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Within any anticipated unifying theory of quantum gravity, it should be meaningful to combine the
fundamental notions of quantum superposition and spacetime to obtain so-called “spacetime super-
positions”: that is, quantum superpositions of different spacetimes not related by a global coordinate
transformation. Here we consider the quantum-gravitational effects produced by superpositions of
periodically identified Minkowski spacetime (i.e., Minkowski spacetime with a periodic boundary
condition) with different characteristic lengths. By coupling relativistic quantum matter to fields on such
a spacetime background (which we model using the Unruh-deWitt particle detector model), we are able
to show how one can in-principle “measure” the field-theoretic effects produced by such a spacetime.
We show that the detector’s response exhibits discontinuous resonances at rational ratios of the superposed

periodic length scale.
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I. INTRODUCTION

In the absence of a full-fledged theory of quantum
gravity, there has been increasing interest in studying the
phenomenology of quantum gravity using operational
approaches. An operational approach is one that grounds
such phenomena in measurements of physical observables
using tools such as detectors, rods, and clocks. Some recent
investigations in the field of relativistic quantum informa-
tion and quantum field theory in curved space have
combined fundamental features of quantum theory, such
as the notions of superposition, entanglement, and meas-
urement, with those of general relativity, such as proper
time, causal structure, and spacetime, to study physical
effects that would be otherwise out of reach with current
top-down approaches such as string theory [1-4] and loop
quantum gravity [5-7]. Recent investigations include those
that explore the quantization of time using a “clock”
moving in a superposition of localized momenta [8], the
reconstruction of the spacetime metric in terms of quantum
field correlations [9], and the violation of classical con-
straints on causal order due to superpositions of massive
bodies [10]. Rather than pursuing a complete theory from
the top down, these investigations exemplify “bottom-up”
approaches for studying quantum-gravitational physics.
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In this paper, we adopt this perspective in order to study
an important problem in quantum gravity, namely quantum
superpositions of spacetime. Assuming such a theory
exists, we expect such superpositions of “semiclassical
spacetime states” (i.e., each amplitude of the superposition
corresponding to a classical matter configuration associated
with a classical manifold and gravitational field) to be valid
solutions [11-14]. More specifically, we are interested in
the kinds of superpositions in which the respective ampli-
tudes are not related by a global coordinate transformation
and are hence diffeomorphic. We have recently argued that
the environment generated by such “spacetime super-
positions” does not meaningfully differ from those gen-
erated on a single “classical” background in which quan-
tum systems residing within are prepared and measured in
appropriate quantum states [15—17].

Instead, we are primarily interested in superpositions of
spacetimes that are not diffeomorphic invariant, i.e., the
individual amplitudes represent unique solutions to
Einstein’s field equations. As explained, we do not propose
a full quantum-gravitational theory for the emergence of
such superpositions, but assume that they are valid sol-
utions within an anticipated theory. Our goal then is to
study the operational effects induced upon quantum matter
residing within such spacetimes. In a recent paper, we
studied the quantum-gravitational effects produced by a
Banados-Teitelboim-Zanelli (BTZ) black hole in a super-
position of masses and showed that a quantum detector,
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modeled as a qubit linearly coupled to a massless scalar
field, was sensitive to the mass ratio of the superposed
spacetime amplitudes [16]. Intriguingly, such ratios were
found to be commensurate with those allowed by
Bekenstein’s conjecture for the horizon area quantization
of black holes in quantum gravity, suggesting that such
detectors are sensitive to the signatures of quantum-
gravitational effects [18,19].

Building off this result, we apply our method to study the
operational effects produced by quantum superpositions of
Minkowski spacetime. This setting is perhaps the simplest
in which the physical effects of spacetime superpositions
can be studied, and so offers considerable insight into
this phenomenon. More specifically, we consider (3 + 1)-
dimensional Minkowski spacetime with a periodic
boundary condition imposed along one spatial dimension.
We then consider a scenario where the characteristic length
scale of this periodicity is in a quantum-controlled super-
position of lengths. Constructing a quantum field theory on
such a spacetime is similar to the procedure applied to the
BTZ black hole, which is constructed from periodic
identifications of anti-de Sitter space. We thus expect that
similar results found in the black hole superposition should
appear in this setting.

Our aims are threefold. First, we provide a new example
of our framework for analyzing the effects induced by
spacetime superpositions upon quantum matter in its
simplest setting, namely superpositions of topologically
identified Minkowski space. Indeed, we show how this
scenario produces effects related to those produced by the
mass-superposed BTZ black hole. Second, we address
some technical issues regarding how one should go about
performing quantum field theory calculations in settings
involving superpositions of spacetime. Specifically, the
conceptually simple example of superposed Minkowski
spacetime allows us to clarify the choice of vacuum state
when calculating correlation functions for fields quantized
on this superposed background. Finally, we propose a toy
model for a particle detector residing in a superposition of
spacetimes, drawing an analogy between the periodically
identified Minkowski spacetime and a quantum field with
periodic boundary conditions (which could be realizable
using a toroidal cavity in optomechanical setups [20]).
Further study of such setups may open a promising route
towards simulations of the effects produced by quantum
superpositions of spacetimes on quantum fields, which is a
topic of growing interest [21-24].

