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Unimodular gravity can be formulated so that transverse diffeomorphisms and Weyl transformations are
symmetries of the theory. For this formulation of unimodular gravity, we work out the two-point and three-
point /1, contributions to the on shell classical gravity action in the leading approximation and for an
Euclidean anti de Sitter background. We conclude that these contributions do not agree with those obtained
by using general relativity due to IR divergent contact terms. The subtraction of these IR divergent terms
yields the same IR finite result for both unimodular gravity and general relativity. Equivalence between

unimodular gravity and general relativity with regard to the gauge/gravity duality thus emerges in a

nontrivial way.
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I. INTRODUCTION

Unimodular gravity is a theory of gravity which puts
the cosmological constant problem into a new perspective
[1-4], for the vacuum energy does not gravitate in that
theory. In unimodular gravity the cosmological constant
does not enter the classical action, and thus it occurs as an
integration constant in the classical theory [1-4]. At the
quantum level, the cosmological constant occurs as a
parameter of the background field when computing the
on shell perturbative background-field effective action [5]
and as a property of boundary states when computing
transition amplitudes between those states [6].

In the current century, several issues have been studied over
the years in connection with unimodular gravity—
see [7] for a recent review. Let us mention just a few:
unimodular gravity as one of the two sound theories with
transverse-diffeomorphism invariance [8], how unimodular
gravity arises from interacting gravitons [9], the quantization
of unimodular gravity within the Becchi-Rouet-Stora-Tyutin
formalism [5,6,10-13], whether unimodular gravity and
general relativity agree as effective quantum field theories
[14-21], asymptotic-safety analysis of unimodular gravity
[22-26], the formulation of unimodular supergravity [27-29],
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sundry topics like the first order formalism [30] and the
Hamiltonian formalism [31] as applied to unimodular gravity,
and a massive version of the theory [32].

The gauge/gravity duality conjecture states that a gravity
theory in a d + 1-dimensional space-time with boundary
is equivalent to an appropriate gauge theory—with no
gravity—in its d dimensional boundary. There is a wealth of
evidence—see [33,34] and references therein—that this
conjecture holds for the pair of theories for which the
duality was originally put forward [35], namely, type 1IB
superstring on AdSs x S with N units of flux on S, on the
one hand, and ' = 4 super-Yang-Mills for SU(N) on four-
dimensional Minkowski space-time, on the other. Another
well-established instance of the gauge/gravity duality is the
pair constituted by M theory on AdS, x S7/Z; and the
large N limit of the Aharony-Bergman-Jafferis-Maldacena
theory, which was introduced in [36]. We see that at low
energy these two instances involve general relativity on
AdSs and AdS; as duals of strongly interacting field
theories without gravity in four and three dimensions,
respectively.

The reader should bear in mind that from now on we
shall consider Euclidean anti de Sitter (AdS) only. In
Poincaré coordinates, Euclidean AdS is the space H .| =
{(z,%)|z > 0,X € R} with line element

L2

ds* = =z (d2* + 6;;dx'dx). (1.1)

The (conformal) boundary of ‘H,,, is at z = 0.
The gauge/gravity duality, when it holds, is a precisely
formulated realization of the holographic principle [37,38].
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The formulation in question entails the so-called holographic
dictionary introduced in [39,40]. This dictionary sets a
correspondence between objects (parameters and fields) of
the quantum gravity theory in d + 1 dimensions and the dual
quantum field theory in d dimensions. In particular, the
quantum fluctuations, say 4,,,, of the Euclidean AdS metric is
linked with the energy-momentum tensor, 7';;, of the dual
(b)

quantum field theory. Indeed, the data, say h;;", setting the
value of h,,, at the conformal boundary of Euclidean AdS acts
a source of the energy-momentum tensor of the dual quantum
field theory: it is postulated that the n point connected Green
function of T';; is given by

Jo

<Ti]j| (x1)-- T, (xn)>(connected)
n b

_ LnZyy [h]

5h(b)lljl (xl) “ e 5h<b)inju <xn) h(b) 0

. (12)

where Zuyity [hfj’)] is the partition function of the gravity
theory on the Euclidean AdS background for the boundary
data hgjl?).

In this paper we shall be concerned only with the leading
saddle point approxXimation to Zgyity [hgjl?)]. This approxi-
mation is given by

b b
In Zgravity [hfj)} = _Sclassical [hﬂv[h§]>n’

(1.3)

where hﬂ,/[hl(.f)] is the solution to the classical gravity
equations of motion in the Euclidean AdS background

with boundary data equal to hg}).

Of course, as they stand, both (1.2) and (1.3) are formal
equations: they need regularization and renormalization to
be well-defined. We shall regularize and renormalize

Setassica [l [}, )]] as done in [39,41-44], ie., first, by
cutting off at ¢y > 0 the “z” coordinate of the Euclidean
AdS metric in Poincaré coordinates, and, then, subtracting
the divergences which arise as ¢ goes to zero. We shall not
use the holographic renormalization framework of [45]—
see [46], for a pedagogical exposition. This framework
demands the use of the Graham-Fefferman form of the near
boundary metric, which in not a unimodular metric.

The purpose of this paper is to work out, in the leading
saddle point approximation, the two-point and three-point
contributions to the partition function—see (1.3)—of
unimodular gravity for a Euclidean AdS background and
thus to begin the analysis of the properties of unimodular
gravity from the gauge/gravity duality standpoint. By
unimodular gravity we shall mean a gravity theory as
formulated by using the framework of references [5,8,14].
In the framework in question the unimodular metric, say
Gu» 18 expressed in terms of the unimodular background

metric g,, and the unconstrained field A, as follows:

N g _
v = M#/,,g;w = 9w + Kh/w- (14)

In the previous equations g denotes the determinant of g,,,,
n is the space-time dimension, and k = v8zG, G being
the gravitational constant. The two-tensor 4, describes the
perturbations of the background g,,, classically, and the
fluctuations of the latter at the quantum level. Upon
quantization h,, becomes the graviton field [8,14]. The
gauge symmetry of this formulation of unimodular gravity
is constituted by transverse diffeomorphisms and Weyl
transformations of g,, [8,47].

The classical action of our unimodular gravity theory for
a manifold M with boundary oM is [15,48]

1
Sue = —0a (/ d"xR[j,,] + 2/ d”‘ly\/g(”)l()
K M oM

(1.5)

where R[g] is the Ricci scalar, §,) is the determinant of the
induced metric on the boundary, and K is the trace of the
extrinsic curvature of the boundary for the unimodular
metric g,,. Of course,g,, is given in (1.4). The equation of
motion derived from S, reads as [5]

1 (n=2)2n—-1) (V,gV,g 1(Vg)?
RMV_;RgﬂV: an2 ”gz . 2w
n-2(V,V,g 1V%

() oo

where R, and R are the Ricci tensor and the Ricci scalar
for g,,—mnot for g,,, respectively; V,g = d,g. The previous
equations, which we shall call the unimodular equation of
motion, are obtained by setting to zero the infinitesimal
variations of Sy induced by infinitesimal variations of g,
which vanish at oM.

