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We consider a massless Dirac field in (1þ 1) dimensions, and compute the Tomita-Takesaki modular
conjugation corresponding to the vacuum state and a generic multicomponent spacetime region. We do it
by analytic continuation from the modular flow, which was computed recently. We use our result to discuss
the validity of Haag duality in this model.
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I. INTRODUCTION

In the last two decades, a lot has been learned about
quantum field theory (QFT) by studying its entanglement
properties. One famous example is the irreversibility of the
renormalization group flow which was proved in various
dimensions using the strong subadditivity property of entan-
glement entropy [1–4]. There have also been many appli-
cations to holography (see [5] for a review) and, more
recently, to the black hole information problem [6–8].
Usually, entanglement is characterized in terms of the

reduced density matrix. However, this object is not well-
defined in QFT because the local algebras of operators do
not admit a trace. The usual way to circumvent this problem
is to put the QFTon a lattice in order to obtain a discrete set
of degrees of freedom which allows for the definition of a
trace. Then, after the computations are done, one sends the
lattice spacing to zero to restore the relativistic symmetry,
retains the information that survives the limit (and that is
independent of the details of the regularization scheme
used), and interprets it as a property of the QFT. This has
proven to be a very successful approach and most of the
prominent results in the area were derived with this idea
behind them.
It is interesting, though, that there are objects intimately

related to entanglement which are well-defined in QFT.
Two of these objects appear in the context of Tomita-
Takesaki theory (see Sec. II) and are known as the modular

operator (Δ) and the modular conjugation (J); they essen-
tially play the role of the modulus and phase in the polar
decomposition of an operator called the Tomita operator.
The study of these objects is very relevant since they carry
information about entanglement and they are directly
accessible in the QFT.
The modular operator Δ is related to the reduced density

matrix, or equivalently to its logarithm, the modular
Hamiltonian. Among many applications in QFT, the
knowledge of modular Hamiltonians was crucial for the
formulation of a well-defined version of the Bekenstein
bound [9] and for the proof of several energy inequalities
[10–13]. Modular Hamiltonians also found applications in
the context of holography, for instance in the derivation of the
linearized Einstein equations in the bulk from entanglement
properties of the boundary conformal field theory [14–17].
These objects have been computed for several regions and
states. The first results of modular Hamiltonians were local
[18–24] but examples of nonlocal modular Hamiltonians
were eventually derived [24–31].
The modular conjugation J can be used to understand the

structure of the local algebras of the QFT. A general feature
of QFT is that operators localized in spacelike separated
regions commute.1 In other words, given a region U, any
operator localized in a spacelike separated region will
commute with everything in U. In principle there may
be other operators, not localized in a spacelike separated
region, which also commute with everything in U. If there
are not, one says that Haag duality holds. Haag duality is
known to hold in some cases [18,32–35] and to fail in
others [36–38]; the general conditions under which it holds
or fails are an open question. The modular conjugation is
useful in this context because it can be used to determine
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1Of course, this statement has to be modified if there are
fermionic operators; we will come to this point below.
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the commutant of a local algebra, i.e., the set of all
operators commuting with everything in a given region.
In contrast with the modular operator, the modular

conjugation has not been studied so extensively and it is
only known in very few cases. When the global state is the
vacuum and the region is the Rindler wedge, the modular
conjugation is essentially the charge, parity and time reversal
operator (CPT operator) for any QFT [18]. Using this result
and conformal transformations one can obtain the modular
conjugation for anyCFTwhen the region is a causal diamond
and the global state is the vacuum (this was done formassless
scalar fields in [39]).All thementioned results up to this point
involve regions with only one component. In this paper we
obtain a new modular conjugation, namely that correspond-
ing to the free massless Dirac field in (1þ 1) dimensions in
the vacuum state for generic multicomponent regions.
The paper is organized as follows. In Sec. II we introduce

the modular operator Δ and the modular conjugation J and
discuss their properties. In Sec. III we describe the relevant
aspects of the model we will consider, the massless Dirac
field in (1þ 1) dimensions. In Sec. IV we review the
computation of the modular conjugation of the Rindler
wedge and the causal diamond; we particularize this
computation to the massless fermion in (1þ 1), with
emphasis on the subtleties that arise when one considers
fermions instead of bosons. In Sec. V, we compute J for a
generic multicomponent region, and use our result to
discuss the validity of Haag duality in this model.
Finally, we conclude with a discussion in Sec. VI.

II. MODULAR OPERATOR AND MODULAR
CONJUGATION

LetH be a Hilbert space, and let BðHÞ be the algebra of
all bounded operators onH. Given any self-adjoint set S ⊆
BðHÞ (by self-adjoint we mean closed under the operation
of taking adjoints), the commutant S0, namely the set of all
operators in BðHÞ which commute with all operators in S,
is a self-adjoint algebra containing the identity. Algebras
arising in this way are called von Neumann algebras. Note
that, if S ⊆ T , then T 0 ⊆ S0, and that S ⊆ S00. From these
two properties it follows that, if S ⊆ T 0, then S00 ⊆ T 0; that
is, any von Neumann algebra containing S also contains
S00. Hence, the bicommutant S00 is the smallest von
Neumann algebra containing S. In particular, if S is itself
a von Neumann algebra then S00 ¼ S, that is, every von
Neumann algebra is equal to its bicommutant.
Let A ⊆ BðHÞ be a von Neumann algebra. A vector

jΩi ∈ H is said to be cyclic for A if the subspace AjΩi is
dense in H, meaning that any vector in the Hilbert space
can be approximated arbitrarily well by an element of this
subspace; jΩi is said to be separating forA if the condition
a ∈ A, ajΩi ¼ 0 implies a ¼ 0, or, in other words, if the
map a ↦ ajΩi from the algebra to the Hilbert space is one
to one. Note that, if jΩi is cyclic for A, then it is separating
for A0; indeed, the condition a0 ∈ A0, a0jΩi ¼ 0 implies

a0AjΩi ¼ 0 and hence, by continuity, a0 ¼ 0 if AjΩi is
dense. In fact, one can show (see e.g. [40]) that the converse
is also true: if jΩi is separating forA0, then it is cyclic forA.
Therefore, cyclic for an algebra is the same as separating
for its commutant.
We are interested in von Neumann algebras admitting a

cyclic and separating vector. The study of such algebras is
called Tomita-Takesaki theory (see [36,40,41] for physics-
oriented reviews and [42,43] for more detailed treatments).
Suppose that jΩi is cyclic and separating for A, and
consider the operator S defined on AjΩi by

