraints take the form

GFK
γ>1¼

Z
Spinð4Þ

dμðgÞ
Y4
i¼1

hhiJjgþjkii2jþi hhiJjg−jkii2j−i :

ð3:14Þ

C. Gluing constraints for Lorentzian EPRL, FK models

The underlying gauge group for the Lorentzian EPRL,
FK spin-foam models is SLð2;CÞ, the double covering of
the Lorentz group SO(3,1). The representations of SLð2;CÞ
are constructed on the space Dðn1;n2Þ of homogeneous
functions of two complex variables [52,53], i.e., functions
F∶C2 → C satisfying

Fðλz1; λz2Þ ¼ λn1−1λ̄n̄2−1Fðz1; z2Þ; λ ∈ C; ð3:15Þ

such that the representation Dðn1;n2Þ acts on functions
through the usual transposed matrix multiplication in C2,

Dðn1;n2Þ∶ SLð2;CÞ → AutðDðn1;n2ÞÞ
Dðn1;n2ÞðgÞFðzÞ ¼ FðgTzÞ; z ∈ C2: ð3:16Þ

The relevant representations for spin-foam models are
those contained in the so-called principal series, charac-
terized by the restriction n1 ¼ n̄2. It is usual to redefine
n1 ¼ ð−nþ iρÞ=2 and n2 ¼ ðnþ iρÞ=2 with n ∈ Z;
ρ ∈ R, and collect these variables in the label
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χ ¼ ðn; ρÞ. Such principal series representations are irre-
ducible, and they are unitary under the inner product

hF1; F2i ¼
Z
CP

ωF̄1ðzÞ; F2ðzÞ;

ω ¼ i
2
ðz1dz2 − z2dz1Þ ∧ ðz̄1dz̄2 − z̄2dz̄1Þ; ð3:17Þ

where CP denotes that the integral is to be computed over
a section of the bundle C2� → CP, and the result is
independent of the choice of section. We further remark
that there exists an intertwining isomorphism (defined up
to normalization, possibly depending on χ),

A∶ Dχ → D−χ

AD−χðgÞ ¼ DχðgÞA; ð3:18Þ

such that we may restrict our attention to n, ρ ≥ 0. This
intertwiner can be used to construct a bilinear form ð·; ·Þ
on Dχ ,

ðF2; F2Þ ≔ hJF1; F2i; ð3:19Þ

having defined JF ¼ AF. This map plays a similar
geometrical role as the complex structure J∶C2 → C2 of
the previous section. Finally, there is a canonical ortho-
normal basis for Dχ given by the functions

Fχ
j;mðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

π

r
kzk2ðiρ=2−1−jÞDj

n=2;mðgðzÞÞ; ð3:20Þ

for Dj
abðgÞ a unitary irreducible representation of SU(2),

and

gðzÞ ¼
�
z1 −z̄2
z2 z̄1

�
∈ SUð2Þ; jz1j2 þ jz2j2 ¼ 1: ð3:21Þ

As before, coherent states are constructed from the action
of SU(2) on a reference state. Restricting the representation
labels to the ones relevant to the model, χ ¼ ð2γj; 2jÞ, a
general coherent state jg; ji ≔ DχðgÞFχ

j;j thus reads

jg; ji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
jjzjj2jðiγ−1Þ−2hz; ḡþi2j; g ∈ SUð2Þ;

ð3:22Þ

J jg; ji ¼N
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
jjzjj2jðiγ−1Þ−2hz; ḡ−i2j; g ∈ SUð2Þ;

ð3:23Þ

where j�i form the canonical basis of C2, and N is
a multiplicative factor depending on the choice of
normalization of A. The usual choice is to take

N ¼ ð−1Þ2je−i arctan γ; γ > 0, a convention adopted in
[25]. With these objects in place, the gluing constraints
for the Lorentzian EPRL model read7

GSLð2;CÞ
τ ðh̄i; k̄iÞ ¼

Z
dμðgÞ

Y4
i¼1

Z
CP

ω0ðziÞ
hgzi; gziijiðiγ−1Þ−1
hzi; ziijiðiγþ1Þþ1

× hgzi; kii2jihJhi; zii2ji ; ð3:24Þ

with dμðgÞ the Haar measure on SLð2;CÞ; since the Haar
measure is only defined up to a constant for locally compact
groups, its normalization will later be discussed in Sec. IV C.
We have also included a number of numerical factors in the
measure ω0, defined as

ω0ðzÞ ¼ N
2jþ 1

π
ωðzÞ: ð3:25Þ

IV. ASYMPTOTIC GLUING CONSTRAINTS AWAY
FROM CRITICAL POINTS

As discussed before, the gluing constraints allow one to
study the asymptotics of a given spin-foam model by
a priori decoupling the critical configurations at each
vertex, so that the well-known results concerning 1-vertex
asymptotics may be applied individually. The role of the
gluing constraints would then be to restrict the dominant
configurations at each neighboring vertex so as to enforce
consistent gluing among simplices. Heuristically [8] this is
expected to be implemented via a localized (presumably
Gaussian-like) distribution over the boundary data. We
dedicate this section to the asymptotic study of the gluing
constraints for the most ubiquitous spin-foam models, and
we shall show that they indeed reduce to Gaussian
functions, peaked at gluing tetrahedra.

A. Hörmander’s asymptotic theorem

Since we are interested in studying how the constraints
enforce gluing in the asymptotic regime, we must approxi-
mate their defining integral not only at its critical point, but
also in a surrounding neighborhood. To this end we shall
make thorough use of Hörmander’s theorem [54] (Theorem
7.7.12) on the asymptotic evaluation of integrals subject to
free parameters, which we reproduce here for the reader’s
convenience.
Theorem IV.1. (Hörmander). Let Sðx; yÞ be smooth

and complex-valued in a neighborhood K of
ð0; 0Þ ∈ Rnþm, such that ℑS ≥ 0, ℑSð0; 0Þ ¼ 0, S0xð0; 0Þ ¼
0 and det S00xxð0; 0Þ ≠ 0. Consider furthermore u ∈ C∞0 ðKÞ.
Then

7Note that the Haar measure satisfies dμðgÞ ¼ dμðgTÞ.
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Z
dx uðx; yÞeiλSðx;yÞ ¼

�
2πi
λ

�
n=2 u0ðyÞeiλS0ðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdet S00xxÞ0ðyÞ
p

