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We consider the gauge invariant version of the Proca theory, where besides the real vector field there is
also the real scalar field. We quantize the theory such that the commutator of the scalar field operator and
the electric field operator is given by a predefined three-dimensional vector field, say E up to a global
prefactor. This happens when the field operators of the gauge invariant Proca theory satisfy the proper
gauge constraint. In particular, we show that E given by the classical Coulomb field leads to the Coulomb
gauge constraint making the vector field operator divergenceless. We also show that physically unreadable
gauge constraints can have a strikingly simple E-representation in our formalism. This leads to the
discussion of Debye, Yukawa, etc. gauges. In general terms, we explore the mapping between classical
vector fields and gauge constraints imposed on the operators of the studied theory.
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I. INTRODUCTION

The Proca theory delivers the simplest relativistic
description of massive vector bosons [1,2]. As a result
of that, it is of both phenomenological and theoretical
interest.
In the phenomenological context, it captures some

properties of ρ and ω mesons and the particles mediating
weak interactions, Wand Z bosons [1]. In addition to that, it
is regarded as a promising extension of Maxwell’s electro-
dynamics, the one taking into account the possibility that
the photon may not be a massless particle after all. Thereby,
various upper bounds on the photon mass are obtained by
comparing the predictions of the Proca theory to actual
experimental data (see e.g. Refs. [2,3] extensively discus-
sing this physically rich topic). In the theoretical context,
which is of main interest in this work, the Proca theory
provides an elegant framework for the examination of
various issues associated with the quantization of vector
fields (see e.g. Refs. [1,4,5]).
We are interested in the Proca theory of the real vector

field. Its classical Lagrangian density can be written as

L ¼ −
1

4
ð∂μVν − ∂νVμÞ2 þ

m2

2
ðVμÞ2; ð1Þ

where Vμ is the vector field and m is the mass of spin-1
particles described by this theory after its quantization (see
the Appendix for our conventions).
The important thing now is that theory (1) is manifestly

noninvariant with respect to the gauge transformation. In
fact, it is a gauge-fixed theory in the sense that field
equations impose the Lorenz gauge constraint onto the
vector field. This state of affairs can be easily changed by
the replacement

Vμ → Aμ þ
1

e
∂μG; ð2Þ

where the vector field Aμ and the real scalar field G are
supposed to simultaneously change under the gauge trans-
formation. Namely,

Aμ → Aμ þ ∂μf; G → G − ef; ð3Þ

where f is a smooth real function of space-time coordinates
and e is the unit of the electric charge.
Imposing (2) on (1), we see that the resulting Lagrangian

density,

L0 ¼ −
1

4
ð∂μAν − ∂νAμÞ2 þ

m2

2

�
Aμ þ

1

e
∂μG

�
2

; ð4Þ

is unaffected by the gauge transformation. For this reason,
we will refer to the theory defined by (4) as the gauge
invariant (GI) Proca theory. Such a theory was studied
before, see e.g. Refs. [6,7], and it bears similarity to the
Stueckelberg theory, which is reviewed in Ref. [8].
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To proceed with the discussion of the GI Proca theory,
one has to choose a gauge because the vector field is no
longer Lorenz gauge fixed in (4). Besides the standard
Coulomb gauge choice, which was e.g. enforced with the
Lagrange multiplier technique in Ref. [6], the following
intriguing gauge constraint was introduced in Ref. [7]

e∇ · AD ¼ m2GD: ð5Þ

It was labeled as the Coulomb gauge choice [7], but the
rationale behind such a name was not provided. We believe
that a proper name for such a gauge could be the Debye
gauge, which will be carefully explained in this work.
Anticipating this discussion, we have labeled the fields
subjected to such a constraint with the appropriate sub-
script. Their quantization was studied in Ref. [7] by means
of the Faddeev-Jackiw approach [9].
Our goal is to develop and discuss the quantization

formalism, where gauge choices are labeled by the classical
vector field E, which determines the commutator of the
scalar and electric field operators. Thereby, we explore the
mapping between such E and the field operators of the GI
Proca theory.
The outline of this paper is the following. The concise

summary of basic results concerning the Proca theory is
provided in Sec. II. Next, our quantization procedure is
introduced in Sec. III. Its features are then discussed in
Sec. IV, where the electric field context of the proposed
approach is laid out along with several illustrative examples.
Finally, the summary of our work is presented in Sec. V,
which is followed by the Appendix listing our conventions.

