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Within any anticipated unifying theory of quantum gravity, it should be meaningful to combine the
fundamental notions of quantum superposition and spacetime to obtain so-called “spacetime super-
positions”: that is, quantum superpositions of different spacetimes not related by a global coordinate
transformation. Here we consider the quantum-gravitational effects produced by superpositions of
periodically identified Minkowski spacetime (i.e., Minkowski spacetime with a periodic boundary
condition) with different characteristic lengths. By coupling relativistic quantum matter to fields on such
a spacetime background (which we model using the Unruh-deWitt particle detector model), we are able
to show how one can in-principle “measure” the field-theoretic effects produced by such a spacetime.
We show that the detector’s response exhibits discontinuous resonances at rational ratios of the superposed
periodic length scale.
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I. INTRODUCTION

In the absence of a full-fledged theory of quantum
gravity, there has been increasing interest in studying the
phenomenology of quantum gravity using operational
approaches. An operational approach is one that grounds
such phenomena in measurements of physical observables
using tools such as detectors, rods, and clocks. Some recent
investigations in the field of relativistic quantum informa-
tion and quantum field theory in curved space have
combined fundamental features of quantum theory, such
as the notions of superposition, entanglement, and meas-
urement, with those of general relativity, such as proper
time, causal structure, and spacetime, to study physical
effects that would be otherwise out of reach with current
top-down approaches such as string theory [1–4] and loop
quantum gravity [5–7]. Recent investigations include those
that explore the quantization of time using a “clock”
moving in a superposition of localized momenta [8], the
reconstruction of the spacetime metric in terms of quantum
field correlations [9], and the violation of classical con-
straints on causal order due to superpositions of massive
bodies [10]. Rather than pursuing a complete theory from
the top down, these investigations exemplify “bottom-up”
approaches for studying quantum-gravitational physics.

In this paper, we adopt this perspective in order to study
an important problem in quantum gravity, namely quantum
superpositions of spacetime. Assuming such a theory
exists, we expect such superpositions of “semiclassical
spacetime states” (i.e., each amplitude of the superposition
corresponding to a classical matter configuration associated
with a classical manifold and gravitational field) to be valid
solutions [11–14]. More specifically, we are interested in
the kinds of superpositions in which the respective ampli-
tudes are not related by a global coordinate transformation
and are hence diffeomorphic. We have recently argued that
the environment generated by such “spacetime super-
positions” does not meaningfully differ from those gen-
erated on a single “classical” background in which quan-
tum systems residing within are prepared and measured in
appropriate quantum states [15–17].
Instead, we are primarily interested in superpositions of

spacetimes that are not diffeomorphic invariant, i.e., the
individual amplitudes represent unique solutions to
Einstein’s field equations. As explained, we do not propose
a full quantum-gravitational theory for the emergence of
such superpositions, but assume that they are valid sol-
utions within an anticipated theory. Our goal then is to
study the operational effects induced upon quantum matter
residing within such spacetimes. In a recent paper, we
studied the quantum-gravitational effects produced by a
Banados-Teitelboim-Zanelli (BTZ) black hole in a super-
position of masses and showed that a quantum detector,*joshua.foo@uqconnect.edu.au
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modeled as a qubit linearly coupled to a massless scalar
field, was sensitive to the mass ratio of the superposed
spacetime amplitudes [16]. Intriguingly, such ratios were
found to be commensurate with those allowed by
Bekenstein’s conjecture for the horizon area quantization
of black holes in quantum gravity, suggesting that such
detectors are sensitive to the signatures of quantum-
gravitational effects [18,19].
Building off this result, we apply our method to study the

operational effects produced by quantum superpositions of
Minkowski spacetime. This setting is perhaps the simplest
in which the physical effects of spacetime superpositions
can be studied, and so offers considerable insight into
this phenomenon. More specifically, we consider (3þ 1)-
dimensional Minkowski spacetime with a periodic
boundary condition imposed along one spatial dimension.
We then consider a scenario where the characteristic length
scale of this periodicity is in a quantum-controlled super-
position of lengths. Constructing a quantum field theory on
such a spacetime is similar to the procedure applied to the
BTZ black hole, which is constructed from periodic
identifications of anti-de Sitter space. We thus expect that
similar results found in the black hole superposition should
appear in this setting.
Our aims are threefold. First, we provide a new example

of our framework for analyzing the effects induced by
spacetime superpositions upon quantum matter in its
simplest setting, namely superpositions of topologically
identified Minkowski space. Indeed, we show how this
scenario produces effects related to those produced by the
mass-superposed BTZ black hole. Second, we address
some technical issues regarding how one should go about
performing quantum field theory calculations in settings
involving superpositions of spacetime. Specifically, the
conceptually simple example of superposed Minkowski
spacetime allows us to clarify the choice of vacuum state
when calculating correlation functions for fields quantized
on this superposed background. Finally, we propose a toy
model for a particle detector residing in a superposition of
spacetimes, drawing an analogy between the periodically
identified Minkowski spacetime and a quantum field with
periodic boundary conditions (which could be realizable
using a toroidal cavity in optomechanical setups [20]).
Further study of such setups may open a promising route
towards simulations of the effects produced by quantum
superpositions of spacetimes on quantum fields, which is a
topic of growing interest [21–24].
Our paper is organized as follows. We first review the

theory of quotient spaces in Minkowski spacetime and the
construction of automorphic fields on these spaces in
Sec. II. In Sec. III, we review the model for coupling a
Unruh-deWitt (UdW) detector to a quantum-controlled
superposition of spacetimes, and apply this to the topo-
logically identified Minkowski spacetime. In Sec. IV, we
present results concerning the detector’s response to a

massless scalar field in the superposed Minkowski space-
time, before introducing our toy model for a detector
coupled to a quantum field with a superposed periodic
boundary condition in Sec. V. We conclude with some final
thoughts in Sec. VI. Throughout this article, we utilize
natural units, ℏ ¼ kB ¼ c ¼ G ¼ 1.

