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Unimodular gravity can be formulated so that transverse diffeomorphisms and Weyl transformations are
symmetries of the theory. For this formulation of unimodular gravity, we work out the two-point and three-
point hμν contributions to the on shell classical gravity action in the leading approximation and for an
Euclidean anti de Sitter background. We conclude that these contributions do not agree with those obtained
by using general relativity due to IR divergent contact terms. The subtraction of these IR divergent terms
yields the same IR finite result for both unimodular gravity and general relativity. Equivalence between
unimodular gravity and general relativity with regard to the gauge/gravity duality thus emerges in a
nontrivial way.
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I. INTRODUCTION

Unimodular gravity is a theory of gravity which puts
the cosmological constant problem into a new perspective
[1–4], for the vacuum energy does not gravitate in that
theory. In unimodular gravity the cosmological constant
does not enter the classical action, and thus it occurs as an
integration constant in the classical theory [1–4]. At the
quantum level, the cosmological constant occurs as a
parameter of the background field when computing the
on shell perturbative background-field effective action [5]
and as a property of boundary states when computing
transition amplitudes between those states [6].
In the current century, several issues have been studied over

the years in connection with unimodular gravity—
see [7] for a recent review. Let us mention just a few:
unimodular gravity as one of the two sound theories with
transverse-diffeomorphism invariance [8], how unimodular
gravity arises from interacting gravitons [9], the quantization
of unimodular gravity within the Becchi-Rouet-Stora-Tyutin
formalism [5,6,10–13], whether unimodular gravity and
general relativity agree as effective quantum field theories
[14–21], asymptotic-safety analysis of unimodular gravity
[22–26], the formulationof unimodular supergravity [27–29],

sundry topics like the first order formalism [30] and the
Hamiltonian formalism [31] as applied to unimodular gravity,
and a massive version of the theory [32].
The gauge/gravity duality conjecture states that a gravity

theory in a dþ 1-dimensional space-time with boundary
is equivalent to an appropriate gauge theory—with no
gravity–in its d dimensional boundary. There is a wealth of
evidence—see [33,34] and references therein—that this
conjecture holds for the pair of theories for which the
duality was originally put forward [35], namely, type IIB
superstring on AdS5 × S5 with N units of flux on S5, on the
one hand, andN ¼ 4 super-Yang-Mills for SUðNÞ on four-
dimensional Minkowski space-time, on the other. Another
well-established instance of the gauge/gravity duality is the
pair constituted by M theory on AdS4 × S7=Zk and the
large N limit of the Aharony-Bergman-Jafferis-Maldacena
theory, which was introduced in [36]. We see that at low
energy these two instances involve general relativity on
AdS5 and AdS4 as duals of strongly interacting field
theories without gravity in four and three dimensions,
respectively.
The reader should bear in mind that from now on we

shall consider Euclidean anti de Sitter (AdS) only. In
Poincaré coordinates, Euclidean AdS is the space Hdþ1 ¼
fðz; x⃗Þjz > 0; x⃗ ∈ Rdg with line element

ds2 ¼ L2

z2
ðdz2 þ δijdxidxjÞ: ð1:1Þ

The (conformal) boundary of Hdþ1 is at z ¼ 0.
The gauge/gravity duality, when it holds, is a precisely

formulated realization of the holographic principle [37,38].
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The formulation in question entails the so-called holographic
dictionary introduced in [39,40]. This dictionary sets a
correspondence between objects (parameters and fields) of
the quantum gravity theory in dþ 1 dimensions and the dual
quantum field theory in d dimensions. In particular, the
quantum fluctuations, say hμν, of theEuclideanAdSmetric is
linked with the energy-momentum tensor, Tij, of the dual

quantum field theory. Indeed, the data, say hðbÞij , setting the
value ofhμν at the conformal boundary ofEuclideanAdS acts
a source of the energy-momentum tensor of the dual quantum
field theory: it is postulated that the n point connected Green
function of Tij is given by

hTi1j1ðx1Þ � � �TinjnðxnÞiðconnectedÞ

¼ δnLnZgravity½hðbÞij �
δhðbÞi1j1ðx1Þ � � � δhðbÞinjnðxnÞ

����
hðbÞ¼0

; ð1:2Þ

where Zgravity½hðbÞij � is the partition function of the gravity
theory on the Euclidean AdS background for the boundary

data hðbÞij .
In this paper we shall be concerned only with the leading

saddle point approximation to Zgravity½hðbÞij �. This approxi-
mation is given by

lnZgravity½hðbÞij � ¼ −Sclassical½hμν½hðbÞij ��; ð1:3Þ

where hμν½hðbÞij � is the solution to the classical gravity
equations of motion in the Euclidean AdS background

with boundary data equal to hðbÞij .
Of course, as they stand, both (1.2) and (1.3) are formal

equations: they need regularization and renormalization to
be well-defined. We shall regularize and renormalize

Sclassical½hμν½hðbÞij �� as done in [39,41–44], i.e., first, by
cutting off at ϵ0 > 0 the “z” coordinate of the Euclidean
AdS metric in Poincaré coordinates, and, then, subtracting
the divergences which arise as ϵ0 goes to zero. We shall not
use the holographic renormalization framework of [45]—
see [46], for a pedagogical exposition. This framework
demands the use of the Graham-Fefferman form of the near
boundary metric, which in not a unimodular metric.
The purpose of this paper is to work out, in the leading

saddle point approximation, the two-point and three-point
contributions to the partition function—see (1.3)—of
unimodular gravity for a Euclidean AdS background and
thus to begin the analysis of the properties of unimodular
gravity from the gauge/gravity duality standpoint. By
unimodular gravity we shall mean a gravity theory as
formulated by using the framework of references [5,8,14].
In the framework in question the unimodular metric, say
ĝμν, is expressed in terms of the unimodular background
metric ḡμν and the unconstrained field hμν as follows:

ĝμν ¼
gμν
jgj1=n gμν ¼ ḡμν þ κhμν: ð1:4Þ

In the previous equations g denotes the determinant of gμν,

n is the space-time dimension, and κ ¼ ffiffiffiffiffiffiffiffiffi
8πG

p
, G being

the gravitational constant. The two-tensor hμν describes the
perturbations of the background ḡμν, classically, and the
fluctuations of the latter at the quantum level. Upon
quantization hμν becomes the graviton field [8,14]. The
gauge symmetry of this formulation of unimodular gravity
is constituted by transverse diffeomorphisms and Weyl
transformations of gμν [8,47].
The classical action of our unimodular gravity theory for

a manifold M with boundary ∂M is [15,48]

SUG ¼ −
1

2κ2

�Z
M

dnxR½ĝμν� þ 2

Z
∂M

dn−1y
ffiffiffiffiffiffiffi
ĝðbÞ

q
K

�
;

ð1:5Þ

where R½ĝ� is the Ricci scalar, ĝðbÞ is the determinant of the
induced metric on the boundary, and K is the trace of the
extrinsic curvature of the boundary for the unimodular
metric ĝμν. Of course,ĝμν is given in (1.4). The equation of
motion derived from SUG reads as [5]

Rμν −
1

n
Rgμν ¼

ðn − 2Þð2n − 1Þ
4n2

�∇μg∇νg

g2
−
1

n
ð∇gÞ2
g2

gμν

�

−
n − 2

2n

�∇μ∇νg

g
−
1

n
∇2g
g

gμν

�
; ð1:6Þ

where Rμν and R are the Ricci tensor and the Ricci scalar
for gμν—not for ĝμν, respectively; ∇μg≡ ∂μg. The previous
equations, which we shall call the unimodular equation of
motion, are obtained by setting to zero the infinitesimal
variations of SUG induced by infinitesimal variations of gμν
which vanish at ∂M.
The reader should notice that no cosmological constant

occurs in SUG, and yet gμν ¼ ḡμν is a solution to the
unimodular equation of motion in (1.6) when ḡμν is the
unimodular Euclidean AdS metric. This result holds what-
ever the value of the cosmological constant which occurs in
the Euclidean AdS metric. This is in sharp contrast with the
general relativity situation where the cosmological constant
enters the action and the value of the cosmological constant
which characterizes the Euclidean AdS metric is only the
one which occurs in the action.
We shall show that the two- and three-point contributions

to the rhs of (1.3) in general relativity and unimodular
gravity are not the same for the IR regularized theories.
However, this difference is due only to IR divergent contact
contributions so that once these IR divergent terms are
subtracted full agreement between the unimodular gravity
and general relativity results is reached. As a consequence,
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the two-point and three-point correlation functions of the
energy momentum tensor defined according to (1.2) are the
same for both gravity theories. And yet, this equivalence
between unimodular gravity and general relativity regard-
ing those IR finite results cannot hide the fact that it is
obtained in a nontrivial way.
The layout of this paper is as follows. In Sec. II we put

forward the unimodular counterpart of Euclidean AdS in
Poincaré coordinates. In Sec. III we solve the linearized
version of unimodular gravity equation (1.6) for the
unimodular Euclidean AdS background. We shall show
that a suitable gauge choice—the axial gauge—and coor-
dinates turn the linearized equation in question into the
equation of a free massless scalar field on the Euclidean
AdS background. Sections IV and 5 are devoted, respec-
tively, to the computation of the two- and three-point
contributions to the rhs of (1.3) for unimodular gravity
and how these contributions compare to their general
relativity counterparts. In Sec. VI we shall state our con-
clusions. We also include an Appendix where we discuss
how to find the solution to the linearized general relativity
equations in the axial gauge, the solution satisfying Dirichlet
boundary conditions and having a well-defined limit as we
move toward the interior of Euclidean AdS.