Our paper is organized as follows. We first review the
theory of quotient spaces in Minkowski spacetime and the
construction of automorphic fields on these spaces in
Sec. II. In Sec. III, we review the model for coupling a
Unruh-deWitt (UdW) detector to a quantum-controlled
superposition of spacetimes, and apply this to the topo-
logically identified Minkowski spacetime. In Sec. IV, we
present results concerning the detector’s response to a

massless scalar field in the superposed Minkowski space-
time, before introducing our toy model for a detector
coupled to a quantum field with a superposed periodic
boundary condition in Sec. V. We conclude with some final
thoughts in Sec. VI. Throughout this article, we utilize
natural units, A =kz =c =G = 1.

II. QUOTIENT SPACES OF MINKOWSKI
SPACETIME

In this section we review the basic geometric elements of
Minkowski spacetime M and its periodically identified
quotient space M,, before introducing the quantization
scheme of the automorphic fields used to calculate
two-point correlation functions and detector transition
probabilities.

Let us begin with the familiar (3 + 1)-dimensional
Minkowski spacetime M, parametrized by the usual coor-
dinates (¢, x, y, z) with line element

ds? = di? — dx? — dy? — d2?, (1)

where the metric signature is chosen to be (+, —, —, —) for
straightforward comparison with existing literature [25].
We consider a massless scalar field q?) that is a solution to
the Klein-Gordon equation [lp(x) = 0, where [J is the
d’Alembertian operator in flat spacetime, and may be
expanded in the plane wave basis,

. a1 .
— e—z\k\t ikx g H
¢(X) / (271.)3/2 /2_‘k| ( - k ‘C‘)’ (2)

where k = (kx,ky,kz), X = (x,y,z) are the momentum
and position three-vectors respectively, and &k(&l) are
annihilation (creation) operators of a single-frequency
mode. Letting |0) denote the Minkowski vacuum state
annihilated by ay, it can be shown that the two-point

correlation function,

Wy (x.X') = (0l¢(x)p(x)]0). (3)

pulled back to the worldlines X, X' is given by [25]

Wir(eX) = gsenlt = £)a(o(xX) = o (8
where Wy, (X, X) = (0|p(X)p(X)|0), sgn(t—1) = £1

depending on the sign of ¢ — ¢, and the geodesic distance
o(x,Xx') on a single spacetime is given by

o(X,X)=(1=1)=(x=x)=(y=y)=(z=7)% (5

Equation (4) is commonly referred to as the Wightman
function, pulled back to the worldlines (X, X).
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A. The M /], quotient space

The flat spacetime M, = M/J, is built as a quotient of
M under the isometry group Z=~Jj, Jy: (t,x,y,2) >
(t,x,y,7+ 1) [26,27]. Henceforth we refer to M, as a
cylindrical spacetime with circumference [. J, preserves
space and time orientation and acts freely and properly,
ensuring that M, is a space and time orientable Lorentzian
manifold [25]. To construct a quantum field theory on the
quotient space, we define the automorphic field ¥ (x)
constructed from the usual massless scalar field &S(X) as
the image sum [28]

wmzj%Ey%uwx (6)

where A = ", #*" is a normalization factor that ensures
that

[ (). (X')] = 6(x — X) 4 image terms, (7)

and n = +1 denotes an untwisted (twisted) field. To obtain
the Wightman functions, we have

W (x, x') 2’7 "W (T3 X, T X),

n,m

1
=7 20 Waa (T, % 5, T, X),
n.m
1
=+ D W (X, T X)),
— anWM(x,Jng’), (8)
m

where our superscript notation D = A, B anticipates our
eventual goal of computing functions associated with
the field quantized on M with two characteristic lengths
[ and Ip, respectively. Specifically, Jj and Jii denote the

respective isometries [29,30]

= (lsx’y9z+lA)s (9)

(t.x,y.z+ ). (10)

Jo, - (t,x,v,2)
Jo, (t,x,9,2) >

It is important to note that the evaluation of Eq. (8) occurs
with respect to the Minkowski vacuum state. The identi-
fication of the spacetime enforcing periodicity in the z
direction can be understood as the action of the operator Ji; |
on the coordinates of the field. Furthermore, while it is
common to use the simplified form of W, shown in (8),
such a treatment is inadequate when considering super-
positions of spacetime. That is, for superpositions of
the characteristic length of the quotient space M/J,, one
must construct correlation functions that arise from super-
positions of the different topological identifications, which
generate two different discrete isometries on the field. A
recent investigation [31] considers a related question of the

quantization of scalar Klein-Gordon field on a superposition
of nondiffeomorphic backgrounds (i.e., those not related by a
passive coordinate transformation) from the perspective of
quantum reference frames [14,32-36].

For quantum-controlled superpositions of two cylindri-
cal spacetimes, the resulting amplitudes contain also
Wightman functions given by

W(AB)(XA’XB N—Z’? "Wy (Jg,x. Jg X),  (11)

n,m

where

Wi (J5,%. J5,X) = (0l (J5,¥)(J5,x)[0)  (12)
is evaluated with respect to the common vacuum state, |0).
While one could conceive of a scenario in quantum gravity
where the vacuum state itself is quantum controlled (i.e. the
gravitational and matter degrees of freedom are coupled), this
simple case does not require such an assumption. The effects
arising from superposed quantum amplitudes of the space-
time here occur solely through the action of the two different
discrete isometries J. SA, J 6’; . We recently made a similar
assumption in utilizing the “global” ground state of the field
in anti-de Sitter space to evaluate correlation functions in a
BTZ spacetime in a superposition of masses [16].