The reader should notice that no cosmological constant
occurs in Sy, and yet g,, =g, is a solution to the
unimodular equation of motion in (1.6) when g,, is the
unimodular Euclidean AdS metric. This result holds what-
ever the value of the cosmological constant which occurs in
the Euclidean AdS metric. This is in sharp contrast with the
general relativity situation where the cosmological constant
enters the action and the value of the cosmological constant
which characterizes the Euclidean AdS metric is only the
one which occurs in the action.

We shall show that the two- and three-point contributions
to the rhs of (1.3) in general relativity and unimodular
gravity are not the same for the IR regularized theories.
However, this difference is due only to IR divergent contact
contributions so that once these IR divergent terms are
subtracted full agreement between the unimodular gravity
and general relativity results is reached. As a consequence,
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the two-point and three-point correlation functions of the
energy momentum tensor defined according to (1.2) are the
same for both gravity theories. And yet, this equivalence
between unimodular gravity and general relativity regard-
ing those IR finite results cannot hide the fact that it is
obtained in a nontrivial way.

The layout of this paper is as follows. In Sec. II we put
forward the unimodular counterpart of Euclidean AdS in
Poincaré coordinates. In Sec. III we solve the linearized
version of unimodular gravity equation (1.6) for the
unimodular Euclidean AdS background. We shall show
that a suitable gauge choice—the axial gauge—and coor-
dinates turn the linearized equation in question into the
equation of a free massless scalar field on the Euclidean
AdS background. Sections IV and 5 are devoted, respec-
tively, to the computation of the two- and three-point
contributions to the rhs of (1.3) for unimodular gravity
and how these contributions compare to their general
relativity counterparts. In Sec. VI we shall state our con-
clusions. We also include an Appendix where we discuss
how to find the solution to the linearized general relativity
equations in the axial gauge, the solution satisfying Dirichlet
boundary conditions and having a well-defined limit as we
move toward the interior of Euclidean AdS.

II. EUCLIDEAN AdS WITH UNIMODULAR
METRIC: UNIMODULAR POINCARE
COORDINATES

In the standard gauge/gravity duality discussions [44],
one usually characterizes Euclidean AdS by using Poincaré
coordinates, and thus Euclidean AdS in d + 1 dimensions
is identified with the set of IR“*! points {(z,X),z > 0,X €
IRY} with line element

2

L o
ds? = =5 (d2% + Sydxidx)), i,j=1..d. (2.1)
Z

In this coordinate system the boundary is at z = 0 and it
is IR?.

The determinant of the metric of the previous line
element is not 1, so this metric does not suit our purposes.
Let us introduce a new coordinate, say w, w > 0, defined as
follows:

Ld+l
w=— 74 (2.2)

Here and elsewhere d > 3. In terms of w the line element in
(2.1) reads as

L 2 Wd 2/d . .
ds*> = (ﬁ) dw? + (T) 8;dx'dx).  (2.3)

The Riemannian metric of the line element in (2.3) is
unimodular; but now Euclidean AdS is identified with a set

of real d+ l-tuples (w,X), w>0, ¥€IR? and the
boundary is at w = oo.

The graviton field, A, , of our unimodular gravity theory
will propagate in a Euclidean AdS background with
unimodular metric g,,—the background metric—given by

G (W, X) = ( <vfd> 2, (de> 2/d5ij> ; (2.4)

where y,v =0,1...dand i,j = 1...d.

Let us close this section by making some comments
regarding the killing vectors of a general unimodular
metric. First, any such killing vector, &, is transverse,
i.e., 0,8 = 0, since transversality is equivalent to covariant
transversality, Vﬂff‘ = 0, when the metric is unimodular.
Secondly, the number of independent killing vectors of a
unimodular metric and any metric obtained from it by a
diffeomorphism is the same. This is relevant with regard to
the gauge/gravity duality."

III. THE LINEARIZED UNIMODULAR GRAVITY
EQUATION ON A EUCLIDEAN AdS
BACKGROUND

The linearized unimodular gravity equation in the
Euclidean AdS background with the unimodular metric,
Ju» 0 (2.4) is obtained from the equation in (1.6) with
n=d+1, by setting g,, = g, + «h,, and expanding at
first order in k. Thus, one gets

1 - d+3
Lo, _ d+3

1o -
27 T @12 T

0 1' = 4
V.V, =5 V,9

Dh—z WV

1 1
GV — YV
A AN C e A A

1

~ho—g ———_h=—o, 3.1
T T I g T (3.1)

where all the covariant derivatives are defined with respect
to g,,—hence, the upper bar—and h = g*’h,,,. Let us point
out that (3.1) is quite different from the corresponding
general relativity equation, (Al), in the Appendix.

The aim of this section is to find the solution to (3.1) for
suitable Dirichlet data at the boundary and such that—see
[33,44]—the solution in question has a well-defined limit
as one moves deep into the interior of Euclidean AdS, i.e.,
as w — 0. We shall cut off the w coordinate at py,—i.e.,
0 < w < pg—to regularize the IR divergent contributions to
the rhs of (1.3) coming from regions arbitrarily close to
w = co. Thus, we shall solve (3.1) in the domain
{(w,X);0 < w < py, X € IRY}. We shall show that in the
axial gauge, /i, [w,X] = 0, such a solution can be brought
to a solution, say h,, = (hg, = 0, h;;), satisfying

'"We thank E. Alvarez for pointing out these two results to us.
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5i‘jhij[W, )—6] =0 and d/hjl [W, 55] == 0, (32)

by doing a gauge transformation that preserves the axial gauge condition. In (3.2), i,j = 1...d and ¢/ = &/ %.
To solve (3.1) for h,,, we shall take advantage of the gauge symmetries,

Shy, (x) = v}ﬁ,/(x) + %9,, (x), v/ﬂ" (x) =0, Syhy,(x)(x) = 206(x)G. x=(w,X), (3.3)

of the equation in question. v,, is defined with regard to the unimodular metric g, in (2.4). That the transformations in (3.3)
leave (3.1) invariant can be easily checked directly, and it is a consequence of the fact—see [5]—that the unimodular action
in (1.5) is invariant under transverse diffeomorphisms and Weyl transformations of g,, in (1.4). Recall that d,0" = 0 is
equivalent to V,0/(x) = 0 if the metric is unimodular.

By using the transformations in (3.3), one may impose the gauge condition /g, [w, %] =0,0 <w < py, and ¥ € IR?. From
now on we shall assume that the previous gauge condition is imposed so that only A;;[w, X] occurs in (3.1).