þOðλ−n=2−1Þ; ð4:1Þ

where the superscript f0ðyÞ denotes an x-independent
residue in the residue class of fðx; yÞ mod I , for I the
ideal generated by the partial derivatives ∂xiS.
To be clear, one says that r is in the residue class ½a�b if

a ¼ r mod b. Thus the possible f0ðyÞ are defined by
expansions of the type

fðx; yÞ ¼ f0ðyÞ þ ∂S
∂xi

ðx; yÞqiðx; yÞ; ð4:2Þ

for n smooth functions qiðx; yÞ. f0 is not unique, but
another choice of representative will induce a correction of
the same order as the error term in Eq. (4.1). That fðx; yÞ
can be brought into this form near the origin is a
consequence of the Malgrange preparation theorem [54],
which can be thought of as a division theorem with
remainder f0ðyÞ. As it stands, however, the explicit form
of the coefficients in Eq. (4.2) are difficult to obtain. We
remedy this by resorting to a second theorem of [54].
Theorem IV.2. Let bjðx; yÞ; jþ 1;…; n, be smooth and

complex-valued in a neighborhood K of ð0; 0Þ ∈ Rnþm,
such that bjð0; 0Þ ¼ 0 and det ∂xibj ≠ 0. Then

Iðb1;…; bnÞ ¼ Iðx1 − X1ðyÞ;…; xn − XnðyÞÞ ð4:3Þ

for some Xj ∈ C∞ vanishing at the origin.
Making use of the Malgrange preparation theorem (4.2)

N times, and then applying theorem IV.2, Eq. (4.2) may be
written as

fðx; yÞ ¼
X
jαj<N

fαðyÞðx − XðyÞÞα mod IN; ð4:4Þ

for some smooth fαðyÞ near the origin and IN ¼
fPjαj¼N sαðx − XðyÞÞαjsα ∈ C∞ðKÞg. Note that α ¼
ðα1;…; αnÞ stands for a multi-index set, and
jαj ¼ P

j αj. Note furthermore that the jαj ¼ 1 term is
an element of IN , and thus it can be omitted from Eq. (4.4).
This x-polynomial representation of fðx; yÞ will be useful
in what follows, as it allows a direct comparison with the
function’s Taylor series.

B. Asymptotics of SU(2) gluing constraints

The SU(2) case is the simplest among the ones we will
study, so we shall start by deriving its asymptotic behavior
first. As a function of the boundary data for a certain choice
of spins, the gluing constraint of Eq. (3.6) may be brought
into the form,

Gjiðhi;kiÞ ¼
Z
SUð2Þ

dμðgÞ

×exp

�X4
i¼1

lnhJ⊳hi; jijDjiðgÞjki; jii
�
; ð4:5Þ

where jk; ji stands for a coherent state DjðkÞjj; ji in the
Hilbert space Hj associated to the unitary and irreducible
SU(2) representation of spin j.

1. Malgrange expansion

In order to identify the residue in Eq. (4.5), we first
approximate the exponent (which we will refer to as the
action) by a second order Taylor series using coordinates
gI , I ¼ 1, 2, 3,

Sðg; yÞ ¼ Sðgc; yÞ þ ∂ISðgc; yÞðg− gcÞI

þ 1

2
∂
2
IJSðgc; yÞðg− gcÞIðg− gcÞJ þOðg3Þ; ð4:6Þ

where we let y stand collectively for the boundary data and
gc is a critical point of Sðg; yÞ at some particular configu-
ration yc of the boundary, i.e., ∂ISðgc; ycÞ ¼ 0. The N ¼ 3
Malgrange expansion (4.4) of the same function reads

Sðg; yÞ ¼ S0ðyÞ þ S2IJðyÞðg − XðyÞÞIðg − XðyÞÞJ mod I3;

ð4:7Þ

and, after matching monomials in g and disregarding
elements in I3, one finds8>><

>>:
S2IJðyÞ ¼ 1

2
HIJ;

S2IJðyÞXIðyÞ ¼ − 1
2
ð∂JSðgc; yÞ −HIJgIcÞ;

S0ðyÞ ¼ Sðgc; yÞ − 1
2
∂
ISðgc; yÞ∂JSðgc; yÞH−1

IJ ;

ð4:8Þ

where HIJ ¼ ∂
2
IJSðgc; yÞ stands for the Hessian matrix.

These equations uniquely specify a representative S0 in the
residue class ½S�I .

2. Haar measure and coordinates in SU(2)

Performing the Haar integral in Eq. (4.5), as well as
computing the derivatives appearing in (4.8), requires one
to choose coordinates ϕi∶Ui ∈ G → R3 on the group
manifold G ¼ SUð2Þ. However, since we are interested
in making use of theorem IV.1 rather than analytically
evaluating the integral, we can substantially simplify the
discussion by implicitly picking useful coordinates and
explicitly specifying only the values of the derivatives in
those coordinates.
With a slight abuse of notation (we omit the dependence

on ϕi), let dg be the exterior derivative of the preimage of
a chart,

ASANTE, SIMÃO, and STEINHAUS PHYS. REV. D 107, 046002 (2023)

046002-14



dg∶ R3 → TgG: ð4:9Þ

The differential and right-multiplication Rg for matrix
groups satisfies dR−1

g X ¼ Xg−1 for X ∈ TG; g ∈ G, and
hence the map dgg−1 must take values in the Lie algebra
g ≃ TeG. One may think of this object as a 1-form8 in R3

with values in g, such that it admits an expansion in terms
of σI (Pauli matrices) generators

dgg−1 ¼ i
2
σJΩJ; ΩJ ∈ T�R3 ≃R3: ð4:10Þ

Generally, then one sees that coordinate derivatives of g ∈
G may always be written as ∂Ig ¼ i

2
ΩJ

IσJg, for ΩJ
I a

matrix of coefficients dependant on the choice of charts ϕi.
A particular simple choice of coordinates is that in which
the matrix of coefficients reduces to the identity,

∂Ig ¼
i
2
σIg; ð4:11Þ

and this is the choice we make for coordinates gI on SU(2)
throughout our analysis.
Besides derivative terms, the only object in theorem IV.1

which depends on the choice of charts is the Haar measure.
But this too can be identified without explicitly defining the
map g ¼ gðgIÞ. Indeed, note that the 1-form of Eq. (4.10) is
right-invariant. We may thus construct a measure on G by
taking the trace of its third exterior power, which is bi-
invariant by virtue of the cyclicity property of the trace
operator,

dμðgÞ ¼ Ntr½ðdgg−1Þ∧3� ¼ N
3

2
Ω1 ∧ Ω2 ∧ Ω3: ð4:12Þ

Given that for compact groups the normalized bi-invariant
Haar measure is unique, one can determine N by comput-
ing (4.12) in both the gI coordinates and some other
standard coordinates for which the measure is known,
e.g., Euler angle coordinates [52]. Doing so fixes
N ¼ 2

3
ð4πÞ−2, and the normalized measure for SU(2) in

adapted coordinates reads

dμðgÞ ¼ ð4πÞ−2dg1 ∧ dg2 ∧ dg3: ð4:13Þ

3. Asymptotic formula

We may now proceed with the derivation of the asymp-
totic expansion. Note that, under the usual Clebsch-Gordan
isomorphism, one has the identification jj; ji ¼ j 1

2
; 1
2
i2j.

