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We utilize the integrality conjecture to show that the torus partition function of a fermionic rational
conformal theory in the Ramond-Ramond sector becomes a constant when the bound hR ≥ c

24
is satisfied,

where hR denotes the conformal weights of Ramond states and c is the central charge. The constant-valued
Ramond-Ramond partition function strongly suggests the presence of supersymmetry unless a given theory
has free fermions. The lower bound hR ≥ c

24
can then be identified with the unitarity bound of N ¼ 1

supersymmetry. We thus propose that, for rational CFTs without free fermions, ðhR − c=24Þ ≥ 0 can imply
supersymmetry.
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I. INTRODUCTION

The energy spectrum of a supersymmetric theory is
constrained to be non-negative, E ≥ 0. In contrast, does the
lower bound on the energy spectrum imply supersym-
metry? The answer is no, in general. To see this, let us
consider a nonsupersymmetric quantum system with a
potential that allows a normalizable ground state. By
adding to the Lagrangian a suitable constant energy, one
can always make the energy spectrum positive while
maintaining the nonsupersymmetric nature of the system.
However, we propose that the answer to the above converse
question becomes positive for fermionic rational conformal
field theories (RCFTs) in two dimensions.
We start with a two-dimensional fermionic CFT on a

circle. To define a fermionic CFTon a manifold X, we need
to choose a spin structure on X by specifying a boundary
condition of fermions around each nontrivial cycle. In the
present work, we suppose that a given fermionic CFT
has nontrivial Hilbert space HR in the Ramond sector.
The dimension Δ and the spin s of a state in HR can be
determined by its left and right (Ramond) conformal
weights hR and h̄R, Δ ¼ hR þ h̄R and s ¼ jhR − h̄Rj.
The rational CFTs refer to CFTs whose partition function
can be written as a finite sum of products of holomorphic
and antiholomorphic functions on ðτ; τ̄Þ. For example,
let us discuss the Ramond-Ramond boundary condition
where fermions are periodic around any cycles on T 2.

The partition function associated with the Ramond-
Ramond (RR) boundary condition can be expressed as
follows

ZRRðτ; τ̄Þ¼TrHR
½ð−1ÞFqhR− c

24q̄h̄
R− c

24� ¼
XN−1

i;j¼0

fiðτÞMijf̄jðτ̄Þ:

ð1Þ

Here each holomorphic function fiðτÞ represents the
RR conformal character for a primary state of conformal
weight hRi . Without loss of generality, we can assume that
hR0 < hR1 < � � � < hRN−1. We also define the leading expo-
nent of each fiðτÞ in q-expansion as mi ¼ hRi − c

24
in what

follows,

fiðτÞ ¼ qmi

X∞
a¼0

FiðaÞqa: ð2Þ

Here FiðaÞ are integers that stand for the degeneracy of the
state weighted by ð−1ÞF.
A fermionic RCFT having supersymmetry is character-

ized by the presence of supercurrent GðzÞ, a primary of
conformal weight h ¼ 3=2 and satisfying the following
operator product expansion,

TðzÞGð0Þ ∼ 3

z2
Gð0Þ þ 1

z
∂Gð0Þ;

GðzÞGð0Þ ∼ 2c
3z3

þ 1

z
Tð0Þ; ð3Þ

where TðzÞ denotes the stress-energy tensor. Therefore,
the partition function of the Neveu-Schwarz (NS) sector
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should involve a state of weight h ¼ 3=2 as the vacuum
descendant.
Furthermore, the unitarity of a superconformal CFT