Let us introduce the following definitions:

Ld+l N
H;lz,X] = hy; [W == Z_d,)_é]’ H(z, 3] = 8VH;[z, 3], ij=1..d
dk S - 2 f df
"’ — - ’k —zk.x, k = kl,...,kd, //:_’ e
e = [ G5l e (K. k) p=t p=a

wd

Then, after changing variables from w to z = (W)‘l/ 4 Eq. (3.1) boils down to the following set of equations:

H"[2. k(=1 + d)22) + H'[z.k](=((=5 + d) (=1 + d)z2))+ (3.4)

Hz. K(=2(=2+ d)(=1 + d) + (3 + d)k*z?) — Kk H 2. K] (2(1 + d)22) =

~2kizH'[z. k] + (=5 + d)k;H[z, k] + (1 + d)(zk H', [z, K] + 2K/ H [z, k])

El

0
0. (3.5)

-, -,

H"[z, k(=3 + d)2%)8;; + H'[z, k]((=5 + d) (3 + d)z5;;)
+ Hz, k|(=2(1 + d)2*kik; + (3 + d) (=4 + 2d + k*2?)5;;)
+ H}j[z, k|(1 + d)?*2% + Hij[z, k|(=(=5 + d)(1 + d)*z) + Hjlz, k| (=(1 + d)* (=4 + 2d + k*2%))
+ (=2(1 + d)2%)5;;k k" H 2, K+ 1+ d)*2* (k;k'H z, K+ kik'H [z, k) =o0. (3.6)
Let us stress that Egs. (3.4), (3.5), and (3.6) are equivalent to the components 00, 07, and ij of Eq. (3.1), respectively. i, j run

from 1 to d.

Let us first show that (3.4), (3.5), and (3.6) imply that, modulo a transverse diffeomeorphism transformation that
preserves hg,[w,x] = 0,

H[z,k]=0 and KHjlz,k =0, (3.7)

when h;;[w, X] has a well-defined limit as w — 0. To do this we shall proceed as follows. Contracting Eq. (3.5) with k' one
gets

—2kzH' [z, k| + (=5 + d)k*H |z, k| + (1 + d)zk' K H}j;[z, k] + 2(1 + d)k'k/H [z, k] = 0. (3.8)
By taking the derivative with respect to z of the previous equation, one obtains
i . i1 P 2 7 2 7 —
(1+d)zk k/H;’j[z, k] +3(1 4+ d)k kaﬁ.j[z, k] = 2k*zH"[z,k| + (=7 + d)k*H'[z, k] = 0. (3.9)

Let us now contract (3.6) with k'k/:
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H'[2.k)(~(3 + d)k*2%) + H'[z, K](=(=5 + d) (3 + d)k*2) + H[z. k] (2(=6 + d + d?)k>
+ KH 2 K (1 + d)22%) + KT H [z, k) (= (=5 + d) (1 + d)2z) + Kk H [z, k) (4 + 6d — 2d° +

— (-1 +d)k*z?)
(=1 + d*)K*z%) = 0.
(3.10)

Let us consider the system constituted by (3.8), (3.9), and (3.10). Solving this system for k'k/H; [z k} one gets

KikiH [z, k] = q +1d)z

(=2 = (=3 + d)d + R2)H[z, k] + 2(2(=2 + d)H'[z,K] -

ZH"[z,K))}. (3.11)

The contraction of Eq. (3.6) with "/ yields the following equation:

-.

H" [z, K)(=(=1 + d)2?) + H'[z. k]((=5 + d)(=1 + d)z)

+ H[z. K)(2(<2 + d) (=1 + d) —

(3 + d)k22%) + kikiH ;2. k](2(1 + d)Z%) = 0.

(3.12)

This is Eq. (3.4), so we conclude that Eq. (3.4) is contained in Eq. (3.6) and provides no extra information. By solving for

k'k’'H [z, l:} (3.12) can be recast into the form

KikiH [z, K] A(=2(=2+ d) (=1 +d) +

1
~2(1+d)z

Next, subtracting (3.13) from (3.11), one gets

k2zH[z, k] -

Since k> > 0, the general solution to the previous equation
reads as

Hlz.k| =27 2(C ooy [[K|2] 4+ CoY gpoi [IK]2]),  (3.14)

where |k| = VK%, and C; and C, are functions of .
Let us assume that d > 3. Then, the asymptotic behavior

of J /a1 [|k|2] and Yo [|k|2]) leads to the conclusion that
H[z, K| =6'H iilz, k] in (3.14) has a well-defined limit as
7z — oo only if both C; and C, vanish. Recall that there is
the condition that H |z, k| = h; iw== ;H 2=, k] must have

a well-defined limit as w — 0, i.e., as z — oo.
Next, the substitution of H[z, k] = 0 in Eq. (3.5) leads to

K H'y [z, k] + 2k'H [z, k] =0,
whose general solution is

v;(k)
2

kK'Hijlz, k] =

This solution is compatible with Eq. (3.4) for H|z, k] = 0 f,
and only if,

(3 + d)K>22)Hz. K]+(=1 + d)z(—(=5 + d)H'[z, k] + zH" [z, k]}.

(3.13)
(=3 + d)H'[z, k| + zH" [z, k] = 0.
|
8'ik;v;(k) = 0. (3.15)
It can be shown that
icular I 1 g =
HP e [z k) =z a0 + ki0) - (3.16)

is a solution to Eq (3.6), for 5”H<pamculﬂr)[z,la =
Hence, when H|z, k| = 0, the general solution, H, i1z,
to (3.6) can be expressed as the sum H;z, k] =
H E}ransvcrse) (2. k] + H ,(-}?amcum) [z, k], where

leE;ansverse [Z, k] = 0.

Let us show that

d
(particular) [ =7 dk (particular);_ 77 _ik-%
Hj [z, X] _/(zﬂ)dHif [z, k]e~ikx,

with z = ( Lv,”;ill)_l/ 4. can be recast as a unimodular gauge
transformation which preserves the axial gauge condition
hg,[w. %] = 0. This gauge transformation reads as

046001-5
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VW, [w.X] + VW, [w, 7], (3.17) Let us change variables from (w, X) to (z,X), where z =
(244r)~"/4-% does not change. Then the vector field
where W, [w, X] changes to V,[x, X] as follows:
Wolw, x] =0,
L (dw ¥4 dk (k) A0 s W E = Ve §
Wi[W,x] = <m> l/we k 7 (318) WO[W’X] aWVO[va]f ,[w,x] Vl[z’x}'

and the covariant derivative is defined with regard to the
unimodular Poincaré metric in (2.4). Hence, the following results hold:

1 k. vk
Volz. i =0, V]3] = —zi/ ik Vi(K)

b4 (2r)4 K2
- . 0z\? -
VoWolz, x| = (ﬁ) Ve Volz. 3.
o 0z

VoWilw. %] + VW w, X o (VEVi[2. 7] + VOV, [, 3]).