II. EUCLIDEAN AdS WITH UNIMODULAR
METRIC: UNIMODULAR POINCARÉ

COORDINATES

In the standard gauge/gravity duality discussions [44],
one usually characterizes Euclidean AdS by using Poincaré
coordinates, and thus Euclidean AdS in dþ 1 dimensions
is identified with the set of IRdþ1 points fðz; x⃗Þ; z > 0; x⃗ ∈
IRdg with line element

ds2 ¼ L2

z2
ðdz2 þ δijdxidxjÞ; i; j ¼ 1…d: ð2:1Þ

In this coordinate system the boundary is at z ¼ 0 and it
is IRd.
The determinant of the metric of the previous line

element is not 1, so this metric does not suit our purposes.
Let us introduce a new coordinate, say w, w ≥ 0, defined as
follows:

w ¼ Ldþ1

d
z−d: ð2:2Þ

Here and elsewhere d ≥ 3. In terms of w the line element in
(2.1) reads as

ds2 ¼
�

L
wd

�
2

dw2 þ
�
wd
L

�
2=d

δijdxidxj: ð2:3Þ

The Riemannian metric of the line element in (2.3) is
unimodular; but now Euclidean AdS is identified with a set

of real dþ 1-tuples ðw; x⃗Þ, w > 0, x⃗ ∈ IRd, and the
boundary is at w ¼ ∞.
The graviton field, hμν, of our unimodular gravity theory

will propagate in a Euclidean AdS background with
unimodular metric ḡμν—the background metric—given by

ḡμνðw; x⃗Þ ¼
��

L
wd

�
2

;

�
wd
L

�
2=d

δij

�
; ð2:4Þ

where μ; ν ¼ 0; 1…d and i; j ¼ 1…d.
Let us close this section by making some comments

regarding the killing vectors of a general unimodular
metric. First, any such killing vector, ξμ, is transverse,
i.e., ∂μξμ ¼ 0, since transversality is equivalent to covariant
transversality, ∇μξ

μ ¼ 0, when the metric is unimodular.
Secondly, the number of independent killing vectors of a
unimodular metric and any metric obtained from it by a
diffeomorphism is the same. This is relevant with regard to
the gauge/gravity duality.1

III. THE LINEARIZED UNIMODULAR GRAVITY
EQUATION ON A EUCLIDEAN AdS

BACKGROUND

The linearized unimodular gravity equation in the
Euclidean AdS background with the unimodular metric,
ḡμν, in (2.4) is obtained from the equation in (1.6) with
n ¼ dþ 1, by setting gμν ¼ ḡμν þ κhμν and expanding at
first order in κ. Thus, one gets

1

2
□̄hμν −

dþ 3

2ðdþ 1Þ2 ḡμν□̄h −
1

2
∇̄μ∇̄ρh

ρ
ν −

1

2
∇̄ν∇̄ρh

ρ
μ

þ 1

dþ 1
ḡμν∇̄ρ∇̄σhρσ þ

1

dþ 1
∇̄μ∇̄νh

þ 1

L2
hμν − ḡμν

1

ðdþ 1ÞL2
h ¼ 0; ð3:1Þ

where all the covariant derivatives are defined with respect
to ḡμν—hence, the upper bar—and h≡ ḡμνhμν. Let us point
out that (3.1) is quite different from the corresponding
general relativity equation, (A1), in the Appendix.
The aim of this section is to find the solution to (3.1) for

suitable Dirichlet data at the boundary and such that—see
[33,44]—the solution in question has a well-defined limit
as one moves deep into the interior of Euclidean AdS, i.e.,
as w → 0. We shall cut off the w coordinate at ρ0—i.e.,
0 ≤ w ≤ ρ0—to regularize the IR divergent contributions to
the rhs of (1.3) coming from regions arbitrarily close to
w ¼ ∞. Thus, we shall solve (3.1) in the domain
fðw; x⃗Þ; 0 < w < ρ0; x⃗ ∈ IRdg. We shall show that in the
axial gauge, h0μ½w; x⃗� ¼ 0, such a solution can be brought
to a solution, say hμν ¼ ðh0μ ¼ 0; hijÞ, satisfying

1We thank E. Álvarez for pointing out these two results to us.
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δijhij½w; x⃗� ¼ 0 and ∂
jhji½w; x⃗� ¼ 0; ð3:2Þ

by doing a gauge transformation that preserves the axial gauge condition. In (3.2), i; j ¼ 1…d and ∂
j ¼ δjl ∂

∂xl
.

To solve (3.1) for hμν, we shall take advantage of the gauge symmetries,

δhμνðxÞ ¼ ∇̄μθνðxÞ þ ∇̄νθμðxÞ; ∇̄μθ
μðxÞ ¼ 0; δWhμνðxÞðxÞ ¼ 2σðxÞḡμν; x≡ ðw; x⃗Þ; ð3:3Þ

of the equation in question. ∇̄μ is defined with regard to the unimodular metric ḡμν in (2.4). That the transformations in (3.3)
leave (3.1) invariant can be easily checked directly, and it is a consequence of the fact—see [5]—that the unimodular action
in (1.5) is invariant under transverse diffeomorphisms and Weyl transformations of gμν in (1.4). Recall that ∂μθμ ¼ 0 is
equivalent to ∇μθ

μðxÞ ¼ 0 if the metric is unimodular.
By using the transformations in (3.3), one may impose the gauge condition h0μ½w; x⃗� ¼ 0, 0 ≤ w ≤ ρ0, and x⃗ ∈ IRd. From

now on we shall assume that the previous gauge condition is imposed so that only hij½w; x⃗� occurs in (3.1).
Let us introduce the following definitions:

Hij½z; x⃗� ¼ hij

�
w ¼ Ldþ1

d
z−d; x⃗

�
; H½z; x⃗� ¼ δijHij½z; x⃗�; i; j ¼ 1…d

f½z; x⃗� ¼
Z

ddk
ð2πÞd f½z; k⃗�e

−ik⃗·x⃗; k⃗ ¼ ðk1;…; kdÞ; f00 ¼ d2f
dz2

; f0 ¼ df
dz

:

Then, after changing variables from w to z ¼ ð wd
Ldþ1Þ−1=d Eq. (3.1) boils down to the following set of equations:

H00½z; k⃗�ðð−1þ dÞz2Þ þH0½z; k⃗�ð−ðð−5þ dÞð−1þ dÞzÞÞþ ð3:4Þ

H½z; k⃗�ð−2ð−2þ dÞð−1þ dÞ þ ð3þ dÞk2z2Þ − kikjHij½z; k⃗�ð2ð1þ dÞz2Þ ¼ 0;

−2kizH0½z; k⃗� þ ð−5þ dÞkiH½z; k⃗� þ ð1þ dÞðzkjH0
ji½z; k⃗� þ 2kjHji½z; k⃗�Þ ¼ 0: ð3:5Þ

H00½z; k⃗�ð−ð3þ dÞz2Þδij þH0½z; k⃗�ðð−5þ dÞð3þ dÞzδijÞ
þH½z; k⃗�ð−2ð1þ dÞz2kikj þ ð3þ dÞð−4þ 2dþ k2z2ÞδijÞ
þH00

ij½z; k⃗�ð1þ dÞ2z2 þH0
ij½z; k⃗�ð−ð−5þ dÞð1þ dÞ2zÞ þHij½z; k⃗�ð−ð1þ dÞ2ð−4þ 2dþ k2z2ÞÞ

þ ð−2ð1þ dÞz2ÞδijklkmHlm½z; k⃗� þ ð1þ dÞ2z2ðkjklHli½z; k⃗� þ kiklHlj½z; k⃗�Þ ¼ 0. ð3:6Þ

Let us stress that Eqs. (3.4), (3.5), and (3.6) are equivalent to the components 00, 0i, and ij of Eq. (3.1), respectively. i; j run
from 1 to d.
Let us first show that (3.4), (3.5), and (3.6) imply that, modulo a transverse diffeomeorphism transformation that

preserves h0μ½w; x⃗� ¼ 0,

H½z; k⃗� ¼ 0 and kjHji½z; k⃗� ¼ 0; ð3:7Þ

when hij½w; x⃗� has a well-defined limit as w → 0. To do this we shall proceed as follows. Contracting Eq. (3.5) with ki one
gets

−2k2zH0½z; k⃗� þ ð−5þ dÞk2H½z; k⃗� þ ð1þ dÞzkikjH0
ij½z; k⃗� þ 2ð1þ dÞkikjHij½z; k⃗� ¼ 0: ð3:8Þ

By taking the derivative with respect to z of the previous equation, one obtains

ð1þ dÞzkikjH00
ij½z; k⃗� þ 3ð1þ dÞkikjH0

ij½z; k⃗� − 2k2zH00½z; k⃗� þ ð−7þ dÞk2H0½z; k⃗� ¼ 0: ð3:9Þ

Let us now contract (3.6) with kikj:

JESUS ANERO and CARMELO P. MARTIN PHYS. REV. D 107, 046001 (2023)

046001-4



H00½z; k⃗�ð−ð3þ dÞk2z2Þ þH0½z; k⃗�ð−ð−5þ dÞð3þ dÞk2zÞ þH½z; k⃗�ð2ð−6þ dþ d2Þk2 − ð−1þ dÞk4z2Þ
þ kikjH00

ij½z; k⃗�ðð1þ dÞ2z2Þ þ kikjH0
ij½z; k⃗�ð−ð−5þ dÞð1þ dÞ2zÞ þ kikjHij½z; k⃗�ð4þ 6d − 2d3 þ ð−1þ d2Þk2z2Þ ¼ 0.