The action of Eq. (4.5) may be rewritten as

Sðg; yÞ ¼
X4
i¼1

2ji lnhJhijgjkii; ð4:14Þ

where jki ¼ kj 1
2
; 1
2
i and jJhi ¼ hj1

2
;− 1

2
i. A critical point is

characterized by a vanishing ∂IS derivative, which reads

∂ISðg; yÞ ¼ i
X4
i¼1

ji
hJhijσIgjkii
hJhijgjkii

¼ i
X4
i¼1

ji
½πðgÞk⃗i − h⃗i − iπðgÞk⃗i × h⃗i�

1 − πðgÞk⃗i · h⃗i

ðIÞ
; ð4:15Þ

where we repeatedly used the spin homomorphism
restricted to SUð2Þ → SOð3Þ,

π∶ SLð2;CÞ → SOþð3; 1Þ
g ↦ πðgÞ s:t: gσμg† ¼ πðgÞνμσν; ð4:16Þ

and all vectors k⃗i; h⃗i are defined as k⃗ ¼ πðkÞê3. On the
other hand, the real part of the action satisfies

MaxℜS ≤
X4
i¼1

2ji lnMaxjhJhijgjkiij ¼
X4
i¼1

2ji ln1; ð4:17Þ

so thatℜS ≤ 0 (as required by theorem (4.1) andℜS ¼ 0 is
attained at

gjkii ¼ eiϕi jJhii; ϕi ∈ ½0; 2πÞ: ð4:18Þ

Under this condition, Eq. (4.15) reduces to the expected
closure relation for both sets fhig; fkig of boundary data.
By making use of the complex structure map J, we may
characterize g through the eigensystem(
gjkii ¼ eiϕi jJhii
gjJkii ¼ −e−iϕi jhii

⇒ g ¼ e−iϕiσ⃗·h⃗ihið−iσ2Þk†i ; ∀ i;

ð4:19Þ

and, using the spin homomorphism map, one can show

πðgÞk⃗i ¼ −h⃗i; ð4:20Þ

i.e., there are critical points if the boundary vectors can be
rotated into each other.
Suppose now that Eq. (4.19) admits at least one solution,

labeled by fĝ; ϕ̂ig. Then it must be the case that, for any
other solution fg;ϕig,

e−iðϕi−ϕ̂iÞσ⃗·h⃗i ¼ e−iðϕj−ϕ̂jÞσ⃗·h⃗j ; i ≠ j: ð4:21Þ

Making the simplifying assumption that the boundary
vectors are not all collinear, the previous set of equations

8This amounts to a coordinate representation of the usual
Maurer-Cartan 1-form.
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implies ϕi ¼ ϕ̂i ∨ϕi ¼ ϕ̂i þ π mod 2π. For noncollinear
boundary data, then, the two critical point configurations
are given by

gc ¼ �e−iϕ̂iσ⃗·h⃗ihið−iσ2Þk†i ; ð4:22Þ

and this holds for any i ¼ 1;…; 4.
Although the critical configurations gc were determined

for boundary data hi, ki, the gluing constraints are only
defined up to a global SU(2) gauge afforded by the bi-
invariance of the Haar measure. The element gc in Eq. (4.22)
is thus actually gauge-dependent, and one is free to make
the simplifying choice gc ¼ �1 by appropriately rotating
the boundary. A straightforward computation then fixes the
coefficients of the Malgrange expansion for noncollinear
arbitrary data as follows:

8>><
>>:

HIJðyÞ ¼ − 1
2
jiðδIJ − Vi

IðyÞVi
JðyÞÞ;

∂ISðyÞ ¼ ijiVi
IðyÞ;

S0ðyÞ ¼ Sð1; yÞ þ 1
2
jkjlVk

I ðyÞðH−1ÞIJðyÞVl
JðyÞ;

ð4:23Þ

having further defined

V⃗iðyÞ ¼
k⃗i − h⃗i − ik⃗i × h⃗i

1 − k⃗i · h⃗i
: ð4:24Þ

Finally, we remark that, since we considered a series
expansion of Sðg; yÞ to second order in Eq. (4.6), the
argument of the square root in theorem (4.1) approximates
to ðdetHÞ0ðyÞ ¼ ðdetHÞð1; yÞ. The resulting asymptotic
expansion thus reads

Gjiðhi; kiÞ ≃
ð1þ ð−1Þ2

P
i
jiÞQihJhijkii2jiffiffiffiffiffiffiffiffi

32π
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− detH
p exp

�
1

2
jkjlVk

I ðH−1ÞIJVl
J

�
; ð4:25Þ

where the prefactor ð−32πÞ−1=2 ¼ ð4πÞ−2 · ð−2πÞ3=2 is obtained from the normalization of the Haar measure and from the
numerical factor of theorem (4.1), respectively.

C. Asymtpotics of Lorentzian EPRL gluing constraints

For the Lorentzian EPRL model, recall the gluing constraints from Eq. (3.24),

Gjiðhi; k̄iÞ ¼
Z

dμðgÞ
Y4
i¼1

Z
CP

ω0ðziÞ
hgzi; gziijiðiγ−1Þ−1
hzi; ziijiðiγþ1Þþ1

hgzi; kii2jihJhi; zii2ji : ð4:26Þ

Having defined our object of interest, the arguments laid
down in Sec. IV B apply with little modification. We start
by rewriting the constraints in a form adapted to asymptotic
analysis,

Sðg; z; yÞ ¼
X4
i¼1

2ji

�
lnhgzi; kiihJhi; zii þ ln

hgzi; gzii
iγ−1
2

hzi; zii
iγþ1
2

�
;

ð4:27Þ

uðg; zÞ ¼
Y4
i¼1

dμðgÞω0ðziÞ
hzi; ziihgzi; gzii

; ð4:28Þ

Gjiðhi; kiÞ ¼
Z
SLð2;CÞ

Z
CP

uðg; zÞeSðg;z;yÞ; ð4:29Þ

with a slight abuse of notation in the definition of uðg; zÞ;
we still refer by y to the collection of external parameters
hi, ki. Once more we see from (4.27) that ℜS ≤ 0, and the
maximum is attained at

jgzii ¼ λijkii; jzii ¼ χijJhii; λi; χi ∈ C; ð4:30Þ

moreover implying

jJhii ¼
λi
χi
g−1jkii: ð4:31Þ

We may straightforwardly characterize the critical points
of Sðg; z; yÞ through the first derivatives in the spinor and
group variables; as before, we pick local coordinates
gI; I ¼ 1;…; 6 for the special linear group such that
∂Ig ¼ i