VW, w, 3]+ VWi w. 5] = VIOV, 2.3 + VIOV [, 3], (3.19)

i

where V,(JS) denotes the covariant derivative with respect to the standard Poincaré metric whose line element is in (2.1). A
little computation yields

ViVlz. 5 =0, VIV 7] + VOV[z. 7] =0,

which guarantees, in view of (3.3) and (3.19), that the axial gauge condition /g, [w,x] = 0 is preserved. In addition,

Sy oS e L[ dik ki (k) + k()
VOV + VT = [ e SRR,

which matches (3.16). Hence, the last equation in (3.19) yields (3.16).

It remains to be seen that W, [w,X] is covariantly transverse: VW, [w,X] = 0. Indeed,

ddk e—ik‘x 5Ukl ’Uj (k)
(2m)¢ k?

W, w7 = VW2, 7] = / o,

for Eq. (3.15) holds. Recall that unimodularity of the metric implies that transversality with regard to 9, and v,, are
equivalent.

Let us recapitulate. We have just shown that, in the axial gauge, /g, [w,x] = 0, any solution to (3.1) in the domain with
cutoff {(w,X),0 < w < py, X € IR?} which has a well-defined limit as w — 0 is gauge equivalent, under the transformation
in (3.17) and (3.18), to a solution of (3.1), say &;;[z, X], such that

H[z.3 =0 and 0/H,[z.%] =0, (3.20)

where o/ = §/' %, H([z,X] = 6VHj[z. %], and H [z, %] = hyj[w = L‘g' z7¢,X]. Notice that (3.20) can be recast as (3.2).

If we substitute (3.7) in (3.4) and (3.5) in turn, we shall see that they are trivially satisfied. However, the substitution of
(3.7) in (3.6) yields the following equation:

2H [z, k] = (=5 + d)zH [z, k] = (4 +2d + K2 H,j[z.k] = 0, (3.21)

to be satisfied by H;;[z, l:] Let H’] [z, E] be given by the following set of equations:

046001-6
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d+1

R : . e . L\ 2/d .
Hi[z, k] = h! [w = - ,k], Riw, k] = ' hyj[w, k] = < > hijlw. k],

wd

where 7" is the inverse of the unimodular metric (2.4). Obviously, H;;(z. k=54 Hilz, k], which substituted in (3.21) yields

Z2
217i 7 i 7 2207, 1] —
ZHM [z, k] + (1 = d)zH [z, k] — k*z*H}[z, k| = 0. (3.22)

The general solution to this equation is well-known: it is a linear combination of z%/2K ,»[|k|z] and z9/21,,||k|z], where
K2 [k|z] and 1,,[|k|z] are the modified Bessel function of second kind. And yet, we have to drop z%/21,,[|k|z], for it has
an exponentially divergent behavior in the deep interior of Euclidean AdS, i.e., as z — co—recall that 7 — oo corresponds
to w = 0. We then conclude that the solution to (3.22), in the domain {(zlz)z > €y > O,Ize IR? ey = (%)_1/ d},
satisfying Dirichlet boundary conditions at z = €, and having a well-defined limit as z — O reads as

- 2K ]|k -
Hilz. k| = Zﬂdi/z“mhﬁ”ﬁ[k]. (3.23)
€y Kapl[lkleo]

(17)i

Notice that &; [1:] is any traceless and transverse function whose inverse Fourier transform is real so that (3.7) holds.

Obviously,
iy T)ir7 1 ; klk
7 = 1R = (3T
ip — sinTMirg
hD (k] = &/h; " [K].
T)i(7 pigey Lo w1 b)i 7 i L (B)mT
WDTR = AP - 2k kih "] - pkjklhg k) + GE Kk ke, ™ ), (3.24)
where h;b)i[l_c'] is the Fourier transform of an arbitrary real h;b)i()?), which sets the value of 7, [w, X] at boundary w = p.

Putting it all together we finally conclude that in the axial gauge, /g, [w,X] = 0, any solution to (3.1)—the linearized
unimodular gravity equation—in the domain {(w,X);0 <w < p,, X € IR’} is gauge equivalent, under a gauge trans-
formation—see (3.18)—preserving the axial gauge, to an /1, [w,X] whose Fourier transform is given by

-,

- - - - 1/2 K 45| k| (wd/L)~1/4
houw. K] =0, hylw. K] = guch¥lw. k), BEw,K) = HY[z = (wd/L)~"/4, K] = <@> a2 [kl (wd/L)~1]

Kd/2[|k|(ﬂod/L)_l/d]

" h;TT) k []_é] .

(3.25)

Of course, we have demanded that the solution, h,w[w, X], be such that it has a well-defined limit as w — 0 and satisfies
Dirichlet boundary conditions at w = py.

It will be useful for use in the following sections to realize that in the axial gauge, A, [w, X] = 0, the equations in (3.2) are
equivalent to

h[w.%] = #“h,,w.X] and V*h,[w,3] =0, (3.26)

respectively, g,, being defined in (2.4). Besides, the substitution of the equations (3.26) in (3.1) leads to the conclusion that
our A, [w,X] in (3.25) satisfies

Ehzzh

w =" 77 M (3.27)

A final comment: It is not difficult to show that each component of h; [w, X], with Fourier transform in (3.25), satisfies the
free massless Klein-Gordon equation for the unimodular metric in (2.4).
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IV. THE TWO-POINT FUNCTION

The purpose of this section is to work out the expansion up to quadratic order in £, of Sy in (1.5) for the A, in (3.25)
and compare the result with that of general relativity.
By using integration by parts and not dropping the total derivative terms, the contribution in question, say Sypygo, tO

dix / " awR[q]
0

d d+ 1
Supvcz[Muw] = dx / { ( D —l—KV V, b — K'd+ 1

reads as

Oh

d+3

- - 1 - 1 -
S s SR YAV Y RGN, U8 I P RRLIA V8 VA
P 2(d +1)? 2NVl = N NN YV

K'2 ﬁlj
— | =ik
3 {2

L G- Lpt,+— 2| 29,8 (4.1)
d+1 2 e T )2 s '

where?

d—1 3-d - 1 - - - 1. -
B =—— wWh+—— h V' ——— WV h+ WV W™ | — WV B — — ™V I
TP A TP I +2(d+1)[ AV, } ye =5 IV

and h = gh,,. Notice that we are integrating over the domain with cutoff {(w,X);0 <w < py. X € IR’} that we have

introduced in the previous section. The IR¢ boundary is at w = p,. The introduction of the cutoff p, regularizes the
otherwise IR divergent value of the action. p, is to be taken to co upon renormalization.
When £, in (4.1) satisfies—as does our solution in (3.25)—the equations in (3.26) and (3.27), Sypye2 [hﬂ,,] boils down to

1 = ([ 3-d 1 -
SI-IEUGZ uv :__/dd / { ) v/l (Wk V'lh ”—Ehf’“vyhﬁ)}_ (42)

Notice that—as in the general relativity case [42,43]—Sy g2 1n (4.2) only contains boundary contributions.
Let us introduce the metric, say Gij ;i,j = 1...d, that the unimodular metric in (2.4) induces on the boundary,

{(po. %)X € IR}, at w = py:

_(b) OxH OxY pod\ /4
0.1 = Bl 71 5 55 = 3o 71 = () 3 3)
where x* = (w,x"). Let i# denote the unitary vector which is orthogonal to the boundary {(p, X), X € IR’} and it is
given by
d -
= (”L,o), (4.4)
L
0 being the zero vector of IR, Of course, i* satisfies gu'1n* =1 and g, n"e; = 0, where e %, i=1...d are the

coordinates of an orthogonal basis of the boundary at w = p, in the vector basis {d,, u = 0, 1.. .d} With these definitions in
hand, the divergence theorem tells us that Sy (R, ] in (4.2) is given by

1 d(d+1 3-d 1 -
Suevz[hw] = =5 / ddx{—(i)vw P, <4h VA — hwvyhi>}

2 L (d+1) " ’ (45)

w=p,

where §'?) denotes the determinant of gf.j.’).