SajΩi ¼ a†jΩi: ð2:1Þ

This is called the Tomita operator associated with A and
jΩi. Note that the separating property ensures that this
definition makes sense; the cyclic property implies that S is
densely defined. Clearly, S is an antilinear operator
satisfying S2 ¼ 1 (hence invertible) and SjΩi ¼ jΩi; it
also satisfies S†jΩi ¼ jΩi (recall that the adjoint of an
antilinear operator is defined by hψ jO†jϕi ¼ hϕjOjψi),
because haΩjS†Ωi¼hΩjSaΩi¼hΩja†Ωi¼haΩjΩi. As it
turns out, S is unbounded but closable2; its domain is
slightly extended beyond AjΩi by taking the closure. This
makes S an invertible, densely defined closed operator,
which in turn guarantees that it admits a unique polar
decomposition,

S ¼ JΔ1=2 ð2:2Þ

with Δ positive and J antiunitary (note that Δ ¼ S†S).
These operators are called respectively the modular oper-
ator and the modular conjugation associated with A
and jΩi.
Let us discuss the properties of the modular objects. Since

S2 ¼ 1, we have JΔ1=2J ¼ Δ−1=2, which after some algebra
implies J† ¼ J and hence J2 ¼ 1. On the other hand,
since SjΩi ¼ S†jΩi ¼ jΩi we have ΔjΩi ¼ JjΩi ¼ jΩi.
Another property, which is highly nontrivial, is

ΔisAΔ−is ¼ A ðs ∈ RÞ JAJ ¼ A0: ð2:3Þ

Thus, themodular operator defines a one-parameter group of
automorphisms of A, which is called the modular flow, and
the modular conjugation defines an antilinear isomorphism
between A and its commutant. This is regarded as the main
result of Tomita-Takesaki theory.
The modular flow can also be characterized by the so-

called modular condition. Let α∶R ×A → A be a one-
parameter group of automorphisms ofA, that to each s ∈ R
assigns the automorphism αs. One says that α satisfies the

2An operatorO onH is said to be closed if its graph is a closed
subspace of H ⊕ H; it is said to be closable if the closure of its
graph is the graph of some operator, which is then called the
closure of O.
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modular condition with respect to jΩi if, for every
a; b ∈ A, there is a complex function GðzÞ on the strip
Imz ∈ ½−1; 0�, analytic on the interior of the strip and
continuous on its boundary, such that, for s ∈ R,

GðsÞ ¼ hΩjaαsðbÞjΩi Gðs − iÞ ¼ hΩjbα−sðaÞjΩi:
ð2:4Þ

As it turns out, there is a unique one-parameter group of
automorphisms satisfying the modular condition, and this
is the modular flow αsðaÞ ¼ ΔisaΔ−is. An intermediate
result which is used to show this, and which we will use
extensively in the following, is that, for a ∈ A, the map
z ↦ ΔizajΩi is analytic on the interior of the strip Imz ∈
½−1=2; 0� and continuous on its boundary.
In order to gain familiarity with the modular objects, let

us see what they look like in a simple finite-dimensional
example. Suppose that H ¼ H1 ⊗ H2, with H1 and H2

of the same dimension n, and consider the algebra
A ¼ BðH1Þ ⊗ 12, which is a von Neumann algebra. For
any state vector jΩi ∈ H, there are orthonormal bases
fjii1g ⊂ H1 and fjii2g ⊂ H2 and a probability distribution
p1;…; pn such that

jΩi ¼
Xn
i¼1

ffiffiffiffiffi
pi

p jiii: ð2:5Þ

This is the Schmidt decomposition of jΩi. Note that jii1
and jii2 are eigenvectors of the reduced density matrices ρ1
and ρ2 respectively, both with the same eigenvalue pi. A
necessary and sufficient condition for jΩi to be cyclic and
separating for A is that all these probabilities be non-
vanishing or, in other words, that both reduced density
matrices be invertible. Suppose that this is the case. Setting
a ¼ ðjiihjjÞ1 ⊗ 12 in the definition of the Tomita operator,
Eq. (2.1), one finds that Sjiji ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

pi=pj
p jjii and therefore

Δ ¼ ρ1 ⊗ ρ−12 Jjiji ¼ jjii: ð2:6Þ

It is a simple matter to check that Δ and J satisfy all the
properties discussed above. As we see, knowing Δ is the
same as knowing the reduced density matrices. Of course,
these do not contain all the information about the global
state jΩi; the remaining information is contained in J.
In QFT, every open spacetime region U has naturally

associated a von Neumann algebra, namely the algebra AU
generated by the bounded operators localized in U (i.e., the
bicommutant of that set of operators). In the algebraic
approach to QFT, this assignment of algebras to regions is
viewed as the essential feature of a QFT. Note that it
satisfies the following properties: (i) if U ⊆ V, then
AU ⊆ AV , and (ii) if U and V are spacelike separated,
then AU ⊆ A0

V (assuming that the algebras contain no
fermionic operators; otherwise this property has to be
suitably modified, as we will discuss below). A famous

result in QFT known as the Reeh-Schlieder theorem
establishes that the vacuum jΩi is cyclic for AU provided
only that U is nonempty (it can otherwise be arbitrarily
small). If the causal complement U 0, i.e., the largest open
region spacelike separated from U, is also nonempty, then
jΩi is also cyclic for AU 0, hence separating for A0

U 0 and in
particular for AU ⊆ A0

U 0. Thus, the Reeh-Schlieder theorem
implies that the vacuum is cyclic and separating for AU
provided that both U and U 0 are nonempty. In the case
where U is the Rindler wedge, the modular objects are
known for any QFT. This is another famous result, called
the Bisognano-Wichmann theorem. The modular operator
in this case is related to a boost generator, and the modular
conjugation is essentially the CPT operator. From the
modular operator one learns that uniformly accelerated
observers see the vacuum as a thermal state (the Unruh
effect); from the modular conjugation one learns that, if U
is the Rindler wedge, then A0

U ¼ AU 0 . This property (that
there is nothing else in the commutant than what can be
found in the causal complement) is known as Haag duality,
and the precise conditions under which it holds are an open
question. Given the amount of information one extracts
from the modular objects in the case of the Rindler wedge,
it is natural to ask what these objects look like for more
general regions. The modular operator is known in a few
cases, the modular conjugation has been less explored.
Contributing to fill this gap is the purpose of this paper.