Returning to the Wightman functions, we have explicitly
that

sgn(t —1')6(e(Jg X, J5, X))

= g S [
: J’ (13)

) n m !
4r°o(J, X, Jg X

W(J0 (x,x")

w0 L Tsan(i— 050l X, 5 X))
Wi (x.x) =7 2 { yo=

1
- , 14
4r’o(Jg X, Jg. x’)} (14)

where the geodesic distances are respectively
o(Jo, % Jg,x') = (1 =

(t—1) -

and we have considered, without loss of generality, a
detector static at the origin of the coordinate system of
both spacetimes. We note here that the distance functions in
Egs. (15) and (16) are a measure of distance in a particular
set of coordinate—in the present case, we consider ¢ and /
as the coordinate time and length scale of the spacetime
respectively. One could alternatively choose a coordinate
system in which times and distances in each branch are
locally defined.

O - Bn—mp.  (15)

o(Jgx, Jg x') = (Iyn —Igm)?,  (16)
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III. UNRUH-DEWITT DETECTOR IN
SUPERPOSED MINKOWSKI SPACETIME

We are interested in studying the effects induced by the
superposed Minkowski spacetime upon relativistic quan-
tum matter which is coupled to the spacetime through its
interaction with a (massless scalar) quantum field. We can
describe this system in the Hilbert space H = Hs @ Hr ®
‘H ), which is a tensor product of the spacetime, quantum
field, and matter degrees of freedom (d.o.f.) respectively.

For simplicity, let us consider the topologically identified
M, spacetime in a superposition of two characteristic
lengths [, and [/, and the field in the Minkowski vacuum
state. We likewise introduce a simple particle detector
model (the aforementioned Unruh-deWitt model [37-41])
to describe our quantum matter coupled to the field and
spacetime. The pointlike, two-level detector is assumed to
be initially in its ground state |g), such that the initial state
of the combined system is given by

1
ﬁ(|lA>+|lB>)|0>|g>' (17)

The coupling between the spacetime superposition, field,
and detector is described by the following interaction
Hamiltonian [17,42-46]:

Hiy = in(x)a(z) > wr(xp) ® L) (L] (18)

D=A.B

(1) =

Note here that we assume that the Hamiltonian in each of
the branches can be expressed with respect to a common
time coordinate 7, allowing us to factorize the function 7(z)
and operator 6(7) respectively. Eventually, we will asso-
ciate 7 = t, that is the Minkowski time coordinate.

Here, 4 < 11is a coupling constant, 7 is the proper time in
the detector’s reference frame, 7(z) a time-dependent
switching function that mediates the interaction,

5(z) = |e)(gle™ + |g){ele™

is the SU(2) ladder operator between the detector’s internal
states |g), |e) with energy gap Q, and ¢(x;) is the field
operator pulled back to the worldline X parametrized by the
coordinates of the detector and the topology of the spacetime.
The projector |[;)(l;| acts as a quantum control for the
spacetime. This could be some ancillary system that is
entangled with the spacetime, and can be ideally time
evolved and measured in a Mach-Zehnder-type interferom-
eter. For simplicity, we need not posit such an ancilla, and
assume, as other recent studies have, that a measurement can
be performed that allows one to witness interference effects
between the spacetime amplitudes in superposition [47].

Formally, the basis states |/;) are energy eigenstates of the
free Hamiltonian where A, s|I;) = E;|I;), where E; are the
energies associated with the periodic length ;. This will
generally introduce a time-dependent phase to the evolution

of the superposition. For simplicity, it is instructive to
consider a rotating frame transformation [48] for which
the evolution of the superposition state is “frozen” to the
initial phase relationship. Such an assumption greatly sim-
plifies the calculations without losing a significant amount of
insight into the problem. The time-evolution operator,

U =Texp <—i/oc dTHint.<T)>v (19)

can be expanded perturbatively in the Dyson series as
follows:

U=1- M/w defl,,
-2 /co dr /T d‘L'/I:Iim.(T)HimV(T,) +O3). (20)

We evolve the initial state in time,

1 . .
— (Uyx|la) + Ugllp))|0)|g), 21
ﬁ( alla) + Usllp)|0)]g),  (21)
before measuring the control state in the superposition basis

(|14) £ 15))/+/2 and tracing out the final field states. This
leaves the following result for the final state of the detector:

Uly (1) =

(+)
P 0
pp = ( N ) (22)
0 P;

Note that the state Eq. (22) is not normalized, since we are
considering the final conditional state of the detector (see the
Appendix for the derivation). The transition probability of
the detector is more specifically given by

2

A
Py :Z(PA+PB:l:2LAB)v (23)

where

)WH(x.X)  (24)

PD_/ dr/ ddy(z

is the transition probability of a single detector in a cylindrical
spacetime with characteristic length [, (D = A, B), and

LAB_/ dT/ de'y(7)

is a cross-correlation term between the field on the back-
ground spacetime in a superposition of two characteristic
lengths, [, and /3. We have also defined

7I)WiE(x,X)  (25)

x(7) =exp <— ;—;) P (26)
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as the Gaussian switching function with characteristic width
0. The introduction of a time-dependent switching function is
necessary for a particle detector in flat Minkowski spacetime
to detect any field quanta, since a detector that is eternally
interacting with the field will remain in its ground state. The
result is sometimes interpreted as a manifestation of the
energy-time uncertainty principle, in which rapidly switched
interactions may promote virtual vacuum fluctuations into the
detection of real field quanta (thus exciting the detector) [49].
Finally, it is important to note that if one traces out the control
rather than measuring it in a superposition basis, the detector
transition probability becomes a classical mixture of the
individual contributions from spacetime amplitude A and B:

) _ 4
Py :E(PA+PB)' (27)
Returning to the conditional transition probability (given the
control is measured in |£)), we can insert the Wightman
functions, Egs. (13) and (14), into Egs. (24) and (25), to obtain
the “local” contribution to the transition probability, given by

Pp =Py + [S) = S3], (28)

o
4\/7_[1D2n’12n

e 4 ) ilp(n—m
S, = Z P— Im {e’ln(”‘m)gerf (% + 09)] ,

;=2 r; _4; sin(QUy, (n — m))} , (29)

1
4rn
is the transition probability of a single detector in flat
Minkowski spacetime with no identifications [25].
Equation (28) is equivalent to the expression studied in [50]
for the single-detector transition probability in the M,
spacetime. We see that there is a Minkowski contribution
and an image sum contribution that accounts for the possible
identifications in the M/J,, space.

Meanwhile, the cross-correlation term is given by

Py [~ — \/zoQerfc(6Q)] (30)

K
Ly = =15 Py +————[Jy = 1], (31)
S N

where

2

_nm

52 . .l
Im [e’lnmgerf <lﬂ + GQ>:| . (32)
20

[Vlﬂl #0 nm

2
_ mg
€ 4o

lnm >0 ‘nm

sin(Q4,,,,), (33)

and [, = [4n — lzm. We have also defined
K, = coeff(Z f(n—ym), f(O)), (34)

where y = Iz /1, is the ratio of the cylindrical spaces in
superposition, and coeff(x(y), y) is the coefficient of y in
the function x(y). The appearance of this function results
from the evaluation of the image sum contributions to L .
Notice in particular that the Wightman function for the
cross term, Eq. (14), contains multiple singular points
whenever n — ym = 0. These poles are treated differently in
comparison to the single pole in the Minkowski Wightman
function (see the Appendix). Thus, when summing over the
identification variables (n,m), one “pulls out” a
Minkowski contribution to the total expression for L,p,
whenever n — ym = 0. The appearance of these “resonan-
ces” whenever n = ym is similar to the result previously
derived for the BTZ spacetime. In that scenario, the mass
ratios for which a “resonance” appeared were commensu-
rate with those predicted by Bekenstein in his famous
quantum black hole conjecture, wherein the black hole
mass is treated as a quantum number.

IV. RESULTS

We are now able to plot the response of the detector to
the field, situated in this universe in a superposition of
topologies.

In Fig. 1, we have plotted the transition probability of the
detector as a function of y, the ratio of the characteristic
lengths of the superposed spacetimes. There are several
physical features of the transition probability worth noting.
Most interestingly, we observe discontinuous resonant peaks
in the transition probability at rational values of y, where
some of these values are marked with a vertical line in Fig. 1.
In reality, we expect a countably infinite number of these
discrete peaks at every rational value of y, just by inspecting
the discontinuous form of the interference term in Eq. (31).
The magnitude of these peaks may not necessarily be visible;
moreover, we are limited by the finite computational step size
of Mathematica. Nevertheless this effect, as measured by a
toy model particle detector, seems to be the first of its kind.
Indeed it is comparable to the result obtained for the BTZ
black hole; however in that case, the transition probability
exhibited continuous resonances at special values of the
black hole mass ratio.

To illustrate this resonant effect further, we have plotted
the transition probability of the detector as a function of y
using rational and irrational step sizes in Fig. 2. When the
step size used to plot Pg is irrational, the transition
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length ratio, ¥
FIG. 1. Contributions to the total probability, (c), of the detector

after the control is measured in the |+) state, as a function of y. We
have marked out a few values at which resonances in the transition
probability are visible. (a) corresponds to the contribution from one
of the spacetime amplitudes (with fixed length /, = 1), (b) corre-
sponds to the contribution from the other amplitude whose length
g varies, while (d) is the interference term between the two
spacetime amplitudes. We have also chosen Qo = 1/100.

probability appears to be smooth and continuous. This
strongly contrasts the discontinuous nature of Pr when
utilizing rational step sizes in Mathematica, and thus
confirms the source of the resonant effect shown in Fig. 1.

In Fig. 3, we have plotted the transition probability
as a function of the energy gap of the detector, for a

0.052
0.051
0.050
0.049
0.048
0.047

e
o

probability, Pg

o rational stepsize
irrational stepsize

Oo@oOOOO

%300@)00 @-0-0-0-0-0

0.052}|(b)
0.051
0.050
0.049
0.048

0.047
0.75

probability, Pg

0.85 090 095 1.00

length ratio, ¥

0.80

FIG. 2. (a) Illustration of the discontinuous behavior of the
transition probability as a function of y. The continuous yellow line
was plotted with an irrational step size, and hence the resonant
peaks at rational values of y do not appear. (b) The same dataset as
shown with the open circles in (a), but with the data points
connected. We have used the settings Qo = 1/100 and [, = 2.

o PB
& "
= L.
2 6 |
<
2 4
2
0 b
-50 -40 -30 -20 -10 0
energy gap, (1o
FIG. 3. Transition probability of the detector as a function of

the energy gap. The different colors correspond to different
contributions to the transition probability (dark blue, light blue,
light yellow) and the total transition probability upon condition-
ing in the |£) state (brown, orange). We have chosen
Iy/o=0.25, lz/06 =0.75.

superposition of two lengths /4, /z. The individual con-
tributions to the transition probability are shown in different
colors, giving the total result displayed with the dashed
lines (the different colors representing two different meas-
urement bases for the control). As explained in [25], the
oscillations in the individual contributions with Q are akin
to the appearance of modified quasinormal modes in
spacetimes with closed topology. The cross term L,z also
exhibits similar behavior, an expression of the fact that it
encodes the quantum interference between the two topo-
logically identified spacetimes.