ð3:10Þ

Let us consider the system constituted by (3.8), (3.9), and (3.10). Solving this system for kikjHij½z; k⃗�, one gets

kikjHij½z; k⃗� ¼
1

ð1þ dÞz2 fð−2 − ð−3þ dÞdþ k2z2ÞH½z; k⃗� þ zð2ð−2þ dÞH0½z; k⃗� − zH00½z; k⃗�Þg: ð3:11Þ

The contraction of Eq. (3.6) with δij yields the following equation:

H00½z; k⃗�ð−ð−1þ dÞz2Þ þH0½z; k⃗�ðð−5þ dÞð−1þ dÞzÞ
þH½z; k⃗�ð2ð−2þ dÞð−1þ dÞ − ð3þ dÞk2z2Þ þ kikjHij½z; k⃗�ð2ð1þ dÞz2Þ ¼ 0. ð3:12Þ

This is Eq. (3.4), so we conclude that Eq. (3.4) is contained in Eq. (3.6) and provides no extra information. By solving for
kikjHij½z; k⃗�, (3.12) can be recast into the form

kikjHij½z; k⃗� ¼
1

2ð1þ dÞz2 fð−2ð−2þ dÞð−1þ dÞ þ ð3þ dÞk2z2ÞH½z; k⃗�þð−1þ dÞzð−ð−5þ dÞH0½z; k⃗� þ zH00½z; k⃗�g:

ð3:13Þ

Next, subtracting (3.13) from (3.11), one gets

k2zH½z; k⃗� − ð−3þ dÞH0½z; k⃗� þ zH00½z; k⃗� ¼ 0:

Since k2 ≥ 0, the general solution to the previous equation
reads as

H½z;k⃗�¼ z−1þd=2ðC1Jd=2−1½jk⃗jz�þC2Yd=2−1½jk⃗jz�Þ; ð3:14Þ

where jk⃗j ¼
ffiffiffiffiffi
k2

p
, and C1 and C2 are functions of k⃗.

Let us assume that d ≥ 3. Then, the asymptotic behavior
of Jd=2−1½jk⃗jz� and Yd=2−1½jk⃗jz�Þ leads to the conclusion that
H½z; k⃗� ¼ δijHij½z; k⃗� in (3.14) has a well-defined limit as
z → ∞ only if both C1 and C2 vanish. Recall that there is
the condition thatHij½z; k⃗� ¼ hij½w ¼ Ldþ1

d z−d; k⃗�must have
a well-defined limit as w → 0, i.e., as z → ∞.
Next, the substitution of H½z; k⃗� ¼ 0 in Eq. (3.5) leads to

zkjH0
ji½z; k⃗� þ 2kjHji½z; k⃗� ¼ 0;

whose general solution is

kiHij½z; k⃗� ¼
vjðk⃗Þ
z2

:

This solution is compatible with Eq. (3.4) forH½z; k⃗� ¼ 0 if,
and only if,

δijkivjðk⃗Þ ¼ 0: ð3:15Þ

It can be shown that

HðparticularÞ
ij ½z; k⃗� ¼ 1

ðz2k2Þ ðkivjðk⃗Þ þ kjviðk⃗ÞÞ ð3:16Þ

is a solution to Eq. (3.6), for δijHðparticularÞ
ij ½z; k⃗� ¼ 0.

Hence, when H½z; k⃗� ¼ 0, the general solution, Hij½z; k⃗�,
to (3.6) can be expressed as the sum Hij½z; k⃗� ¼
HðtransverseÞ

ij ½z; k⃗� þHðparticularÞ
ij ½z; k⃗�, where

kiHtransverse
ij ½z; k⃗� ¼ 0:

Let us show that

HðparticularÞ
ij ½z; x⃗� ¼

Z
ddk
ð2πÞd H

ðparticularÞ
ij ½z; k⃗�e−ik⃗·x⃗;

with z ¼ ð wd
Ldþ1Þ−1=d, can be recast as a unimodular gauge

transformation which preserves the axial gauge condition
h0μ½w; x⃗� ¼ 0. This gauge transformation reads as
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∇μWν½w; x⃗� þ∇νWμ½w; x⃗�; ð3:17Þ

where

W0½w; x⃗� ¼ 0;

Wi½w; x⃗� ¼
�

dw
Ldþ1

�
2=d

i
Z

ddk
ð2πÞd e

−ik·x viðk⃗Þ
k2

ð3:18Þ

and the covariant derivative is defined with regard to the
unimodular Poincaré metric in (2.4).

Let us change variables from ðw; x⃗Þ to ðz; x⃗Þ, where z ¼
ð wd
Ldþ1Þ−1=d–x⃗ does not change. Then the vector field
Wν½w; x⃗� changes to Vν½x; x⃗� as follows:

W0½w; x⃗� ¼
∂z
∂w

V0½z; x⃗�; Wi½w; x⃗� ¼ Vi½z; x⃗�:

Hence, the following results hold:

V0½z; x⃗� ¼ 0; Vi½z; x⃗� ¼
1

z2
i
Z

ddk
ð2πÞd e

−ik·x viðk⃗Þ
k2

∇̄0W0½z; x⃗� ¼
�
∂z
∂w

�
2∇ðSÞ

0 V0½z; x⃗�;

∇̄0Wi½w; x⃗� þ ∇̄iW0½w; x⃗� ¼
∂z
∂w

ð∇ðSÞ
0 Vi½z; x⃗� þ∇ðSÞ

i V0½z; x⃗�Þ;

∇̄iWj½w; x⃗� þ ∇̄jWi½w; x⃗� ¼ ∇ðSÞ
i Vj½z; x⃗� þ∇ðSÞ

j Vi½z; x⃗�; ð3:19Þ

where ∇ðSÞ
μ denotes the covariant derivative with respect to the standard Poincaré metric whose line element is in (2.1). A

little computation yields

∇ðSÞ
0 V0½z; x⃗� ¼ 0; ∇ðSÞ

0 Vi½z; x⃗� þ∇ðSÞ
i V0½z; x⃗� ¼ 0;

which guarantees, in view of (3.3) and (3.19), that the axial gauge condition h0μ½w; x⃗� ¼ 0 is preserved. In addition,

∇ðSÞ
i Vj½z; x⃗� þ∇ðSÞ

j Vi½z; x⃗� ¼
1

z2

Z
ddk
ð2πÞd e

−ik·x kivjðkÞ þ kjviðkÞ
k2

;

which matches (3.16). Hence, the last equation in (3.19) yields (3.16).
It remains to be seen that Wμ½w; x⃗� is covariantly transverse: ∇̄μWμ½w; x⃗� ¼ 0. Indeed,

∇̄μWμ½w; x⃗� ¼ ∇ðSÞ
μ Vμ½z; x⃗� ¼

Z
ddk
ð2πÞd e

−ik·x δ
ijkivjðkÞ

k2
¼ 0;

for Eq. (3.15) holds. Recall that unimodularity of the metric implies that transversality with regard to ∂μ and ∇̄μ are
equivalent.
Let us recapitulate. We have just shown that, in the axial gauge, h0μ½w; x⃗� ¼ 0, any solution to (3.1) in the domain with

cutoff fðw; x⃗Þ; 0 < w < ρ0; x⃗ ∈ IRdgwhich has a well-defined limit as w → 0 is gauge equivalent, under the transformation
in (3.17) and (3.18), to a solution of (3.1), say hij½z; x⃗�, such that

H½z; x⃗� ¼ 0 and ∂
jHji½z; x⃗� ¼ 0; ð3:20Þ

where ∂
j ¼ δjl ∂

∂xl
, H½z; x⃗�≡ δijHij½z; x⃗�, and Hij½z; x⃗� ¼ hij½w ¼ Ldþ1

d z−d; x⃗�. Notice that (3.20) can be recast as (3.2).
If we substitute (3.7) in (3.4) and (3.5) in turn, we shall see that they are trivially satisfied. However, the substitution of

(3.7) in (3.6) yields the following equation:

z2H00
ij½z; k⃗� − ð−5þ dÞzH0

ij½z; k⃗� − ð−4þ 2dþ k2z2ÞHij½z; k⃗� ¼ 0; ð3:21Þ

to be satisfied by Hij½z; k⃗�. Let Hi
j½z; k⃗� be given by the following set of equations:
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Hi
j½z; k⃗�≡ hij