leads to a lower bound on the conformal weight in the
Ramond sector,

fG0; G0g ∝
�
hR −

c
24

�
≥ 0; ð4Þ

where G0 is the superconformal charge and c is the central
charge. The main goal of the present work is to show that
ZRRðτ; τ̄Þ becomes either constant or zero when the lower
bound (4) is obeyed, regardless of the structure of the NS
sector partition function. In other words, we will utilize the
modular constraint of fiðτÞ to propose constant ZRRðτ; τ̄Þ
when all the exponents of fiðτÞ are non-negative. To have a
constant RR partition function, the contributions from
bosonic and fermionic states other than vacuum has to
be canceled. One can hardly expect the above cancellation
unless the given theory has either supersymmetry or free
fermions. Note that a free fermion subject to the RR
boundary condition on T 2 has a zero mode, which results
in vanishing ZRR. Thus, we propose that a fermionic RCFT
satisfying the bound (4) is supersymmetric unless it has free
fermions. In this case, one can regard the constant ZRR as
the index of supersymmetric RCFTs.
As an illustration, let us consider the fermionic theory

for the tricritical Ising model. The theory has nontrivial
Hilbert spaces in both the NS sector and the R sector. The
former consists of the vacuum and the primary of
ðhNS; h̄NSÞ ¼ ð1=10; 1=10Þ along with their descendants.
On the other hand, the latter comprises two primaries
ðhR; h̄RÞ ¼ ð3=80; 3=80Þ, ð7=16; 7=16Þ and their descend-
ants. Since the Ramond spectrum satisfies the bound
hR ≥ c=24 ¼ 7=240, our proposal predicts that the theory
preserves the supersymmetry. Indeed, the tricritical Ising
model is a well-known example where its fermionic
description has the N ¼ 1 supersymmetry.
To support the proposal, we make use of two essential

properties of the RR characters fiðτÞ of (1). First, the
conformal characters should transform under SLð2;ZÞ as
the vector-valued modular functions; otherwise, the RR
partition function cannot be modular invariant. Second,
each conformal character has an integral q-expansion
whose coefficients count state degeneracies weighted by
ð−1ÞF. In [1], such characters are referred to as quasichar-
acters. In what follows, we provide proof relying on those
properties of our claim that ZRR becomes either constant or
0 when (4) is satisfied for fermionic RCFTs.

II. INTEGRALITY CONJECTURE

It has been known that any vector-valued modular form
with N-components fiðτÞ can be understood as indepen-
dent solutions of a modular invariant linear differential

equation (MLDE) of order N [2]. The valence formula
applied to the Wronskian of fiðτÞ then reads

XN−1

i¼0

mi þ
l
6
¼ NðN − 1Þ

12
; ð5Þ

where l is the Wronskian index, a non-negative integer
except 1 capturing the number of zeroes of the Wronskian.
The main idea of classifying two-dimensional RCFT is to
pick up the solutions of MLDE that satisfy constraints such
as having the positive integer Fourier coefficients, unique-
ness of the vacuum, and consistent fusion rule algebra.
The classification of the bosonic and fermionic RCFTs has
been performed in [2–10]. In particular, a recent paper [7]
utilized the integrality conjecture [11,12] to provide a new
approach to the classification program.
The modular invariance of ZRRðτ; τ̄Þ implies that the RR

conformal characters are regarded as a vector-valued
modular form. In contrast to the conformal characters of
the bosonic RCFTs, the RR conformal characters are
allowed to have negative integer coefficients in q-expan-
sion. Nonetheless, the integrality of the coefficients enables
us to apply the integrality conjecture. According to the
integrality conjecture, which is proved in [13] for RCFT
characters and recently proved in the general case by [14],
each RR conformal character should be invariant under the
principal congruence subgroup of SLð2;ZÞ. Such a sub-
group is defined with a positive integer n as follows,

ΓðnÞ ≔
��

a b

s d

�
∈ SLð2;ZÞ;

�
a b

s d

�
≡

�
1 0

0 1

�
mod n

�
: ð6Þ

Since we only require the coefficients to be integral, an
immediate lesson we learn is that the RR characters also
form a representation of the finite group SLð2;ZÞ=ΓðnÞ ¼
SLð2;ZnÞ for an integer n. Also, we need to remember that
the minus of the identity matrix in SLð2;ZnÞ acts trivially
on the characters by construction. In other words, we
should consider the representation theory of PSLð2;ZnÞ.
For the small number of characters, a plausible strategy
then is to classify all possible n for given N and extract
information from its representation theory.
Let us state without proof the simplest nontrivial

example, i.e., N ¼ 2. The finite list of n containing the
desired two-dimensional irreducible representation turns
out to be

n ∈ f2; 6; 8; 12; 20; 24; 60g: ð7Þ

A priori, some n in the list does not need to be realized by a
rational CFTwith two RR characters, but we stress that the
converse must be correct. Furthermore, the detail of those