II. QUOTIENT SPACES OF MINKOWSKI
SPACETIME

In this section we review the basic geometric elements of
Minkowski spacetime M and its periodically identified
quotient space M0, before introducing the quantization
scheme of the automorphic fields used to calculate
two-point correlation functions and detector transition
probabilities.
Let us begin with the familiar (3þ 1)-dimensional

Minkowski spacetime M, parametrized by the usual coor-
dinates (t, x, y, z) with line element

ds2 ¼ dt2 − dx2 − dy2 − dz2; ð1Þ

where the metric signature is chosen to be ðþ;−;−;−Þ for
straightforward comparison with existing literature [25].
We consider a massless scalar field ϕ̂ that is a solution to
the Klein-Gordon equation □ϕ̂ðxÞ ¼ 0, where □ is the
d’Alembertian operator in flat spacetime, and may be
expanded in the plane wave basis,

ϕ̂ðxÞ ¼
Z

dk3

ð2πÞ3=2
1ffiffiffiffiffiffiffiffiffi
2jkjp ðe−ijkjtþik·xâk þ H:c:Þ; ð2Þ

where k ¼ ðkx; ky; kzÞ, x ¼ ðx; y; zÞ are the momentum

and position three-vectors respectively, and âkðâ†kÞ are
annihilation (creation) operators of a single-frequency
mode. Letting j0i denote the Minkowski vacuum state
annihilated by âk, it can be shown that the two-point
correlation function,

WMðx; x0Þ≡ h0jϕ̂ðxÞϕ̂ðx0Þj0i; ð3Þ

pulled back to the worldlines x, x0 is given by [25]

WMðx; x0Þ ¼
1

4πi
sgnðt − t0Þδðσðx; x0ÞÞ − 1

4π2σðx; x0Þ ; ð4Þ

where WMðx; x0Þ ≔ h0jϕ̂ðxÞϕ̂ðx0Þj0i, sgnðt − t0Þ ¼ �1
depending on the sign of t − t0, and the geodesic distance
σðx; x0Þ on a single spacetime is given by

σðx;x0Þ¼ ðt− t0Þ2−ðx−x0Þ2−ðy−y0Þ2−ðz−z0Þ2: ð5Þ

Equation (4) is commonly referred to as the Wightman
function, pulled back to the worldlines ðx; x0Þ.
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A. The M=J0 quotient space

The flat spacetime M0 ¼ M=J0 is built as a quotient of
M under the isometry group Z ≃ Jn0 , J0∶ ðt; x; y; zÞ ↦
ðt; x; y; zþ lÞ [26,27]. Henceforth we refer to M0 as a
cylindrical spacetime with circumference l. J0 preserves
space and time orientation and acts freely and properly,
ensuring that M0 is a space and time orientable Lorentzian
manifold [25]. To construct a quantum field theory on the
quotient space, we define the automorphic field ψ̂ðxÞ
constructed from the usual massless scalar field ϕ̂ðxÞ as
the image sum [28]

ψ̂ðxÞ ¼ 1ffiffiffiffiffi
N

p
X
n

ηnϕ̂ðJn0xÞ; ð6Þ

where N ¼ P
n η

2n is a normalization factor that ensures
that

½ψ̂ðxÞ; _̂ψðx0Þ� ¼ δðx − x0Þ þ image terms; ð7Þ
and η ¼ �1 denotes an untwisted (twisted) field. To obtain
the Wightman functions, we have

WðDÞ
J0

ðx; x0Þ ¼ 1

N

X
n;m

ηnηmWMðJn0Dx; Jm0Dx0Þ;

¼ 1

N

X
n;m

ηnðηnηmÞWMðJn0Dx; Jn0DJm0Dx0Þ;

¼ 1

N

X
n;m

η2nηmWMðx; Jm0Dx0Þ;

¼
X
m

ηmWMðx; Jm0Dx0Þ; ð8Þ

where our superscript notation D ¼ A, B anticipates our
eventual goal of computing functions associated with
the field quantized on M0 with two characteristic lengths
lA and lB, respectively. Specifically, Jn0A and Jm0B denote the
respective isometries [29,30]

Jn0A∶ ðt; x; y; zÞ ↦ ðt; x; y; zþ lAÞ; ð9Þ
Jm0B∶ ðt; x; y; zÞ ↦ ðt; x; y; zþ lBÞ: ð10Þ

It is important to note that the evaluation of Eq. (8) occurs
with respect to the Minkowski vacuum state. The identi-
fication of the spacetime enforcing periodicity in the z
direction can be understood as the action of the operator Jn0D
on the coordinates of the field. Furthermore, while it is
common to use the simplified form of WJ0 shown in (8),
such a treatment is inadequate when considering super-
positions of spacetime. That is, for superpositions of
the characteristic length of the quotient space M=J0, one
must construct correlation functions that arise from super-
positions of the different topological identifications, which
generate two different discrete isometries on the field. A
recent investigation [31] considers a related question of the

quantization of scalar Klein-Gordon field on a superposition
of nondiffeomorphic backgrounds (i.e., those not related by a
passive coordinate transformation) from the perspective of
quantum reference frames [14,32–36].
For quantum-controlled superpositions of two cylindri-

cal spacetimes, the resulting amplitudes contain also
Wightman functions given by

WðABÞ
J0

ðxA; x0BÞ ¼
1

N

X
n;m

ηnηmWMðJn0Ax; Jm0Bx0Þ; ð11Þ

where

WMðJn0Ax; Jm0Bx0Þ ¼ h0jϕ̂ðJn0AxÞϕ̂ðJm0Bx0Þj0i ð12Þ
is evaluated with respect to the common vacuum state, j0i.
While one could conceive of a scenario in quantum gravity
where the vacuum state itself is quantum controlled (i.e. the
gravitational andmatter degrees of freedomare coupled), this
simple case does not require such an assumption. The effects
arising from superposed quantum amplitudes of the space-
time here occur solely through the action of the two different
discrete isometries Jn0A , J

m
0B
. We recently made a similar

assumption in utilizing the “global” ground state of the field
in anti-de Sitter space to evaluate correlation functions in a
BTZ spacetime in a superposition of masses [16].
Returning to the Wightman functions, we have explicitly

that

WðDÞ
J0

ðx; x0Þ ¼ 1

N

X
n;m

ηnηm
�
sgnðt − t0ÞδðσðJn0Dx; Jm0Dx0ÞÞ

4πi

−
1

4π2σðJn0Dx; Jm0Dx0Þ
�
; ð13Þ

WðABÞ
J0

ðx; x0Þ ¼ 1

N

X
n;m

ηnηm
�
sgnðt − t0ÞδðσðJn0Ax; Jm0Bx0ÞÞ

4πi

−
1

4π2σðJn0Ax; Jm0Bx0Þ
�
; ð14Þ

where the geodesic distances are respectively

σðJn0Dx; Jm0Dx0Þ ¼ ðt − t0Þ2 − l2Dðn −mÞ2; ð15Þ

σðJn0Ax; Jm0Bx0Þ ¼ ðt − t0Þ2 − ðlAn − lBmÞ2; ð16Þ

and we have considered, without loss of generality, a
detector static at the origin of the coordinate system of
both spacetimes. We note here that the distance functions in
Eqs. (15) and (16) are a measure of distance in a particular
set of coordinate—in the present case, we consider t and l
as the coordinate time and length scale of the spacetime
respectively. One could alternatively choose a coordinate
system in which times and distances in each branch are
locally defined.