�
w ¼ Ldþ1

d
z−d; k⃗

�
; hij½w; k⃗� ¼ ḡilhlj½w; k⃗� ¼

�
L
wd

�
2=d

hij½w; k⃗�;

where ḡμν is the inverse of the unimodular metric (2.4). Obviously,Hij½z; k⃗� ¼ L2

z2 H
i
j½z; k⃗�, which substituted in (3.21) yields

z2Hi
j00½z; k⃗� þ ð1 − dÞzHi

j0½z; k⃗� − k2z2Hi
j½z; k⃗� ¼ 0: ð3:22Þ

The general solution to this equation is well-known: it is a linear combination of zd=2Kd=2½jkjz� and zd=2Id=2½jkjz�, where
Kd=2½jkjz� and Id=2½jkjz� are the modified Bessel function of second kind. And yet, we have to drop zd=2Id=2½jkjz�, for it has
an exponentially divergent behavior in the deep interior of Euclidean AdS, i.e., as z → ∞—recall that z → ∞ corresponds
to w → 0. We then conclude that the solution to (3.22), in the domain fðz; k⃗Þ; z > ϵ0 > 0; k⃗ ∈ IRd; ϵ0 ¼ ð ρ0d

Ldþ1Þ−1=dg,
satisfying Dirichlet boundary conditions at z ¼ ϵ0 and having a well-defined limit as z → 0 reads as

Hi
j½z; k⃗� ¼

zd=2Kd=2½jkjz�
ϵd=20 Kd=2½jkjϵ0�

hðTTÞij ½k⃗�: ð3:23Þ

Notice that hðTTÞij ½k⃗� is any traceless and transverse function whose inverse Fourier transform is real so that (3.7) holds.
Obviously,

hðTTÞij ½k⃗� ¼ hðTÞij ½k⃗� − 1

d − 1

�
δij −

kikj
k2

�
hðTÞ½k⃗�;

hðTÞ½k⃗� ¼ δjih
ðTÞi
j ½k⃗�;

hðTÞij ½k⃗� ¼ hðbÞij ½k⃗� − 1

k2
kiklh

ðbÞl
j ½k⃗� − 1

k2
kjklh

ðbÞi
l ½k⃗� þ 1

ðk2Þ2 k
ikjknkmh

ðbÞm
n ½k⃗�; ð3:24Þ

where hðbÞij ½k⃗� is the Fourier transform of an arbitrary real hðbÞij ðx⃗Þ, which sets the value of hμν½w; x⃗� at boundary w ¼ ρ0.
Putting it all together we finally conclude that in the axial gauge, h0μ½w; x⃗� ¼ 0, any solution to (3.1)—the linearized

unimodular gravity equation—in the domain fðw; x⃗Þ; 0 < w < ρ0; x⃗ ∈ IRdg is gauge equivalent, under a gauge trans-
formation—see (3.18)—preserving the axial gauge, to an hμν½w; x⃗� whose Fourier transform is given by

h0μ½w; k⃗� ¼ 0; hij½w; k⃗� ¼ ḡikhkj ½w; k⃗�; hkj ½w; k⃗� ¼ Hk
j ½z ¼ ðwd=LÞ−1=d; k⃗� ¼

�
ρ0
w

�
1=2 Kd=2½jkjðwd=LÞ−1=d�

Kd=2½jkjðρ0d=LÞ−1=d�
hðTTÞkj ½k⃗�:

ð3:25Þ

Of course, we have demanded that the solution, hμν½w; x⃗�, be such that it has a well-defined limit as w → 0 and satisfies
Dirichlet boundary conditions at w ¼ ρ0.
It will be useful for use in the following sections to realize that in the axial gauge, h0μ½w; x⃗� ¼ 0, the equations in (3.2) are

equivalent to

h½w; x⃗� ¼ ḡμνhμν½w; x⃗� and ∇̄μhμν½w; x⃗� ¼ 0; ð3:26Þ

respectively, ḡμν being defined in (2.4). Besides, the substitution of the equations (3.26) in (3.1) leads to the conclusion that
our hμν½w; x⃗� in (3.25) satisfies

□̄hμν ¼ −
2

L2
hμν: ð3:27Þ

A final comment: It is not difficult to show that each component of hij½w; x⃗�, with Fourier transform in (3.25), satisfies the
free massless Klein-Gordon equation for the unimodular metric in (2.4).
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IV. THE TWO-POINT FUNCTION

The purpose of this section is to work out the expansion up to quadratic order in hμν of SUG in (1.5) for the hμν in (3.25)
and compare the result with that of general relativity.
By using integration by parts and not dropping the total derivative terms, the contribution in question, say SHEUG2, to

−
1

2κ2

Z
ddx

Z
ρ0

0

dwR½ĝ�

reads as

SHEUG2½hμν� ¼ −
1

2κ2

Z
ddx

Z
ρ0

0

dw

�
−
dðdþ 1Þ

L2
þ κ∇̄μ∇̄νhμν − κ

1

dþ 1
□̄h

þ κ2

2

�
1

2
hαβ□̄hαβ −

dþ 3

2ðdþ 1Þ2 h□̄h −
1

2
hαβ∇̄α∇̄λhλβ −

1

2
hαβ∇̄β∇̄λhλα þ

1

dþ 1
h∇̄μ∇̄νhμν

þ 1

dþ 1
hαβ∇̄α∇̄βh −

1

L2
hαβhαβ þ

1

ðdþ 1ÞL2
h2
�
þ κ2∇̄λBλ

	
; ð4:1Þ

where2

Bλ ¼ d − 1

4ðdþ 1Þ2 h∇̄
λhþ 3 − d

4ðdþ 1Þ hμν∇̄
λhμν þ 1

2ðdþ 1Þ
�
hλν∇̄νhþ h∇̄νhλν

�
− hλτ∇̄νhντ −

1

2
hτν∇̄νhλτ

and h≡ ḡμνhμν. Notice that we are integrating over the domain with cutoff fðw; x⃗Þ; 0 ≤ w ≤ ρ0; x⃗ ∈ IRdg that we have
introduced in the previous section. The IRd boundary is at w ¼ ρ0. The introduction of the cutoff ρ0 regularizes the
otherwise IR divergent value of the action. ρ0 is to be taken to ∞ upon renormalization.
When hμν in (4.1) satisfies—as does our solution in (3.25)—the equations in (3.26) and (3.27), SHEUG2½hμν� boils down to

SHEUG2½hμν� ¼ −
1

2

Z
ddx

Z
ρ0

0

dw

�
−
dðdþ 1Þ
κ2L2

þ ∇̄λ

�
3 − d

4ðdþ 1Þ hμν∇̄
λhμν −

1

2
hτν∇̄νhλτ

�	
: ð4:2Þ

Notice that—as in the general relativity case [42,43]—SHEUG2 in (4.2) only contains boundary contributions.
Let us introduce the metric, say ḡðbÞij ; i; j ¼ 1…d, that the unimodular metric in (2.4) induces on the boundary,

fðρ0; x⃗Þ; x⃗ ∈ IRdg, at w ¼ ρ0:

ḡðbÞij ½ρ0; x⃗� ¼ ḡμν½ρ0; x⃗�
∂xμ

∂xi
∂xν

∂xj
¼ ḡij½ρ0; x⃗� ¼

�
ρ0d
L

�
2=d

δij; ð4:3Þ

where xμ ¼ ðw; xiÞ. Let n̄μ denote the unitary vector which is orthogonal to the boundary fðρ0; x⃗Þ; x⃗ ∈ IRdg and it is
given by

n̄μ ¼
�
ρ0d
L

; 0⃗
�
; ð4:4Þ

0⃗ being the zero vector of IRd. Of course, n̄μ satisfies ḡμνn̄μn̄ν ¼ 1 and ḡμνn̄μeνi ¼ 0, where eμi ¼ ∂xμ

∂xi ; i ¼ 1…d are the
coordinates of an orthogonal basis of the boundary at w ¼ ρ0 in the vector basis f∂μ; μ ¼ 0; 1…dg. With these definitions in
hand, the divergence theorem tells us that SHEUG2½hμν� in (4.2) is given by

SHEUG2½hμν� ¼ −
1

2

Z
ddx

�
−
dðdþ 1Þ
κ2L2

wþ
ffiffiffiffiffiffiffi
ḡðbÞ

q
n̄λ

�
3 − d

4ðdþ 1Þ hμν∇̄
λhμν −

1

2
hτν∇̄νhλτ

�	����
w¼ρ0

; ð4:5Þ

where ḡðbÞ denotes the determinant of ḡðbÞij .