III. MASSLESS FERMION IN (1 + 1)

We focus on a very simple QFT, namely that of a massless
Dirac field in (1þ 1)-dimensional Minkowski spacetime.
In (1þ 1) dimensions, the Dirac field is a two-component
spinor, Ψ ¼ ðΨþ;Ψ−Þ. The massless equation of motion
then implies that each component (chirality) is a function of a
single null coordinate, Ψ�ðxþ; x−Þ ¼ ψ�ðx�Þ. These func-
tions are subject to the canonical anticommutation relations,

fψ�ðxÞ;ψ†
�ðyÞg ¼ δðx − yÞ; ð3:1Þ

the remaining anticommutators being zero. Due to the delta
function above, ψ� is not really a function but a distribution,
which has to be smeared with a test function f to give a well-
defined operator,ψ�ðfÞ ¼

R
∞
−∞ dxψ�ðxÞfðxÞ. Note that this

operator is bounded because, by (3.1)

½ψ�ðfÞ�†ψ�ðfÞ ¼ kfk2 − ψ�ðfÞ½ψ�ðfÞ�† ≤ kfk2; ð3:2Þ

where kfk2 ¼ R
∞
−∞ dxjfðxÞj2, which is finite for any test

function. The local algebra associated with an open space-
time region U is generated by the smearings of ψþ, ψ− and
their adjoints with all test functions supported in the
corresponding null projections of U,
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AU ¼ fψþðfþÞ;ψ†
þðfþÞ;ψ−ðf−Þ;ψ†

−ðf−Þ;
suppðf�Þ ⊆ π�ðUÞg00; ð3:3Þ

where π�ðxþ; x−Þ ¼ x� is the projection onto the x� axis.
Note that two regionsU andV with the same projections onto
the null axes have the same algebra: if π�ðUÞ ¼ π�ðVÞ, then
AU ¼ AV . An example of two such regions is given in Fig. 1.
This will be important when we discuss Haag duality below.
The vacuum state jΩi is Gaussian with

hΩjψ�ðxÞψ†
�ðyÞjΩi¼ hΩjψ†

�ðxÞψ�ðyÞjΩi¼
1

2πi
1

x−y− iϵ
;

ð3:4Þ

where ϵ > 0 is to be sent to zero after smearing; the
remaining two-point functions all vanish. Note that the
right-hand side above can be extended continuously in y
to an analytic function in the upper half-plane (positive
imaginary part), so the same is true for ψ�ðyÞjΩi and
ψ†
�ðyÞjΩi.3 This property will be important in what follows.
Let us discuss the symmetries of this model, i.e., the

transformations ψ� → ψ 0
� which preserve the canonical

anticommutation relations (3.1). Any such transformation
defines an automorphism α of the algebraA spanned by the
identity and all products of smeared fields by the equation
αðψ�ðfÞÞ ¼ ψ 0

�ðfÞ. We are interested in transformations
which also preserve the two-point functions (3.4), whose
corresponding automorphisms satisfy hΩjαðaÞjΩi ¼
hΩjajΩi for all a ∈ A. These transformations are imple-
mented by unitary operators which leave the vacuum
invariant. Indeed, the above property of α enables us to
define an operator U by the equation UajΩi ¼ αðaÞjΩi;

one can easily check that this operator is unitary, leaves jΩi
invariant and satisfies UaU† ¼ αðaÞ for all a ∈ A. A
transformation preserving (3.1) and (3.4) (and thus imple-
mented by a unitary operator which leaves the vacuum
invariant) is

ψ 0
�ðxÞ ¼

1

c�xþ d�
ψ�ðða�xþ b�Þ=ðc�xþ d�ÞÞ ð3:5Þ

with a�d� − b�c� ¼ 1. Note that the associated spacetime
transformation is a conformal transformation. The particu-
lar case b� ¼ c� ¼ 0, a� ¼ 1=d� ¼ e�η=2,

ψ 0
�ðxÞ ¼ e�η=2ψ�ðe�ηxÞ; ð3:6Þ

corresponds to a boost of parameter η. Other transforma-
tions preserving (3.1) and (3.4) are theUð1Þ transformation

ψ 0
� ¼ eiθ�ψ�; ð3:7Þ

with θ�∈ ½0;2πÞ, and the charge conjugation transformation,

ψ 0
� ¼ ψ†

�: ð3:8Þ

On theother hand, the parity and time reversal transformation
(PT transformation)

ψ 0
�ðxÞ ¼ ψ�ð−xÞ ð3:9Þ

preserves the anticommutation relations (3.1) but not the
two-point functions (3.4),which aremapped to their complex
conjugates. Transformations with this property are imple-
mented by antiunitary (rather than unitary) operators which
leave the vacuum invariant, as can be shown by exactly the
same construction as above.
In this QFT, as is always the case with fermions, field

operators localized in two spacelike separated regions U
and V anticommute instead of commuting. Of course, this
does not mean that the corresponding algebras anticom-
mute: for example, the product of two field operators in U
commutes with everything in V. What is, then, the relation
between the algebras AU andAV? To answer this question,
consider the unitary operator Uπ associated with the Uð1Þ
transformation (3.7) with θþ ¼ θ− ¼ π,

Uπψ�U
†
π ¼ −ψ�: ð3:10Þ

Clearly, this operator anticommutes with ψ� and ψ†
�, which

implies that the product XUπ, with X a field operator
localized in U, commutes with everything in V. Note also
that U2

π ¼ 1 and hence U†
π ¼ Uπ . Taking this into account

one finds that the operator

Z ¼ 1þ iUπ

1þ i
; ð3:11Þ

FIG. 1. Two spacetime regions with the same null projections
and hence the same algebra.

3More precisely, for any test function f the vector-valued
functions ψ�ðfyÞjΩi and ψ†

�ðfyÞjΩi, where fyðxÞ ¼ fðx − yÞ,
can be extended continuously in y to analytic functions in the
upper half-plane.
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which is called the twist operator, is unitary and satisfies

Zψ�Z† ¼ −iψ�Uπ: ð3:12Þ

Therefore, ZXZ† commutes with everything in V. In other
words, if SU denotes the set of field operators localized in U
(so that AU ¼ S00

U ), we have ZSUZ† ⊆ S0
V ¼ A0

V . For any
set S and any unitary operator U it is easy to see that
ðUSU†Þ0 ¼ US0U†, so this inclusion can be promoted to a
relation between von Neumann algebras,

ZAUZ† ⊆ A0
V : ð3:13Þ

This is the relation we were looking for. Note that
Z†ψ�Z ¼ −Zψ�Z† and hence Z†AUZ ¼ ZAUZ†, so the
above equation is equivalent to ZAVZ† ⊆ A0

U , as it should
be because the regions U and V are arbitrary. We will refer
to ZAUZ† as the twisted algebra of U. Note from (3.11) that
Z leaves the vacuum invariant, because so does Uπ. This
guarantees that the corollary we discussed above of the
Reeh-Schlieder theorem (that the vacuum is cyclic and
separating for nonempty regions with a nonempty causal
complement) remains true in the presence of fermions. In
the context of this or any other fermionic model, we will
say that Haag duality holds for a region U ifA0