To obtain (4.1), we have used the algebraic package xAct [49].
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Now, substituting fg, = 0, V;hg; = — Lk, /g®) =22 and (4.4) in (4.5), one gets

1 dd+1) pod\?( 3—-d .. |
S h,)=—= [ dx{ ——55> — | | ——=hidph! + —— hlh! 4.6
HEUGZ[ ;w] 2/ x{ K'2L2 /)0+ ( L 4(d+1) jY0 l+2p0d ity . ( )
Next, we shall expand the unimodular Hawking-Gibbons-York action
1 ~ ~
Suov = =32 | €2/3%lpo. TK[p0. ), @)
K

up to second order in &, Recall that g, is given in (1.4), with n = d + 1, so that both the determinant of induced metric on
the boundary, g*)[py, X], and the trace of the extrinsic curvature of the boundary, K[p,, X], are to be computed for G
Taking into account that

0 190: 1 = oo 7| S 5 = il . (48)
where x* = (w, x’), one concludes that in the axial gauge, hq,[po. X] = 0, we have
g :'%l {1 +2(d1+ 1)Kh prTEn 1>K2h;h{ +ml€2h2 + o((h;;)?), (4.9)
where h = g"h,,, and indices are raised and lowered with the Euclidean AdS unimodular metric g,, in (2.4).
|
To compute K[py, x| we shall take advantage of the i [, X = (ng[w, x],0). (4.12)

foliation of {(w, X);0 < w < p,, ¥ € IR?} furnished by the
hyperplanes w x IR, with w fixed. Indeed, if 7w, X]
denotes the vector field constituted by the unitary vectors
normal to each hyperplane that we have just mentioned, we
have

for eff = %% = &.

Now, in the axial gauge hy, = 0, so we have g;o = 0, for
Gy 1s diagonal. Then, 7; = g;,n* = g;;7’ and ii; = 0 imply
that (g,; + «h;;)i/ = 0, which in turn leads to 2'[w, X] = 0,
for (g;; 4+ xh;;) is an invertible matrix in perturbation
theory of h;;.

Summarizing, in the axial gauge, hg, = 0, the orthogon-
ality condition—see (4.11)—on the vector field 7# yields

Klpo. X = V,n#[pg, X = 0,n*[pg, 3. (4.10)
The covariant derivative @” is defined with regard to the
metric g,, which has determinant equal to 1; this is why the
rightmost equal sign in (4.10) is right. As we have said
the vector field, 7[w, X], must satisfy the following unitarity
and orthonormality conditions,

Aw, %] = (n°[w, X],0).

Substituting this result in the first equation—the unitarity

condition—in (4.11), one gets

GuA* =1 and gt =0, i=1..d, (411)

1
A0
) - . . a _—
at each point (w,X). In the previous equation e/ = —gf;, [ /Qoo[W, x|

w,X] =

{€!0,},_1. 4 is a basis of vector fields of w x IR?.

Let us solve the second equation in (4.11) first. Defining
i, = g, 1", we conclude that this second equation in (4.11)
is equivalent to 71,e; = 0. Hence,

|

. d 1
0w, X] = iy kh

By taking into account that, in the axial gauge, it holds
that oo = Joo(det(g,, + xh,,) /(). one obtains the
following result:

L 2(d+1)

The substitution of (4.12) and (4.13) in (4.10) yields

1
S 4d+1)

K'zh;h{ + ) K2h2 + 0<(hl])3)

EESIE (4.13)
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d 1 1 o
K[po. %] = 0,2 [p. 5] = 0pn°[w. 3] = & |1 h— 2hik) P
Po: 5] = 0, [po, 3] = 0o [w. ] L[+2(d+1)K dr )< TR " }

W=po
pod 1 1 21 f 1
POl kdgh — ———— K2hidgh] + ———— k2hdgh
T [2(d+1)K° 2d+ )<t g

+ o((hy)?). (4.14)

W=po

Notation: dy = %. Let us now substitute (4.9) and (4.14) in (4.7). Then,

Dod? 1 1 1 o
- dix2 h 22— 2pipd
St = / { ( T T a2 T

pod 1 1 > 1 2 :
— ooh hoyh — ————k*hioyh!
+(L> <2<d+1>"° T T

Recall that at the end of the day we have to replace £, [w, X] in the previous equation with the /,, [w, X] in (3.25). Then we
can set 7 =0 in (4.15) to get

1 poaa 1 A pod 2 1 . .
Suey = —=— | dx2|55- (1 —————2hih! ) — (5 ) | =——K2hioyh!
sz/ ! {Lz < 2d+1)" ) <L 2(d+ 1)~ N

To obtain the expansion of Sy in (1.5) up to second order in 4, for the solution in (3.25), all that is left for us to do is to add
(4.6) and (4.16). Thus, we obtain

1 d(d—1 pod(1-d) L pod\2 1
SUG:_2_1<2 x/ddx{ (L2 )p0+K2L_gz((d+];hj[W,ﬂh{[w,x] K (Z) 4h [w, X]0ph[w, x]}

+ o((hyj)?). (4.15)

W=po

+ o((h;;)*). (4.16)

W=po

ol(hy)).

(4.17)

where h}'- [w, X], or rather its Fourier transform, is given in (3.25).

To compare the result in (4.17) with the corresponding results in general relativity, which we shall borrow from [42,43],
we have to change coordinates from (w, X) to (z,X) by inverting the transformation in (2.2). Upon making this change of
coordinates, one gets

g [ ()0 () e (3) e oy

+o((Hi;)), (4.18)

where €y = (pod/L**")~1/4 is the infrared cutoff for the z variable. H'[z,¥] is defined as its Fourier transform, which is
given in (3.23) and (3.24). H ; [z, X] occurs in (4.18) because of the definitions in (3.25). Notice that the second summand in
(4.18) boils down to

€0\ (1 =d)  aryirr, (r7)j =
p —~ 7 h h:
(L) sasnL’ FhTR,

when z is set to €. The Fourier transform of A} '/[%] is given in (3.24).