II. BASICS

We state below basic results concerning theories (1)
and (4).
To begin, the independent variables of Proca theory (1)

are fields Vi and their canonical conjugates

πi ¼ ∂iV0 − ∂0Vi: ð6Þ

Such a theory is canonically quantized by demanding that
[1,4,5]

½Viðt; xÞ; πjðt; yÞ� ¼ −iδijδðy − xÞ; ð7Þ

½Viðt; xÞ; Vjðt; yÞ� ¼ ½πiðt; xÞ; πjðt; yÞ� ¼ 0: ð8Þ

We note that

V0 ¼ −
1

m2
∇ · π; ð9Þ

which explains why V0 is the dependent variable of theory
(1).We also note that the canonical conjugate ofV0 vanishes.

Then, we remark that the variables of GI Proca theory
(4), whose quantization will be discussed in Sec. III, are
fields Ai and G as well as their canonical conjugates

∂iA0 − ∂0Ai ¼ πi ð10Þ

and

π̃ ¼ m2

e

�
A0 þ

1

e
∂0G

�
¼ m2

e
V0; ð11Þ

respectively. We note that the right-hand sides of (10) and
(11) follow frommapping (2), whichwe assume in thiswork.
Finally, we have a few observations about π and π̃. First,

Eqs. (9) and (11) imply that π and π̃ are linked via the field
constraint [10]

∇ · π ¼ −eπ̃: ð12Þ

Second, π and π̃ are gauge invariant. This means that, unlike
A and G, they will not be equipped with a gauge-specific
subscript below. Third, the physical content of π, and so also
of π̃ due to (12), is best seen from the fact that π ¼ E, where
E ¼ −∂0V − ∇V0 ¼ −∂0A − ∇A0 is the electric field oper-
ator. Note thatweuse the same “electric field” terminology as
in the theory of the massless electromagnetic field.

III. GAUGE ANSATZ AND
COMMUTATION RELATIONS

We are interested in quantization of theory (4). In a
nutshell, one may approach this problem in the follow-
ing way.
To begin, one chooses the gauge constraint for the fields.

For example, one may decide to work in the Coulomb
gauge

∇ · AC ¼ 0; ð13Þ

where the subscript indicates the gauge choice. Naturally,
there are uncountably many other gauge choices, whose
implications are not so obvious [see e.g. Eq. (5)].
Then, one figures out commutation relations between the

fields and their canonical conjugates, which is a nontrivial
task. Indeed, as they have to be consistent with the chosen
gauge constraint, they are expected to differ from the
canonical commutation relations.
We approach quantization of theory (4) somewhat

differently. Namely, instead of imposing the specific gauge
constraint in the form of the equation for the vector and
scalar field operators, we require that

GEðt; xÞ ¼ e
Z

d3zVðt; zÞ · Eðz − xÞ; ð14aÞ
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AE ¼ V þ 1

e
∇GE ; ð14bÞ

where E is a time-independent R3-valued vector field and
the appropriate subscript has been added to the fields to
indicate their dependence on E. Equation (14a) can be seen
as the ansatz, whereas Eq. (14b) expresses the fact that we
rely on mapping (2), which also leads to