U ¼ ZAU 0Z†,
i.e., if there is nothing else in the commutant than what can
be found in the twisted algebra of the causal complement.
This is sometimes called a twisted version of Haag duality.
In fact, Eq. (3.1) tells us that field operators localized in

U and V anticommute (and hence the algebra of one region
commutes with the twisted algebra of the other) whenever
there is no light ray joining these regions, which is a weaker
condition than the condition of being spacelike separated.
The largest open set of points that cannot be joined with U

by a light ray will be referred to as the null complement of
U, and will be denoted as U�. We thus have ZAU�Z† ⊆ A0

U
in this model. Since U� is larger than U 0, at first sight this
may seem to imply a violation of Haag duality, but this is
not necessarily the case: for example, if U is a causal
diamond as in Fig. 2, the projections of U� onto the null
axes coincide with those of U 0 and hence, as discussed
above, AU� ¼ AU 0 .

IV. MODULAR CONJUGATION FOR SINGLE-
COMPONENT REGIONS

A. Rindler wedge

We now show the explicit calculation of the modular
conjugation for the vacuum state and the algebra of the
Rindler wedge, first derived by Bisognano and Wichmann
[18]. This is an extremely important result since it is an
explicit example which holds for any QFT and shows the
validity of Haag duality for this region.
We restrict to the massless fermion in (1þ 1), although

the same ideas are readily generalized to arbitrary QFTs
in any number of dimensions. The Rindler wedge R is
the set of all points ðxþ; x−Þ with xþ > 0 and x− < 0. The
corresponding modular flow is given by

Δisψ�ðx�ÞΔ−is ¼ e∓πsψ�ðe∓2πsx�Þ≡αsðψ�ðx�ÞÞ; ð4:1Þ

which, by comparison with (3.6), tells us that Δis is the
unitary operator associated with a boost of parameter −2πs.
One way to convince oneself that the above equation is
correct is to verify that α is a one-parameter group of
automorphisms of AR (which it is, because the boosts map
the Rindler wedge to itself) and that it satisfies the modular
condition. It does: for ðxþ; x−Þ; ðyþ; y−Þ ∈ R, the function

GðzÞ ¼ 1

2πi
1

e�πzx� − e∓πzy� − iϵ
ð4:2Þ

is analytic on the interior of the strip Imz ∈ ½−1; 0� and
continuous on its boundary, and satisfies the boundary
conditions (2.4) with a ¼ ψ�ðx�Þ and b ¼ ψ†

�ðy�Þ, and
also with a ¼ ψ†

�ðx�Þ and b ¼ ψ�ðy�Þ. That the modular
condition is satisfied for arbitrary choices of a and b just
follows by Gaussianity.
The modular flow can be used to determine the modular

conjugation. Indeed, the modular objects associated with
an algebra A and a cyclic and separating vector jΩi are
related by

JajΩi ¼ JSa†jΩi ¼ Δ1=2a†jΩi ð4:3Þ

for all a ∈ A, where in the first step we have used the
definition of the Tomita operator and in the second step we
have used the property J2 ¼ 1. Moreover, the right-hand
side can be obtained by analytic continuation from the
modular flow. In our case we have

FIG. 2. A causal diamond U and its null complement U�, i.e.,
the largest open set of points which cannot be joined with U by a
light ray (gray region). Two of the four components of U� form
the causal complement U 0, which has the same null projections
as U�.
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Δisψ†
�ðx�ÞjΩi ¼ e∓πsψ†

�ðe∓2πsx�ÞjΩi: ð4:4Þ

We know from Sec. II that the left-hand side is analytic in s
on the interior of the strip Ims ∈ ½−1=2; 0� and continuous
on its boundary. The same is true for the right-hand side,
because for s in that strip the argument of ψ†

� has a non-
negative imaginary part [recall the discussion under
Eq. (3.4)]. Therefore, by the uniqueness of the analytic
continuation, the above equation remains valid everywhere
in the strip, and in particular for s ¼ −i=2,

Δ1=2ψ†
�ðx�ÞjΩi ¼ �iψ†

�ð−x�ÞjΩi: ð4:5Þ

Substituting into (4.3) with a ¼ ψ�ðx�Þ we obtain

Jψ�ðx�ÞjΩi ¼ �iψ†
�ð−x�ÞjΩi: ð4:6Þ

Since both J and Uπ (the unitary operator associated with
the symmetry ψ� → −ψ� that appeared at the end of the
last section) leave the vacuum invariant, this equation can
be rewritten using (3.12) in the form

½Jψ�ðx�ÞJ � Zψ†
�ð−x�ÞZ†�jΩi ¼ 0: ð4:7Þ

Now, we know from Tomita-Takesaki theory that the first
term between square brackets lies in A0

R. The same is true
for the second, because −ðxþ; x−Þ ∈ R0. Hence, the entire
operator between square brackets is inA0

R. But the vacuum
is separating for this algebra, so the operator must vanish,

Jψ�ðx�ÞJ ¼ ∓Zψ†ð−x�ÞZ†: ð4:8Þ

In other words,

J ¼ ZΘ; ð4:9Þ

where Θ is the antiunitary operator associated with the
CPT symmetry ψ�ðxÞ → ∓ψ†

�ð−xÞ. As a consistency
check, note that Θ2 ¼ 1 and that Θ commutes with Uπ ,
which, by antilinearity, implies ΘZ ¼ Z†Θ. We thus have
J2 ¼ ZΘZΘ ¼ ZZ†Θ2 ¼ 1, as it should be. On the other
hand, note from (4.8) that

A0
R ¼ JARJ ¼ ZAR0Z†; ð4:10Þ

i.e., Haag duality holds for the Rindler wedge.
As mentioned above, these results hold in fact for any

QFT. What is specific to this model is that all regions
with the same null projections have the same algebra,
so Eq. (4.9) gives the modular conjugation of any region
with the same null projections as the Rindler wedge. An
example is given in Fig. 3. Any such region has R0 as its
causal complement, so Haag duality is satisfied for all these
regions as well.