V. ANALOGY WITH CAVITY QFT

In the previous section, we looked at a scalar field
quantized on a (3 + 1)-dimensional spacetime with a
periodic boundary condition (along one spatial dimension),
where the length of this dimension depends on a quantum
degree of freedom. We considered effects that arise when
this degree of freedom is in a superposition, meaning the
spacetime is itself in superposition of different sizes. We
found analogous effects to those arising in a BTZ black
hole spacetime where the mass of the black hole is in a
corresponding superposition. This strengthens the case for
physical relevance of the associated effects and it also
makes it worthwhile to look for a possible experimental
realization of an analog system which would help illumi-
nate the role and physical consequences of our physical
assumptions. These include the choice of an initial state and
the role of potential nontrivial free dynamics of the degree
of freedom associated with the spacetime.

Below we outline one idea for such an analog and
discuss what are the outstanding conceptual challenges.
Note that quantum fields in the spacetime considered in
the present work share similarities to a quantum field
with periodic boundary condition—imposed in a quantum
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superposition of characteristic lengths.] Thus, we focus
here on such a cavity system.

For concreteness, 1§t us consider three mode decom-
positions ¢4 (t,x), ¢p(t,x), ¢c(t,x) of a (1+1)-
dimensional Klein-Gordon field:

Pa(t.x) = (fu(t.X)a + Fr(r.x)a),  (35)

n#0

Bp(t.2) = 3 (gu(t.X)by + g3 (1. 0)BL). (36)
m#0

Pel(t.x) =) (h(t.x)eq + hi(1.x)e,).  (37)
1#0

where the mode functions are defined as

1

4x|n

e—i\k,l\tJrik,,x’ (38)

fﬂ(t’x) =

" 4

e—i\wm\t—&-iw,,,x, (39)

N}
3
=
=
Il
~
=
3

e—i\Q,|t+iQ,x’ (40)

V4|l

and the field momenta take on discrete values, k, =
(2zn)/ly, w,, = (2zm)/lg and Q; = (2zl)/l-. Moreover,
n, m, [ are nonzero integers (we neglect the infamous “zero”
mode, which requires a separate treatment [25,51,52]).

In our Minkowski spacetime superposition, the correla-
tion functions are not evaluated with respect to the “local
vacua” associated with the identifications 14, [, but rather
with the global Minkowski vacuum state |0) = |0,,). This is
the reason we consider three sets of modes above, where the
set{¢q, 6}2} serves as the analog of the global modes, and we
denote the associated global vacuum |0c) (which is a state
annihilated by ¢g). Similar decompositions have been
considered in the context of entanglement production
between the local modes inside a larger global cavity
[53-55]. In order to evaluate the required Wightman
functions, we next express the operators (&, b,,) associated
with the local modes in terms of those associated with the
global modes ¢q. This is done using Bogoliubov trans-
formations between the modes:

a = (maba + Prath), (41)
10

b, = Z(&kgfg + Brata), (42)
170

'Henceforth, we refer to the periodically identified field in
(1 4+ 1) as a “cavity,” although strictly speaking it more accurately
mimics a field quantized on a ring resonator-type potential [20].

where akQ:<fn’hl>’ :BkQ: <f;;’hl>’ Apo = <gm1 hl>’ Ba}Q =
(g3, h;), and where the Klein-Gordon inner product is
defined in the usual way [56]:

(rhs) = i /V x(B1obs — ho00).  (43)

The key structures relevant to our analysis are Wightman
functions evaluated for the products of fields with the same
characteristic length /g (“local terms”) and with different
lengths (“cross terms”). Let us examine the functional form
of these terms (where for brevity and without loss of
generality, we display local terms for the cavity with
length 1,).

The local term reads

WX, Xy) =D > Wilxa. X)), (44)

i nm,l
where
Wi(Xq, X)) = _Qilc,,Q%mAil;kAiz;k’ (45)
Wo(Xa, X)) = A AS (46)
Wi3(Xq, X)) = Q%WQ%W, A%L?;kAzml;k’ (47)
Wi(X4,Xy) = _Q%,,Qll(mAﬁzkA};l;k’ (48)
and
o = (@ + k) (49)
= (9] + K
G @) Il lmll
07 = (o)~ k) — " (50)
O )2l
—llA kj — Ql
Al - i(Q—k )iz (51)
ik 41_6;2,—11:;/ kj #* Q[
—llA k] = —Q]
A2 kT —i(Q+k;j)l4 (52)
Jjlsk ]_eﬂﬂr]k, kj ;é _Ql'

Our nomenclature in Eqgs. (51) and (52) is chosen to
highlight the Kronecker-6-like property of these functions,
which “pull out” a term proportional to [, at certain
resonant values of the cavity lengths. This property shows
the first conceptual challenge: as we consider a large but
finite global cavity, the terms in the Wightman function
sums where k; = €; will lead to resonances independently
of the ratio between the superposed lengths (not directly
given by [,/lg)—a direct consequence of the present
toy model.
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The cross term follows analogously,

ZZW X4, Xp)s (53)

i nm,l

W (X4, X3)

where
Wi(Xq, Xp) = —Q Qg, AnlkAmlw, (54)
Wa(Xa. Xp) = @ Qi) Ay A, (55)
W3(Xa, Xj) = 92 Qb AT AL (56)
Wa(Xa.Xp) = —Qf Q5 AV A, (57)
and
1 —il; v =L
A, = { l_gisi:m s (58)
At = {L o (59)
R

and in the above [; = [, if v =k and [, = I3 if v = w.