QUANTUM SUPERPOSITIONS OF MINKOWSKI SPACETIME PHYS. REV. D 107, 045014 (2023)

045014-3



III. UNRUH-DEWITT DETECTOR IN
SUPERPOSED MINKOWSKI SPACETIME

We are interested in studying the effects induced by the
superposed Minkowski spacetime upon relativistic quan-
tum matter which is coupled to the spacetime through its
interaction with a (massless scalar) quantum field. We can
describe this system in the Hilbert spaceH ¼ HS ⊗ HF ⊗
HM which is a tensor product of the spacetime, quantum
field, and matter degrees of freedom (d.o.f.) respectively.
For simplicity, let us consider the topologically identified

M0 spacetime in a superposition of two characteristic
lengths lA and lB, and the field in the Minkowski vacuum
state. We likewise introduce a simple particle detector
model (the aforementioned Unruh-deWitt model [37–41])
to describe our quantum matter coupled to the field and
spacetime. The pointlike, two-level detector is assumed to
be initially in its ground state jgi, such that the initial state
of the combined system is given by

jψðtiÞi ¼
1ffiffiffi
2

p ðjlAi þ jlBiÞj0ijgi: ð17Þ

The coupling between the spacetime superposition, field,
and detector is described by the following interaction
Hamiltonian [17,42–46]:

Ĥint: ¼ ληðτÞσ̂ðτÞ
X

D¼A;B

ψ̂ðxDÞ ⊗ jliihlij: ð18Þ

Note here that we assume that the Hamiltonian in each of
the branches can be expressed with respect to a common
time coordinate τ, allowing us to factorize the function ηðτÞ
and operator σ̂ðτÞ respectively. Eventually, we will asso-
ciate τ ¼ t, that is the Minkowski time coordinate.
Here, λ ≪ 1 is a coupling constant, τ is the proper time in

the detector’s reference frame, ηðτÞ a time-dependent
switching function that mediates the interaction,

σ̂ðτÞ ¼ jeihgjeiΩτ þ jgiheje−iΩτ
is the SU(2) ladder operator between the detector’s internal
states jgi, jei with energy gap Ω, and ϕ̂ðxiÞ is the field
operator pulled back to the worldline x parametrized by the
coordinates of the detector and the topology of the spacetime.
The projector jliihlij acts as a quantum control for the
spacetime. This could be some ancillary system that is
entangled with the spacetime, and can be ideally time
evolved and measured in a Mach-Zehnder-type interferom-
eter. For simplicity, we need not posit such an ancilla, and
assume, as other recent studies have, that a measurement can
be performed that allows one to witness interference effects
between the spacetime amplitudes in superposition [47].
Formally, the basis states jlii are energy eigenstates of the

free Hamiltonian where Ĥ0;Sjlii ¼ Eijlii, where Ei are the
energies associated with the periodic length li. This will
generally introduce a time-dependent phase to the evolution

of the superposition. For simplicity, it is instructive to
consider a rotating frame transformation [48] for which
the evolution of the superposition state is “frozen” to the
initial phase relationship. Such an assumption greatly sim-
plifies the calculationswithout losing a significant amount of
insight into the problem. The time-evolution operator,

Û ¼ T̂ exp

�
−i

Z
∞

−∞
dτĤint:ðτÞ

�
; ð19Þ

can be expanded perturbatively in the Dyson series as
follows:

Û ¼ I − iλ
Z

∞

−∞
dτĤint:

− λ2
Z

∞

−∞
dτ

Z
τ

−∞
dτ0Ĥint:ðτÞĤint:ðτ0Þ þOðλ3Þ: ð20Þ

We evolve the initial state in time,

ÛjψðtiÞi ¼
1ffiffiffi
2

p ðÛAjlAi þ ÛBjlBiÞj0ijgi; ð21Þ

before measuring the control state in the superposition basis
ðjlAi � jlBiÞ=

ffiffiffi
2

p
and tracing out the final field states. This

leaves the following result for the final state of the detector:

ρ̂D ¼
�
Pð�Þ
G 0

0 Pð�Þ
E

�
: ð22Þ

Note that the state Eq. (22) is not normalized, since we are
considering the final conditional state of the detector (see the
Appendix for the derivation). The transition probability of
the detector is more specifically given by

Pð�Þ
E ¼ λ2

4
ðPA þ PB � 2LABÞ; ð23Þ

where

PD ¼
Z

∞

−∞
dτ

Z
∞

−∞
dτ0χðτÞχ̄ðτ0ÞWD

J0
ðx; x0Þ ð24Þ

is the transitionprobability of a single detector in a cylindrical
spacetime with characteristic length lD (D ¼ A, B), and

LAB ¼
Z

∞

−∞
dτ

Z
∞

−∞
dτ0χðτÞχ̄ðτ0ÞWAB

J0
ðx; x0Þ ð25Þ

is a cross-correlation term between the field on the back-
ground spacetime in a superposition of two characteristic
lengths, lA and lB. We have also defined

χðτÞ ¼ exp

�
−

τ2

2σ2

�
e−iΩτ ð26Þ
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as the Gaussian switching function with characteristic width
σ. The introduction of a time-dependent switching function is
necessary for a particle detector in flat Minkowski spacetime
to detect any field quanta, since a detector that is eternally
interacting with the field will remain in its ground state. The
result is sometimes interpreted as a manifestation of the
energy-time uncertainty principle, in which rapidly switched
interactionsmay promotevirtual vacuum fluctuations into the
detection of real field quanta (thus exciting the detector) [49].
Finally, it is important to note that if one traces out the control
rather than measuring it in a superposition basis, the detector
transition probability becomes a classical mixture of the
individual contributions from spacetime amplitude A and B:

PðTrÞ
E ¼ λ2

2
ðPA þ PBÞ: ð27Þ

Returning to the conditional transition probability (given the
control is measured in j�i), we can insert the Wightman
functions,Eqs. (13) and (14), intoEqs. (24) and (25), to obtain
the “local” contribution to the transition probability, given by

PD ¼ PM þ σ

4
ffiffiffi
π

p
lD
P

nη
2n ½S1 − S2�; ð28Þ

where

S1 ¼
X
n≠m

e−
l2
D
ðn−mÞ2

4σ2

n −m
Im

�
eilDðn−mÞΩerf

�
ilDðn −mÞ

2σ
þ σΩ

��
;

S2 ¼ 2
X
n>m

�
e−

l2
D
ðn−mÞ2

4σ2

n −m
sinðΩlDðn −mÞÞ

�
; ð29Þ

and

PM ¼ 1

4π
½e−σ2Ω2 −

ffiffiffi
π

p
σΩerfcðσΩÞ� ð30Þ

is the transition probability of a single detector in flat
Minkowski spacetime with no identifications [25].
Equation (28) is equivalent to the expression studied in [50]
for the single-detector transition probability in the M0

spacetime. We see that there is a Minkowski contribution
and an image sum contribution that accounts for the possible
identifications in the M=J0 space.
Meanwhile, the cross-correlation term is given by