JIN-BEOM BAE, ZHIHAO DUAN, and SUNGJAY LEE PHYS. REV. D 107, 045018 (2023)

045018-2



representations can be easily accessed from computer
software such as GAP [15]. In particular, we can extract
from the character table of SLð2;ZnÞ the exponents of
characters mi as summarized in Table I. For the detailed
discussion, we refer the readers to [7].
Now let us come back to our original problem.

Combining the valence formula (9) when N ¼ 2 with
the exponents in Table I, we easily learn that if RR
characters with non-negative exponents are nontrivial,
we must have a contradiction. This implies that actually
all the characters should vanish, thereby establishing the
desired result ZRR ¼ 0 for the special case of two RR
characters. Moreover, all possible exponents mod 1 up to
N ¼ 5 are worked out in [7], which cannot satisfy the
corresponding valence formula if we assume they are all
non-negative. This gives us an affirmative answer to our
question.
While being very concrete, this method would not be

practical for general N, and we need to look for other
approaches. In [16], the authors prove a theorem crucial for
our purpose. For the reader’s convenience, we restate
it below.
Theorem 1. Consider an N-dimensional weakly holo-

morphic and integral vector-valued modular function f⃗ðqÞ
with components fiðqÞ. Define

m ≔ min ðm0;…; mN−1Þ ð8Þ

where fiðqÞ ∼ qmi near the cusp i∞. If there exists one
component fjðqÞ which is a modular function of ΓðnÞ for
some integer n with mj ≠ 0, then m < 0.
The proof is not sophisticated, so we briefly outline it

here. As a modular function for ΓðnÞ, the component fjðqÞ
should obey the valence formula,

X
τ∈H=ΓðnÞ

OrdτðfjÞ ¼ 0; ð9Þ

where H is the upper half-plane and OrdτðfjÞ denotes the
leading order of fj when Laurent expanded around the

point τ. OrdτðfjÞ is counted as positive and negative for the
zeros and poles, respectively. If mj < 0, the theorem is
already proved, so we assume mj > 0. Since the order of
fjðqÞ at τ ¼ i∞ is nmj > 0, the valence formula (9) says
that fjðqÞ should diverge at some other cusps, denoted by
τ�, since a physical conformal character is required to be
holomorphic inside H=ΓðnÞ. It implies that the SLð2;ZÞ
invariant partition function (1),

ZRRðτ; τ̄Þ ¼
X

fiðτÞMijf̄jðτ̄Þ: ð10Þ

also diverges at τ ¼ τ�. Invoking an SLð2;ZÞ transforma-
tion that maps τ� to i∞, we readily see that Zðτ; τ̄Þ and
hence some other component of f⃗ðqÞ diverge at τ ¼ i∞. In
other words, m < 0. This is the end of the proof.
In our present situation, recall that we have the constraint

hRi ≥ c
24
. If a given theory has the Ramond spectrum

satisfying the bound (4) strictly, i.e., hR > c=24, all
conformal characters must be trivial and thus the corre-
sponding RR partition function is simply zero according to
the above theorem. On the other hand, let us suppose that
the bound is saturated, namely hRα ¼ c

24
. The corresponding

conformal character can be written as

fαðqÞ ¼ cα þ f̃αðqÞ; ð11Þ

with f̃αðqÞ now having strictly positive exponent in the q-
expansion. It is clear that f̃α is also modular invariant under
the congruence subgroup ΓðnÞ indicated in the proof, and
the new partition function

Z̃RRðτ; τ̄Þ ¼ ZRRðτ; τ̄Þ −Mααc2α ð12Þ

remains SLð2;ZÞ invariant. Applying the strategy of the
proof to Z̃RRðτ; τ̄Þ entails that it ought to be zero in order to
avoid contradiction. Therefore, the original partition func-
tion becomes a constant, and the only nonvanishing RR
character is fα ¼ cα. This indicates a perfect cancellation
between bosonic and fermionic excited states, which is
strong evidence for the presence of supersymmetry.