Equations (58) and (59) are the main results of this
section. As with the local term, the A functions have
properties similar to the Kronecker 8, selecting unique
terms when the cavity length /, resonates with the global
cavity /., and likewise when the cavity length [ resonates
with /c.

The above analysis highlights that the analogy between
the cavity model and the Minkowski cylinder spacetime is
not perfect. This is due to the following reasons: First, we
have utilized a discrete mode decomposition of the field,
which, upon neglecting the “zero mode,” yields a slightly
different limit to the spacetime example. Second, the
spacetime example considers the global vacuum state |0)
as being defined with respect to an infinite (not periodically
identified) Minkowski spacetime, that is, in the limit of
[ = co. Such a limit is not well defined in the cavity
example, for this would lead to a continuum of k vectors
describing the global modes and a discrete quantization for
the local modes. A result of the discreteness is that not only
do the individual amplitudes of the cavity resonate with
each other [i.e., the presence of A functions in Q, v in
Egs. (58) and (59) which characterize the respective lengths
of the superposed cavity], but the individual cavities
resonate with the large, yet finite global mode cavity. A
possible way out could be to choose the global cavity
length [/ such that neither [, /I nor Iz /- are rational and
examine the resulting resonances and their dependence
on [ A / l B

Strong motivation for further study of this system is that it
could be possible to simulate it using optomechanical
technologies. For example, experiments have realized super-
fluid helium condensates on toroidal cavities. The funda-
mental mode providing the “analog metric” for phonons in
the condensate therein can interact with incident photons,
thus suggesting an opportunity to study “light-controlled”
effective quantum-superposed backgrounds [20].

VI. CONCLUSIONS

In this paper, we have studied the response of a two-level
quantum system (a UdW detector) to a massless scalar field
on a background Minkowski spacetime in a superposition of
topologically nontrivial identifications. The topology super-
position of the background spacetime elicits resonances in
the particle’s transition probability when the ratio of periodic
lengths of the spacetimes in superposition is a rational value.
Most intriguingly the resonances experienced by the detec-
tor, which result from interference between the infinite
number of image terms in the quantum-controlled scalar
field, are discrete in nature, an effect not previously observed
in similar investigations of Unruh-deWitt detector responses
in classical spacetimes. This effect corroborates a related
result obtained recently for the (2 + 1)-dimensional black
hole in a superposition of masses [16]. Our results also
highlight the importance of the choice of the vacuum state (of
the field) in the present and similar models of spacetime
superpositions. In the present work we have made the simple
choice of the global Minkowski vacuum, which provides
additional justification for an analogous choice in the recent
work, Ref. [16]. It nevertheless raises the important question
of the resulting effects when one chooses, for example, the
state of the field also to be in a quantum-controlled super-
position of different initial states.

We have also investigated the potential for an experimental
realization of such a spacetime superposition—modeling the
periodically identified Minkowski quotient space as a quan-
tum field with periodic boundary condition in a cavity. Our
proposal is complementary to other proposals [21] utilizing
Bose-FEinstein condensates [22—24] as tabletop environments
for probing analog quantum gravity effects. While further
refinements of the cavity model are needed, it represents an
interesting direction for further study.
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APPENDIX A: FINAL CONDITIONAL STATE OF THE DETECTOR

Let us derive the conditional transition probability of the detector when the control d.o.f. is measured in the |£) basis.

First, let us label the terms in the time-evolution operator as follows:

00 =1
O = —i) / deH,, (7)

@) _ _p2 / ¥ de / " A7 B B (7).

Applying the time evolution operator to the initial state gives
. o 1
Uly) = —=(IM4) + Mp))[0)g) - (M)/ deHiy (1) == (IM4) + [Mp))[0)[9)
v V2
=) [Tar [ a0 (0 () 55 (M) + MOl
\f
Explicitly including the form of the interaction Hamiltonian gives the following form:

Uly) = \/—(‘MA>+|MB>)‘O>|Q> f dm(f) (W (x4)|M ) + 1 (Xp)|Mp))|0) |e)

/ dr / den(2)n(e) e ) (r(x ) (Xy) @ [M) + P (Xp)ir(Xy) ® [M3))[0)]g).

Conditioning on the |+) = (|M,) £ |My))/v/2, we find the following expression:

(EI01w) = 5 (M1 1811) = OLIMDIO)g) — 5 [ dene)e(ir(xa) i) 0)e)

—o0

N =

T

- /_ e [ den(en(e)e ) ()i (Xy) £ i (%a)i (%5))[0)9)-

00 —0o0

Tracing out the field, we find the following terms in the reduced density matrix of the detector:

R ~ 1
Tr,, [(£| OO [y) (| U7 £)] = 7 2£2)lg) gl
77(0) 2 '12|9 (gl d )el=) / /
To (£ 0O y) (| 07| (e (WX X,) £ W(x5.Xp)).
g —l =7
Tr, (£ 0 ) (| 0O |)] = — 219491 / / a2n(2)n(2) e (W Xy, Xy) £ W (Xg X)),