2To obtain (4.1), we have used the algebraic package xAct [49].
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Now, substituting h0μ ¼ 0, ∇̄ih0j ¼ − 1
ωd hij,

ffiffiffiffiffiffiffi
ḡðbÞ

p
¼ ρ0d

L , and (4.4) in (4.5), one gets

SHEUG2½hμν� ¼ −
1

2

Z
ddx

�
−
dðdþ 1Þ
κ2L2

ρ0 þ
�
ρ0d
L

�
2
�

3 − d
4ðdþ 1Þ h

i
j∂0h

j
i þ

1

2ρ0d
hjih

i
j

�	����
w¼ρ0

: ð4:6Þ

Next, we shall expand the unimodular Hawking-Gibbons-York action

SHGY ¼ −
1

2κ2

Z
ddx2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝðbÞ½ρ0; x⃗�

q
K½ρ0; x⃗�; ð4:7Þ

up to second order in hμν. Recall that ĝμν is given in (1.4), with n ¼ dþ 1, so that both the determinant of induced metric on
the boundary, gðbÞ½ρ0; x⃗�, and the trace of the extrinsic curvature of the boundary, K½ρ0; x⃗�, are to be computed for ĝμν.
Taking into account that

ĝðbÞij ½ρ0; x⃗�≡ ĝμν½ρ0; x⃗�
∂xμ

∂xi
∂xν

∂xj
¼ ĝij½ρ0; x⃗�; ð4:8Þ

where xμ ¼ ðw; xiÞ, one concludes that in the axial gauge, h0μ½ρ0; x⃗� ¼ 0, we have

ffiffiffiffiffiffiffi
ĝðbÞ

q
¼ ρ0d

L

�
1þ 1

2ðdþ 1Þ κh −
1

4ðdþ 1Þ κ
2hijh

j
i þ

1

8ðdþ 1Þ2 κ
2h2

�
þ oððhijÞ3Þ; ð4:9Þ

where h ¼ ḡμνhμν and indices are raised and lowered with the Euclidean AdS unimodular metric ḡμν in (2.4).

To compute K½ρ0; x⃗� we shall take advantage of the
foliation of fðw; x⃗Þ; 0 ≤ w ≤ ρ0; x⃗ ∈ IRdg furnished by the
hyperplanes w × IRd, with w fixed. Indeed, if n̂½w; x⃗�
denotes the vector field constituted by the unitary vectors
normal to each hyperplane that we have just mentioned, we
have

K½ρ0; x⃗� ¼ ∇̂μnμ½ρ0; x⃗� ¼ ∂μnμ½ρ0; x⃗�: ð4:10Þ

The covariant derivative ∇̂μ is defined with regard to the
metric ĝμν which has determinant equal to 1; this is why the
rightmost equal sign in (4.10) is right. As we have said
the vector field, n̂½w; x⃗�, must satisfy the following unitarity
and orthonormality conditions,

ĝμνn̂μn̂ν ¼ 1 and ĝμνn̂μeνi ¼ 0; i ¼ 1…d; ð4:11Þ

at each point ðw; x⃗Þ. In the previous equation eμi ¼ ∂xμ
∂xi ,

feμi ∂μgi¼1…d is a basis of vector fields of w × IRd.
Let us solve the second equation in (4.11) first. Defining

n̂μ ¼ ĝμνn̂ν, we conclude that this second equation in (4.11)
is equivalent to n̂μe

μ
i ¼ 0. Hence,

n̂μ½w; x⃗� ¼ ðn0½w; x⃗�; 0⃗Þ; ð4:12Þ

for eμi ¼ ∂xμ
∂xi ¼ δμi .

Now, in the axial gauge h0μ ¼ 0, so we have ĝi0 ¼ 0, for
ḡμν is diagonal. Then, n̂i ¼ ĝiνn̂ν ¼ ĝijn̂j and n̂i ¼ 0 imply
that ðḡij þ κhijÞn̂j ¼ 0, which in turn leads to n̂i½w; x⃗� ¼ 0,
for ðḡij þ κhijÞ is an invertible matrix in perturbation
theory of hij.
Summarizing, in the axial gauge, h0μ ¼ 0, the orthogon-

ality condition—see (4.11)—on the vector field n̂μ yields

n̂μ½w; x⃗� ¼ ðn0½w; x⃗�; 0⃗Þ:

Substituting this result in the first equation—the unitarity
condition—in (4.11), one gets

n̂0½w; x⃗� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝ00½w; x⃗�

p :

By taking into account that, in the axial gauge, it holds
that ĝ00 ¼ ḡ00ðdetðḡμν þ κhμνÞ−1=ðdþ1Þ, one obtains the
following result:

n̂0½w; x⃗� ¼ wd
L

�
1þ 1

2ðdþ 1Þ κh −
1

4ðdþ 1Þ κ
2hijh

j
i þ

1

8ðdþ 1Þ2 κ
2h2

�
þ oððhijÞ3Þ: ð4:13Þ

The substitution of (4.12) and (4.13) in (4.10) yields
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K½ρ0; x⃗� ¼ ∂μn̂μ½ρ0; x⃗� ¼ ∂0n̂0½w; x⃗� ¼
d
L

�
1þ 1

2ðdþ 1Þ κh −
1

4ðdþ 1Þ κ
2hijh

j
i þ

1

8ðdþ 1Þ2 κ
2h2

�����
w¼ρ0

þ ρ0d
L

�
1

2ðdþ 1Þ κ∂0h −
1

2ðdþ 1Þ κ
2hij∂0h

j
i þ

1

4ðdþ 1Þ2 κ
2h∂0h

�����
w¼ρ0

þ oððhijÞ3Þ: ð4:14Þ

Notation: ∂0 ≡ ∂

∂w. Let us now substitute (4.9) and (4.14) in (4.7). Then,

SHGY ¼ −
1

2κ2

Z
ddx2

�
ρ0d2

L2

�
1þ 1

dþ 1
κhþ 1

2ðdþ 1Þ2 κ
2h2 −

1

2ðdþ 1Þ κ
2hijh

j
i

�

þ
�
ρ0d
L

�
2
�

1

2ðdþ 1Þ κ∂0hþ 1

2ðdþ 1Þ2 κ
2h∂0h −

1

2ðdþ 1Þ κ
2hij∂0h

j
i

������
w¼ρ0

þ oððhijÞ3Þ: ð4:15Þ

Recall that at the end of the day we have to replace hμν½w; x⃗� in the previous equation with the hμν½w; x⃗� in (3.25). Then we
can set h ¼ 0 in (4.15) to get

SHGY ¼ −
1

2κ2

Z
ddx2

�
ρ0d2

L2

�
1 −

1

2ðdþ 1Þ κ
2hijh

j
i

�
−
�
ρ0d
L

�
2
�

1

2ðdþ 1Þ κ
2hij∂0h

j
i

������
w¼ρ0

þ oððhijÞ3Þ: ð4:16Þ

To obtain the expansion of SUG in (1.5) up to second order in hμν for the solution in (3.25), all that is left for us to do is to add
(4.6) and (4.16). Thus, we obtain

SUG ¼ −
1

2κ2
×
Z

ddx

�
dðd− 1Þ

L2
ρ0 þ κ2

ρ0
L2

dð1− dÞ
2ðdþ 1Þh

i
j½w; x⃗�hji ½w; x⃗�− κ2

�
ρ0d
L

�
2 1

4
hji ½w; x⃗�∂0hij½w; x⃗�

	����
w¼ρ0

þ oððhijÞ3Þ;

ð4:17Þ

where hij½w; x⃗�, or rather its Fourier transform, is given in (3.25).
To compare the result in (4.17) with the corresponding results in general relativity, which we shall borrow from [42,43],

we have to change coordinates from ðw; x⃗Þ to ðz; x⃗Þ by inverting the transformation in (2.2). Upon making this change of
coordinates, one gets

SUG ¼ −
1

2κ2

Z
ddx

�ðd − 1Þ
L

�
ϵ0
L

�
−d

þ
�
ϵ0
L

�
−d κ2ð1 − dÞ

2ðdþ 1ÞLHi
j½z; x⃗�Hj

i ½w; x⃗� þ
�
ϵ0
L

�
1−d κ2

4
Hj

i ½z; x⃗�∂zHi
j½z; x⃗�

	����
z¼ϵ0

þ oððHijÞ3Þ; ð4:18Þ

where ϵ0 ¼ ðρ0d=Ldþ1Þ−1=d is the infrared cutoff for the z variable. Hi
j½z; x⃗� is defined as its Fourier transform, which is

given in (3.23) and (3.24). Hi
j½z; x⃗� occurs in (4.18) because of the definitions in (3.25). Notice that the second summand in

(4.18) boils down to

�
ϵ0
L

�
−d κ2ð1 − dÞ

2ðdþ 1ÞLhðTTÞij ½x⃗�hðTTÞji ½x⃗�;

when z is set to ϵ0. The Fourier transform of hTTji ½x⃗� is given in (3.24).
Now, ϵ0 is to be sent to 0 (i.e., ρ0 → ∞) after subtracting the IR divergences regulated by it. The first two summands in

(4.18) diverge as ϵ0 → 0, and they must to be subtracted altogether to get a finite result in the IR limit. Hence we will be left
only with the contribution

