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Center-stabilized SUðNÞ Yang-Mills theories on R3 × S1 are QCD-like theories that can be engineered
to remain weakly-coupled at all energy scales by taking the S1 circle length L to be sufficiently small. In
this regime, these theories admit effective long-distance descriptions as AbelianUð1ÞN−1 gauge theories on
R3, and semiclassics can be reliably employed to study nonperturbative phenomena such as color
confinement and the generation of mass gaps in an analytical setting. At the perturbative tree level, the
long-distance effective theory contains (N − 1) free photons with identical gauge couplings g23 ≡ g2=L.
Vacuum-polarization effects, from integrating out heavy charged fields, lift this degeneracy to give bN

2
c

distinct values, g2ð2LÞ≲ g23;lL ≲ g2ð 2πNLÞ. In this work, we calculate these corrections to one-loop order in
theories where the center-symmetric vacuum is stabilized by 2 ≤ nf ≤ 5 massive adjoint Weyl fermions

with masses of ordermλ ∼ 2π
NL, (also known as “deformed Yang-Mills,”) and show that our results agree with

those found in previous studies in the mλ → 0 limit. Then, we show that our result has an intuitive
interpretation as the running of the coupling in a “lattice momentum” in the context of the nonperturbative
“emergent latticized fourth dimension” in the N → ∞, fixed-NL limit.

DOI: 10.1103/PhysRevD.107.045013

I. INTRODUCTION

Analytical methods to study the long-distance properties
of four-dimensional asymptotically free non-Abelian gauge
theories are few and far between; broadly speaking, it is a
difficult problem to handle because the flow to strong
coupling causes theoretical control over the system to be
lost at low-energy scales. While there are known models
that are well-behaved enough to be studied analytically,
(e.g., Seiberg-Witten theory [1]) these typically require
special structures such as supersymmetry, or otherwise
make use of gauge-gravity duality arguments and string-
inspired tools (such as in Ref. [2]).
Over the past years, studies performed on “center-

stabilized” gauge theories on R3 × S1 have been remark-
ably fruitful for providing insight into the nonperturbative
dynamics of four-dimensional gauge theories. These mod-
els are distinguished from the few known analytically-
calculable models in four dimensions by the fact that they
can be engineered to remain weakly coupled at all energy
scales, so that a semiclassical expansion in terms of objects
defined in the UV theory is reliable and self-consistent.

The basic idea behind these models is as follows: By
compactifying R4 to R3 × S1, and “deforming” the pure
Yang-Mills (YM) theory by adding a nonlocal and non-
renormalizable potential to the Lagrangian, the well-known
deconfining phase transition (cf. thermal Yang-Mills [3]) at
small circle lengths L can be circumvented, and the theory
remains in the color-confining phase for all values of L.
Adiabatic continuity to the full R4 theory of ultimate
interest can therefore be argued on grounds that the theories
share identical (nonspacetime) global symmetries for all
L ∈ ½0;∞�. That is, they belong in the same “universality
class” [4,5].
To be certain, the nonrenormalizable “deformed” theory

that we are describing can be viewed as a lattice theory with
a fixed finite lattice spacing [6]. On the other hand, it is also
possible to define a UV-complete continuum theory with
the same desired properties by introducing nf S1-periodic
adjoint-representation fermion fields to the pure YM
Lagrangian: The desired deformation potential is realized
as the fermionic contribution to the dynamically-generated
Gross-Pisarski-Yaffe (GPY) effective potential at energy
scales below ∼ 1

L [4,5,7,8]. If the fermions are massless,1

this class of theories is referred to as QCD(adj) if
2 ≤ nf ≤ 5, and super Yang-Mills (SYM) if nf ¼ 1. It is*jlai@physics.utoronto.ca
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1It should be noted that QCD(adj) with nf massless fermions
in its spectrum has a global chiral symmetry not shared by the R4

pure Yang-Mills and is therefore not covered by the aforemen-
tioned “universality class argument”.
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called “deformed Yang-Mills” (dYM), when the 2≤nf≤5

fermions are massive, or if the deformation potential is
added “by hand,” as in the lattice formulation.
From the theorist’s perspective, one of the most alluring

features of these admittedly artificial setups is that they
admit a “weak-coupling regime” at ΛNL ≪ 2π, (where Λ
is the strong-coupling scale) in which the gauge coupling g2