B. Causal diamond

In conformal field theories, the modular conjugation
associated with a causal diamond can be obtained by
conformal mapping from the Rindler wedge. This was
done explicitly in [39] for a massless scalar field theory. Let
us see how this works in the case of the massless fermion
in (1þ 1).
The causal diamondD is the set of all points ðxþ; x−Þwith

jx�j < R for some R > 0. The conformal transformation

σ�ðx�Þ ¼ �R
x� ∓ 2R
x� � 2R

ð4:11Þ

maps the Rindler wedgeR toD; for xþ > 0 and x− < 0 we
have jσ�ðx�Þj < R. Hence, if U is the unitary operator
associated with this transformation,4 we have AD ¼
UARU†. This implies a relation between the Tomita oper-
ators: for aD ∈ AD we have aR ≡U†aDU ∈ AR, and
therefore

SDaDjΩi ¼ a†DjΩi ¼ Ua†RU
†jΩi ¼ Ua†RjΩi

¼ USRaRjΩi ¼ USRU†aDUjΩi
¼ USRU†aDjΩi; ð4:12Þ

which implies

SD ¼ USRU†: ð4:13Þ

FIG. 3. The Rindler wedge (orange) and a region with the same
null projections (blue). Both have the same causal complement
(gray region).

4More precisely, one of the unitary operators: there are four of
them, because for each chirality there are two choices of the
parameters a, b, c, and d in (3.5) corresponding to the conformal
transformation (4.11). The unitaries do not form a representation
of the conformal group but of SLð2;RÞ × SLð2;RÞ, which is a
covering of the conformal group. Being a fermionic theory, this
should not be surprising: for example, fermions in three spatial
dimensions do not carry a representation of the rotation group
SOð3Þ but of its covering SUð2Þ.
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It follows that the modular objects are also related,

ΔD ¼ UΔRU† JD ¼ UJRU†: ð4:14Þ

Together with the formula (4.1) for the modular flow of the
Rindler wedge, the first equation above gives the modular
flow of the causal diamond,

Δisψ�ðxÞΔ−is ¼ R
R coshðπsÞ − x sinhðπsÞψ�ðσsðxÞÞ

σsðxÞ ¼ R
x coshðπsÞ − R sinhðπsÞ
R coshðπsÞ − x sinhðπsÞ : ð4:15Þ

Similarly, the second equation in (4.14), together with
the formula (4.8) for the modular conjugation of the
Rindler wedge, gives the modular conjugation of the causal
diamond,

Jψ�ðxÞJ ¼ R
x
Zψ†

�ðR2=xÞZ†; ð4:16Þ

where we have used that Z commutes with U (because
so does Uπ). The map x� ↦ R2=x� is represented in
Fig. 4. As we see, J maps the algebra of D to the twisted
algebra of D�, the null complement of D. As explained
above, this algebra coincides with that of the causal comple-
ment D0, so Haag duality is satisfied also for the causal
diamond.
The remarks at the end of the previous subsection also

apply here. In fact, Eq. (4.16) gives the modular conjuga-
tion of any region whose null projections coincide with
those of the causal diamond. These regions have the same
causal complement as the causal diamond, so Haag duality
is satisfied for them too.

V. MODULAR CONJUGATION FOR
MULTICOMPONENT REGIONS

In this section we compute the modular conjugation for a
generic open spacetime region U. Unlike in the previous
section, here it is crucial to restrict the discussion to the
massless fermion in (1þ 1), because it is only in this model
that the relevant modular flow is known. The null projec-
tions of U will be collections of intervals,

π�ðUÞ ¼ ⋃
n�

i¼1

ða�i ; b�i Þ: ð5:1Þ

In what follows, for notational simplicity, we drop all
subscripts and superscripts �; all the equations below hold
for both chiralities. The modular flow is given by [44]

ΔisψðxÞΔ−is ¼ 2 sinhðπsÞ
Xn
i¼1

1

ω0ðxiðsÞÞ
1

x − xiðsÞ
ψðxiðsÞÞ

≡ αsðψðxÞÞ; ð5:2Þ

where

ωðxÞ ¼ log

�
−
Yn
i¼1

x − ai
x − bi

�
ωðxiðsÞÞ ¼ ωðxÞ − 2πs:

ð5:3Þ

Note that x lies in one of the intervals, because it is a null
projection of a point in U; this implies that ωðxÞ is real.
Note also that, within each interval, ω is a monotonic
function which goes from −∞ at the left end of the interval
to þ∞ at the right end. In consequence, the equation
ωðyÞ ¼ ωðxÞ − 2πs has exactly one solution y in each
interval; xiðsÞ denotes the solution that lies in the ith
interval. Unlike the modular flows we encountered in the
previous section, the above modular flow is nonlocal:
the modular evolution of a field operator localized in
one of the components of U is a linear combination of
field operators localized in each of the components.
The action of the operator (5.2) on the vacuum can be

written in terms of a contour integral. Let us think of ω as a
function on the complex plane, which has a cut on the
complement of πðUÞ in the real line because the argument
of the logarithm is negative there. For u ∈ C, the imaginary
part of ωðuÞ is

ImωðuÞ ¼
Xn
i¼1

½argðu − aiÞ − argðu − biÞ� þ ð2kþ 1Þπ;

ð5:4Þ

where k is an integer to be chosen so that ImωðuÞ ∈
ð−π; π�. In Fig. 5 we show by a simple geometrical
argument that, for u in the upper half-plane, the above
sum of n terms lies in ð−π; 0Þ and hence ImωðuÞ ∈ ð0; πÞ.

FIG. 4. Regions in the casual diamond D (lighter colored) are
mapped to regions of the corresponding darker colors outside D
by the map x� ↦ R2=x�.
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A similar argument shows that ImωðuÞ ∈ ð−π; 0Þ for u in
the lower half-plane. Now, consider the vector-valued
function

jϕxðzÞi ¼ −
1

2πi
∳ du

sinh
h
ωðxÞ−ωðuÞ

2

i

sinh
h
ωðxÞ−ωðuÞ

2
− πz

i 1

x − u
ψðuÞjΩi

ð5:5Þ

for Imz ∈ ð−1=2; 0Þ, where the contour of integration is
depicted in Fig. 6. Note that, despite the cuts of ω, the ratio
of hyperbolic sines above is meromorphic in u (i.e.,
analytic except for poles). Recalling that ψðuÞjΩi is
analytic in the upper half-plane and continuous on its
boundary, it follows that the integral can be computed by
residues. Since ImωðuÞ ∈ ð−π; π�, the hyperbolic sine in
the denominator only vanishes where its argument van-
ishes, so the only poles of the integrand are the n solutions
u ¼ xiðzÞ of the equation ωðuÞ ¼ ωðxÞ − 2πz. By the
discussion above, given the range of values of z, these
all lie in the upper half-plane, i.e., within the contour.
Applying the residue formula one obtains

jϕxðzÞi ¼ 2 sinhðπzÞ
Xn
i¼1

1

ω0ðxiðzÞÞ
1

x − xiðzÞ
ψðxiðzÞÞjΩi:

ð5:6Þ

Note from (5.5) that jϕxðzÞi is an analytic (i.e., differ-
entiable) function of z everywhere in its domain, the strip
Imz ∈ ð−1=2; 0Þ. Equation (5.5) would not make sense for
z on the boundary of that strip because in that case the
contour would hit a pole, but still one can extend jϕxi to the
boundary of the strip by continuity. Doing that, it follows
from the above equation that, for s ∈ R,

jϕxðsÞi ¼ αsðψðxÞÞjΩi: ð5:7Þ

This gives the desired expression of the operator (5.2) in
terms of a contour integral. We will denote as jφxðzÞi the
function defined in the same way as jϕxðzÞi but with ψ
replaced by ψ†; note that it has analogous properties, and in
particular satisfies jφxðsÞi ¼ αsðψ†ðxÞÞjΩi.
Equation (5.2) was derived in [44] by a method based on

the reduced density matrix, which strictly speaking is not
well-defined in QFT. This is not really a problem, because
one can make sense of the method by discretizing the
theory and then sending the lattice spacing to zero at
the end of the calculation. Still, it is desirable to verify the
result by checking that α satisfies the modular condition.
To do this, we compute for Imz ∈ ð−1=2; 0Þ

Gðx; y; zÞ≡ hΩjψðxÞjφyðzÞi ¼ hΩjψ†ðxÞjϕyðzÞi

¼ −
�

1

2πi

�
2∳ du

sinh
h
ωðyÞ−ωðuÞ

2

i

sinh
h
ωðyÞ−ωðuÞ

2
− πz

i

×
1

y − u
1

x − u − iϵ
: ð5:8Þ

Note that the integrand above is analytic outside the
contour of Fig. 6 except for a pole at u ¼ x − iϵ.
Therefore, the contour can be deformed to that of Fig. 7.
The integral along the outer loop vanishes, because the
integrand decays quickly at infinity, so one is left only with
the contribution from the inner loop, which is determined
by the pole at u ¼ x − iϵ. The result is

Gðx; y; zÞ ¼ 1

2πi

sinh
h
ωðxÞ−ωðyÞ

2

i

sinh
h
ωðxÞ−ωðyÞ

2
þ πz

i 1

x − y
: ð5:9Þ

Note that this function can be analytically continued to the
strip Imz ∈ ð−1; 0Þ and, after smearing, extends continu-
ously to the boundary of that strip. By construction, it is
clear that

FIG. 5. For u in the upper half-plane, argðu−biÞ−argðu−aiÞ¼
θi, where θi is the angle shown in the figure.Clearly,

P
i θi ∈ ð0; πÞ

and therefore
P

i½argðu − aiÞ − argðu − biÞ� ∈ ð−π; 0Þ. FIG. 6. Integration contour for Eq. (5.5).
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Gðx; y; s − iϵÞ ¼ hΩjψðxÞαsðψ†ðyÞÞjΩi
¼ hΩjψ†ðxÞαsðψðyÞÞjΩi: ð5:10Þ

Moreover, it follows from (5.9) that Gðx; y; s − iþ iϵÞ ¼
Gðy; x;−s − iϵÞ, so the modular condition is indeed sat-
isfied, as we wanted to show.
Let us now compute the modular conjugation. We

proceed analogously to the case of the Rindler wedge,
Sec. IVA, by analytic continuation from the modular flow.
From (5.2) we have

Δisψ†ðxÞjΩi ¼ 2 sinhðπsÞ
Xn
i¼1

1

ω0ðxiðsÞÞ
1

x − xiðsÞ
× ψ†ðxiðsÞÞjΩi: ð5:11Þ

As we know, the left-hand side is analytic in s on the
interior of the strip Ims ∈ ½−1=2; 0� and continuous on its
boundary. And, by the discussion around (5.6), the same is
true for the right-hand side. Note that the terms of the sum
on the right-hand side are not separately analytic, because
xiðsÞ, which is a root of a polynomial of degree n,
generically has branch cuts (think for example of the case
n ¼ 2, where the formula for xiðsÞ involves a square root).
But the sum of all terms is analytic, because it can be
rewritten in the explicitly analytic form (5.5), (5.6) (with ψ
replaced by ψ†). Therefore, the above equation holds
everywhere in the strip Ims ∈ ½−1=2; 0�, and in particular
for s ¼ −i=2,

Δ1=2ψ†ðxÞjΩi ¼ −2i
Xn
i¼1

1

ω0ðx̄iÞ
1

x − x̄i
ψ†ðx̄iÞjΩi; ð5:12Þ

where

ωðx̄iÞ ¼ ωðxÞ þ iπ: ð5:13Þ

Note that x̄i lies in the complement of πðUÞ in the real line,
which means that Zψ†ðx̄iÞZ† ∈ A0

U . With this in mind, and
following the same steps as in the case of the Rindler
wedge, Eqs. (4.5)–(4.8), we obtain

JψðxÞJ ¼ 2
Xn
i¼1

1

ω0ðx̄iÞ
1

x − x̄i
Zψ†ðx̄iÞZ†: ð5:14Þ

This is the main result of the paper. The maps x� ↦ x̄�i are
represented in Figs. 8 and 9 in the case of two simple
choices of the region U, both of which correspond to the
same algebra. The geometric action of this modular
conjugation has been studied before for the case n ¼ 2
in [45]. We have checked that the map x� ↦ x̄� considered
in that work satisfies Eq. (5.13). Moreover, our Fig. 9 is
consistent with Fig. 13 of that reference.
Note from Eq. (5.14) (and also from Fig. 8) that A0

U ¼
JAUJ ⊆ ZAU�Z†, where, again, U� denotes the null com-
plement of U, i.e., the largest open set of points which
cannot be connected with U by a null line. Since we already
know that the opposite inclusion holds, we conclude that

A0
U ¼ ZAU�Z†: ð5:15Þ

Thus, whether Haag duality holds or not for a region U
depends entirely on whether the null projections of U 0
coincide with those of U� (which form the complement of
the projections of U). We will discuss this in more detail
below. Another feature to highlight about Eq. (5.14) is that,
unlike the previous cases discussed, the map induced by J
on operators is nonlocal. This arises, of course, due to the

FIG. 7. Integration contour for Eq. (5.8). The inner loop
encircles the point u ¼ x − iϵ.