N N AleYe| [ 0 . ,
Tr [0y ] 001 1y] = 218 [ e [ e (@) (W k) + W x5 ) £ 2 0. 53)

4

o0
Combining these results leaves

PE) = T, [ 0O ) (| TOT|2) + (£|TOyr) (yr| TP |£) + (TP ) (]| 0O |4)],

SE(ES) [ i / dr / den(2 (@) e @) (W (x4 x4") + W(Xg.X5)) |
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+
PEY = T, (] OO ) (| 07 |£)],

/ dr/ d7'n(7) eI (W(xy, X)) + W(Xg, Xp) £ 2W (X4, X})). (A12)
We can write the transition probabilities as

P =_(1+ 1){1 —%(PAJFPB)}, (A13)

NI'—*

/12
P = 7 (Pat Py £2L4y). (Al4)

Note that the sum of all the conditional outcomes is equal to unity:

> > NGO () =1, (A15)

i=g.e j=+,—

as desired. To obtain a normalized density matrix, one simply divides Eqgs. (A13) and (A 14) by the probability of finding the
control in |£). Taking |+) as an example, we have

pir) 22 22 2 -1
= |1 =5 (Pa+ Pp) [ |1 =5 (Pa+ Pg) + 1 (Pa+ Py +2Lyp) |
(+) (+) 2 2 4
P;’ + Py
12 /12 -1
_|:1_3(PA+PB):||:1_Z(PA+PB_2LAB):| :
2 22
z|:1_E(PA+PB):| |:1+Z(PA+PB_2LAB):|?
22 2
:|:1+Z(PA+PB_2LAB)_?<PA+PB):|’
12
= |:1_Z(PA+PB+2LAB):|v (Al6)
Pgr) 22 22 22 —1
N N — 7(PA+PB+2LAB) 1_7(PA+PB)+7(PA+PB+2LAB) N
() (+) 4 2 4
P’ + Py

2

22 A -1
:|:Z(PA+PB+2LAB):| |:1_Z(PA+PB_2LAB):| ,
2

A 22
Z(PA+PB+2LAB) l‘f‘z

1R

(PA+PB_2LAB):|,
/12
= {Z (Pa+Pp+ 2LAB):|’ (A17)

giving the desired result.

APPENDIX B: TRANSITION PROBABILITY WITH DOUBLE-SUM WIGHTMAN FUNCTIONS

In this section, we derive the analytical expressions for the “local contributions” to the transition probability. Recall that
the Wightman function takes the form

045014-10
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[sgn(t —7)6((r = 7)* = P(n — m)?) 1
W, (x,X) - )
Ty NZ I 4xi 47*((z — 7% = P(n — m)?)
B —Z [sgn(s)d(s* = P(n—m)*) 1
N —| Ari 4% (s> = P(n—-m)?)|’
_ LZ [sgn(s)s(s*) 1 Z sgn(s)d(s® = P(n—m)*) 1
- — 4ri 4n2s? ./\/n#m dri 4n (s> = P(n—m)*) |’
sgn(s)o(s? — 12(n -m)?) 1
- , Bl
J\/'#Zm[ i 4r*(s? = I>(n —m)?) (B1)
where we have defined s = 7 — 7’ as the proper time difference. The transition probability is given by
© © 2 2 /
Py = / dr/ dr'e 7 e 2R i TT )WJO(X, x'), (B2)
s © 2 (=2
= / du/ dse>7e” 27 e W, (x,X), (B3)
= \/7_70/ dse W eI BW, ,(8). (B4)

having performed the du integral in the last line. Thus,

e ———

n#m
/7o /00 _2 . [sen(s)8(s> = P(n —m)?) 1
=P -— dse a7 e - . B5
mt N n#z;n —oo ere Ari 47* (s> = P(n—m)?) (B5)
I I
Let us examine the two terms in the image sum. We have
I, = 4m / dse i e sgn(s)5(s> — 2(n — m)?),
n#m
LS [T ase e gn(s) ool ) +ols = 60— m)
=— se e "¥san(s) — [O(s n—m s—Iln—m
dmi o - B it = m)] ’
_R(=m)?
1 e iQI(n—m) —iQI(n—m)
= rmzm e sgn(—=I(n —m)) + sgn(l(n —m))e . (B6)
n#m
It is convenient here to split up the sum into contributions where n > m and n < m, yielding
1 _lz(rl—m)2
e 4 . .
1= i g — gy € sen (U = m)) -+ sgn(1(n = m))e )
lz(n—m)2
n iz‘f——*’z [ =mson(I(m — n)) — e~ =M son(i(m — n))]
4ri £ 2l|n —m| '
_P(n-m)? _R-m?
Ly < —in(Ql(m ~ n) - LS Gn@i(m - n)),
" 4zl = n-— dnl e~ m—n
_l (n— m)2 _lz(n—m)2
LN @i —n)) = - ST Gn(Qi(n— m)) (B7)
S 2nl4 n—m mon) = 27l ¥~ n—m rm)-
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For the second term, we have