LAB ¼ KγP
nη

2n PM þ σ

4
ffiffiffi
π

p P
nη

2n ½J1 − J2�; ð31Þ

where

J1 ¼
X
lnm≠0

e−
l2nm
4σ2

lnm
Im

�
eilnmΩerf

�
ilnm
2σ

þ σΩ
��

; ð32Þ

J2 ¼ 2
X
lnm>0

e−
l2nm
4σ2

lnm
sinðΩlnmÞ; ð33Þ

and lnm ¼ lAn − lBm. We have also defined

Kγ ¼ coeff
�X

n;m

fðn − γmÞ; fð0Þ
�
; ð34Þ

where γ ¼ lB=lA is the ratio of the cylindrical spaces in
superposition, and coeffðxðyÞ; yÞ is the coefficient of y in
the function xðyÞ. The appearance of this function results
from the evaluation of the image sum contributions to LAB.
Notice in particular that the Wightman function for the
cross term, Eq. (14), contains multiple singular points
whenever n − γm ¼ 0. These poles are treated differently in
comparison to the single pole in the Minkowski Wightman
function (see the Appendix). Thus, when summing over the
identification variables ðn;mÞ, one “pulls out” a
Minkowski contribution to the total expression for LAB,
whenever n − γm ¼ 0. The appearance of these “resonan-
ces” whenever n ¼ γm is similar to the result previously
derived for the BTZ spacetime. In that scenario, the mass
ratios for which a “resonance” appeared were commensu-
rate with those predicted by Bekenstein in his famous
quantum black hole conjecture, wherein the black hole
mass is treated as a quantum number.

IV. RESULTS

We are now able to plot the response of the detector to
the field, situated in this universe in a superposition of
topologies.
In Fig. 1, we have plotted the transition probability of the

detector as a function of γ, the ratio of the characteristic
lengths of the superposed spacetimes. There are several
physical features of the transition probability worth noting.
Most interestingly, we observe discontinuous resonant peaks
in the transition probability at rational values of γ, where
some of these values are marked with a vertical line in Fig. 1.
In reality, we expect a countably infinite number of these
discrete peaks at every rational value of γ, just by inspecting
the discontinuous form of the interference term in Eq. (31).
Themagnitude of these peaksmay not necessarily be visible;
moreover,we are limited by the finite computational step size
of Mathematica. Nevertheless this effect, as measured by a
toy model particle detector, seems to be the first of its kind.
Indeed it is comparable to the result obtained for the BTZ
black hole; however in that case, the transition probability
exhibited continuous resonances at special values of the
black hole mass ratio.
To illustrate this resonant effect further, we have plotted

the transition probability of the detector as a function of γ
using rational and irrational step sizes in Fig. 2. When the
step size used to plot PE is irrational, the transition
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probability appears to be smooth and continuous. This
strongly contrasts the discontinuous nature of PE when
utilizing rational step sizes in Mathematica, and thus
confirms the source of the resonant effect shown in Fig. 1.
In Fig. 3, we have plotted the transition probability

as a function of the energy gap of the detector, for a

superposition of two lengths lA, lB. The individual con-
tributions to the transition probability are shown in different
colors, giving the total result displayed with the dashed
lines (the different colors representing two different meas-
urement bases for the control). As explained in [25], the
oscillations in the individual contributions with Ω are akin
to the appearance of modified quasinormal modes in
spacetimes with closed topology. The cross term LAB also
exhibits similar behavior, an expression of the fact that it
encodes the quantum interference between the two topo-
logically identified spacetimes.

V. ANALOGY WITH CAVITY QFT

In the previous section, we looked at a scalar field
quantized on a (3þ 1)-dimensional spacetime with a
periodic boundary condition (along one spatial dimension),
where the length of this dimension depends on a quantum
degree of freedom. We considered effects that arise when
this degree of freedom is in a superposition, meaning the
spacetime is itself in superposition of different sizes. We
found analogous effects to those arising in a BTZ black
hole spacetime where the mass of the black hole is in a
corresponding superposition. This strengthens the case for
physical relevance of the associated effects and it also
makes it worthwhile to look for a possible experimental
realization of an analog system which would help illumi-
nate the role and physical consequences of our physical
assumptions. These include the choice of an initial state and
the role of potential nontrivial free dynamics of the degree
of freedom associated with the spacetime.
Below we outline one idea for such an analog and

discuss what are the outstanding conceptual challenges.
Note that quantum fields in the spacetime considered in
the present work share similarities to a quantum field
with periodic boundary condition—imposed in a quantum

FIG. 1. Contributions to the total probability, (c), of the detector
after the control is measured in the jþi state, as a function of γ. We
have marked out a few values at which resonances in the transition
probability are visible. (a) corresponds to the contribution from one
of the spacetime amplitudes (with fixed length lA ¼ 1), (b) corre-
sponds to the contribution from the other amplitude whose length
lB varies, while (d) is the interference term between the two
spacetime amplitudes. We have also chosen Ωσ ¼ 1=100.

FIG. 3. Transition probability of the detector as a function of
the energy gap. The different colors correspond to different
contributions to the transition probability (dark blue, light blue,
light yellow) and the total transition probability upon condition-
ing in the j�i state (brown, orange). We have chosen
lA=σ ¼ 0.25, lB=σ ¼ 0.75.

FIG. 2. (a) Illustration of the discontinuous behavior of the
transition probability as a function of γ. The continuous yellow line
was plotted with an irrational step size, and hence the resonant
peaks at rational values of γ do not appear. (b) The same dataset as
shown with the open circles in (a), but with the data points
connected. We have used the settings Ωσ ¼ 1=100 and lA ¼ 2.
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superposition of characteristic lengths.1 Thus, we focus
here on such a cavity system.
For concreteness, let us consider three mode decom-

positions ϕ̂Aðt; xÞ, ϕ̂Bðt; xÞ, ϕ̂Cðt; xÞ of a (1þ 1)-
dimensional Klein-Gordon field:

ϕ̂Aðt; xÞ ¼
X
n≠0

ðfnðt; xÞâk þ f̂⋆nðt; xÞâ†kÞ; ð35Þ

ϕ̂Bðt; xÞ ¼
X
m≠0

ðgmðt; xÞb̂ω þ g⋆mðt; xÞb̂†ωÞ; ð36Þ

ϕ̂Cðt; xÞ ¼
X
l≠0

ðhlðt; xÞĉΩ þ h⋆l ðt; xÞĉ†ΩÞ; ð37Þ

where the mode functions are defined as

fnðt; xÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
4πjnjp e−ijknjtþiknx; ð38Þ

gmðt; xÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
4πjmjp e−ijωmjtþiωmx; ð39Þ

hlðt; xÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
4πjljp e−ijΩljtþiΩlx; ð40Þ

and the field momenta take on discrete values, kn ¼
ð2πnÞ=lA, ωm¼ð2πmÞ=lB and Ωl ¼ ð2πlÞ=lC. Moreover,
n,m, l are nonzero integers (we neglect the infamous “zero”
mode, which requires a separate treatment [25,51,52]).
In our Minkowski spacetime superposition, the correla-

tion functions are not evaluated with respect to the “local
vacua” associated with the identifications lA, lB, but rather
with the global Minkowski vacuum state j0i≡ j0Mi. This is
the reason we consider three sets of modes above, where the
setfĉΩ; ĉ†Ωg serves as the analog of theglobalmodes, andwe
denote the associated global vacuum j0Ci (which is a state
annihilated by ĉΩ). Similar decompositions have been
considered in the context of entanglement production
between the local modes inside a larger global cavity
[53–55]. In order to evaluate the required Wightman
functions, we next express the operators ðâk; b̂ωÞ associated
with the local modes in terms of those associated with the
global modes ĉΩ. This is done using Bogoliubov trans-
formations between the modes:

âk ¼
X
l≠0

ðαkΩĉΩ þ βkΩĉ
†
ΩÞ; ð41Þ

b̂ω ¼
X
l≠0

ðᾱkΩĉΩ þ β̄kΩĉΩÞ; ð42Þ

where αkΩ¼hfn;hli, βkΩ¼hf⋆n;hli, ᾱωΩ ¼ hgm; hli; β̄ωΩ ¼
hg⋆m; hli, and where the Klein-Gordon inner product is
defined in the usual way [56]:

hϕ1;ϕ2i ¼ i
Z
V
dxðϕ⋆

1∂tϕ2 − ϕ2∂tϕ
⋆
1Þ: ð43Þ

The key structures relevant to our analysis are Wightman
functions evaluated for the products of fields with the same
characteristic length lAðBÞ (“local terms”) and with different
lengths (“cross terms”). Let us examine the functional form
of these terms (where for brevity and without loss of
generality, we display local terms for the cavity with
length lA).
The local term reads

WðxA; x0AÞ ¼
X
i

X
n;m;l

WiðxA; x0AÞ; ð44Þ

where

W1ðxA; x0AÞ ¼ −Ω1
kn
Ω2

km
Δ1

nl;kΔ2
ml;k; ð45Þ

W2ðxA; x0AÞ ¼ Ω1
kn
Ω1

km
Δ1

nl;kΔ1⋆
ml;k; ð46Þ

W3ðxA; x0AÞ ¼ Ω2
kn
Ω2

km
Δ2⋆

nl;kΔ2
ml;k; ð47Þ

W4ðxA; x0AÞ ¼ −Ω2
kn
Ω1

km
Δ2⋆

nl;kΔ1⋆
ml;k; ð48Þ

and

Ω1
kj
¼ ðjΩlj þ jkjjÞ

e−ijΩljs=2

ð4πÞ3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijnjjmjjljp ð49Þ

Ω2
kj
¼ ðjΩlj − jkjjÞ

e−ijΩljs=2

ð4πÞ3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijnjjmjjljp ð50Þ

Δ1
jl;k ¼

(−ilA kj ¼ Ωl

1−eiðΩl−kjÞlA
Ωl−kj

kj ≠ Ωl
ð51Þ

Δ2
jl;k ¼

(−ilA kj ¼ −Ωl

1−e−iðΩlþkjÞlA
Ωlþkj

kj ≠ −Ωl:
ð52Þ

Our nomenclature in Eqs. (51) and (52) is chosen to
highlight the Kronecker-δ-like property of these functions,
which “pull out” a term proportional to lA at certain
resonant values of the cavity lengths. This property shows
the first conceptual challenge: as we consider a large but
finite global cavity, the terms in the Wightman function
sums where kj ¼ Ωl will lead to resonances independently
of the ratio between the superposed lengths (not directly
given by lA=lB)—a direct consequence of the present
toy model.

1Henceforth, we refer to the periodically identified field in
(1þ 1) as a “cavity,” although strictly speaking it more accurately
mimics a field quantized on a ring resonator-type potential [20].
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The cross term follows analogously,

WðxA; x0BÞ ¼
X
i

X
n;m;l

WiðxA; x0BÞ; ð53Þ

where

W1ðxA; x0BÞ ¼ −Ω1
kn
Ω2

ωm
Δ1

nl;kΔ2
ml;ω; ð54Þ

W2ðxA; x0BÞ ¼ Ω1
kn
Ω1

ωm
Δ1

nl;kΔ1⋆
ml;ω; ð55Þ

W3ðxA; x0BÞ ¼ Ω2
kn
Ω2

ωm
Δ2⋆

nl;kΔ2
ml;ω; ð56Þ

W4ðxA; x0BÞ ¼ −Ω2
kn
Ω1

ωm
Δ2⋆

nl;kΔ1⋆
ml;ω; ð57Þ

and

Δ1
jl;ν ¼

(−ili νj ¼ Ωl

1−eiðΩl−νjÞli
Ωl−νj

νj ≠ Ωl
ð58Þ

Δ2
jl;ν ¼

(−ili νj ¼ −Ωl

1−e−iðΩlþνjÞli
Ωlþνj

νj ≠ −Ωl
ð59Þ

and in the above li ¼ lA if ν ¼ k and li ¼ lB if ν ¼ ω.
Equations (58) and (59) are the main results of this

section. As with the local term, the Δ functions have
properties similar to the Kronecker δ, selecting unique
terms when the cavity length lA resonates with the global
cavity lC, and likewise when the cavity length lB resonates
with lC.
The above analysis highlights that the analogy between

the cavity model and the Minkowski cylinder spacetime is
not perfect. This is due to the following reasons: First, we
have utilized a discrete mode decomposition of the field,
which, upon neglecting the “zero mode,” yields a slightly
different limit to the spacetime example. Second, the
spacetime example considers the global vacuum state j0i
as being defined with respect to an infinite (not periodically
identified) Minkowski spacetime, that is, in the limit of
l → ∞. Such a limit is not well defined in the cavity
example, for this would lead to a continuum of k vectors
describing the global modes and a discrete quantization for
the local modes. A result of the discreteness is that not only
do the individual amplitudes of the cavity resonate with
each other [i.e., the presence of Δ functions in Ω, ν in
Eqs. (58) and (59) which characterize the respective lengths
of the superposed cavity], but the individual cavities
resonate with the large, yet finite global mode cavity. A
possible way out could be to choose the global cavity
length lC such that neither lA=lC nor lB=lC are rational and
examine the resulting resonances and their dependence
on lA=lB.

Strong motivation for further study of this system is that it
could be possible to simulate it using optomechanical
technologies. For example, experiments have realized super-
fluid helium condensates on toroidal cavities. The funda-
mental mode providing the “analog metric” for phonons in
the condensate therein can interact with incident photons,
thus suggesting an opportunity to study “light-controlled”
effective quantum-superposed backgrounds [20].