FIG. 8. If U consists of two spacelike separated and symmet-
rically arranged causal diamonds, regions of U (lighter colored)
are mapped to regions of the corresponding darker color under the
maps x� ↦ x̄�1;2.
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nonlocality of the modular flow. As a simple check of
(5.14), setting n ¼ 1 and b ¼ −a ¼ R one recovers exactly
the result for the causal diamond, Eq. (4.16), as it should be.
We have checked that the result for the causal diamond is
also recovered in more complicated ways, for example
starting with two intervals and making them approach one
another or sending one to infinity.
Let us check that our result satisfies J2 ¼ 1. We will use

that the modular conjugation of an algebra is equal to that
of its commutant [40]. By Eq. (5.15), this implies
J ¼ ZJ̃Z†, where J̃ is the modular conjugation associated
with U�. Then, taking x in any interval and thus ψðxÞ ∈ AU
we have

J2ψðxÞJ2 ¼ 2
Xn
i¼1

1

ω0ðx̄iÞ
1

x − x̄i
ZJ̃ψ†ðx̄iÞJ̃Z†: ð5:16Þ

Now, due to the fact that ψ†ðx̄iÞ ∈ AU� , we know that the
action of J̃ on ψ†ðx̄iÞ is again given by (5.14). Taking into
account that the analog of the function ω for the region U�
is ω̃ ¼ −ωþ iπ we obtain

J2ψðxÞJ2 ¼ −4
Xn
ij¼1

ðω0ðx̄iÞω0ðxjÞÞ−1
ðx − x̄iÞðx̄i − xjÞ

Z2ψðxjÞðZ†Þ2;

ð5:17Þ

where we have called xj the j-th solution of the equation
ω̃ðxjÞ ¼ ω̃ðx̄iÞ þ iπ, which is equivalent to

ωðxjÞ ¼ ωðxÞ: ð5:18Þ

Note that this equation has exactly one solution within each
interval; we take xj to be the solution lying in the jth
interval. Furthermore, using that Z2 ¼ ðZ†Þ2 ¼ Uπ ,

J2ψðxÞJ2 ¼ 4
Xn
ij¼1

ðω0ðx̄iÞω0ðxjÞÞ−1
ðx − x̄iÞðx̄i − xjÞ

ψðxjÞ: ð5:19Þ

Recall that ðx̄i − xjÞ−1 ¼ ð−2πiÞhΩjψðxjÞψ†ðx̄iÞjΩi, so the
last expression can be rewritten using (5.12) and (5.9) as

J2ψðxÞJ2 ¼ 4π
Xn
j¼1

ψðxjÞ
ω0ðxjÞ

hΩjψðxjÞΔ1=2ψ†ðxÞjΩi

¼ 4π
Xn
j¼1

ψðxjÞ
ω0ðxjÞ

Gðxj; x;−i=2Þ

¼ −2i
Xn
j¼1

ψðxjÞ
ω0ðxjÞ

sinh
h
ωðxjÞ−ωðxÞ

2

i

sinh
h
ωðxjÞ−ωðxÞ

2
− iπ

2

i 1

xj − x
:

ð5:20Þ

Remembering that ωðxjÞ ¼ ωðxÞ, one sees that the hyper-
bolic sine in the denominator is equal to −i, while the one
in the numerator vanishes. This implies that all terms in the
above expression are zero, except for the term correspond-
ing to the interval containing x, because in that case
xj − x ¼ 0. So we can drop the sum and study the non-
vanishing term as a limit,

lim
y→x

sinh
h
ωðyÞ−ωðxÞ

2

i
y − x

¼ ω0ðxÞ
2

: ð5:21Þ

Inserting this result into our expression for J2ψðxÞJ2 yields

J2ψðxÞJ2 ¼ ψðxÞ; ð5:22Þ

which means J2 ¼ 1.

A. Haag duality

As is clear from (5.15), in the model we are considering
Haag duality is satisfied for a region U if and only if
AU 0 ¼ AU� , which is equivalent to saying that π�ðU 0Þ ¼
π�ðU�Þ or, in other words, that the null projections of U 0
form the complement of those of U in the null axes. Let us
see some examples of regions for which Haag duality
holds, and others for which it fails.
A region U is said to be causally complete if it satisfies

U 00 ¼ U; for U generic, U 00 is called the causal completion
of U. Note that U 00 always contains U and has the same
causal complement. Hence we have

ZAU 0Z† ⊆ A0
U 00 ⊆ A0

U ; ð5:23Þ

FIG. 9. The maps x� ↦ x̄�1;2 (same color code as before) for
another region U with the same null projections as that of the
previous figure, and hence the same algebra. Since the algebras
coincide, so do the modular conjugations.
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so, if Haag duality holds for U, then it also holds for its
causal completion. Causal completions are always caus-
ally complete, so, for this reason, Haag duality is more
likely to hold for causally complete regions. In Fig. 10 we
show a generic example of a causally complete region. Its
null projections and those of its causal complement fill the
null axes, so Haag duality is satisfied for this region. We
expect this to remain true for arbitrary causally complete
regions.
In Fig. 11 we show an example of a noncausally

complete region. Its null projections and those of the
causal complement do not fill the null axes, so Haag
duality does not hold for this region. This is not generic
of noncausally complete regions; in Sec. IV we have
already seen examples of noncausally complete regions

for which Haag duality holds: these are the blue regions of
Figs. 1 and 3.

VI. FINAL COMMENTS

In this paper we computed a new modular conjugation,
namely that of a (1þ 1) dimensional free massless Dirac
field in the vacuum state for multicomponent regions. We
also revisited some previously known results: modular
conjugation for the vacuum of any QFT in the Rindler
wedge (Bisognano-Wichmann) and for the vacuum of any
CFT in the ball (Hislop-Longo), with emphasis on com-
pleting the details that arise when one considers fermions
instead of bosons.
To compute the modular conjugation we first studied the

action of the modular flow on the fields applied to the cyclic
and separating vacuum state. Then, we extended this to
modular parameter s ¼ −i=2 in order to relate it with the
action of J on the fields when applied to the vacuum.
Finally, using the separating property of the vacuum state
we were able to get rid of the vacuum state and obtained an
operator equation relating the action of J with the modu-
lar flow.
For the simple cases of Bisognano-Wichmann [18] and

Hislop-Longo [39], the modular flow is local and J acts
geometrically. In the novel case of multicomponent regions
the modular flow is known to be nonlocal and exhibits a
“mixing” between components [46]. This translates into
nonlocalities in the modular conjugation as well.
For the massless free Dirac field in (1þ 1) dimensions

the result for J for arbitrary regions gives us a large
playground to test the validity of Haag duality. We
observed that Haag duality holds in this model for the
local algebras associated to generic causally complete
regions. When the regions are not causally complete we
found situations in which duality holds but others in which
it does not. We hope that the results found here in this
regard might be helpful in the task of elucidating under
which conditions one can expect this property to hold in a
general QFT.
Notice that in order to obtain the modular conjugation we

heavily relied on the knowledge of the modular flow.
Therefore, one could in principle obtain J for other models
in which the modular flow has been studied. This is for
example the case of the free massless Dirac field but on the
circle at nonzero temperature [27–29].
The modular conjugation for a two-component region

for the massless fermion in (1þ 1) dimensions was
recently considered in [45]. That work also studied the
connection between some modular conjugations in holo-
graphic theories and the geodesic bit threads of the
corresponding dual gravitational backgrounds. The result
for the new multicomponent modular conjugation we
provided here might perhaps be useful to explore that
interesting connection further.