(and more pertinently, g2N) remains small at all energy
scales. Thus, in this regime, the semiclassical expansion
over high-energy monopole-instanton configurations is
trustworthy, and can be reliably employed to study the
effects of the nonperturbative physics on the low-energy
theory. The result is a theoretical laboratory in which a wide
variety of nonperturbative low-energy phenomena can be
studied analytically. For example, color confinement, the
generation of a nonperturbative mass gap [4,8], a deconfin-
ing phase transition [9,10], and certain aspects of chiral
symmetry breaking [6]. For this reason, ΛNL ≪ 2π is
sometimes also called the “calculable regime” in the
context of center-stabilized R3 × S1 theories. For compre-
hensive reviews, see Refs. [11–13].
At leading perturbative order and finite N, the IR

effective theory of SUðNÞ dYM and QCD(adj) in the
calculable regime is sometimes described as being “rather
boring” [11], because the gauge sector describes (N − 1)
free, massless photons in R3. When vacuum polarization
effects are accounted for, the photons acquire bN

2
c. These

corrections have been calculated to one-loop order by
various methods when the fermions are assumed to be
massless; for N ¼ 2, 3 QCD(adj) in Ref. [14], for SYM
(i.e., nf ¼ 1) with arbitraryN in Ref. [10], and in QCD(adj)
with arbitrary N in Ref. [15].
In this study, we derive a more general expression for

these corrections that in particular covers the massive
fermion case, for generic masses m1;…mnf such that the
theory remains in the center-symmetric and weak-coupling
regime. The final result is contained in Eq. (2.13), and the
bulk of our exposition explains how we arrive at this result.
Our motivating aim is to confirm that the perturbative
corrections to finite-N SUðNÞ dYM theory yield no
unpleasant surprises even when the stabilizer fermions
are assumed to be heavy. This is a very reasonable
assumption to make, since ultimately we are interested
in obtaining insight on pure Yang-Mills on R4, and a
continuum QCD-like theory that continues smoothly to
pure YM should not contain light adjoint fermions in its IR
spectrum.
Nevertheless, our results are not entirely devoid of

novelty. Reference [16] showed that in the N → ∞,
L → 0, fixed-NL limit of SYM, an emergent latticized
fourth dimension appears, emerging out of the space of
fields—even though we should expect that taking L → 0
ought to result in a 3d theory. In particular, this emergent
dimension exhibits z ¼ 2 Lifschitz scaling invariance in
SYM. In other words, the action is quartic, rather than

quadratic, in the momentum, ∼j∂2yΦj2, where ∂y is the
partial derivative in the emergent latticized dimension.
Simply put, this is because in SYM, there is a discrete
ZN chiral symmetry (not to be confused with the ZN center
symmetry) that forbids monopole-instantons from con-
tributing a bosonic potential of the form ∼j∂yΦj2 in the
semiclassical expansion. Such a potential is permitted,
however, when the chiral symmetry is explicitly broken
by a nonzero fermion mass, as is in the case we study here.
We find a satisfying and intuitive interpretation of our
massive correction in this emergent dimension as the flow
towards strong coupling for large values of the “lattice
momentum.”
The rest of this paper is structured as follows: Section II

contains an overview of the essentials of dYM theory in
an effort to make this paper more self-contained. For the
benefit of the impatient reader, we have placed our main
result, Eq. (2.13) and its accompanying discussion, in
Sec. II A 1. A discussion of this result in the context of
the emergent latticized dimension of Ref. [16] is contained
in Sec. II B 1.
Section III covers the derivation of Eq. (2.13) in detail,

starting from the very beginning with the UV dYM
Lagrangian. Since this calculation is fairly long and
convoluted, we briefly summarize what we have done at
the end of Secs. III A and III B to help the reader keep track
of our progress. The main “meat” of the calculation, and
therefore of this paper, is mostly contained in Sec. III C,
especially Sec. III C 2.
In our calculation, we use the Mellin transform to

rewrite certain infinite sums in a form that allows their
asymptotic behavior to be more easily seen. The details of
this manipulation, which is mostly just complex analysis in
one variable, is given in the Appendix.