III. FURTHER REMARK

We conclude with a remark on the Rademacher expan-
sion, which is expected to shed new light on our proposal
that the bound hR ≥ c=24 implies the presence of super-
symmetry. Let us begin with a brief review of the
generalization of the Rademacher expansion to a vector-
valued modular form of weight w. See [17] for the detailed
discussion.
When each component of the weight w vector-valued

modular form fiðqÞ can be expanded in powers of q as (2),
the Fourier coefficient FiðaÞ has the contour integral
representation below,

TABLE I. Possible exponents mod 1 for potential RCFTs with
two RR characters.

n Exponents mod 1

2 f0; 1
2
g

6 f2
3
; 1
6
g, f1

3
; 5
6
g

8 f1
8
; 3
8
g; f5

8
; 7
8
g

12 f1
4
; 11
12
g; f3

4
; 5
12
g f1

4
; 7
12
g; f3

4
; 1
12
g f 1

12
; 5
12
g; f 7

12
; 11
12
g

20 f 1
20
; 9
20
g; f 3

20
; 7
20
g; f11

20
; 19
20
g; f13

20
; 17
20
g

24 f11
24
; 17
24
g; f 5

24
; 23
24
g f 1

24
; 19
24
g; f 7

24
; 13
24
g

60 f11
60
; 59
60
g; f17

60
; 53
60
g; f23

60
; 47
60
g; f29

60
; 41
60
g

f 1
60
; 49
60
g; f 7

60
; 43
60
g; f19

60
; 31
60
g; f13

60
; 37
60
g
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FiðaÞ ¼
Z
C
dτe−2πiτðaþmiÞfiðτÞ; ð13Þ

where the contour C is given by a straight line from τ ¼ i to
τ ¼ iþ 1. To evaluate the integral (13), we deform C to the
Rademacher contour CRðMÞ for a given integer M. The
Rademacher contour is defined in terms of the Ford circle
Cðs; dÞ, a circle of radius 1

2s2 and tangent to the x-axis at a
Farey number d=s ∈ FM. Here d and s are coprime integers
such that d=s is an irreducible fraction, and the Farey
numbers FM include the fractions between 0 and 1 with
denominator less than M. The Rademacher contour can
then be described as follows,

CRðMÞ ¼ ∪
d
s∈FM

Cs;dðMÞ; ð14Þ

where Cs;dðMÞ is the arc between the intersection
points α−ðs; dÞ and αþðs; dÞ of the Ford circle Cðs; dÞ
with the neighboring Ford circles. To illustrate, we show
the Rademacher contour with M ¼ 4 in Fig. 1. Note that
CRð∞Þ covers the entire arc of the Ford circles except
tangential points on the real line.
Evaluating the contour integral over CRð∞Þ, the Fourier

coefficient can be expressed as

FiðaÞ ¼ 2π
X∞
s¼1

�XN−1

i¼0

sw−2Klða; i; b; j; sÞ

×
X

bþmj<0

FjðbÞð2πjbþmjjÞ1−w

×

�
2π

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþmiÞjbþmjj

q �
w−1

× I1−w

�
4π

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþmiÞjbþmjj

q ��
þ F̃iðaÞ; ð15Þ

where Klða; i; b; j; sÞ denotes the Kloosterman sum and
IαðxÞ is the modified Bessel function of the first kind. It was
shown in [17] that F̃iðaÞ vanishes when the Fourier
coefficients FjðbÞ with ðbþmjÞ ≥ 0 are all positive for
any j and w ≥ 0. However, since the Fourier coefficients
of the RR characters are not necessarily positive, more
elaboration is required to show whether F̃iðaÞ ¼ 0 in our
case. If this is the case, the Rademacher expansion can
provide an alternative argument that the RR conformal
characters should be trivial when the bound (4) is obeyed.
We leave it to future work.
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