S ¼ −
1

2κ2

Z
ddx

��
ϵ0
L

�
1−d κ2

4
Hj

i ½z; x⃗�∂zHi
j½z; x⃗�

	����
z¼ϵ0

: ð4:19Þ

This is precisely, modulo conventions, the result in (2.26) of the paper [43], where it is argued that (2.26) yields the correct
two-point function of the energy-momentum tensor of the dual theory. Notice that our Hj

i ½z; k⃗�, the Fourier transform of
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Hj
i ½z; k⃗�, is the same as h̄ij½z; k⃗� in [43]. Indeed, the latter is traceless and transverse—see (2.21) of [43]—and its actual value

is given in (2.23) of [43], which is our (3.23). Let us point out that to reach the conclusion just stated one may carry out the
whole computation in momentum and see that the IR finite contribution to S in (4.19) reads as

Sfinite ¼ CT

Z
ddq
ð2πÞd

Z
ddp
ð2πÞd ð2πÞ

dδðp⃗þ q⃗ÞhðbÞij ðq⃗ÞΠijlmðp⃗ÞFðp⃗ÞhðbÞlm ðp⃗Þ;

where CT is a constant and

Πijlmðp⃗Þ ¼ 1

2
ðπilðp⃗Þπjmðp⃗Þ þ πimðp⃗Þπjlðp⃗ÞÞ − 1

d − 1
πijðp⃗Þπlmðp⃗Þ;

πijðp⃗Þ ¼ δij −
pipj

p2
;

FðpÞ ¼ jp⃗jd; if d is odd and jp⃗jd ln jp⃗j; if d is even: ð4:20Þ

Taking two derivatives of Sfinite with respect to hðbÞij ðp⃗Þ
yields, modulo a constant, the two-point correlation func-
tion of the energy-momentum tensor in momentum space
found in [50] for general conformal field theory. Fðp⃗Þ in
(4.20) can be read off from the on shell action of a massless
scalar field on Eclidean AdS—see [33].
Let us point out that our Hj

i ½z; k⃗� agrees with the bulk-
boundary propagator used in [51,52]. Indeed, the propa-
gator in question is the solution in the axial gauge to the
linearized Einstein equations for Dirichlet Boundary con-
ditions and spacelike momenta.
Let us now go back to the first two terms in (4.18) that

we have subtracted to get an IR finite result. The corre-
sponding contributions in general relativity can be obtained
from Eq. (4.15) of [42], and they read as

−
1

2κ2

Z
ddx

2ðd − 1Þ
L

�
ϵ0
L

�
−d
�
1 −

κ2

4
hijh

j
i

�
: ð4:21Þ

Obviously, the integrand of (4.21) and the two first
summands of (4.18) are linear combinations of the same
type of monomials, namely 1 and hijh

j
i , but with different

coefficients. So these IR divergent contributions in general
relativity differ from those of our unimodular theory.
It has been shown in [42] that the IR divergences we have

just quoted can be subtracted just by adding the term

a
Z

ddx
ffiffiffiffiffiffiffi
gðbÞ

q

and choosing the coefficient a appropriately. One may
wonder if the analogous term, namely

c
L

Z
ddx

ffiffiffiffiffiffiffi
ĝðbÞ

q
;

would do the job for unimodular gravity. The answer is no,
for the expansion in (4.9) yields the following contribution,

c
L

Z
ddx

ρ0d
L

�
1 −

1

4ðdþ 1Þ κ
2hijh

j
i

�
;

so that one can choose, e.g., c ¼ 2ð1 − dÞ, to cancel the
hijh

j
i summand in (4.17); but, then there remains an IR—

i.e., as ρ0 → ∞—divergent contribution

Z
ddx

ρ0d
L2

ð1 − dÞ;

which has to be subtracted anyway.
Summarizing, we have shown that, up to the quadratic

order, the value of the on shell classical action for our
unimodular gravity differs from that of general relativity by
IR divergent contact terms—see (4.18) and (4.21). Hence,
our unimodular theory differs from general relativity at the
(IR) regularized level. And yet, for the leading saddle point
approximation to the two-point contribution of the gravity
field to lnZgravity½hðbÞij � in (1.3), a sensible subtraction of the
IR divergences yields the same finite result for our
unimodular theory as for general relativity. So the equiv-
alence between our unimodular gravity theory and general
relativity holds, in the case at hand, in a nontrivial way. Of
course, the two-point correlation function of the energy-
momentum tensor of the dual theory obtained from the on
shell classical gravity action in the leading approximation is
the same for both unimodular theory and general relativity.

V. THE THREE-POINT FUNCTION

Here we shall work out the contribution to SUG in (1.5)
involving three hμν, hμν being given in (3.25). We shall
compare the contribution in question with that of general
relativity and draw conclusions.
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The use of the algebraic package xAct [49] and some very lengthy computations yield that the three-hμν contribution, say
SHEUG3, to

−
1

2κ2

Z
ddx

Z
ρ0

0

dwR½ĝ�

reads as

SHEUG3 ¼ SBulkUG3 þ BHEUG3; ð5:1Þ

where

SBulkUG3 ¼ −
κ

2

Z
ddx

Z
ρ0

0

dw
ffiffiffī
g

p �
d

6L2
hμλh

λ
νhνμ þ

1

4
hμν∇̄μhτσ∇̄νhτσ −

1

2
hμτ∇̄τhνσ∇̄σhμν

	
;

BHEUG3 ¼ −
κ

2

Z
ddx

Z
ρ0

0

dw∇̄λBλ;

Bλ ¼ d − 3

4ðdþ 1Þ h
μνhντ∇̄λhτμ −

1

dþ 1
hμνhλτ∇̄τhμν þ hμλhντ∇̄τhμν þ

1

2
hμνhντ∇̄τhμλ: ð5:2Þ

To obtain (5.1) and (5.2), the equations in (3.26) and (3.27) are to be employed profusely.
Let us simplify the boundary contribution, BHEUG3, to SHEUG3 by imposing the axial gauge condition hμ0½w; x⃗� ¼ 0:

BHEUG3 ¼ −
κ

2

Z
ddx

Z
ρ0

0

dw
ffiffiffī
g

p ∇̄λBλ½w; x⃗� ¼ −
κ

2

Z
ddx½

ffiffiffiffiffiffiffi
ḡðbÞ

q
n̄λBλ�j

w¼ρ0

¼ −
κ

2

Z
ddx

��
ρ0d
L

�
2 d − 3

4ðdþ 1Þ h
ijhki ∂0hjk −

ρ0d
L2

d − 1

dþ 1
hijh

j
lh

l
i

�����
w¼ρ0

¼ −
κ

2

Z
ddx

��
ρ0d
L

�
2 d − 3

4ðdþ 1Þ h
i
jh

j
l∂0h

l
i −

ρ0d
L2

�
1

2

�
hijh

j
lh

l
i

�����
w¼ρ0

ð5:3Þ

where ḡðbÞij and n̄λ are given in (4.3) and (4.4), respectively. Recall that ∂0 ≡ ∂

∂w and that ḡ ¼ 1.
To compute the three-hμν contribution coming from the unimodular Hawking-Gibbons-York action in (4.7), the

following results are needed:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝðbÞ½ρ0; x⃗�

q
¼ ρ0d

L

�
1 −

1

4ðdþ 1Þ κ
2hijh

j
i þ

1

6ðdþ 1Þ κ
3hijh

j
lh

l
i

�����
w¼ρ0

þ oððhijÞ4Þ;

n̂0 ¼ n̂0½w; x⃗� ¼ wd
L

�
1 −

1

4ðdþ 1Þ κ
2hijh

j
i þ

1

6ðdþ 1Þ κ
3hijh

j
lh

l
i

�
þ oððhijÞ4Þ;

K½ρ0; x⃗� ¼ ∂μn̂μ½ρ0; x⃗� ¼ ∂0n̂0½w; x⃗� ¼
d
L

�
1 −

1

4ðdþ 1Þ κ
2hijh

j
i þ

1

6ðdþ 1Þ κ
3hijh

j
lh

l
i

�����
w¼ρ0

þ ρ0d
L

�
−

1

2ðdþ 1Þ κ
2hij∂0h

j
i þ

1

2ðdþ 1Þ κ
3hijh

j
l∂0h

l
i

�����
w¼ρ0

þ oððhijÞ4Þ; ð5:4Þ

where ĝðbÞij has been defined in (4.8) and n̂μ ¼ ðn̂0; 0⃗Þ and K½ρ0; x⃗� have been introduced in the paragraph beginning right
below (4.9). To obtain (5.4) the conditions hμ0 ¼ 0 and h ¼ 0 must be imposed; recall that these conditions are satisfied by
our solution in (3.25).
Using the results in (5.4), it can be shown that three-field contribution, SHGY3, to the action in (4.7) runs thus:

SHGY3 ¼ −
κ

2

Z
ddx

��
ρ0d
L

�
2 1

dþ 1
hijh

j
l∂0h

l
i þ

ρ0d
L2

2d
3ðdþ 1Þ h

i
jh

j
lh

l
i

�����
w¼ρ0

: ð5:5Þ
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Let us introduce BUG3:

BUG3 ¼ BHEUG3 þ SHGY3 ¼ −
κ

2

Z
ddx

��
ρ0d
L

�
2
�
1

4

�
hijh

j
l∂0h

l
i þ

ρ0d
L2

�
d − 3

6ðdþ 1Þ
�
hijh

j
lh

l
i

�����
w¼ρ0

; ð5:6Þ

where BHEUG3 and SHGY3 are displayed in (5.3) and (5.5), respectively.
We then conclude that the three-hμν contribution, SUG3, to SUG in (1.5) is given by

SUG3 ¼ SBulkUG3 þ BUG3; ð5:7Þ

where SBulkUG3 and BUG3 can be found in (5.2) and (5.6), respectively.
Let us carry out a similar computation for general relativity. To do so we shall need the following result obtained in the

Appendix, namely, that, modulo a gauge transformation, the solution, in the axial gauge hμ0 ¼ 0 and having a well-defined
limit as z → ∞, to the linearized general relativity equations for Dirichlet boundary conditions satisfies

h½z; x⃗� ¼ g̃μνhμν½z; x⃗�; ∇̃μhμν½z; x⃗� ¼ 0; and □̃hμν½z; x⃗� ¼ −
2

L2
hμν½z; x⃗�: ð5:8Þ

g̃μν is the Euclidean AdS metric with line element in (1.1). The covariant derivative ∇̃μ is defined with regard to g̃μν.
Let SGR be defined as follows:

SGR ¼ SHEGR þ SHGYGR; SHEGR ¼ −
1

2κ2

Z
ddx

Z
∞

ϵ0

dz
ffiffiffi
g

p �
R½gμν� þ

dðd − 1Þ
L2

�
; SHGYGR ¼ −

1

2κ2

Z
ddx2

ffiffiffiffiffiffiffi
gðbÞ

q
Kj

z¼ϵ0
;

ð5:9Þ

where gμν ¼ g̃μν þ κhμν. The computation of the three-field contribution, SHEGR3, to SHEGR yields

SHEGR3 ¼ SBulkGR3 þ BHEGR3; ð5:10Þ

where

SBulkGR3 ¼ −
κ

2

Z
ddx

Z
∞

ϵ0

dz
ffiffiffĩ
g

p �
d
6L2

hλμhνλhμν þ
1

4
hμν∇̃μhτσ∇̃νhτσ −

1

2
hμτ∇̃τhνσ∇̃σhμν

	
;

BHERG3 ¼ −
κ

2

Z
ddx

Z
∞

ϵ0

dz∇̃λBλ
GR3;

Bλ
GR3 ¼ −

3

4
hμνhντ∇̃λhτμ − hμνhλτ∇̃τhμν þ hμλhντ∇̃τhμν þ

1

2
hμνhντ∇̃τhμλ: ð5:11Þ

To obtain (5.10) and (5.11) we have integrated by parts—keeping the boundary contributions—and used (5.8).
The axial gauge condition hμ0 ¼ 0 and a little algebra leads to the conclusion that

BHERG3 ¼ −
κ

2

Z
ddx

��
ϵ0
L

�
1−d

�
3

4

�
hijh

j
l∂zh

l
i þ

�
ϵ0
L

�
−d
�
−

1

2L

�
hijh

j
lh

l
i

�����
z¼ϵ0

: ð5:12Þ

It has been shown in [42] that

SHGYGR ¼ −
1

2κ2

Z
ddxð−2zÞ ∂

∂z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðbÞ½z; x⃗�

q
j
z¼ϵ0

; ð5:13Þ

where SHGYGR is defined in (5.9) and gðbÞ½z; x⃗� denotes the determinant of gij½z; x⃗�. Hence, by taking into account that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðbÞ½z; x⃗�

q
¼

�
L
z

�
d
�
1 −

1

4
κ2hijh

j
i þ

1

6
κ3hijh

j
lh

l
i

�
þ oððhijÞ4Þ;
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we obtain that the three-hij contribution to SHGYGR in (5.13) reads as

SHGYGR3 ¼ −
κ

2

Z
ddx

��
ϵ0
L

�
1−d

ð−1Þhijhjl∂zhli þ
�
ϵ0
L

�
−d
�

d
3L

�
hijh

j
lh

l
i

�����
z¼ϵ0

: ð5:14Þ

Putting it all together we conclude that the three-field contribution, SGR3, to SGR in (5.9) is given by

SGR3 ¼ SBulkGR3 þ BGR3; ð5:15Þ

where SBulkGR3 is displayed in (5.11) and

BGR3 ¼ BHEGR3 þ SHGYGR3 ¼−
κ

2

Z
ddx

��
ϵ0
L

�
1−d

�
−
1

4

�
hijh

j
l∂zh

l
i þ

�
ϵ0
L

�
−d
�
2d − 3

6L

�
hijh

j
lh

l
i

�����
z¼ϵ0

: ð5:16Þ

The values of BHEGR3 and SHGYGR3 can be found in (5.12) and (5.14), respectively.
We may compare now the three-field contribution SUG3 in (5.7) with the three-field contribution SGR3 in (5.15). But before

we make that comparison, let us point out a fact regarding the hij½z; x⃗� field which i) solves the linearized general relativity
equations for the metric in (1.1), ii) satisfies Dirichlet boundary conditions, and iii) has a well-defined limit as z → ∞. The
fact is that hij½z; x⃗� ¼ Hi

j½z; x⃗�, where the Fourier transform of Hi
j½z; x⃗� is given in (3.23) and (3.25). The reader should

consult the Appendix for details.
It is plain that the change of variables z → w defined in (2.2) turns SBulkGR3, in (5.11), into SBulkUG3 in (5.2). However, if we

apply the change of variables we have just mentioned to BGR3 in (5.16), we get

BGR3 ¼ −
κ

2

Z
ddx

��
ρ0d
L

�
2
�
1

4

�
hijh

j
l∂0h

l
i þ

�
ρ0d
L2

��
2d − 3

6

�
hijh

j
lh

l
i

�����
w¼ρ0

; ð5:17Þ

where ρ0 ¼ Ldþ1

d ðϵ0Þ−d, ∂0 ¼ ∂

∂w, and hij ¼ hij½w; x⃗�, the Fourier transform of hij½w; x⃗� being given in (3.25).
Obviously, BGR3 in (5.17) and BUG3 in (5.6) are not equal, the difference coming from the IR divergent contact term

Z
ddx

��
ρ0d
L2

�
hijh

j
lh

l
i

�����
w¼ρ0

¼
Z

ddx

�
ρ0d
L2

�
hðTTÞij ½x⃗�hðTTÞjl ½x⃗�hðTTÞli ½x⃗�; ð5:18Þ

where hðTTÞij ½x⃗� has hTTij ½k⃗� in (3.24) as Fourier transform.
This term—since it is a contact term—does not contribute
to value of the three-point correlation function of the
energy-momentum tensor of the dual field theory. We
see again the same picture as for the two-point contribution
discussed in the previous section. Indeed, the three-field
contribution to the righthand side of (1.3) in unimodular
gravity is not the same as in general relativity when the IR
regulator is in place. However, the difference is an IR
divergent contact term which does not contribute to the
value of the three-point correlation functions of the energy-
momentum tensor of the dual field theory. Of course, the
subtraction of the term in question to get an IR finite value
for the right-hand side of (1.3) will make unimodular
gravity fully equivalent to general relativity as far as our
results are concerned. This equivalence arises in a non-
trivial way, though.

VI. SUMMARY AND CONCLUSIONS

The formulation of theory of unimodular gravity put
forward in [5,8,14] has the nice feature that transverse
diffeomorphims and Weyl transformations are the gauge
symmetries of the theory. We have started the study of the
properties of this formulation of unimodular gravity from
the gauge/gravity duality point of view. We do so by
computing—at the lowest order—the IR regularized two-
and three-point hμν contributions to the on shell classical
gravity action for a Euclidean AdS background. We have
shown that these two- and three-point contributions do not
agree with the corresponding contributions in general
relativity due to IR divergent contact terms—see (4.18)
and (4.21), on the one hand, and (5.6), (5.17), and (5.18),
on the other. However, once those IR divergent terms are
subtracted our unimodular theory and general relativity
yield the same IR finite result. The subtraction in question

JESUS ANERO and CARMELO P. MARTIN PHYS. REV. D 107, 046001 (2023)

046001-14



does not modify the value of the corresponding correlation
functions of the energy-momentum tensor of the dual field
theory. So, we conclude that, as far as our computations can
tell, our unimodular gravity theory and general relativity
are equivalent in the sense that they have the same dual
boundary field theory. Of course, we have shown that this
equivalence emerges in a nontrivial way. Whether the
equivalence in question will still hold for higher-point
functions and/or when one-loop corrections are taken into
account is an open problem—a problem which is worth
studying.
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APPENDIX: THE LINEARIZED GENERAL
RELATIVITY EQUATIONS

In this Appendix we shall discuss how to find a suitable
solution to the linearized general relativity equations

1

2
□̃hμν −

1

2
g̃μν□̃h −

1

2
∇̃μ∇̃λhλν −

1

2
∇̃ν∇̃λhλμ

þ 1

2
g̃μν∇̃τ∇̃σhτσ þ

1

2
∇̃μ∇̃νh−

þ 1

L2
hμν þ

ðd − 2Þ
2L2

g̃μνh ¼ 0; ðA1Þ

where g̃μν is the metric with line element in (1.1) and all
covariant derivatives are defined with regard to g̃μν. Let us
recall that given an arbitrary real vector field, Uμ½z; x⃗�, the
previous equation is invariant under the gauge transforma-
tions