A0
E ¼ e

m2
π̃ −

1

e
∂0GE : ð15Þ

All together, we will refer to (14) as the gauge ansatz.
The field E, whose meaning will be discussed in Sec. IV,

defines the gauge in our formalism. In fact, it is easy to see
that under E → E0, GE and AE transform just as G and A in
(3) with

fðt; xÞ ¼
Z

d3zVðt; zÞ · ½Eðz − xÞ − E0ðz − xÞ�: ð16Þ

This time, however, f is operator valued. This is interesting
because classical (c-number) gauge transformations are
typically discussed in the context of gauge theories (see e.g.
Sec. 2.5.2 of Ref. [11] for relevant remarks).
We are now ready to discuss equal-time commutators

between the canonically related operators introduced in
Sec. II. The nontrivial ones are

½GEðt; xÞ; π̃ðt; yÞ� ¼ i∇ · Eðy − xÞ; ð17Þ

½Ai
Eðt; xÞ; π̃ðt; yÞ� ¼

i
e
∂
y
i ½δðy − xÞ − ∇ · Eðy − xÞ�; ð18Þ

½GEðt; xÞ; πjðt; yÞ� ¼ −ieEjðy − xÞ; ð19Þ

½Ai
Eðt; xÞ; πjðt; yÞ� ¼ −iδijδðy − xÞ þ i∂yi E

jðy − xÞ; ð20Þ

where ∂yi ¼ ∂=∂yi. These expressions trigger the following
comments.
First, in order to verify these commutators, one can

replaceGE and Ai
E in (17)–(20) with (14) and then use (7) to

simplify the resulting expressions. Similarly, one may
verify with the help of (8) that the remaining equal-time
commutators between GE , AE , π, and π̃ identically vanish.
Second, we find these commutators remarkably compact

and general. As expected, they do differ from canonical
commutation relations: Eq. (17) is not equal to iδðy − xÞ,
Eq. (20) is not equal to −iδijδðy − xÞ, and Eq. (18) as well
as Eq. (19) do not vanish. The structure of (17)–(20) stems
from the restrictions imposed by field constraint (12) and
gauge ansatz (14); see Sec. IV C for additional relevant
remarks. In particular, one may easily notice that (17)
and (19) are interrelated via (12). The same remark applies
to (18) and (20).

Third, we have independently verified the above results
in the two already introduced gauges, (5) and (13), where E
is given by (29) evaluated for M ¼ m and (27), respec-
tively. We have done it via the Dirac bracket quantization
technique adopted so as to enforce gauge constraints (5)
and (13) (see Ref. [5] for the textbook introduction to such
a quantization approach and Sec. IVA for the explanation
of the above-listed choices of E).

IV. ELECTRIC FIELD PERSPECTIVE
ON GAUGE ANSATZ

The quantum GI Proca theory is built of the vector field
AE and the scalar field GE . The role of AE is clear: the
electric and magnetic field operators are expressed in terms
of AE , and so in such a sense this operator captures physics
of the electromagnetic field. The question now is what is
the role of GE . At first sight, it seems that the only role of
GE is to enforce the gauge invariance of the Lagrangian
density. However, by looking at commutator (19), we
realize that GE also plays the role of the generator of the
local shift of the electric field operator. To explain what we
mean by saying so, we note that by combining (19) with the
following well-known identity,

expðXÞY expð−XÞ ¼ Y þ ½X; Y� þ 1

2!
½X; ½X; Y�� þ � � � ;

ð21Þ
it can be formally shown that

exp½iGEðt;xÞ�Eðt; yÞ exp½−iGEðt;xÞ� ¼ Eðt; yÞ þ eEðy− xÞ:
ð22Þ

As both (19) and (22) particularly clearly expose the
electric field context of E, we see the quantization pro-
cedure based on (14) as the electric field-based quantization
scheme. Two remarks are in order now.
First, we use the term formal when we refer to (22)

because we do not actually inquire if the operator
exp½�iGEðt; xÞ� is well defined. Second, we note that in
the spirit of the Helmholtz theorem [12], one may consider
the following decomposition of E,

E ¼ −∇ΦE þ ∇ × FE ; ð23Þ

where ΦE and FE are classical time-independent scalar and
vector fields, respectively. Formula (23) will guide our
subsequent discussion.