2
ΣIg, having denoted the generators of the algebra

by Σ ¼ ðσ⃗; iσ⃗Þ. One then finds

∂IS ¼
X4
i¼1

iji

�
iγ − 1

2

hgzi; ðΣI − Σ†
I Þgzii

hgzi; gzii
−
hgzi;Σ†

I kii
hgzi; kii

�
;

ð4:32Þ

∂zai
S ¼ 2ji

�hJhi; ai
hJhi; zii

þ iγ − 1

2

hgzi; gai
hgzi; gzii

−
iγ þ 1

2

hzi; ai
hzi; zii

�
;

ð4:33Þ
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for zai the ath component ha; zii. We remark that, due to the
conjugation property of Wirtinger derivatives, if ℜS ¼ 0
then ∂zai

S ¼ 0 ⇔ ∂z̄ai
S ¼ 0. Under Eq. (4.30), a vanishing

gradient ∂S ¼ 0 reduces to

X4
i¼1

jik⃗i ¼ 0; jJhii ¼
χ̄i
λ̄i
g†jkii; ð4:34Þ

and, as expected, one identifies a closure condition in the
first equation above.

1. Rotation of the boundary data

Equations (4.31) and (4.34) admit a similar treatment
as that of the previous section. A general element g ∈
SLð2;CÞ can be polar-decomposed in terms of a pure boost

b ¼ eβ⃗·σ⃗ and a unitary a ∈ SUð2Þ as g ¼ ba. One may then
combine those equations into the eigenvalue condition

bjkii ¼
				 λiχi

				jkii; ð4:35Þ

from where it follows

8>><
>>:

bjkii ¼
				 λiχi

				jkii
bjJkii ¼

				 χiλi
				jJkii

⇒ b ¼ eln j
λi
χi
jk⃗i·σ⃗; ∀ i: ð4:36Þ

If one assumes that the boundary data corresponds to
noncollinear vectors, then, through (4.36), Eqs. (4.31) and
(4.34) imply

gjJhii ¼
λi
χi
jkii g ∈ SUð2Þ;

				 λiχi
				 ¼ 1; ð4:37Þ

a result entirely analogous to the critical point condition
(4.18) of the SU(2) model, and thus the discussion there can
be immediately carried over. Given that SU(2) is a sub-
group of SLð2;CÞ, and the Haar measure induces an
SLð2;CÞ symmetry at the level of the boundary data, we
may again pick a convenient gauge such that gc ¼ �1.

2. Haar measure normalization

The Haar measure for locally compact groups is only
unique up to a multiplicative constant. While this constant
is entirely conventional, it is still useful to derive an explicit
expression for the Haar measure in adapted coordinates for
a given choice of convention. Noting that slð2;CÞ is a
complex Lie algebra, one may generally write locally

dgg−1 ¼ i
2
ΩI

JσJdxI; ΩI
J ∈ GLð3;CÞ; ð4:38Þ

for some complex coordinate chart xI . The Haar measure
for SLð2;CÞ, up to a factor N, thus reads

dμðgÞ ¼ Ntr½ðdgg−1Þ∧3 ∧ ðdgg−1Þ†∧3�

¼ N
2 · 3!2 · 62

26
j detΩj2dx1 ∧ dx̄1 ∧… ∧ dx3 ∧ dx̄3:

ð4:39Þ

An often-used choice of measure in the spin-foam literature
[6,7] is the one of Rühl, which can be e.g., formulated in the
parametrization (Appendix of [52])

g ¼
�
a11 a12
a21 a22

�
; dμðgÞR ¼ ð2πÞ−4

ja22j2
�
i
2

�
3

× da12 ∧ dā12 ∧ da21 ∧ dā21 ∧ da22 ∧ dā22: ð4:40Þ

The normalization factor of Eq. (4.39) can be made to
agree with the convention of Rühl by direct comparison.
Letting xI now stand for the parametrization of Eq. (4.40)
one finds j detΩj2 ¼ 24ja22j−2, and hence, requiring
dμðgÞ ¼ dμðgÞR,

NR ¼ −i · ð2πÞ−4
3!2 · 62 · 22

: ð4:41Þ

Having fixed NR, the Haar measure in the real adapted
coordinates gI mentioned above, i.e., coordinates such that
∂Ig ¼ i

2
ΣIg, takes the simple form

dμðgÞ ¼ 1

ð4πÞ4 dg
1 ∧ … ∧ dg6: ð4:42Þ

3. Hessian matrix

As was previously mentioned, the z-integral of
Eq. (3.24) requires a choice of section in C2�, which has
up to now remained unspecified. To simplify calculations,
we shall fix that section before taking derivatives. Since the
set fki; Jkig spans C2, we are free to pick

jzii ¼ jkii þ βjJkii; ð4:43Þ

where β ∈ C; this choice considerably simplifies the
discussion. We remark that this is indeed a global section
of the bundle C2� → CP, since—under a judicious choice
of the range of β—it crosses every line through the origin
only once. Such a choice further restricts the complex
parameters to λi ¼ 1, and Eq. (4.30) determines βc ¼ 0. We
now list below all relevant derivatives to the asymptotic
analysis (note that we include only the symmetric part of
all second derivatives), denoting by Sc an evaluation at the
critical point Sðgc; βc; yÞ:
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∂β̄i
Sc ¼ 0; ∂βiSc ¼ −2Θi; ∂ISRc ¼ −iΓI; ∂ISBc ¼ −iγΓI; ð4:44Þ

∂
2
β̄i
Sc ¼ 0; ∂

2
βi
Sc ¼ −2

Θ2
i

ji
; ∂

2
βiβ̄i

Sc ¼ −2ji; ð4:45Þ

∂
2
Iβi
SRc ¼ 0; ∂

2
Iβi
SBc ¼ jið1 − iγÞκiI; ∂

2
Iβ̄i
SRc ¼ −ijiκ̄iI ; ∂

2
Iβ̄i
SBc ¼ −iγjiκ̄iI ; ð4:46Þ

∂
2
IJS

RR
c ¼ −

1

2

X
i

jiðδIJ − kiIkiJÞ; ∂
2
IJS

BB
c ¼ 2iγ − 1

2

X
i

jiðδIJ − kiIkiJÞ; ð4:47Þ

∂
2
IJS

BR
c ¼ i

2

X
i

jiðδIJ − kiIkiJÞ; ∂
2
IJS

RB
c ¼ i

2

X
i

jiðδIJ − kiIkiJÞ; ð4:48Þ

where we defined κiI ¼ hki; σIJkii and ΓI ¼
P

i jikiI,

Θi ¼ ji
1þh⃗i·k⃗i
h⃗i·κ⃗i

(note that kiI denotes the Ith component

of ki). We have also split the capital indices I into a rotation
and boost part (such that in the equations above
I ¼ 1;…; 3). The Hessian, which is a 14 × 14 symmetric
matrix, has thus the schematic structure