VI. CONCLUSIONS

In this paper, we have studied the response of a two-level
quantum system (a UdW detector) to a massless scalar field
on a backgroundMinkowski spacetime in a superposition of
topologically nontrivial identifications. The topology super-
position of the background spacetime elicits resonances in
the particle’s transition probability when the ratio of periodic
lengths of the spacetimes in superposition is a rational value.
Most intriguingly the resonances experienced by the detec-
tor, which result from interference between the infinite
number of image terms in the quantum-controlled scalar
field, are discrete in nature, an effect not previously observed
in similar investigations of Unruh-deWitt detector responses
in classical spacetimes. This effect corroborates a related
result obtained recently for the (2þ 1)-dimensional black
hole in a superposition of masses [16]. Our results also
highlight the importance of the choice of thevacuum state (of
the field) in the present and similar models of spacetime
superpositions. In the present work we have made the simple
choice of the global Minkowski vacuum, which provides
additional justification for an analogous choice in the recent
work, Ref. [16]. It nevertheless raises the important question
of the resulting effects when one chooses, for example, the
state of the field also to be in a quantum-controlled super-
position of different initial states.
Wehave also investigated the potential for an experimental

realization of such a spacetime superposition—modeling the
periodically identified Minkowski quotient space as a quan-
tum field with periodic boundary condition in a cavity. Our
proposal is complementary to other proposals [21] utilizing
Bose-Einstein condensates [22–24] as tabletop environments
for probing analog quantum gravity effects. While further
refinements of the cavity model are needed, it represents an
interesting direction for further study.
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APPENDIX A: FINAL CONDITIONAL STATE OF THE DETECTOR

Let us derive the conditional transition probability of the detector when the control d.o.f. is measured in the j�i basis.
First, let us label the terms in the time-evolution operator as follows:

Ûð0Þ ¼ Î ðA1Þ

Ûð1Þ ¼ −iλ
Z

∞

−∞
dτĤint:ðτÞ ðA2Þ

Ûð2Þ ¼ −λ2
Z

∞

−∞
dτ

Z
τ

−∞
dτ0Ĥint:Ĥint:ðτ0Þ: ðA3Þ

Applying the time evolution operator to the initial state gives

Ûjψi ¼ 1ffiffiffi
2

p ðjMAi þ jMBiÞj0ijgi − ðiλÞ
Z

∞

−∞
dτĤint:ðτÞ

1ffiffiffi
2

p ðjMAi þ jMBiÞj0ijgi

− ðλ2Þ
Z

∞

−∞
dτ

Z
τ

−∞
dτ0Ĥint:ðτÞĤint:ðτ0Þ

1ffiffiffi
2

p ðjMAi þ jMBiÞj0ijgi: ðA4Þ

Explicitly including the form of the interaction Hamiltonian gives the following form:

Ûjψi ¼ 1ffiffiffi
2

p ðjMAi þ jMBiÞj0ijgi −
iλffiffiffi
2

p
Z

∞

−∞
dτηðτÞeiΩτðψ̂ðxAÞjMAi þ ψ̂ðxBÞjMBiÞj0ijei

−
λ2ffiffiffi
2

p
Z

∞

−∞
dτ

Z
τ

−∞
dτ0ηðτÞηðτ0Þe−iΩðτ−τ0Þðψ̂ðxAÞψ̂ðx0AÞ ⊗ jMAi þ ψ̂ðxBÞψ̂ðx0BÞ ⊗ jMBiÞj0ijgi: ðA5Þ

Conditioning on the j�i ¼ ðjMAi � jMBiÞ=
ffiffiffi
2

p
, we find the following expression:

h�jÛjψi ¼ 1

2
ðhM1jM1i � hM2jM2iÞj0ijgi −

iλ
2

Z
∞

−∞
dτηðτÞeiΩτðψ̂ðxAÞ � ψ̂ðxBÞÞj0ijei

−
λ2

2

Z
∞

−∞
dτ

Z
τ

−∞
dτ0ηðτÞηðτ0Þe−iΩðτ−τ0Þðψ̂ðxAÞψ̂ðx0AÞ � ψ̂ðxBÞψ̂ðx0BÞÞj0ijgi: ðA6Þ

Tracing out the field, we find the following terms in the reduced density matrix of the detector:

Trψ ½h�jÛð0Þjψihψ jÛð0Þ†j�i� ¼ 1

4
ð2� 2Þjgihgj; ðA7Þ

Trψ ½h�jÛð0Þjψihψ jÛð2Þ†j�i� ¼ −
λ2jgihgj

4

Z
∞

−∞
dτ

Z
τ

−∞
dτ0ηðτÞηðτ0ÞeiΩðτ−τ0ÞðWðxA; x0AÞ �WðxB; x0BÞÞ; ðA8Þ

Trψ ½h�jÛð2Þjψihψ jÛð0Þ†j�i� ¼ −
λ2jgihgj

4

Z
∞

−∞
dτ

Z
τ

−∞
dτ0ηðτÞηðτ0Þe−iΩðτ−τ0ÞðWðxA; x0AÞ �WðxB; x0BÞÞ; ðA9Þ

Trψ ½h�jÛð1Þjψihψ jÛð1Þ†j�i�¼ λ2jeihej
4

Z
∞

−∞
dτ

Z
∞

−∞
dτ0ηðτÞηðτ0Þe−iΩðτ−τ0ÞðWðxA;x0AÞþWðxB;x0BÞ�2WðxA;x0BÞÞ: ðA10Þ

Combining these results leaves

Pð�Þ
G ¼ Trψ ½h�jÛð0Þjψihψ jÛð0Þ†j�i þ h�jÛð0Þjψihψ jÛð2Þ†j�i þ h�jÛð2Þjψihψ jÛð0Þ†j�i�;

¼ 1

2
ð1� 1Þ

�
1 −

λ2

2

Z
∞

−∞
dτ

Z
∞

−∞
dτ0ηðτÞηðτ0Þe−iΩðτ−τ0ÞðWðxA; xA0Þ þWðxB; xB0ÞÞ

�
; ðA11Þ
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Pð�Þ
E ¼ Trψ ½h�jÛð1Þjψihψ jÛð1Þ†j�i�;

¼ λ2

4

Z
∞

−∞
dτ

Z
∞

−∞
dτ0ηðτÞηðτ0Þe−iΩðτ−τ0ÞðWðxA; x0AÞ þWðxB; x0BÞ � 2WðxA; x0BÞÞ: ðA12Þ

We can write the transition probabilities as

Pð�Þ
G ¼ 1

2
ð1� 1Þ

�
1 −

λ2

2
ðPA þ PBÞ

�
; ðA13Þ

Pð�Þ
E ¼ λ2

4
ðPA þ PB � 2LABÞ: ðA14Þ

Note that the sum of all the conditional outcomes is equal to unity:

X
i¼g;e

X
j¼þ;−

jhijhjjÛjψðtiÞij2 ¼ 1; ðA15Þ

as desired. To obtain a normalized density matrix, one simply divides Eqs. (A13) and (A14) by the probability of finding the
control in j�i. Taking jþi as an example, we have