1 0 e ile iQs
I, = — d B8
2 47> ; /_oo s> — (n—m)? (B8)
1 o 0 e_‘:fze—igs’
= — 4—”2#2171 /_oo ds . ds’(‘)'(s - S/) m s (Bg)
1 o o 1 [ im0
__L as [T ag (L [ dzertrmo ) e B10
47? ”;l /_oo s oo s (27r /_oo ¢ ) s? = P(n—m)? (B10)
:—LZ oodz /oods e _Z)“"e_% /oods#isZ (B11)
8773 ) o o S2 _ lZ(n _ m>2 )
1 o —(Qer)e? sin(l(n —m)z)
= —gn#zm /_oo dz(2\/7°we (Q-2) ) (—ﬂsgn(z) W . (B12)
Performing the integration over z leaves the compact analytic expression,
_P(n-m)? l( )
e 4d? . illn—m
I, = — 1 in=-m)Qerf [ ————— + 6Q | |. B13
2 ,;47;1(;1—;11) m[e © < % )] (B13)
The total expression for the transition probability is thus
_Iz(n—m)z l( ) _12(n—m)2
o e 4 . illn—m o e 4
Po—p I il(n=m)Qarf Q — in(Ql(n — s
=P+ g Sy e (g )| <1 e 2 st )

(B14)

as stated in the main text. It can be straightforwardly verified that this gives an identical result to that obtained using only a
single sum expression for the Wightman function,

2 (n—m )2

00 —

o e 402 . iln .
Pp =Py + m; " <Im |:e’l”Qerf (% + O'Q.):| — SlIl(an)) . (BIS)

APPENDIX C: CROSS-CORRELATION TERM WITH DOUBLE-SUM WIGHTMAN FUNCTIONS

The cross term can be similarly derived. Inserting the cross-correlation Wightman function into the integral expressions
for L,p yields
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© 2 5(s* — (Lan — Igm)? 1
Lyp = \/A;?’Z/ dse a7 [sgn(s) (s (,An sm)) _ ],

o Azi 47 (s* = (Iyn — lgm)?

_ Ao 5 /wdse-;;e_ms{sgn(s)&(s%_ I ]

: 2.2
LT )~ Ari dr=s

\/7_10 22 i, [sn(s)8(s* — (Ian — Igm)?) 1
TN / dserite™ [ Ari 472(s% — (Iyn — le)z)]’

lan#lgm

V7o s [sgn(s)8(s? = (Lyn — Igm)?) 1
Z Put N Z /oo dse"ie"™ [ Ari 4n2(s? = (Iyn — le)z)]' (€D

lAn Igm Ian#lgm

Let us look at the image sum integrals. We have

o0 2. 5(s? = (Iyn —1 2
[1 = Z / dse 4526—195' sgn(s) (S (An Bm) )’ (CZ)

Iyn#lgm Y —® i

© 2 2 _ 2
_ Z / dse_ﬂe"mSgn(s)é(s (Ian le))’ (C3)

Iyn#lgm Y —® 4mi
1 © 2 1
=— Z / dse e ™ ¥sgn(s) =——————1[8(s + Iyn — Igm) + 8(s — Iyn + lgm)], (C4)
llAnr/:le - 2|lAn - lel
_(pn- IBm) _Upn- le)
_ 1 Z e eanlmgon(—ln 4+ lgm) e e un~lmgon(l,n — lym) (©5)
 dxi = 2|lun — lgm| 2|lun — lgm| ’
We can split up the summation,
;o 1 Z e_% e n=lsmgon(—l,n + lgm) e ¥an=lsmson(l,n — Izm)
Y 4gi o 2|lun — lym| 2|lun — lym|
1 _tartgn? [ an=lem)gon(—Lyn + Iym) e an=lemsgn(lin — Igm)
" i N 2in —1 2ln -1 ’ (C6)
7t Igm>1,n | Al Bm| | Al Bm|
1 _([An lgm) (lAn IBm
e
=— ——sin(Q(1 ) Q(lgm—1 ,
: [Z @) = S i@ )
_(lAn—IBm)z _(IAn—le)2
L (@~ L) =5 > sin(@(Lan ~ lym)) ()
=— ———sin m—Iun)) =—— ——sin n—lgm)),
2n L Tom Ian —lgm B 4 T Ian —Igm A B

in close analogy to the local contributions to the transition probability. Next,

1 o ¢TIt
L=13 > /wdssz_ . (C8)

Ian#lgm v~ (lAn - le)

/2

1 I 0 2 o—iQs’
_ e L Z / ds/ ds’é(s—s’)s2 ¢ e . (C9)

B Znnzn 4”2 Lyan#lgm Y — - (lAl’l - le)2
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Sz .
e—me—th’

1 0 o0 1 o0 .
= — d ds’ [ — dzeiz(s'=s) ’
472 Z /oo S/_oo s <2ﬂ' /_oo e ) s2 = (Iyn — lzm)?

Ian#lgm ¥~

1 ) o0 Nl 00 e—i.s‘z
_ L dz( [ ase@ers iz / d ,
8”3 Z /—oo ‘ </—oo b ¢ — * S2 - (lAn - le)2

lan#lgm

1 o 22 Sil’l((lAI’l — le)Z
- dz(2 —(Q-2)%") [ _ —a B, C10
o [y ) (o) = (1)
_(lAn—IBm)z
4(72 | —
A o {ei(zAn-zBm)szerf (M N Gg)} , (1)
4m, (Iyn — lzm) 20
The full expression is thus
([An—le)2 ( )
1 o e 4 . i(lan —lgm
I N S oy s FS A (LT |
A Zn’/lzn IA}"ZI:BW’ . 4\/7_721177271 lAnz;El:Bm lAn - le 20
_(ign=tgm)?
e 402
sin(Q(lyn — lzm)), (C12)

o
2> " zAnZim Iyn —lgm

as stated in the main text.
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