ð4:49Þ

4. Asymptotic formula

Equations (4.8) immediately generalize to the present
case by including derivatives with respect to both sets of
integration variables. The prefactor term uðg; zÞ can be
shown to be constant for our choice of section at the critical
points. Hence the final expression for the gluing constraints
in the asymptotic regime reads

Gjiðh̄i; k̄iÞ ≃N 4
ji

ð1þ ð−1Þ2
P

i
jiÞQið2ji þ 1ÞhJhijkii2ji

32π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detH

p

× exp fVαðH−1ÞαβVβg; ð4:50Þ

where Vα is a 14-component vector formally defined as

V ¼ ð−iΓ⃗;−iγΓ⃗;−2Θ⃗; 0⃗4Þ; ð4:51Þ

andN 4
ji is to be understood as a product of the phaseN for

every spin ji. The coefficient ð32πÞ−1 ¼ ð4πÞ−4 · ð2πÞ−4 ·
ð2πÞ7 is obtained from the normalization of the Haar

measure, from uðg; zÞ and from the numerical factor of
theorem (4.1), respectively. We remind the reader thatN is
a phase, as defined in Sec. III C.

V. NUMERICAL ANALYSIS

The gluing constraints defined in (3.3) are of a simple
form compared to the actual vertex amplitude (2.6), and in
the previous section we have derived their semiclassical
approximation for general boundary data. Below we
provide a numerical study of the gluing constraints and
their properties, arguing they are well captured by their
asymptotic formulas. We consider only the SU(2) BF and
Lorentzian EPRL constraints, given in (3.6) and (3.24)
respectively. Note that the Lorentzian EPRL gluing con-
straint depends additionally on the Immirzi parameter γ.
Our choice of parametrization for SU(2) is as follows:

g≡ gðϕ; θ;ψÞ ¼ e−iϕ
σ3

2 e−iθ
σ2

2 e−iψ
σ3

2 ; − π ≤ ϕ ≤ π;

−
π

2
≤ θ ≤

π

2
; − 2π ≤ ψ ≤ 2π; ð5:1Þ

with a corresponding Haar measure dμðgÞ ¼
ð4πÞ−2 sin θdϕdθdψ . A coherent state jj; ki can be para-
metrized by a spin j and two Euler angles, such that
k≡ kðϕ; θÞ ≔ kðϕ; θ;−ϕÞ. The group element k maps to a
unit vector k⃗ ∈ S2 directly through the Euler angles, and
generally via the inner product k⃗ ¼ hkjσ⃗jki, as in Sec. IV. A
coherent intertwiner of a four-valent node can be described
by the spins and angles associated to each leg. Coherent
intertwiners associated to a classical tetrahedron satisfy the
closure constraint C ≔

P
4
i jik⃗i ¼ 0, and hence not all the

parameters are independent. We refer the reader to the
appendix for the choice of parametrization of coherent
intertwiners used here. We term coherent intertwiners
satisfying the closure condition closing intertwiners, and
otherwise we call them nonclosing.
We consider as a first example a closing coherent

intertwiner with all spins equal, i.e., ji ¼ λ; i ¼ 1;…; 4.
Besides four spins, it is characterized by two dihedral
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angles fΦ1;Φ2g which parametrize the shape of the asso-
ciated tetrahedron.9 The choice Φ1 ¼ Φ2 ¼ arccos ð− 1

3
Þ

yields an equilateral tetrahedron. The unit-norm vectors
orthogonal to the faces of such a tetrahderon can be
determined from the spins and angles (see the
Appendix) up to a global rotation. Here we pick them to be

k⃗1 ¼ ð0; 0; 1Þ; k⃗2 ¼
�
0; 2

ffiffiffi
2

p

3
;−

1

3

�
;

k⃗3 ¼
� ffiffiffi

2

3

r
;−

ffiffiffi
2

p

3
;−

1

3

�
; k⃗4 ¼

�
−

ffiffiffi
2

3

r
;−

ffiffiffi
2

p

3
;−

1

3

�
:

ð5:2Þ

A second interesting case is the one of a closing intert-
winer corresponding to a nonregular tetrahedron with
equal areas, which can be obtained from the angles
Φ1 ¼ arccosð− 1

3
Þ;Φ2 ¼ π

2
. Again, the corresponding nor-

mal vectors can be computed using the formula (A4) in the
Appendix. The third and last example is that of a non-
closing intertwiner with equal spins, obtained from the first
example by changing one of the normal vectors. We rotate
the polar angle θ1 of the first normal vector in (5.2) by an
angle δθ1. The new orthogonal vectors are thus

k⃗01 ¼ ðsinðδθ1Þ;0; cosðδθ1ÞÞ k⃗0i ¼ k⃗i; i¼ 2;3;4; ð5:3Þ

for which the closure constraint evaluates to

C ¼ j1ðk⃗01 − k⃗1Þ ¼ j1ðsinðδθ1Þ; 0; cosðδθ1Þ − 1Þ: ð5:4Þ

These three examples of boundary data, which we will use
in the subsequent numerical analysis, are summarized in
Table IV. In the next subsection, we shall study the gluing
constraint between different pairings of these data.

A. SU(2) gluing constraints

Both the integral form (3.7) and the summation form
(3.10) of the constraints can be used efficiently for
numerical analysis. We chose to use the integral represen-
tation,

GSUð2Þ
τ ¼

Z
SUð2Þ

dμðgÞ
Y4
i¼1

hhijgjkii2λ; ð5:5Þ

repeated here for the reader’s convenience. While the
computational time for the above integration is independent
of the spins λ, the integrand in the case of nonmatching
configurations with very large spins (λ ∼ 150) becomes

exceptionally small, such that the numerical integration
turns less precise.