Now, ¢ is to be sent to 0 (i.e., pg — o) after subtractmg the IR divergences regulated by it. The first two summands in
(4.18) diverge as €, — 0, and they must to be subtracted altogether to get a finite result in the IR limit. Hence we will be left

only with the contribution
1 €0\ =9 K?
d 0 J i bvd
= H: 0,H'
S ~5a d {(L) ) iz, X]o.H}[z, x]}

This is precisely, modulo conventions, the result in (2.26) of the paper [43], where it is argued that (2.26) yields the correct
two-point function of the energy-momentum tensor of the dual theory. Notice that our H/|z, 12] the Fourier transform of

(4.19)

7=¢€9

046001-10



UNIMODULAR GRAVITY AND THE GAUGE/GRAVITY DUALITY PHYS. REV. D 107, 046001 (2023)

H{ [z, I;] is the same as i_zj- [z, 75] in [43]. Indeed, the latter is traceless and transverse—see (2.21) of [43]—and its actual value

is given in (2.23) of [43], which is our (3.23). Let us point out that to reach the conclusion just stated one may carry out the
whole computation in momentum and see that the IR finite contribution to S in (4.19) reads as

diq d‘p

Snie = Cr / &g / LD 0a)ia (5 + )h @ (F)F(FIND) (5).

(2m)? ) (2m)

where Cy is a constant and

B D U
7 (p) =5 (@ (p)a" (p) + ="(P)="(p)) = T — =" (P)=" (P).
oy s PP
nl(p) =0V = —5-,
p2
F(p)=|p|¢, if disodd and |p|?In|p|, if diseven. (4.20)

Taking two derivatives of Sp,; With respect to hg?)( D)
yields, modulo a constant, the two-point correlation func-
tion of the energy-momentum tensor in momentum space
found in [50] for general conformal field theory. F(p) in
(4.20) can be read off from the on shell action of a massless
scalar field on Eclidean AdS—see [33].

Let us point out that our HY[z, k| agrees with the bulk-
boundary propagator used in [51,52]. Indeed, the propa-
gator in question is the solution in the axial gauge to the
linearized Einstein equations for Dirichlet Boundary con-
ditions and spacelike momenta.

Let us now go back to the first two terms in (4.18) that
we have subtracted to get an IR finite result. The corre-
sponding contributions in general relativity can be obtained
from Eq. (4.15) of [42], and they read as

1 2(d-1) (eg\ K>
_ d,.“\" /[ Z0 _ = pipl
52 / dx < ) 1 h]hl . (421

Obviously, the integrand of (4.21) and the two first
summands of (4.18) are linear combinations of the same
type of monomials, namely 1 and /4], but with different
coefficients. So these IR divergent contributions in general
relativity differ from those of our unimodular theory.

It has been shown in [42] that the IR divergences we have

just quoted can be subtracted just by adding the term

a/ddx\/g(b)

and choosing the coefficient a appropriately. One may
wonder if the analogous term, namely

e

would do the job for unimodular gravity. The answer is no,
for the expansion in (4.9) yields the following contribution,

c 4. Pod 1 v
< POE N = k2N
L/de[ ad+ )t

so that one can choose, e.g., ¢ = 2(1 —d), to cancel the
hj-h{ summand in (4.17); but, then there remains an IR—
i.e., as py — oco—divergent contribution

d
/ddxpLO—z(l —d),

which has to be subtracted anyway.

Summarizing, we have shown that, up to the quadratic
order, the value of the on shell classical action for our
unimodular gravity differs from that of general relativity by
IR divergent contact terms—see (4.18) and (4.21). Hence,
our unimodular theory differs from general relativity at the
(IR) regularized level. And yet, for the leading saddle point
approximation to the two-point contribution of the gravity
field to In Zyyyity [h,(»f)] in (1.3), a sensible subtraction of the
IR divergences yields the same finite result for our
unimodular theory as for general relativity. So the equiv-
alence between our unimodular gravity theory and general
relativity holds, in the case at hand, in a nontrivial way. Of
course, the two-point correlation function of the energy-
momentum tensor of the dual theory obtained from the on
shell classical gravity action in the leading approximation is
the same for both unimodular theory and general relativity.

V. THE THREE-POINT FUNCTION

Here we shall work out the contribution to Sy in (1.5)
involving three h,,, h,, being given in (3.25). We shall
compare the contribution in question with that of general
relativity and draw conclusions.
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The use of the algebraic package xAct [49] and some very lengthy computations yield that the three-A,,, contribution, say

Shrue3» tO
1 Po
d A
_ﬁ/d x/o dwR[9]
reads as
SHEUG3 - SBulkUG3 + BHEUG3’ (51)
where

Spures = — / dix / " dw/G {@hﬂhﬂhv + 1N, B ——hﬂfv oS, h, }

Bypues = __/dd / dWVABl

1 1
B = W Ry AR — ——— RNy, + B By, 4 =y, BV 52
4(d i 1) ve d+1 vt vy (52)

To obtain (5.1) and (5.2), the equations in (3.26) and (3.27) are to be employed profusely.
Let us simplify the boundary contribution, Bygyes, t0 Sypugs by imposing the axial gauge condition /,9[w, X] = 0:

BHEUG3 = __/dd / dwfvﬂB [W x] __/dd [\/ g\ )nﬂBX”w:po
AN\ d-3 pod d

L N N U I AT T P il !

2/ x[(L)éL(d—i—l) 00Tk = L2d+111’}

_ Kk d po_dzﬁ j pod il
= Z/dx[<L)4(d+l)hhaoh hhh

where g, ) and 7* are given in (4.3) and (4.4), respectively. Recall that 9, = and that g = 1.

To compute the three-h,, contribution coming from the unimodular Hawking-Gibbons—York action in (4.7), the
following results are needed:

Pod 1 200 1 3707071
Vi o i =2 1 - @hind + ——Chinln!
lpo- 31 =77 { Md+ )N g

A0 A0[, 7 :ﬂ 1— 1 2hipd 1 3hini bl B )
A% =] = [ Ha+ )"t gy ] o)),

w=po

(5.3)

W=po

+o((hij)*),

W=po

- . . o 1 o
Klpg. X] = 0,i"[pg. X] = 0pn°[w. X] = K*hih! —|——K‘3h;/’l{h§:|

Z{1_4(d+1) T 6(d+ 1)

W=po
Pod 1 2703 1 1 370705 7l
PO~ hionh’ h'h;0yht
+ { 2d+ 1)< T gy < oo

+o((hi)*), (5.4)

W=po

where § gl ) has been defined in (4.8) and #* = (7°, 6) and K[p, X] have been introduced in the paragraph beginning right

below (4.9). To obtain (5.4) the conditions £,y = 0 and & = 0 must be imposed; recall that these conditions are satisfied by
our solution in (3.25).
Using the results in (5.4), it can be shown that three-field contribution, Syqy3, to the action in (4.7) runs thus:

K pod 1 pod  2d o
S =—— [ a — | —n hja hl + 7h’<hjhl- 5.5
HGY3 2/ )C|:< L > d+ 1 Jj 0 3(d + ) JrLt ( )

W=po
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Let us introduce Byg;s:

K pod\2 (1Y . ; pod [ d-3 .y
Bues = Burues + Suavs = _5/ ddx|:<T> <Z> hjh{aohf + 72 m hjhfhf W:/)O’ (5.6)
where Bypigz and Sygys are displayed in (5.3) and (5.5), respectively.
We then conclude that the three-A,,, contribution, Syg3, to Sy in (1.5) is given by
Sues = Spurues T Bues, (5'7)

where Spwe3 and Bygs can be found in (5.2) and (5.6), respectively.