FIG. 10. A generic example of a causally complete region
(orange) and its causal complement (blue). The null projections
of the region and its causal complement are the collections of
segments of the corresponding color. These fill the null axes,
which means that Haag duality holds for this region.

FIG. 11. A noncausally complete region (orange) and its causal
complement (blue). The null projections of the region and its
causal complement are the collections of segments of the
corresponding color. The central portion of the null axes is not
painted, which means that Haag duality fails for this region.
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ABATE, BLANCO, KOIFMAN, and PÉREZ-NADAL PHYS. REV. D 107, 045015 (2023)

045015-12

https://doi.org/10.1088/1751-8113/40/25/S57
https://doi.org/10.1103/PhysRevD.85.125016
https://doi.org/10.1103/PhysRevD.85.125016
https://doi.org/10.1007/JHEP10(2015)003
https://doi.org/10.1007/JHEP10(2015)003
https://doi.org/10.1103/PhysRevLett.118.261602
https://doi.org/10.1103/PhysRevLett.118.261602
https://doi.org/10.1007/JHEP09(2020)002
https://doi.org/10.1007/JHEP12(2019)063
https://doi.org/10.1007/JHEP12(2019)063
https://doi.org/10.1103/RevModPhys.93.035002
https://doi.org/10.1103/RevModPhys.93.035002
https://doi.org/10.1088/0264-9381/25/20/205021
https://doi.org/10.1103/PhysRevLett.111.221601
https://doi.org/10.1103/PhysRevLett.111.221601
https://doi.org/10.1007/JHEP09(2016)038
https://doi.org/10.1007/JHEP01(2018)154
https://doi.org/10.1007/JHEP01(2018)154
https://doi.org/10.1007/JHEP09(2019)020
https://doi.org/10.1007/JHEP03(2014)051
https://doi.org/10.1007/JHEP04(2014)195
https://doi.org/10.1007/JHEP06(2018)130
https://doi.org/10.1007/JHEP06(2018)130
https://doi.org/10.1063/1.522898
https://doi.org/10.1063/1.522898
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1007/JHEP05(2011)036
https://doi.org/10.1007/JHEP05(2011)036
https://doi.org/10.1088/1742-5468/2016/12/123103
https://doi.org/10.1088/1742-5468/2016/12/123103
https://doi.org/10.1063/1.532678
https://doi.org/10.1063/1.532678
https://doi.org/10.1007/JHEP12(2013)020
https://doi.org/10.1088/0264-9381/26/18/185005
https://doi.org/10.1088/0264-9381/26/18/185005
https://doi.org/10.1103/PhysRevD.98.125008
https://doi.org/10.1103/PhysRevD.100.025003
https://doi.org/10.1103/PhysRevD.100.025003
https://doi.org/10.1007/JHEP09(2019)076
https://doi.org/10.1007/JHEP09(2019)076
https://doi.org/10.1103/PhysRevLett.123.211603
https://doi.org/10.1103/PhysRevLett.123.211603
https://doi.org/10.1007/JHEP03(2021)204
https://doi.org/10.1007/JHEP03(2021)204
https://doi.org/10.1007/JHEP03(2021)205
https://doi.org/10.1007/JHEP03(2021)205
https://doi.org/10.1063/1.1704063
https://doi.org/10.1007/BF01645837
https://doi.org/10.1007/BF02096738
https://doi.org/10.1007/BF02096738
https://doi.org/10.1016/j.nuclphysb.2022.115797
https://doi.org/10.1016/j.nuclphysb.2022.115797


[36] R. Haag, Local Quantum Physics: Fields, Particles, Alge-
bras, Texts and Monographs in Physics (Springer, Berlin,
Germany, 1992).

[37] R. Brunetti, D. Guido, and R. Longo, Modular structure and
duality in conformal quantum field theory, Commun. Math.
Phys. 156, 201 (1993).

[38] H. Casini, M. Huerta, J. M. Magán, and D. Pontello,
Entanglement entropy and superselection sectors. Part I.
Global symmetries, J. High Energy Phys. 02 (2020) 014.

[39] D. Hislop and R. Longo, Modular structure of the local
algebras associated with the free massless scalar field
theory, Commun. Math. Phys. 84, 71 (1982).

[40] E. Witten, APS medal for exceptional achievement in
research: Invited article on entanglement properties of
quantum field theory, Rev. Mod. Phys. 90, 045003 (2018).

[41] S. J. Summers, Tomita-Takesaki modular theory, in
Encyclopedia of Mathematical Physics, edited by

J.-P. Françoise, G. L. Naber, T. S. Tsun (Academic Press,
2006), pp. 251–257.

[42] M. Takesaki, Theory of Operator Algebras II, Springer
Encyclopedia of Mathematical Sciences (Springer, Berlin,
Germany, 2003), Vol. 125.

[43] R. V. Kadison and J. R. Ringrose, Fundamentals of the
Theory of Operator Algebras. Volume II: Advanced Theory
(Academic Press, New York, 1986).

[44] J. Erdmenger, Fries, I. A. Reyes, and C. P. Simon, Resolving
modular flow: A toolkit for free fermions, J. High Energy
Phys. 12 (2020) 126.

[45] M. Mintchev and E. Tonni, Modular conjugations in
2D conformal field theory and holographic bit threads,
J. High Energy Phys. 12 (2022) 149.

[46] H. Casini and M. Huerta, Reduced density matrix and
internal dynamics for multicomponent regions, Classical
Quantum Gravity 26, 185005 (2009).

MODULAR CONJUGATION FOR MULTICOMPONENT REGIONS PHYS. REV. D 107, 045015 (2023)

045015-13

https://doi.org/10.1007/BF02096738
https://doi.org/10.1007/BF02096738
https://doi.org/10.1007/JHEP02(2020)014
https://doi.org/10.1007/BF01208372
https://doi.org/10.1103/RevModPhys.90.045003
https://doi.org/10.1007/JHEP12(2020)126
https://doi.org/10.1007/JHEP12(2020)126
https://doi.org/10.1007/JHEP12(2022)149
https://doi.org/10.1088/0264-9381/26/18/185005
https://doi.org/10.1088/0264-9381/26/18/185005