1. Scaling behavior

Figure 7 shows the absolute value of the gluing con-
straint as a function of spins, which generally decreases for
higher spins λ. The log-scaled plot suggests a power-law
decay in λ for matching data, while nonmatching and
nonclosing data both appear to exponentially decay. As
mentioned previously, when two boundary intertwiners
coincide the gluing constraint amounts to the norm of the
intertwiner. It has been shown in [40] that the norm is
exponentially suppressed unless the closure condition is
satisfied. Here we find such a suppression also for the
overlap between a closing intertwiner κA and a nonclosing
intertwiner κC. Moreover, if the two coherent intertwiners
are both closing but not equal (not shape-matching), as for
the pair κA, κB, the overlap is also suppressed. The
suppression is slower compared to the example with a
nonclosing configuration.
According to the analysis of Sec. IV B, the gluing

constraints are supposed to have a power-law scaling
∼λ−3=2 for noncollinear coherent states.10 Accounting for
this as in Fig. 8, one again sees an exponential suppression
for nonclosing configurations and a slight suppression for
nonshape matching configurations. We moreover find the
asymptotic formula (4.25) matches the actual gluing con-
straint extremely well even for small spins.

2. Closing but nonmatching configurations

Now consider the closing intertwiners κA and κ0B as
boundary states, where κA is given in Table IV and κ0B is
parametrized by κ0BðΦ2Þ ¼ fji ¼ λ; arccosð− 1

3
Þ;Φ2g. By

varying the angle Φ2 we can probe the behavior of the
constraints as a function of Φ2 for fixed spin λ. Since the
boundary data satisfy closure, the gluing constraints probe
how the shapes of two boundary tetrahedra fit together,
i.e., how well they are shape-matched. We refer to Φ2 as a
shape-matching parameter.
In Fig. 9 we plot the constraints as functions of the shape-

matching parameter. Notice that the constraints have broader
tails than a Gaussian would, and their peaks are displaced
from the center, being located at Φ2 ¼ arccosð− 1

3
Þ. It is

precisely at this value of the shape-matching parameter that
the boundary data satisfies the critical point equations of the
usual asymptotic analysis found in the literature, correspond-
ing to closed and shape-matched configurations. The right-
hand side of Fig. 9 indicates that the refined asymptotic
formula of Eq. (4.25) strongly reproduces the actual con-
straints even away from the critical point.

9The range of values of Φ1, Φ2 are restricted by simplex
inequalities or generalized triangle inequalities.

10We also checked that for collinear data the gluing constraints
scale as ∼λ−1.
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3. Nonclosing and nonmatching configurations

Finally, we consider the constraints for nonclosing
configurations as a function of angles. To this end we
make use of the intertwiner κC described in Table IV, but
allowing general variations δθ1, which we take to constitute
a nonclosing parameter for κ0Cðδθ1Þ. Figure 10 contains a
plot of the overlap between the closing intertwiner κA and
the general one κ0C as a function of the nonclosing
parameter. The gluing constraints are Gaussian-shaped

and their peak is located at δθ1 ¼ 0, corresponding to a
closing and shape-matched configuration κA ¼ κ0Cð0Þ.
Again, the asymptotic formula is in very good agreement
with the numerical results on and away from the criti-
cal point.

B. SLð2;CÞ gluing constraints

We turn now to a study of the SLð2;CÞ gluing constraints
of Eq. (3.24) and its asymptotic formula (4.50). The

FIG. 7. A plot of the SU(2) gluing constraint as a function of spins. The left panel shows the absolute value jGj for different pairings of
boundary coherent intertwiners in Table IV. The right panel is the same plot with a log scale on the y-axis.

FIG. 8. A plot of SU(2) gluing constraints and their asymptotic formulas rescaled by λ3=2 as function of half-integer spins. The left
panel shows the absolute values of the gluing constraint for different boundary coherent data. The right panel shows the real and
imaginary parts of the gluing constraint. The asymptotic data are plotted with empty circular points. The asymptotic formula closely
approximates the gluing constraint already for spins λ ∼ 10.

TABLE IV. Examples of coherent intertwiners parametrized by spins and angles with all spins equal (ji ¼ λ).

Intertwiner Parameters Feature

κA ji ¼ λ;Φ1 ¼ Φ2 ¼ arccosð− 1
3
Þ Closing

κB ji ¼ λ;Φ1 ¼ arccosð− 1
3
Þ;Φ2 ¼ π

2
Closing

κC ji ¼ λ; k⃗01 ¼ ðsin 1; 0; cos 1Þ; k⃗0i ¼ k⃗i; i ¼ 2, 3, 4. Nonclosing
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constraints themselves are defined via fourteen real improper
integrations, coming from a six-dimensional integration over
SLð2;CÞ and two-dimensional real integrations overCP1 for
each of the four nodes. Since these integrals are known to be
difficult to evaluate numerically, we chose to make use of

sl2cfoam-next11 developed in [7] for the Lorentzian
EPRL model. To do so, we formulated the constraints in
terms of SU(2) coherent intertwiners and boosted inter-
twiners, according to the proposal in [50]. Diagrammatically,
this is done through the set of equalities

ð5:6Þ

where the gray boxes represent SU(2) integrations and the
dotted box stands for a boost integration. Both the coherent
intertwiners and the boosted intertwiner of the rightmost

term can be natively computed in sl2cfoam-next. In
order to compare between the previous SU(2) case and the
current one, our numerical analysis uses the same boundary

FIG. 9. SU(2) gluing constraints for closing boundary data as a function of the shape-matching parameter at fixed spins. The plots
show skewed Gaussian-like behaviors for large spins. The peaks correspond to shape-matching configurations atΦ2 ¼ arccosð− 1

3
Þ. The

right panel shows the asymptotic formula approximates almost exactly the amplitude.

FIG. 10. SU(2) gluing constraints with boundary data κA; κ0C plotted as functions of angles (nonclosing parameter) and for fixed spins.
The right panel shows the Gaussian behavior for both the actual amplitude and its asymptotic formula very well matched, peaked
at δθ1 ¼ 0.

11The sl2cfoam-next package uses a convention that fixes the phase so that it gives only real amplitudes. We therefore use it to
compute only the absolute value of the gluing constraints.

SPIN-FOAMS AS SEMICLASSICAL VERTICES: GLUING … PHYS. REV. D 107, 046002 (2023)

046002-21



data as before. We moreover fix the Immirzi parameter to
be γ ¼ 0.123. As we will show, the qualitative behavior
of the constraints for both models is approximately the
same.

1. Scaling behavior

As per Sec. IV C, the gluing constraints are expected to
scale with λ−3 at critical points, due to the fourteen-
dimensional integration (contributing a λ−7 scaling) and
to the ð2λþ 1Þ4 normalization factor in the inner products
of coherent states (3.22). Below, when plotting scaled
gluing constraints, we will take the scale to be
λ0 ¼ λ−7 × ð2λþ 1Þ4. The left panel of Fig. 11 shows a
power-law decay and exponential suppression for matching
and nonmatching boundary data, respectively. We find the
qualitative behavior of both the constraints and the asymp-
totic formula to be very similar to the SU(2) case, although
the convergence of both values seems to happen for much
larger spins.