A. Curl-free E

We study here gauges induced by

E ¼ −∇ΦE ; ð24Þ

where ΦE is real valued.
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To begin, we address the question of what is the relation
between GE and AE when (24) holds. After standard
manipulations based on gauge ansatz (14), we find that

e∇ · AE ¼ fEð−i∇ÞGE þ ΔGE; ð25Þ

where fE is defined via

ΦEðrÞ ¼
Z

d3k
ð2πÞ3

expð−ik · rÞ
fEðkÞ

ð26Þ

and fEðkÞ ¼ f�Eð−kÞ to ensure the real value of the above
integral. We will refer to (25) as the gauge constraint to
distinguish it from field constraint (12) and gauge ansatz
(14). The formal character of (25) will be commented upon
in Sec. V. We are now ready to discuss the previously
mentioned Coulomb and Debye gauges.
We say that E induces the Coulomb gauge when

E ¼ −∇ΦC; ΦC ¼ 1

4πr
; ð27Þ

where ∇ ¼ ð∂=∂riÞ and r ¼ jrj. Such a terminology is
supported by two observations. First, it is natural in our
formalism because such E is given by the negative gradient
of the Coulomb potential originating from the unit charge.
Second, a simple calculation shows that fEð−i∇Þ ¼ −Δ
here, which leads to the divergenceless vector field via (25).
Properly labeling the fields, we have

ðGC;ACÞ ¼ ðGE ;AEÞ for E ¼ −∇ΦC; ð28Þ

where the vector field satisfies gauge constraint (13) in the
traditional nomenclature.
In full analogy to the above reasoning, the gauge

induced by

E ¼ −∇ΦD; ΦD ¼ expð−MrÞ
4πr

ð29Þ

will be called the Debye gauge (M > 0). We have proposed
this name because such E is given by the negative gradient
of the Debye potential describing the screening of the unit
charge in plasmas and electrolytes.
As far as the relation between GE and AE is concerned,

we find fEð−i∇Þ ¼ −ΔþM2 in the Debye gauge. Then, it
follows from (25) that the fields in such a gauge satisfy

e∇ · AD ¼ M2GD: ð30Þ

Note that previously stated gauge constraint (5) is the
M ¼ m version of (30).
Next, we observe that the gauge constraint satisfied by

the fields nontrivially depends on the magnitude and the
direction of E (the magnitude and the sign of ΦE). This can

be illustrated by the introduction of the following two
gauges.
We define the primed Coulomb gauge by saying that it is

induced in our formalism by

E ¼ −∇ΦC0 ; ΦC0 ¼ βΦC ¼ β

4πr
; ð31Þ

where β > 0. The sensitivity of the gauge constraint to the
change of the magnitude of E is now seen by comparing
(13) to

e∇ · AC0 ¼ β − 1

β
ΔGC0 ; ð32Þ

which is satisfied by the fields in the primedCoulomb gauge.
Furthermore, we consider the gauge induced by

E ¼ −∇ΦY; ΦY ¼ −ΦD ¼ −
expð−MrÞ

4πr
; ð33Þ

where the subscript refers to the fact that such E is given by
the negative gradient of the Yukawa potential obtained for
the unit strength of the internucleon interactions. The fields
in so defined Yukawa gauge satisfy

e∇ · AY ¼ 2ΔGY −M2GY: ð34Þ

The difference between (30) and (34) illustrates the
sensitivity of the gauge constraint to the global change
of the direction of E.
Moving on, we note that new gauges can be obtained

by superposing fields E. For fields E given by (24), this
typically leads to the complicated relation between GE and
AE due to the reciprocal additivity law for fE. Namely, if

E ¼ −∇ΦE0 − ∇ΦE00 − � � � ; ð35Þ

then

1

fE
¼ 1

fE0
þ 1

fE00
þ � � � : ð36Þ

This can be illustrated by the consideration of the
Coulomb-Yukawa gauge, which we define as the gauge
induced by