Let us carry out a similar computation for general relativity. To do so we shall need the following result obtained in the
Appendix, namely, that, modulo a gauge transformation, the solution, in the axial gauge 4,y = 0 and having a well-defined
limit as z — oo, to the linearized general relativity equations for Dirichlet boundary conditions satisfies

D - = - ~ - 2 -
hlz,X] = §"h,, [z, ], V#h,,[z2,X] =0, and Uh,[z,X] = —L—h [z, X]. (5.8)

2 M

Gy 1s the Buclidean AdS metric with line element in (1.1). The covariant derivative @M is defined with regard to g, .
Let Sgr be defined as follows:

dd-1 /
SGR = SHEGR + SHGYGRs SHEGR = dd / dZ\/_< g;w] (L)> s HGYGR = / ddx2 K| =€’
€

(5.9)
where g,, = g, + kh,,. The computation of the three-field contribution, Syggr3, t0 Syper yields
SHEGR3 = SBulkGR3 + BHEGR3’ (510)
where
dd d i Hv 1 My 7 J,70 1 AvAATAY
Snuncrs = T LW W T = T o,
6L 4 2
Bigres = — 5 / d'x / dzvl GR3?
1
Bl = —Zh"”hDTV’Ih’ v h,, + v h, + 2hwh”V h#, (5.11)
To obtain (5.10) and (5.11) we have integrated by parts—keeping the boundary contributions—and used (5.8).
The axial gauge condition £,y = 0 and a little algebra leads to the conclusion that
K a (€N (3N i €\ ¢ Y .
Birraz = —2/d XKL) 1 hjh{()zhl- + A ~3L h; h’h . (5.12)
It has been shown in [42] that
Suoven = =~ [ dlx(=22) 2 \/g0 2.7 5.13
HGYGR — _2_’(_2 x(_ Z)a_z g [va”Z:eo’ ( : )

where Sycyer is defined in (5.9) and ¢()[z, X] denotes the determinant of g ;2. X]. Hence, by taking into account that

~ L\ 4 1 P | o
#le7] = (5) 1= o]+ ] + o)
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we obtain that the three-h;; contribution to Sygyar in (5.13) reads as

N HGYGR3 —

/dd Ki’)l d(—l)hj.h{azhf+ <€L—°)_d<;i>h’hfhl]

Putting it all together we conclude that the three-field contribution, Sgg3, to Sgr in (5.9) is given by

SGR3 = SBulkGR3 + BGRS’

where Sg,qr3 1S displayed in (5.11) and

Birs = Bigors + Sucycrs =—

. (5.14)
(5.15)
oD () o]

The values of Byrgrz and Spgygrs can be found in (5.12) and (5.14), respectively.
We may compare now the three-field contribution S5 in (5.7) with the three-field contribution Sgz3 in (5.15). But before
we make that comparison, let us point out a fact regarding the h’] [z, X] field which i) solves the linearized general relativity

equations for the metric in (1.1), ii) satisfies Dirichlet boundary conditions, and iii) has a well-defined limit as z — co. The

fact is that h}[z, X]
consult the Appendix for details.

= H'[z,X], where the Fourier transform of Hi[z, ] is given in (3.23) and (3.25). The reader should

It is plain that the change of variables z — w defined in (2.2) turns Sy, gr3, in (5.11), into Spwa3 in (5.2). However, if we
apply the change of variables we have just mentioned to Bgs in (5.16), we get

K Pod ; pod\ (2d =3\
BGR3 = —5/ ddx[< L > (4)h h]a()hl + <F) ( 6 h hj]’ll

where p, = L e “eg) ™, 0y =

, (5.17)

w=p,

> and h = hi[w, ], the Fourier transform of 4’ [w,X] being given in (3.25).

Obviously, Bggs in (5.17) and Bygs in (5. 6) are not equal, the difference coming from the IR divergent contact term

d\ . ;
Jo (o

where hﬁT V%] has R [k k] in (3.24) as Fourier transform.
This term—since it is a contact term—does not contribute
to value of the three-point correlation function of the
energy-momentum tensor of the dual field theory. We
see again the same picture as for the two-point contribution
discussed in the previous section. Indeed, the three-field
contribution to the righthand side of (1.3) in unimodular
gravity is not the same as in general relativity when the IR
regulator is in place. However, the difference is an IR
divergent contact term which does not contribute to the
value of the three-point correlation functions of the energy-
momentum tensor of the dual field theory. Of course, the
subtraction of the term in question to get an IR finite value
for the right-hand side of (1.3) will make unimodular
gravity fully equivalent to general relativity as far as our
results are concerned. This equivalence arises in a non-
trivial way, though.

d ;
/dd <"°2>h< DR AT R AR,
'=Po

(5.18)

VI. SUMMARY AND CONCLUSIONS

The formulation of theory of unimodular gravity put
forward in [5,8,14] has the nice feature that transverse
diffeomorphims and Weyl transformations are the gauge
symmetries of the theory. We have started the study of the
properties of this formulation of unimodular gravity from
the gauge/gravity duality point of view. We do so by
computing—at the lowest order—the IR regularized two-
and three-point h,, contributions to the on shell classical
gravity action for a Euclidean AdS background. We have
shown that these two- and three-point contributions do not
agree with the corresponding contributions in general
relativity due to IR divergent contact terms—see (4.18)
and (4.21), on the one hand, and (5.6), (5.17), and (5.18),
on the other. However, once those IR divergent terms are
subtracted our unimodular theory and general relativity
yield the same IR finite result. The subtraction in question
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does not modify the value of the corresponding correlation
functions of the energy-momentum tensor of the dual field
theory. So, we conclude that, as far as our computations can
tell, our unimodular gravity theory and general relativity
are equivalent in the sense that they have the same dual
boundary field theory. Of course, we have shown that this
equivalence emerges in a nontrivial way. Whether the
equivalence in question will still hold for higher-point
functions and/or when one-loop corrections are taken into
account is an open problem—a problem which is worth
studying.
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APPENDIX: THE LINEARIZED GENERAL
RELATIVITY EQUATIONS

In this Appendix we shall discuss how to find a suitable
solution to the linearized general relativity equations

1~ | S 1o -
1~ VvAVAR leg o
+ 59 Ve Voh™ + 5V, b~
1 (d-2)

(A1)

where g, is the metric with line element in (1.1) and all
covariant derivatives are defined with regard to g,,. Let us
recall that given an arbitrary real vector field, U*|z, X], the
previous equation is invariant under the gauge transforma-
tions

Shy, =V,U, +V,U,.