II. BACKGROUND, RESULTS AND DISCUSSION

A. Review of dYM: Perturbative aspects

Consider pure SUðNÞ Yang-Mills theory on compacti-
fied R3 × S1, where the S1 is a circle of circumference L,

SYM½A;F � ¼
Z
R3×S1

1

2g2
trðF 2Þ: ð2:1Þ

This theory enjoys a global ZN ¼ ZðSUðNÞÞ center sym-
metry, as it only contains fields transforming in the adjoint
representation of the gauge group. The action of this
symmetry may be thought of as a “gauge”2 transformation
gðxμ; x4Þ∶R3 × S1 → SUðNÞ that is periodic over the S1

modulo a ZN factor,

2Though, of course, the gðxμ; x4Þ so defined is not a true gauge
transformation by any means. That is, it is not a transition
function between local trivializations of the principle bundle.

J. LAI PHYS. REV. D 107, 045013 (2023)

045013-2



gðxμ; 0Þ ¼ ωgðxμ; LÞ; ω≡ ei2π=N: ð2:2Þ

This acts on the fundamental representation Polyakov loop
Ω, the gauge holonomy along the S1,

Ω≡ P exp i
Z

L

0

dx4A4; ð2:3Þ

as.3

ZN∶ trΩ → ωtrΩ; ð2:4Þ

where A4 is the S1 part of the gauge field A.
At large L, the center symmetry is unbroken. That is to

say, htrΩni ¼ 0 in the ground state for all n ≠ 0 modN. On
the other hand, it is a well-known fact [3] that in the small-L
limit, the theory undergoes a deconfining phase transition
associated with the breaking of center symmetry. In this
regime, where perturbative analyses can be trusted because
of asymptotic freedom, Ref. [3] showed that the theory
produces a (GPY) effective potential, Vpert:½Ω�,

Vpert:½Ω� ¼ −
2

π2L4

X∞
n¼1

jtrΩnj2
n4

ð1þOðg2ÞÞ: ð2:5Þ

This result can be found by integrating out the Kaluza-
Klein modes at one-loop order. This potential is minimized
by Ω of the form Ω ¼ ωk1N for any integer k, suggesting
that the theory has N degenerate vacua related by the ZN
symmetry and describes a gluon plasma phase.
The basic idea behind R3 × S1 theories such as dYM is

to reenforce the stability of the ZN at small L by “flipping”
the shape of the GPY potential, so to speak. This can be
done in the most direct way by simply adding a “double-
trace” term to the YM action,

LdYM ¼ LYM þ Vdeformed½Ω�; ð2:6aÞ

where

Vdeformed½Ω� ¼
1

L4

XbN=2c

n¼1

anjtrΩnj2: ð2:6bÞ

But such a term is manifestly nonlocal, being defined in
terms of a nonlocal operator. It is also nonrenormalizable,
as it contains infinitely many irrelevant operators which
blow up uncontrollably in the UV. As such, such a
deformation of the theory may be considered problematic
to those with a philosophical preference for continuum

theories. We will return to address this objection later, and
focus on the effects of the double-trace deformation
potential on the IR theory for now.
The ZN symmetry is said to be preserved if and only if

the vacuum state of the theory satisfies htrΩni ¼ 0 for all
n ≠ 0 modN, so the coefficients an > 0 in Eq. (2.6b) must
each be chosen so as to dominate the dynamically gen-
erated Vpert:½Ω�. With the center symmetry stabilized, we
can remove the gauge redundancy of Ω by choosing a
diagonal representative from the class of physically equiv-
alent minima,

Ω ¼ ωð1−NÞ=2diagð1;ω;…;ωN−1Þ: ð2:7Þ

This choice is in fact unique, up to permutations of the
coefficients corresponding to Weyl reflections that can
also be gauged-fixed away by working in the (affine)
Weyl chamber. This allows us to write hΩi as a physically
meaningful expectation value despite its uncontracted
matrix indices.4

This vacuum expectation value (VEV) precipitates
a simulacrum of the Higgs mechanism in which the
A4 field plays the role of an adjoint Higgs field. The
gauge group generators left unbroken by hΩi form a
Cartan subalgebra t ⊂ suðNÞ, generating the maximal torus
Uð1ÞN−1 ⊂ SUðNÞ. The Higgs mechanism endows fields in
t⊥ [i.e., fields that carry charge under the Uð1ÞN−1] with an
effective mass ≥ 2π