E ¼ −∇ΦC − ∇ΦY ¼ −∇
�

1

4πr
−
expð−MrÞ

4πr

�
: ð37Þ

A quick calculation shows that in this case
fEð−i∇Þ ¼ ðΔ=MÞ2 − Δ, which results in

e∇ · ACY ¼ 1

M2
ΔðΔGCYÞ: ð38Þ
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Note that such a gauge constraint resembles neither (13)
nor (34) despite the fact that it is induced by the super-
position of the fields E leading to the Coulomb and Yukawa
gauges. This is the consequence of the fact that fE ≠
fE0 þ fE00 þ � � � when (35) holds. We mention in passing
that the M ¼ m version of the operator GCY was used in
Ref. [13] to construct the finite-energy charged state in
Proca theory (1).
Finally, we note the trivial possibility of choosing E ¼ 0.

This setsGE ¼ 0, removing the scalar field from the theory.
Such a gauge choice is known in the literature as the unitary
gauge (see e.g. Ref. [14]). In our formalism, the term null
gauge seems to be more appropriate.

B. Divergence-free E

We briefly comment here upon gauges induced by

E ¼ ∇ × FE ; ð39Þ

where FE is R3 valued.
For a general function FE , we are unsure how to derive

the closed-form expression for the gauge constraint akin to
(25). Thus, we focus on the specific results inspired by the
discussion from Sec. IVA. Namely, we consider

FEðrÞ ¼ d
Z

d3k
ð2πÞ3

expð−ik · rÞ
gEðkÞ

; ð40Þ

where d ∈ R3 is the constant vector and gEðkÞ ¼ g�Eð−kÞ. It
can be then found via (14) that the fields of the GI Proca
theory satisfy the following formal gauge constraint:

ed · ð∇ × AEÞ ¼ gEð−i∇ÞGE : ð41Þ

To see how all this works in practice, one may choose FE
to be given by

d
β

4πr
; � d

expð−MrÞ
4πr

; d

�
1

4πr
−
expð−MrÞ

4πr

�
:

ð42Þ

From the results presented in Sec. IVA, it is clear that these
choices lead to gEð−i∇Þ equal to

−
1

β
Δ; � ð−ΔþM2Þ; ðΔ=MÞ2 − Δ; ð43Þ

respectively. The corresponding gauge constraints are
obtained by combining (41) with (43), the E fields
associated with them are given by the curl of the vector
fields listed in (42).

C. Gauge constraints vs commutation relations

Let us consider a gauge constraint written in the form
ϒ ¼ 0. We will say that it is consistent with equal-time
commutation relations, written for the fields belonging to
some set X , when ½ϒðt; xÞ; Xðt; yÞ� ¼ 0 for all X ∈ X . For
example, the consistency of gauge constraint (30) with
commutation relations (17)–(20) requires ½e∇ · ADðt; xÞ −
M2GDðt; xÞ; Xðt; yÞ� ¼ 0 for X ¼ GD;AD;π; π̃.
We note that it can be easily verified that gauge

constraints (13), (30), (32), (34), and (38) are consistent
with commutation relations (17)–(20). It goes without
saying that this happens when the right-hand sides of
(17)–(20) are evaluated with the corresponding fields E:
(27), (29), (31), (33), and (37), respectively. For a general
curl-free E given by (24), it can be formally shown that
gauge constraint (25) is consistent with (17)–(20).
We also note that similar self-consistency checks can be

performed for the divergence-free E discussed in Sec. IV B.
Namely, it can be shown that (41) is formally consistent
with (17)–(20) when (40) holds, which can be also
individually verified for the specific cases listed in (42).