We shall obtain the solution to (Al) in the axial gauge,
h, =0, which satisfies appropriate Dirichlet boundary
conditions and has a well-defined limit as z — oo. The
domain where (Al) will be solved is {(z,X);eq <
7 < o0, X € IR}, with boundary at z = ¢,. What we shall
find is that the solution in question, say A;;[z, X], is such that

-,

its Fourier transform £;;[z, k| is, modulo a gauge trans-
formation, equal to g, H'[z, k), Hl[z, k] being givenin (3.23),
the gauge transformation preserving the axial gauge con-
dition. This means that this is the solution—see (3.25)—we
found for the linearized unimodular gravity equation in (3.1)
expressed in terms of the coordinate z instead of the
coordinate w in (2.2). Notice, though, that this result is
nontrivial, for (Al) and (3.1) are quite different. It is
important to stress that the solution to (A1) that we shall
find satisfies

hz. %) = §“h,[2. 5], V', [2.5] =0,

~ . 2 -
and Dhﬂ,,[z, X] - _Ph;u/[zvx]’

for this was used in our computations of the general relativity
three-field contributions to the right-hand side of (1.3).

Let us point out that our result is not new. In [51]—see its
Eq. (2.43)—it is stated that the axial gauge bulk-boundary
propagator for the gravitational field for spacelike momenta
is given by g; H}[z, k], where H'[z, k] is displayed in (3.23).
This bulk-boundary propagator is no other thing that the
solution to the linearized general relativity equations with
Lorenztian signature for spacelike momenta and for the
boundary conditions and behavior in the AdS interior stated
in the previous paragraph. Of course, this solution yields
the solution of the corresponding equations with Euclidean
signature—i.e., the equations in (A1). Indeed, one just has
to replace in the former solution the spacelike k> with k>
defined with Euclidean signature; bear in mind that we are
using the most plus Lorentz metric.

Although, as we have discussed in the previous para-
graph, the final result presented in this Appendix is not new,
we think that the analysis we shall display below will be
helpful.

The Fourier transform with regard to X of the 00, 0/, and
ij components of the equation in (Al) read as

- ZZh:fj + (d - S)Zh;] -+ (2(d — 2) + kzzz)hl-j - Zz[klkih[j + klkjh[i} + Zzéijklkmhlm

+ 8,220 + (5 = d)d;;2h + (=2(=2 + d) — K222)8;; + kik;22)h = 0,

(2(d = D)h+ 22k2)h + (d — 1)zl = 22k h; =0 (A2)
2(khy; — ki) + z(k'hj; — k') =0 (A3)

and
(A4)

respectively. &, is a function of z and the Fourier momentum k. i = 6"h;;.
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The general solution to (A3) reads as

-

v

Kby — kih = Ea (A5)
where  v; [kl.j=1..d are integration constants.
Substituting (AS) in (A2), one gets

2(d = 1)h+ (d=1)zh — k- T[k] =0,
whose general solution is the following:
E[z,%]=%+2(d1_1)1}’.5[12], (A6)

-,

where CI[k| is another integration constant.

Now, since z = oo corresponds only to a point of
Euclidean AdS and we want /;;[z,%] to have a well-
defined—i.e., independent of X—limit as z — oo, we must
demand that

k- 3[k] = 0. (A7)

Indeed, from (A6), one gets lim,_, o, h[z, ¥] = ﬁé v[x],
where #[x] has (k] as Fourier transform. Hence, we must

demand that d - 7[X] = A, A being a constant, if we want the
large z limit of ,;[z, X] to be independent of X. But, A must
be equal to zero, for ¥[x] should vanish fast enough as
|X| = co—we are assuming that ¥[x] has Fourier transform.
d-¥[¥] =0 implies that its Fourier transform, k - B[],
vanishes.

Let us take stock. What we have obtained so far is that

o = Clk
hlz, k] = #
b4
R R -
Recall that h = §h;.
Let us introduce A" [z, k]:
- 1 - -
h?;n[L k| = 222 (ki V;[k| + k;Vilk]),
- | -
Notice that
Lo~ ClK] - .
hP" [z, k] = k'R :Z—z(vj[k] +k;,Clk]).  (A10)

for (A7) holds. But there is more: hfjm[z, l?] solves (A2),
(A3), and (A4), as can be seen by just substituting (A9) in
those equations. This result is not surprising though, for
hP"[z,X] can be recast as gauge transformation that
preserves the axial gauge condition A, [z, X] = 0. Indeed,
let us define ©,[z, x] as follows:

0,[z.X] = (O [z.X]. ©;[z. X]).

0N [Zﬂ =0,
— i d'k —ikx Vi [l_é]
0,[z.X] = Z2/ (2”)(16 2 (A11)
Then the following gauge transformation,
V,0,+V,0,. (A12)

where the covariant derivative is defined with regard to the
metric g,, with line element in (1.1), is such that

V0, + V.0, =0,
d'k
(27)

v()@() — 0,

-

(k: V(K] + k;Vi[K)).

—ik-x

- - 1
This last equation is (A9).,
Next, let express h;; [z, k], a solution to (A2), (A3), and

(A4) satisfying (A8) for given V;[k] and C[k], as follows:

hijlz. K] = hii[z. k) + B2 [z, ). (A13)

hf’;‘n [z, 1?] is defined in (A9). It follows from (A8) and (A10)
that
W'z k=0,  Khf=0, (Al4)
where h'"[z, k] = SRz, k).
Substituting (A13) in (A2) and (A3), one sees that they
are trivially satisfied. But the substitution of (A13) in (A4)
yields the following equation:

-.

2hY (2. k] = (=5 + d)zhf! 2. K]

— (=4 +2d+ K2Rz, k| =0.  (AL5)
We have met this equation already: it is equation (3.21).
Hence, we know—see analysis below (3.21)—that the
general solution to (A15) which has a well-defined limit
as z — oo and satisfies the Dirichlet boundary condition at
7 = € reads as
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. N2 - . -
e f= (5 el R = AR,

where Hj [z, 13] is given in (3.23). Let us stress that the
previous equation has been of paramount importance to our
discussion in Secs. IV and V.
Now, it is not difficult to see that (A14) can be recast as
follows:
‘"g’,ul/htt — O’

= Vi, =0,

where h, is by definition equal to zero. Substituting the
previous to equation in (Al), one gets

~ 2
Dl’lltjy — _ﬁ

Let us finally point out that /,;[z, X], as obtained from its
Fourier transform in (A13), differs from hfj [z, X] by the
gauge transformation in (A12) and (All); this gauge
transformation preserves the axial gauge condition.
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