NL ≡mW , the so-called Abelianization
scale.
We can now perform the path integral around the center-

symmetric vacuum. Working perturbatively, (the treatment
of the nonperturbative physics is left to Sec. II B) weak-
coupling ensures that the A4 fluctuations around hΩi, of
mass ≳ ffiffiffiffiffiffiffiffi

g2N
p

mW , can only effect small corrections to the
effective action. Weak coupling, in turn, is guaranteed by
the weak-coupling assumption mW ≫ Λ—meaning that all
dynamic charged fields can be safely integrated out before
the onset of strong coupling as we carry the theory towards
the infrared. When the dust settles, we are left with a
weakly-coupled Uð1ÞN−1 gauge theory containing no light
charged fields in its spectrum. In fewer words, everything
works out fine.
In settings where it is desirable to have a theory that

respects both locality and UV-completeness, and yet
preserve center symmetry at all scales, we can opt to have
Vdeformed½Ω� generated dynamically as well, by adding

3According to the modern viewpoint, this ZN belongs to a
class of “generalized” global symmetries, which act on operators
with nontrivial spatial extent. In this context, Eq. (2.4) defines the
symmetry [17].

4To be certain, the action of the center ZN in this gauge is, with
Ωi denoting the ith diagonal of Ω [13],

ZN∶ Ωi →

�
ωΩi−1 i ≠ 1;

ωΩN i ¼ 1:
ð2:8Þ

The cyclic permutation is necessitated by gauge-fixing to the
Weyl chamber.
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sufficiently light, or massless, S1-periodic adjoint fermions
λI to the theory [8], rather than inserting the deformation
potential “by hand.” In such a setting, the periodicity
requirement λIðxμ; x4Þ ¼ þλIðxμ; x4 þ LÞ prohibits a ther-
mal interpretation for the S1, which must therefore be taken
to be a spatial circle.
For the theory with 1 ≤ nf ≤ 5 Weyl fields5 of masses

mI indexed by 1 ≤ I ≤ nf, the dynamically generated
(GPY) effective potential is [5,10,18]

V½Ω� ¼ −
1

π2L4

X∞
n¼1

1

n4

�
2−

Xnf
I¼1

ðnLmIÞ2K2ðnLmIÞ
�
jtrΩnj2;

ð2:9Þ

where K2 is the modified Bessel function of order 2. It is
not hard to find constraints on the mI for each value nf that
stabilize the center-symmetric Ω in Eq. (2.7); see e.g.,
Ref. [18]. We also note in passing that the nf ¼ 1 potential
vanishes (in fact, to all perturbative orders) in the massless
case, and is center-unstable otherwise. This particular case
is known as super Yang-Mills (SYM), in which the UV
theory enjoys an exact N ¼ 1 supersymmetry, which
allows many aspects of its rich nonperturbative physics
to be calculated exactly. But SYM is outside of the scope
of this study, along with the massless QCD(adj), and we
henceforth only consider 2 ≤ nf ≤ 5 and mI > 0.
Assuming the fermion masses to be roughly equal, it

turns out that center stability requires mI ≲mW . In par-
ticular, this means that we can assume that the mI are
OðmWÞ so that the fermions disappear from the low-energy
theory, and the effective action can be written on R3 as

S3d ¼
Z
R3

XN
a;b¼1

κabFa
μνFb

μν þ ðA4 and higher-order termsÞ

ð2:10aÞ

for Abelian field strengths Fa
μν and R3 indices μ; ν ∈

f1; 2; 3g and Lie algebra indices a; b ∈ f1…Ng. There
is also a a neutral scalar field Aa

4 in the IR theory, which
descends from the Abelian part of A4 and corresponds to
the oscillations of the eigenvalues of Ω around the center-
symmetric VEV. But this field receives a ðmassÞ2 ∼ g2Nm2

W
correction from the GPY potential and can be integrated out
by moving the theory to still lower energies.
The quantity κab in Eq. (2.10a) is the quantum-corrected

photon coupling matrix,

κab ¼
m−1

W

16π

�
8π2

Ng2
δabþOð1Þ

�
; g2≡g2ð4π=LÞ; ð2:10bÞ

where in Eq. (2.10b), the gauge coupling is normalized
with respect to the L → ∞, mI → 0 limit

Λb0 ¼ μb0 exp

�
−

8π2

g2ðμÞN
�
; b0 ≡ 11 − 2nf

3
; ð2:11Þ

and b0 is the one-loop coefficient of the beta function of
ðg2NÞ−1 in that limit. As stated before, these corrections
have been calculated in previous studies for arbitrary N and
1 ≤ nf ≤ 5 in the limitmI ¼ 0. Our calculation generalizes
to the massive case, and is a new result. We also believe it to
be a nontrivial problem in terms of significance (as we will
argue in this section), as well as difficulty (which we will
demonstrate in the next section).