The right panel in Fig. 11 is a log-plot of the gluing
constraints for data of the type κA; κ0C, i.e., for data which is
displaced from criticality by some fixed amount δθ1. We
observe a curious phenomenon where the asymptotic for-
mula seems to slightly overestimate the suppression of the
constraint, at a rate which is increasingly higher for larger
deviations. We noticed these discrepancies become worse
with larger values of the Immirzi parameter γ. After carefully
checking our code, we believe that the source of this
discrepancy is rooted in a numerical instability: the inverse
of the Hessian matrix, which enters in the exponential
function, depends substantially on very small changes of
the matrix coefficients. We are therefore forced to take our
results away from the critical points with a grain of salt, until
a better understanding of these instabilities is achieved.

2. Closing but nonmatching configurations

Similarly to the SU(2) BF case, and according to the left
panel of Fig. 12, the gluing constraints as functions of the

FIG. 11. The left panel contains a plot of SLð2;CÞ gluing constraints for the data of Table IV scaled with λ0, for fixed γ ¼ 0.123. It
shows a power-law scaling for matching configurations and an exponential suppression otherwise. The right panel is a log-plot of the
gluing constraints λ0jGðκA; κCÞj and its asymptotic formula for different values of δθ1. The exponential suppression in the asymptotic
formula is faster than the actual amplitude for sufficiently large deviations from the critical point.

FIG. 12. Gluing constraints as functions of dihedral angles Φ2 show a skewed Gaussian-like behavior. The peak is at matching
configurations with Φ2 ¼ arccosð− 1

3
Þ. The asymptotic formula matches the constraints well away from the critical point.
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shape-matching parameter Φ2 are Gaussian-like but with
broader tails. One finds moreover through the right panel
that the asymptotic approximation reproduces the overall
behavior of the constraints, although, as previously
mentioned, the convergence between both is worse at spin
λ ¼ 30 compared to the BF model. Figure 13 reinforces
the qualitative similarity of the SUð2Þ and SLð2;CÞ gluing
constraints.

3. Nonclosing and nonmatching configurations

For our last example of nonclosing and nonmatching
configurations, we once more recover the general proper-
ties of SU(2) BF gluing constraints. The asymptotic
formula still matches the full amplitude reasonably well,
and the highest absolute disparity is found at the peak. We
have generally found this to be the case, and for the
absolute error between the constraints and their asymptotic
approximation to be smaller away from the critical point.

VI. DISCUSSION

In this article we have presented a new representation of
the spin-foam partition function in terms of coherent states.
Byusing resolutions of the identitywe equipped each edge of
the spin-foam with two sets of coherent data, one for each
vertex. Each vertex thus carries its own independent set of
data, and vertices are glued to their neighbors via gluing
constraints. These constraints enforce shape matching
weakly and are named after the gluing constraints defined
in effective spin-foams [8]. In this way, for large enough
representations, one can apply the asymptotic formula of the
vertex amplitude directly at each vertex, each of which is
dominated only by its own critical points. From this we have
conjectured a new quasigeometric regime of spin-foams,
which describes a superposition of semiclassical vertices
glued in a nonmatching way. Our future goal is to character-
ize this regime and use it to augment existing numerical
algorithms by building a “hybrid algorithm,”which switches

to less costly semiclassical methods as soon as these provide
a good approximation.
For now we focused mainly on the properties of gauge-

invariant gluing constraints, which we defined for SU(2)
BF theory and the Lorentzian EPRL model. We computed
these constraints numerically and analytically for different
sets of boundary data, e.g., corresponding to nonclosing
tetrahedra and tetrahedra of different shapes. From both we
found that they are (almost) Gaussian peaked on shape
matching and closure of the coherent data on both ends,
the critical points of the gluing constraints. Crucially, we
employed Hörmander’s theorem to calculate the gluing
constraints beyond those critical points, confirming their
Gaussian shapes and peak locations. Indeed, the asymptotic
formula provides an excellent approximation for the SU(2)
gluing constraints around spin j ∼ 10, whereas the EPRL
one is well approximated beyond spins j ∼ 50. The fact that
we can analytically compute the gluing constraints (far)
away from their critical points is an encouraging sign for
future numerical simulations, and it might be possible to
use this to significantly speed up calculations. Furthermore,
our analysis away from critical points may perhaps in the
future be applied to more complicated objects such as the
coherent vertex amplitude itself.
At this stage we would like to comment on the different

types of gluing constraints derived in this article, i.e., the
SU(2) type and the Lorentzian EPRL type, and on which
role they might play in the Lorentzian EPRL model. From
our perspective, both types can in principle be applied to
split vertices in the model. Indeed, the SU(2) gluing
constraints are in agreement with the EPRL construction,
since the particular states entering the vertex amplitude all
stem from SU(2) representations embedded into SLð2;CÞ
ones. Vertex amplitudes in the Lorentzian EPRL model can
be split at the level of SU(2) states, e.g., SU(2) intertwiners
in the spin network basis [19], such that one could
straightforwardly apply the SU(2) gluing constraints, which
are independent of the Immirzi parameter γ. On the other

FIG. 13. Gluing constraints as functions of the nonclosing parameter δθ1. They are Gaussian with a larger standard deviation for large
λ, and they are peaked at the critical δθ1 ¼ 0. The asymptotic formula is well matched away from the peak.
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hand, one can argue for the SLð2;CÞ gluing constraints as
we defined them. Given that SLð2;CÞ is the underlying
symmetry group of the theory, the SLð2;CÞ constraints
would directly project onto the relevant gauge-invariant
subspace. They moreover have the added benefit of struc-
turally resembling the actual vertex amplitude, such that
they can be used as a more tractable toy model. Still, opting
for SU(2) gluing constraints might be numerically more
efficient, and it might correctly capture the relevant physics.
There exists another reason that drove our study of the