PðþÞ
G

PðþÞ
G þ PðþÞ

E

¼
�
1 −

λ2

2
ðPA þ PBÞ

��
1 −

λ2

2
ðPA þ PBÞ þ

λ2

4
ðPA þ PB þ 2LABÞ

�−1
;

¼
�
1 −

λ2

2
ðPA þ PBÞ

��
1 −

λ2

4
ðPA þ PB − 2LABÞ

�−1
;

≃
�
1 −

λ2

2
ðPA þ PBÞ

��
1þ λ2

4
ðPA þ PB − 2LABÞ

�
;

¼
�
1þ λ2

4
ðPA þ PB − 2LABÞ −

λ2

2
ðPA þ PBÞ

�
;

¼
�
1 −

λ2

4
ðPA þ PB þ 2LABÞ

�
; ðA16Þ

PðþÞ
E

PðþÞ
G þ PðþÞ

E

¼
�
λ2

4
ðPA þ PB þ 2LABÞ

��
1 −

λ2

2
ðPA þ PBÞ þ

λ2

4
ðPA þ PB þ 2LABÞ

�−1
;

¼
�
λ2

4
ðPA þ PB þ 2LABÞ

��
1 −

λ2

4
ðPA þ PB − 2LABÞ

�−1
;

≃
�
λ2

4
ðPA þ PB þ 2LABÞ

��
1þ λ2

4
ðPA þ PB − 2LABÞ

�
;

¼
�
λ2

4
ðPA þ PB þ 2LABÞ

�
; ðA17Þ

giving the desired result.

APPENDIX B: TRANSITION PROBABILITY WITH DOUBLE-SUM WIGHTMAN FUNCTIONS

In this section, we derive the analytical expressions for the “local contributions” to the transition probability. Recall that
the Wightman function takes the form
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WJ0ðx; x0Þ ¼
1

N

X
n;m

�
sgnðτ − τ0Þδððτ − τ0Þ2 − l2ðn −mÞ2Þ

4πi
−

1

4π2ððτ − τ02 − l2ðn −mÞ2Þ
�
;

¼ 1

N

X
n;m

�
sgnðsÞδðs2 − l2ðn −mÞ2Þ

4πi
−

1

4π2ðs2 − l2ðn −mÞ2Þ
�
;

¼ 1

N

X
n¼m

�
sgnðsÞδðs2Þ

4πi
−

1

4π2s2

�
þ 1

N

X
n≠m

�
sgnðsÞδðs2 − l2ðn −mÞ2Þ

4πi
−

1

4π2ðs2 − l2ðn −mÞ2Þ
�
;

¼ WMðsÞ þ
1

N

X
n≠m

�
sgnðsÞδðs2 − l2ðn −mÞ2Þ

4πi
−

1

4π2ðs2 − l2ðn −mÞ2Þ
�
; ðB1Þ

where we have defined s ¼ τ − τ0 as the proper time difference. The transition probability is given by

PD ¼
Z

∞

−∞
dτ

Z
∞

−∞
dτ0e−

τ2

2σ2e−
τ02
2σ2e−iΩðτ−τ0ÞWJ0ðx; x0Þ; ðB2Þ

¼
Z

∞

−∞
du

Z
∞

−∞
dse−

u2

2σ2e−
ðu−sÞ2
2σ2 e−iΩsWJ0ðx; x0Þ; ðB3Þ

¼ ffiffiffi
π

p
σ

Z
∞

−∞
dse−

s2

4σ2e−iΩsWJ0ðsÞ; ðB4Þ

having performed the du integral in the last line. Thus,

PD ¼ ffiffiffi
π

p
σ

Z
∞

−∞
dse−

s2

4σ2e−iΩs
�
WMðsÞ þ

1

N

X
n≠m

�
sgnðsÞδðs2 − l2ðn −mÞ2Þ

4πi
−

1

4π2ðs2 − l2ðn −mÞ2Þ
��

;

¼ PM þ
ffiffiffi
π

p
σ

N

X
n≠m

Z
∞

−∞
dse−

s2

4σ2e−iΩs
�
sgnðsÞδðs2 − l2ðn −mÞ2Þ

4πi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I1

−
1

4π2ðs2 − l2ðn −mÞ2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I2

�
: ðB5Þ

Let us examine the two terms in the image sum. We have

I1 ¼
1

4πi

X
n≠m

Z
∞

−∞
dse−

s2

4σ2e−iΩssgnðsÞδðs2 − l2ðn −mÞ2Þ;

¼ 1

4πi

X
n≠m

Z
∞

−∞
dse−

s2

4σ2e−iΩssgnðsÞ 1

2jlðn −mÞj ½δðsþ lðn −mÞÞ þ δðs − lðn −mÞÞ�;

¼ 1

4πi

X
n≠m

e−
l2ðn−mÞ2

4σ2

2jlðn −mÞj ½e
iΩlðn−mÞsgnð−lðn −mÞÞ þ sgnðlðn −mÞÞe−iΩlðn−mÞ�: ðB6Þ

It is convenient here to split up the sum into contributions where n > m and n < m, yielding

I1 ¼
1

4πi

X
n>m

e−
l2ðn−mÞ2

4σ2

2ljn −mj ½−e
iΩlðn−mÞsgnðlðn −mÞÞ þ sgnðlðn −mÞÞe−iΩlðn−mÞ�

þ 1

4πi

X
m>n

e−
l2ðn−mÞ2

4σ2

2ljn −mj ½e
iΩlðn−mÞsgnðlðm − nÞÞ − e−iΩlðn−mÞsgnðlðm − nÞÞ�;

¼ 1

4πl

X
n>m

e−
l2ðn−mÞ2

4σ2

n −m
sinðΩlðm − nÞÞ − 1

4πl

X
m>n

e−
l2ðn−mÞ2

4σ2

m − n
sinðΩlðm − nÞÞ;

¼ 1

2πl

X
n>m

e−
l2ðn−mÞ2

4σ2

n −m
sinðΩlðm − nÞÞ ¼ −

1

2πl

X
n>m

e−
l2ðn−mÞ2

4σ2

n −m
sinðΩlðn −mÞÞ: ðB7Þ
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For the second term, we have