1. The one-loop corrections to κab
Compared to the writing out the matrix entries of κab

explicitly in the Cartan-Weyl basis, [given in Eq. (3.46)] it
is more enlightening to present its eigenvalues, κl,

XN
a;b¼1

κabFa
μνFbμν ¼

XN
l¼1

κlF̃l
μνF̃lμν; ð2:12aÞ

where

F̃l
μν≡ 1ffiffiffiffi

N
p

XN
a¼1

ω−laFa
μν; κl≡ 1

N

XN
a;b¼1

ωlða−bÞκab; ð2:12bÞ

where again ω ¼ ei
2π
N , so Eq. (2.12) are really just discrete

Fourier transforms in the indices a, b. Then, assuming
center-stabilizing fermion masses mI ,

6

κl ≡ 1

4
g−23;l

¼ m−1
W

16π

�
8π2

Ng2ðmWe−γÞ
þ
�
11 − 2nf

3

�
log

1

sin π l
N

þ 2

3

Xnf
I¼1

Wl

�
mI

mW

��
for 1 ≤ l ≤ N − 1: ð2:13Þ

Wl ¼ WN−l is an Oð1Þ pure function of the masses mI in
units of mW , which enjoys the following properties:

Wlð0Þ ¼ 0 for all integersl; ð2:14aÞ

5The theory loses asymptotic freedom for nf > 5.

6Please note that the l ¼ N mode must be excluded from the
spectrum as it corresponds to the trace of Fa

μν, (as can be seen
from the definition,) which is unphysical in our theory; it would
have been a physical mode if we had instead chosen our gauge
group to be UðNÞ.
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Wl

�
m
mW

�
→ log

�
mWe−γ

m sin π l
N

�
monotonically; as m=mW → ∞; ð2:14bÞ

Wl

�
m
mW

�
→ 0 as

l
N

→ 0; 1; ð2:14cÞ

Wlðτ0Þ < WlðτÞ < 0 for 0 < τ < τ0; ð2:14dÞ

WbN=2cðτÞ < Wl0 ðτÞ < WlðτÞ ≤ 0

for l < l0 < bN=2c; τ > 0: ð2:14eÞ

A plot ofWl as a function of
l
N for a few select values of

m is given in Fig. 1.
Equation (2.13) is written so that all the information

about the one-loop corrections due to the fermion masses is
encoded in the pure function Wl. In particular, Eq. (2.14d)
implies that the l ¼ 1 mode receives a vanishingly-small
mass correction in the N → ∞ limit; conversely,
Eq. (2.14e) implies the bN=2c mode receives the largest
mass correction. Equations (2.14a) and (2.14b) together
imply that κ1 ≥ κl ≥ κbN=2c for all mI and l. Note that in
order for our results to make sense, we must require
κbN=2c > 0; we will discuss the conditions that fulfill this
requirement later.
We present two analytic expressions for Wl with

different convergence properties; one expression holds
for m < mW, and the other, for m≳mW. The former of
these is

Wl

�
m
mW

�
¼

X∞
n¼1

ð−1Þnð2nÞ!
22nðn!Þ2

�
m
mW

�
2n

× ½ζð2nþ 1Þ − ReðLi2nþ1ðe2πilNÞÞ�
for ðm=mWÞ < 1; ð2:15aÞ

where ζ is the Riemann zeta function, and Lis is the
polylogarithm function of order s. This expression fails to
converge when m > mW