δhμν ¼ ∇̃μUν þ ∇̃νUμ:

We shall obtain the solution to (A1) in the axial gauge,
hμ0 ¼ 0, which satisfies appropriate Dirichlet boundary
conditions and has a well-defined limit as z → ∞. The
domain where (A1) will be solved is fðz; x⃗Þ; ϵ0 <
z < ∞; x⃗ ∈ IRdg, with boundary at z ¼ ϵ0. What we shall
find is that the solution in question, say hij½z; x⃗�, is such that

its Fourier transform hij½z; k⃗� is, modulo a gauge trans-

formation, equal to g̃ilHl
j½z; k⃗�,Hl

j½z; k⃗� being given in (3.23),
the gauge transformation preserving the axial gauge con-
dition. This means that this is the solution—see (3.25)—we
found for the linearized unimodular gravity equation in (3.1)
expressed in terms of the coordinate z instead of the
coordinate w in (2.2). Notice, though, that this result is
nontrivial, for (A1) and (3.1) are quite different. It is
important to stress that the solution to (A1) that we shall
find satisfies

h½z; x⃗� ¼ g̃μνhμν½z; x⃗�; ∇̃μhμν½z; x⃗� ¼ 0;

and □̃hμν½z; x⃗� ¼ −
2

L2
hμν½z; x⃗�;

for this was used in our computations of the general relativity
three-field contributions to the right-hand side of (1.3).
Let us point out that our result is not new. In [51]—see its

Eq. (2.43)—it is stated that the axial gauge bulk-boundary
propagator for the gravitational field for spacelike momenta
is given by g̃ilHl

j½z; k⃗�, whereHl
j½z; k⃗� is displayed in (3.23).

This bulk-boundary propagator is no other thing that the
solution to the linearized general relativity equations with
Lorenztian signature for spacelike momenta and for the
boundary conditions and behavior in the AdS interior stated
in the previous paragraph. Of course, this solution yields
the solution of the corresponding equations with Euclidean
signature—i.e., the equations in (A1). Indeed, one just has
to replace in the former solution the spacelike k2 with k2

defined with Euclidean signature; bear in mind that we are
using the most plus Lorentz metric.
Although, as we have discussed in the previous para-

graph, the final result presented in this Appendix is not new,
we think that the analysis we shall display below will be
helpful.
The Fourier transform with regard to x⃗ of the 00, 0j, and

ij components of the equation in (A1) read as

ð2ðd − 1Þh̆þ z2k2Þh̆þ ðd − 1Þzh̆0 − z2kikjhij ¼ 0 ðA2Þ

2ðklhlj − kjh̆Þ þ zðklh0lj − kjh̆
0Þ ¼ 0 ðA3Þ

and

− z2h00ij þ ðd − 5Þzh0ij þ ð2ðd − 2Þ þ k2z2Þhij − z2½klkihlj þ klkjhli� þ z2δijklkmhlm

þ δijz2h̆
00 þ ð5 − dÞδijzh̆0 þ ð−2ð−2þ dÞ − k2z2Þδij þ kikjz2Þh̆ ¼ 0; ðA4Þ

respectively. hij is a function of z and the Fourier momentum k⃗. h̆≡ δijhij.
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The general solution to (A3) reads as

klhlj − kjh̆ ¼ vj½k⃗�
z2

; ðA5Þ

where vj½k⃗�; j ¼ 1…d are integration constants.
Substituting (A5) in (A2), one gets

2ðd − 1Þh̆þ ðd − 1Þzh̆0 − k⃗ · v⃗½k⃗� ¼ 0;

whose general solution is the following:

h̆½z; k⃗� ¼ C½k⃗�
z2

þ 1

2ðd − 1Þ k⃗ · v⃗½k⃗�; ðA6Þ

where C½k⃗� is another integration constant.
Now, since z ¼ ∞ corresponds only to a point of

Euclidean AdS and we want hij½z; x⃗� to have a well-
defined—i.e., independent of x⃗—limit as z → ∞, we must
demand that

k⃗ · v⃗½k⃗� ¼ 0: ðA7Þ

Indeed, from (A6), one gets limz→∞ h̆½z; x⃗� ¼ 1
2ðd−1Þ ∂⃗ · v⃗½x⃗�,

where v⃗½x⃗� has v⃗½k⃗� as Fourier transform. Hence, we must
demand that ∂⃗ · v⃗½x⃗� ¼ A, A being a constant, if we want the
large z limit of hij½z; x⃗� to be independent of x⃗. But, A must
be equal to zero, for v⃗½x⃗� should vanish fast enough as
jx⃗j → ∞—we are assuming that v⃗½x⃗� has Fourier transform.
∂⃗ · v⃗½x⃗� ¼ 0 implies that its Fourier transform, k⃗ · v⃗½k⃗�,
vanishes.
Let us take stock. What we have obtained so far is that

h̆½z; k⃗� ¼ C½k⃗�
z2

;

klhlj ¼ kjh̆þ vj½k⃗�
z2

¼ 1

z2
ðvj½k⃗� þ kjC½k⃗�Þ: ðA8Þ

Recall that h̆≡ δijhij.
Let us introduce hpartij ½z; k⃗�:

hpartij ½z; k⃗� ¼ 1

k2z2
ðkiVj½k⃗� þ kjVi½k⃗�Þ;

Vj½k⃗� ¼ vj½k⃗� þ
1

2
kjC½k⃗�: ðA9Þ

Notice that

h̆part½z; k⃗� ¼C½k⃗�
z2

; klhpartlj ¼ 1

z2
ðvj½k⃗�þ kjC½k⃗�Þ; ðA10Þ

for (A7) holds. But there is more: hpartij ½z; k⃗� solves (A2),
(A3), and (A4), as can be seen by just substituting (A9) in
those equations. This result is not surprising though, for
hpartij ½z; x⃗� can be recast as gauge transformation that
preserves the axial gauge condition h0μ½z; x⃗� ¼ 0. Indeed,
let us define Θμ½z; x⃗� as follows:

Θμ½z; x⃗� ¼ ðΘ0½z; x⃗�;Θi½z; x⃗�Þ;
Θ0½z; x⃗� ¼ 0;

Θi½z; x⃗� ¼
i
z2

Z
ddk
ð2πÞd e

−ik·x Vi½k⃗�
k2

: ðA11Þ

Then the following gauge transformation,

∇̃μΘν þ ∇̃νΘμ; ðA12Þ

where the covariant derivative is defined with regard to the
metric g̃μν with line element in (1.1), is such that

∇̃0Θ0 ¼ 0; ∇̃0Θi þ ∇̃iΘ0 ¼ 0;

∇̃iΘj þ ∇̃jΘi ¼
Z

ddk
ð2πÞd e

−ik·x 1

z2k2
ðkiVj½k⃗� þ kjVi½k⃗�Þ:

This last equation is (A9).
Next, let express hij½z; k⃗�, a solution to (A2), (A3), and

(A4) satisfying (A8) for given Vi½k⃗� and C½k⃗�, as follows:

hij½z; k⃗� ¼ httij½z; k⃗� þ hpartij ½z; k⃗�: ðA13Þ

hpartij ½z; k⃗� is defined in (A9). It follows from (A8) and (A10)
that

h̆tt½z; k⃗� ¼ 0; klhttlj ¼ 0; ðA14Þ

where h̆tt½z; k⃗�≡ δijhpartij ½z; k⃗�.
Substituting (A13) in (A2) and (A3), one sees that they

are trivially satisfied. But the substitution of (A13) in (A4)
yields the following equation:

z2htt
0

ij ½z; k⃗� − ð−5þ dÞzhtt0ij ½z; k⃗�
− ð−4þ 2dþ k2z2Þhttij½z; k⃗� ¼ 0: ðA15Þ

We have met this equation already: it is equation (3.21).
Hence, we know—see analysis below (3.21)—that the
general solution to (A15) which has a well-defined limit
as z → ∞ and satisfies the Dirichlet boundary condition at
z ¼ ϵ0 reads as
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httij½z; k⃗� ¼
�
L
z

�
2

htt ij ½z; k⃗�; htt ij ½z; k⃗� ¼ Hi
j½z; k⃗�;

where Hi
j½z; k⃗� is given in (3.23). Let us stress that the

previous equation has been of paramount importance to our
discussion in Secs. IV and V.
Now, it is not difficult to see that (A14) can be recast as

follows:

g̃μνhttμν ¼ 0; ∇̃μhttμν ¼ 0;

where h0μ is by definition equal to zero. Substituting the
previous to equation in (A1), one gets

□̃httμν ¼ −
2

L2
:

Let us finally point out that hij½z; x⃗�, as obtained from its
Fourier transform in (A13), differs from httij½z; x⃗� by the
gauge transformation in (A12) and (A11); this gauge
transformation preserves the axial gauge condition.
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