I2 ¼ −
1

4π2
X
n≠m

Z
∞

−∞
ds

e−
s2

4σ2e−iΩs

s2 − l2ðn −mÞ2 ; ðB8Þ

¼ −
1

4π2
X
n≠m

Z
∞

−∞
ds

Z
∞

−∞
ds0δðs − s0Þ e−

s02
4σ2e−iΩs

0

s2 − l2ðn −mÞ2 ; ðB9Þ

¼ −
1

4π2
X
n≠m

Z
∞

−∞
ds

Z
∞

−∞
ds0

�
1

2π

Z
∞

−∞
dzeizðs0−sÞ

�
e−

s02
4σ2e−iΩs

0

s2 − l2ðn −mÞ2 ; ðB10Þ

¼ −
1

8π3
X
n≠m

Z
∞

−∞
dz

�Z
∞

−∞
ds0e−ðΩ−zÞs0e−

s02
4σ2

��Z
∞

−∞
ds

e−isz

s2 − l2ðn −mÞ2
�
; ðB11Þ

¼ −
1

8π3
X
n≠m

Z
∞

−∞
dzð2 ffiffiffi

π
p

σe−ðΩ−zÞ2σ2Þ
�
−πsgnðzÞ sinðlðn −mÞzÞ

lðn −mÞ
�
: ðB12Þ

Performing the integration over z leaves the compact analytic expression,

I2 ¼
X
n≠m

e−
l2ðn−mÞ2

4σ2

4πlðn −mÞ Im
�
eilðn−mÞΩerf

�
ilðn −mÞ

2σ
þ σΩ

��
: ðB13Þ

The total expression for the transition probability is thus

PD ¼ PM þ σ

2
ffiffiffi
π

p
l
P

nη
2n

X
n≠m

e−
l2ðn−mÞ2

4σ2

2ðn −mÞ Im
�
eilðn−mÞΩerf

�
ilðn −mÞ

2σ
þ σΩ

��
−

σ

2
ffiffiffi
π

p
l
P

nη
2n

X
n>m

e−
l2ðn−mÞ2

4σ2

n −m
sinðΩlðn −mÞÞ;

ðB14Þ

as stated in the main text. It can be straightforwardly verified that this gives an identical result to that obtained using only a
single sum expression for the Wightman function,

PD ¼ PM þ σ

2
ffiffiffi
π

p
X∞
n¼1

e−
l2ðn−mÞ2

4σ2

ln

�
Im

�
eilnΩerf

�
iln
2σ

þ σΩ
��

− sinðΩlnÞ
�
: ðB15Þ

APPENDIX C: CROSS-CORRELATION TERM WITH DOUBLE-SUM WIGHTMAN FUNCTIONS

The cross term can be similarly derived. Inserting the cross-correlation Wightman function into the integral expressions
for LAB yields
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LAB ¼
ffiffiffi
π

p
σ

N

X
n;m

Z
∞

−∞
dse−

s2

4σ2e−iΩs
�
sgnðsÞδðs2 − ðlAn − lBmÞ2Þ

4πi
−

1

4π2ðs2 − ðlAn − lBmÞ2
�
;

¼
ffiffiffi
π

p
σ

N

X
lAn¼lBm

Z
∞

−∞
dse−

s2

4σ2e−iΩs
�
sgnðsÞδðs2Þ

4πi
−

1

4π2s2

�
;

þ
ffiffiffi
π

p
σ

N

X
lAn≠lBm

Z
∞

−∞
dse−

s2

4σ2e−iΩs
�
sgnðsÞδðs2 − ðlAn − lBmÞ2Þ

4πi
−

1

4π2ðs2 − ðlAn − lBmÞ2Þ
�
;

¼ 1

N

X
lAn¼lBm

PM þ
ffiffiffi
π

p
σ

N

X
lAn≠lBm

Z
∞

−∞
dse−

s2

4σ2e−iΩs
�
sgnðsÞδðs2 − ðlAn − lBmÞ2Þ

4πi
−

1

4π2ðs2 − ðlAn − lBmÞ2Þ
�
: ðC1Þ

Let us look at the image sum integrals. We have

I1 ¼
X

lAn≠lBm

Z
∞

−∞
dse−

s2

4σ2e−iΩs
sgnðsÞδðs2 − ðlAn − lBmÞ2Þ

4πi
; ðC2Þ

¼
X

lAn≠lBm

Z
∞

−∞
dse−

s2

4σ2e−iΩs
sgnðsÞδðs2 − ðlAn − lBmÞ2Þ

4πi
; ðC3Þ

¼ 1

4πi

X
lAn≠lBm

Z
∞

−∞
dse−

s2

4σ2e−iΩssgnðsÞ 1

2jlAn − lBmj ½δðsþ lAn − lBmÞ þ δðs − lAnþ lBmÞ�; ðC4Þ

¼ 1

4πi

X
lAn≠lBm

�
e−

ðlAn−lBmÞ2
4σ2 eiΩðlAn−lBmÞsgnð−lAnþ lBmÞ

2jlAn − lBmj þ e−
ðlAn−lBmÞ2

4σ2 e−iΩðlAn−lBmÞsgnðlAn − lBmÞ
2jlAn − lBmj

�
: ðC5Þ

We can split up the summation,

I1 ¼
1

4πi

X
lAn>lBm

e−
ðlAn−lBmÞ2

4σ2

�
eiΩðlAn−lBmÞsgnð−lAnþ lBmÞ
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�

þ 1

4πi

X
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�
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�
; ðC6Þ

¼ 1

4π

� X
lAn>lBm

e−
ðlAn−lBmÞ2

4σ2

lAn − lBm
sinðΩðlBm − lAnÞÞ −

X
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e−
ðlAn−lBm

4σ2

lBm − lAn
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�
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¼ 1

2π

X
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e−
ðlAn−lBmÞ2

4σ2
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1

2π

X
lAn>lBm

e−
ðlAn−lBmÞ2
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sinðΩðlAn − lBmÞÞ; ðC7Þ

in close analogy to the local contributions to the transition probability. Next,

I2 ¼
1

4π2
X

lAn≠lBm

Z
∞

−∞
ds

e−
s2

4σ2e−iΩs

s2 − ðlAn − lBmÞ2 ; ðC8Þ

¼
ffiffiffi
π

p
σP

nη
2n

1

4π2
X

lAn≠lBm

Z
∞

−∞
ds

Z
∞

−∞
ds0δðs − s0Þ e−

s02
4σ2e−iΩs

0

s2 − ðlAn − lBmÞ2 ; ðC9Þ
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¼ 1

4π2
X
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ds
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∞
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��Z
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Z
∞
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π
p
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¼ σ

4π

X
lAn≠lBm

e−
ðlAn−lBmÞ2

4σ2

ðlAn − lBmÞ Im
�
eiðlAn−lBmÞΩerf

�
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2σ
þ σΩ

��
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The full expression is thus

LAB ¼ 1P
nη

2n

X
lAn¼lBm

PM þ σ

4
ffiffiffi
π

p P
nη

2n

X
lAn≠lBm

e−
ðlAn−lBmÞ2

4σ2

lAn − lBm
Im

�
eiðlAn−lBmÞΩerf

�
iðlAn − lBmÞ

2σ
þ σΩ

��

−
σ

2
ffiffiffi
π

p P
nη

2n

X
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e−
ðlAn−lBmÞ2

4σ2

lAn − lBm
sinðΩðlAn − lBmÞÞ; ðC12Þ

as stated in the main text.
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