7; it is in this regime where our
second expression is more useful,

Wl

�
m
mW

�
¼ log

�
mWe−γ

m sin π l
N

�

þ
X∞
p¼1

�
2K0

�
2πp

m
mW

�

− K0

�
2π

�
p − 1þ l

N

�
m
mW

�

− K0

�
2π

�
p −

l
N

�
m
mW

��
: ð2:15cÞ

K0 is the modified Bessel function of order 0.
Equation (2.15b) is one-loop exact for all m, but it is
more useful at large m≳mW , where it may be very well-
approximated by the first term of the series, as K0ðtÞ ∼ e−t

at large t. Conversely, Eq. (2.15b) is less useful at small
m=mW as K0ðtÞ ∼ log t at small t.
Since Wl ≤ 0, the massive correction competes against

the massless-limit corrections encoded in the log-sine term.
Indeed, by taking mI ≫ mW , the Ith fermion decouples
from the theory,8 nf → ðnf − 1Þ, up to an overall renorm-
alization of g2N, or, equivalently, a redefinition of the
strong-coupling scale Λ.
We can also use Eq. (2.11) to define a “lattice-renor-

malized” ’t Hooft coupling λl,

1

λl
≡ b0 log

�
mWe−γ

Λ sin π l
N

�
for 1 ≤ l ≤ N − 1: ð2:16aÞ

Then assuming for convenience equal fermion masses
mI¼mλ for all I¼1…nf, and abbreviatingWlðmλ

mW
Þ ¼ Wl,

Eq. (2.13) can be written in a neater form,

κl ¼ m−1
W

16π

�
1

λl
þ 2nf

3
Wl

�
for 1 ≤ l ≤ N − 1: ð2:16bÞ

The dependence of κl on l
N is illustrated in Fig. 2 for a few

sample values ofmλ, for fixed nf ¼ 4 andmW ¼ e3Λ. Given
a fixed value of mW=Λ ¼ 2π

ΛNL ≫ 1, it is a straightforward

FIG. 1. A numerical plot of Wl as a function of l
N for some

select values of m, in units of mW . The graphs were plotted with
Eq. (2.15b) for m ¼ 1.0mW and m ¼ 1.2mW , and with (2.15a)
otherwise.

7Observing that the terms in the square brackets of (2.15a) are
absolutely bounded for all n ≥ 1, and that

ð2nÞ!
ðn!Þ222n ¼

1ffiffiffi
π

p Γðnþ 1
2
Þ

ΓðnÞ ; ð2:15bÞ

the root test gives a radius of convergence of ðm=mWÞ < 1.
8Assuming, of course, that the theory still remains in the

center-symmetric regime.
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exercise in numerical analysis to find constraints on mλ so
that κbN=2c > 0 in order for our result to make sense.
Conversely, ZN-stability requires that e.g., mλ ⪅ 1.08mW
for nf ¼ 4, and this bound can in particular be saturated by
takingmW=Λ ⪆ e3. On the other hand,ZN stability requires
mλ ⪅ 1.2mW for nf ¼ 5, and saturation of that bound would
require mW=Λ ⪆ e9, which is substantially larger.
Equations (2.13), (2.15a), and (2.15b) comprise the main

results of this paper; they are derived in detail in Sec. III,
with reference to some results from Appendix. The rest of
this section discusses how to interpret these results in the
context of the nonperturbative physics of dYM theory,
particularly with regards to the “emergent latticized dimen-
sion” of Ref. [16].

B. Review of dYM: Nonperturbative aspects

Let us now very quickly summarize the derivation of the
low-energy effective Lagrangian in dYM theory at leading
order in the semiclassical expansion. The basic idea is
essentially the same as Polyakov’s version of confinement
in the Georgi-Glashow (GG) model in (2þ 1) dimensions
[19], although there are crucial differences due to the
intrinsically four-dimensional nature of dYM theory. The
reader interested in a more detailed exposition is referred to
Refs. [4,20,21].
The contribution of the nonperturbative physics to the

path integral in a weakly-coupled Euclidean QFT can be
approximated to first exponential order by summing over
classical field configurations that are inundated by a “gas”
of weakly-interacting minimal-action instantons. This is the
so-called dilute-instanton gas approximation, and it is
applicable in dYM because weak coupling can be reliably
assumed to hold at all scales provided that NLΛ ≪ 2π.
In addition to a topological charge Q ∼

R
trF ∧ F ¼ 1

N,
the instantons of dYM theory carry a magnetic charge
(∼

R
F) under the Uð1ÞN−1—they are essentially ’t Hooft-

Polyakov monopoles, with A4 again standing in for the
adjoint Higgs field. In particular, we call them monopole-
instantons.