V. SUMMARY

We have discussed how GI Proca theory (4) can be
quantized with the help of gauge ansatz (14). Such an
ansatz is parametrized by the classical vector field E, which
determines the commutator of the scalar field operator and
the electric field operator (19).
In several special cases, we have found an explicit

mapping between the field E and the gauge constraint
satisfied by the fields of the GI Proca theory. In particular,
we have discussed the mapping

E ¼ −∇
�

1

4πr

�
↦ ∇ · AC ¼ 0; ð44Þ

which gives a new meaning to the term Coulomb gauge, a
very suggestive one in our opinion. While discussing other
cases, we have found that unreadable gauge constraints can
have a strikingly simple E-representation in our formalism,
which we find remarkable. One of the simplest illustrations
supporting such an observation is the following:

E ¼ −∇
�
expð−MrÞ

4πr

�
↦ e∇ · AD ¼ M2GD; ð45Þ

which defines the Debye gauge in our nomenclature.
Further support for the above observation is provided by
comparing gauge constraints (32), (34), and (38) to the
fields E associated with them (31), (33), and (37), respec-
tively. We note that, to the best of our knowledge, none of
these three gauge constraints has been previously men-
tioned in the literature. We also note that another batch of
unusual gauge constraints, having simple E-representation,
can be obtained by combining (41) with (43).
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In a more general context, we have proposed the relation
between curl-free E given by (24) and the gauge constraint
satisfied by the fields of the GI Proca theory (25). Such a
result has a formal character because it involves the
pseudodifferential operator fEð−i∇Þ, where the function
fE can be in general nonanalytic or singular for well-
defined E. If such complications are present, then there is
the question of what (25) really means. These somewhat
intriguing ambiguities do not affect our gauge ansatz-based
considerations (14), which do not rely on the form of the
gauge constraint satisfied by the fields. Similar remarks
apply to formal result (41), which has been obtained for the
particular class of divergence-free E.
Finally, we would like to emphasize the efficiency of the

discussed formalism. Indeed, our quantization procedure is
carried out all at once for different gauges labeled by E.
This is illustrated by the general character of commutation
relations (17)–(20).
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APPENDIX: CONVENTIONS

We adopt the Heaviside-Lorentz system of units in its
ℏ ¼ c ¼ 1 version. Greek and Latin indices of tensors take
values 0,1,2,3 and 1,2,3, respectively. The metric signature
is ðþ − −−Þ. 3-vectors are written in bold, e.g.
x ¼ ðxμÞ ¼ ðx0; xÞ. We use the Einstein summation con-
vention, ðXμ���Þ2 ¼ Xμ���Xμ���, and Δ ¼ ∇ · ∇. The complex
conjugation is denoted as �.
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[11] E. Leader and C. Lorcé, Phys. Rep. 541, 163 (2014).
[12] D. J. Griffiths, Introduction to Electrodynamics (Cambridge

University Press, Cambridge, England, 2017).
[13] B. Damski, arXiv:2212.01951.
[14] A. Das, Lectures on Quantum Field Theory (World Scien-

tific, Singapore, 2008). We note that gauge invariant Proca
theory (4) is called the Stueckelberg theory in this textbook.
A bit different definition of the Stueckelberg theory is
presented in Ref. [8], which explains why we do not refer
to (4) as the Stueckelberg theory.

BOGDAN DAMSKI PHYS. REV. D 107, 045016 (2023)

045016-6

https://doi.org/10.1103/RevModPhys.82.939
https://doi.org/10.1103/RevModPhys.82.939
https://doi.org/10.1088/0034-4885/68/1/R02
https://doi.org/10.1088/0034-4885/68/1/R02
https://doi.org/10.1016/j.nuclphysbps.2015.10.100
https://doi.org/10.1016/j.nuclphysbps.2015.10.100
https://doi.org/10.1142/S0217751X04019755
https://doi.org/10.1142/S0217751X04019755
https://doi.org/10.1103/PhysRevLett.60.1692
https://doi.org/10.1016/j.physrep.2014.02.010
https://arXiv.org/abs/2212.01951