Lorentzian EPRL gluing constraints. In effective spin-foam
models [8,34], the postulated gluing constraints are moti-
vated from commutation relations of 3d dihedral angles in
tetrahedra, and they are related to the weak imposition of
simplicity constraints in spin-foams. This imposition should
be connected to the Immirzi parameter γ. One of our goals
was therefore to define gluing constraints for the EPRL
model with an explicit γ-dependence, and to compare them
to this previous proposal. To this end we have studied the
constraints for boundary data corresponding to geometric
tetrahedra that differ in their two angles that parametrize
them. As mentioned above, we find the EPRL gluing
constraints to be almost Gaussian shaped (with slightly
too long tails), peaked on shape matching and showing little
γ-dependence. What this implies regarding the weak impo-
sition of constrains in the model, and whether the con-
straints restrict strongly the allowed geometries, are two
interesting questions to investigate in the future.
With the definition of the gluing constraints and their

accurate asymptotic formula on and away from critical
points, an important first step toward building the hybrid
algorithm is done. However, many open conceptual and
technical questions must be addressed. One of the most
pressing ones is the regime in which such an algorithm is
valid; in this work we have presented some first evidence,
but more thorough investigations are needed. Work on the
coherent vertex amplitude for higher valent spin-foam
vertices [13] suggests that the transition between the
quantum and semiclassical vertex regimes might be more
intricate, e.g., if some spins are large yet others remain
small. Moreover, it is vital to generate all critical vertex
configurations for a given set of ten representations, which
can correspond to degenerate, vector or Regge geometries.
Previous work in this direction exists as part of the
sl2cfoam-next package [6,7], as does an algorithm
that translates from areas to lengths configurations in
the framework of effective spin-foams for different sig-
natures [34,36]. We moreover hope that our algorithm will
help shed light on the question of what role configurations
other than Regge geometries play in the spin-foam path
integral, e.g., whether gluing degenerate or vector geo-
metries to Regge geometries is (strongly) suppressed. This
might help us identify the most relevant geometries of
multiple vertices in the path integral. Eventually, we must
develop the hybrid algorithm in detail and demonstrate

that we can faithfully approximate the full quantum
amplitudes by nonmatching semiclassical vertices glued
together via gluing constraints.
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APPENDIX: PARAMETRIZING CLOSING
AND NONCLOSING SU(2) INTERTWINERS

It is well known that the geometry of a classical
tetrahedron can be determined from its six edge lengths
or equivalently from its four triangle areas and two (non-
opposite) dihedral angles up to SO(3) rotations. A unit
normal vector k̂i associated to a face fi of a tetrahedron is a
vector in the unit two-sphere S2. Such a unit normal vector
can be parametrized by the spherical angles as

k̂iðθi;ϕiÞ ¼ �ðsin θi cosϕi; sin θi sinϕi; cos θiÞ: ðA1Þ

The form of the normal vectors follows from the particular
parametrization of SU(2) in (5.1). Let ki; i ¼ 1; � � � 4 be the
outward pointing normal vectors (not normalized) belong-
ing to the face of the tetrahedron τ. Without loss of
generality, we can use the freedom under SO(3) rotations
to take one of the normal vectors to be along the z-axis, and
to take a second vector to be in the y-z plane. That is, we
choose the normal vectors (not normalized) to be of the
form

k⃗1 ¼ ð0; 0; c1Þ; k⃗2 ¼ ð0; b2; c2Þ;
k⃗3 ¼ ða3; b3; c3Þ; k⃗4 ¼ ða4; b4; c4Þ: ðA2Þ

The normal vectors are chosen such that the norm of each
vector gives the corresponding area of the triangle face. For
a closed tetrahedron the normal vectors satisfy the closure
condition

C ≔
X4
i¼1

k⃗i ¼ 0⃗; ðA3Þ

and hence k⃗4 ¼ −ðk⃗1 þ k⃗2 þ k⃗3Þ. These normal vectors
determine the geometry of a tetrahedron up to SO(3)
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rotations. Note that the squared volume of the tetrahedron
in terms of the normal vectors is V2

τ ¼ −k⃗1 · ðk⃗2 × k⃗3Þ.
As an example, consider four area square terms

pii ¼ k⃗i · k⃗i ¼ A2
i ; i ¼ 1…4 and two inner product terms

p1j ¼ k⃗1 · k⃗j for j ¼ 2, 3 (nonopposite edges). We can
easily solve for the variables ai, bi, ci in terms of the pii and
p1j. This results in vectors of the form

k⃗1 ¼ ð0; 0; ffiffiffiffiffiffiffi
p11

p Þ;

k⃗2 ¼
1ffiffiffiffiffiffiffi
p11

p ð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11p22 − p2

12

q
; p12Þ;

k⃗3 ¼
�

V2
τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p11p22 − p2
12

p ;
2p12p13 þ p11ðp11 þ p22 þ p33 − p44 þ 2p12 þ 2p13Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11ðp11p22 − p2

12Þ
p ;

p13ffiffiffiffiffiffiffi
p11

p
�
;

k⃗4 ¼ −ðk⃗1 þ k⃗2 þ k⃗3Þ; ðA4Þ

where the squared volume is

V2
τ ¼

�
−p12p13ðp11 þ p22 þ p33 − p44 þ 2p12 þ 2p13Þ −

p11

4
ðp11 þ p22 þ p33 − p44 þ 2p12 þ 2p13Þ2

þ p33ðp11p22 − p2
12Þ − p2

13p22

�1
2

: ðA5Þ

Each normal vector is of the form k⃗i ¼ ffiffiffiffiffiffi
pii

p
k̂i for all i,

and hence the inner products can be given in terms
of Euler angles associated to the unit normal vectors
[see (A1)]. For the vectors in (A4), we get the inner
products

p12 ¼
ffiffiffiffiffiffiffi
p11

p ffiffiffiffiffiffiffi
p22

p
cosθ2; p13 ¼

ffiffiffiffiffiffiffi
p11

p ffiffiffiffiffiffiffi
p33

p
cosθ3: ðA6Þ

The Euler angles θ2, θ3 are exactly the dihedral angles of
the associated edges e12, e13. In general, the four spins
ji ¼ ffiffiffiffiffiffi

pii
p

together with two (nonopposite) 3d dihedral
angles Φi; i ¼ 1, 2 parametrize a closing intertwiner with
normal vectors given in (A4). The variables Φ1, Φ2 are
related to the Euler angles by Φ1 ¼ θ2 and Φ2 ¼ θ3.
For a nonclosing intertwiner, the closure constraint is

violated, that is

C ¼ ε ¼ ðε1; ε2; ε3Þ; ðA7Þ

with ε ≠ 0. The four normal vectors are therefore uncon-
strained. Such nonclosing intertwiners can also be con-
structed starting from a closed intertwiner and performing
SO(3) rotations of some or all of the face unit normal
vectors k̂i while keeping their norms fixed. A rotation of a
unit normal vector k̂iðθi;ϕiÞ by Euler angles ðδθi; δϕiÞ will
result in a general vector k̂ðθi þ δθi;ϕi þ δϕiÞ.12 Thus
rotating one or more normal vectors of a closing intertwiner
will result in a nonclosing intertwiner as long as the closure
constraint is violated.
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