Among these, there are (N − 1) “BPS”9 monopoles, each
carrying a magnetic charge corresponding to a simple root
αi of the gauge group. In distinction to the three-dimen-
sional Polyakov model, in R3 × S1 theories there is also an
Nth “twisted,” or Kaluza-Klein, (KK) monopole, which
carries charge

P
N−1
i¼1 ð−αiÞ≡ αN , the affine root. In addi-

tion to these, there are also the antiparticles carrying charge
−αi. In a sense, the (N − 1) BPSþ KK monopole-instan-
tons can be thought of as the “dissociation” of the BPST
instanton in four-dimensional SUðNÞ Yang-Mills into N
subconstituents [22,23].
We unfortunately do not have exact expressions for

the monopole-instantons outside of the supersymmetric
nf ¼ 1; m ¼ 0 case, but as it turns out, they will not be
required as far as our presentation is concerned. We need
only know that these charged objects interact with a long-
range Coulombic interaction, and have a nonlinear “A4/
Higgs condensate” core of size ∼m−1

W . In addition, there is
also a “medium-range” (∼1=g

ffiffiffiffi
N

p
mW) Yukawa interaction

arising from A4=Higgs exchange.
Every insertion of a monopole-instanton in the path

integral comes with three translation zero modes and a
Boltzmann suppression factor e−S0 ∼ ðNLΛÞb0 ≪ 1, where
S0 ≈ 8π2

Ng2ðmWÞ is the one-monopole action. This means the

typical monopole-instanton separation d ∼ eS0=3 is much
greater than the monopole diameter ∼m−1

W , allowing us to
ignore the contribution from paths with overlapping
monopole-instanton cores. It also means that we can
ignore the effects of A4 exchange. The proliferation of
magnetic charges in the vacuum gives rise to a potential for
the photon. This potential which is most conveniently
described in terms of the dual photon σa, defined as

1

2
εμνρκabFa

μν ¼
1

16π
∂ρσ

b: ð2:17Þ

Written in terms of σa, the IR behavior of dYM theory is
described to first order in the semiclassical expansion, by
the 3d Lagrangian L3d;dual,

L3d;dual ¼
1

2ð8πÞ2 κ
−1
ab∂μσ

a
∂μσ

b þ ζ
XN
k¼1

½1− cosðσkþ1 − σkÞ�;

ð2:18Þ

where σNþ1 ≡ σ1, and κ−1ab is the inverse10 of κab, and ζ is
the monopole fugacity,

FIG. 2. A numerical plot of κl in units of
m−1

W
16π , as a function of

l
N

for some select values ofmλ, for nf ¼ 4 andmW ¼ e3Λ. The plot
diverges at l=N → 0, 1 (not depicted) due to the log-sine running
in 1

λl
.

9This is a common abuse of terminology; outside of the
supersymmetric case, the BPS bound cannot be saturated because
the “Higgs” potential V½Ω� cannot be set to zero. So, strictly
speaking we are expanding around “almost-BPS” configurations.

10Actually, it should be the pseudoinverse since the eigenvalue
corresponding to the l ¼ N mode diverges, but the difference is
immaterial since the l ¼ N mode is unphysical.
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ζ ≡ Am3
Wðg2NÞ−2e−8π2=Ng2ðmWÞ: ð2:19Þ

AðfmIg; nfÞ is an Oð1Þ preexponential factor.11 In the
Fourier basis, the 3d dual photon Lagrangian is, to
quadratic accuracy in the fields,

L3d;dual¼
XN−1

l¼1

�
κ−1l
ð8πÞ2 j∂μσ̃

lj2þζsin2
�
π
l
N

�
jσ̃lj2

�
þOðσ̃4Þ;

ð2:20Þ
where σ̃l is the discrete Fourier transform of σa,

σ̃l ≡ 1ffiffiffiffi
N

p
XN
a¼1

ω−laσa: ð2:21Þ

From this expression we can read off the dual-photon
masses squared,

m2
σ;l ∼ ζ sin2

�
π
l
N

�
κl: ð2:22Þ

Let us take ΛNL to be sufficiently small so that
2
3
nfλlWl ≪ 1 can be treated as a small correction for

all l. In that case, we can write a mass-corrected expres-
sion for the scaling behavior of the k-wall thicknesses.
Recalling (2.16a),

mσ;k

mσ;1
≈
sin π k

N

sin π
N

�
λ1
λk

�
1=2

�
1þ nf

3
ðλkWk − λ1W1Þ

�
: ð2:23Þ

The multiplicative sine factor is the expected tree-level
scaling behavior; the factor of ðλ1=λkÞ1=2 is due to the
one-loop corrections in the massless limit, and the factor
in the square brackets gives the massive correction.

The dependence of m2
σ;l on l in units of m2

σ;N=2 is
graphically depicted in Fig. 3.

1. Emergent dimension at large N: A 4d interpretation
of the mass correction

Let us now consider the large-N limit. To do this, we
simultaneously take N → ∞ and L → 0 whilst keeping NL
constant so as to stay inside the weak-coupling regime.12

This is known as the “Abelian large-N limit” [11]. In this
setup, we can treat l

N ∈ ½0; 1� as though it were on a
continuum, and the potential in Eq. (2.20) has an inter-
pretation as the kinetic energy on a latticized and compact
fourth dimension, with a quadratic (as opposed to quartic,
as is the case in SYM) dependence on a lattice momentum
py. But what is the scale of this momentum? Since the mass
gap for the dual photon m2

σ;1 vanishes in the large-N limit,
the only remaining mass scale to characterize the low-
energy theory is m2

σ;N=2 ≡mN=2, the (Debye) mass of the
heaviest dual photon,

mN=2 ∼mWλ
−3=2e−1=2λ; ð2:24aÞ

where

λ≡ Ng2ðmWÞ
8π2

≈ λN=2; ð2:24bÞ

up to small corrections. This allows us to define py;l as an
honest-to-goodness lattice momentum,

py;l ≡mN=2 sin

�
π
l
N

�
: ð2:25Þ

We can also read off the two-point function directly from
(2.20). Defining xM ≡ ðx⃗; yÞ, pM ≡ ðp⃗; pyÞ, and momen-
tarily disregarding the massive correction,Z

d4xeipMxMhσðxMÞσð0Þi ∼ ðλlp⃗2 þ λp2
yÞ−1: ð2:26Þ

We observe that there is a restored Lorentz symmetry which
is broken by an anomalous scaling dimension Δ ¼ b0λ
as λl ∼ pb0λ

y .
Put another way, the dual-photon coupling λl exhibits

logarithmic running in the lattice momentum py ∼ sinðπ l
NÞ,

py
d

dpy

�
1

λl

�
¼ py

d
dpy

�
b0 log

1

py
þ ðconstÞ

�
¼ −b0: ð2:27Þ

FIG. 3. A numerical plot of m2
σ;l=m

2
σ;N=2 as a function of l

N, for
nf ¼ 4 and mW ¼ e4Λ.

11As an aside, let us note that calculating the prefactor
AðfmIg; nfÞ is a highly nontrivial open calculation, and has
only been performed in the SYM case, first in [24], and later
corrected in [9,10]. This is because it involves matrix determi-
nants in a monopole-instanton background, for which we do not
even have an exact analytic expression, as mentioned. We make
no attempt to calculate A here.

12The ’t Hooft coupling g2N is under control in this limit, as
can be seen from Eq. (2.11).
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In particular, the scaling behavior is opposite to that of the
R4 theory [cf. Eq. (2.11)],

μ
d
dμ

�
1

λðμÞ
�

¼ þb0: ð2:28Þ

We can also show how this analogy can be extended to
encompass the mass-correction terms ∼Wl. The one-loop
correction to the coupling due to a single adjoint fermion
with mass m in an SUðNÞ theory on R4, renormalized at
some scale μ in the MS scheme is [cf. Eq. (3.38)]

Mfermion
R4 ðPÞ ¼ −2

Z
1

0

dx xð1 − xÞ log
�
P2xð1 − xÞ þm2

μ2

�

∼

(
− 2

3
logðPμÞ P2 ≫ m2;

− 2
3
logðmμÞ P2 ≪ m2;

ð2:29Þ

where x is a Feynman parameter. We can compare this with
our result of the contribution in the R3 × S1 theory, which
can be read off from (2.13),

Mfermion
R3×S1;l ¼ 2

3

�
log

�
sin π

l
N

�
þWl

�
m
mW

��

∼

(þ 2
3
log sinðπ l

NÞ mW ≫ m;

− 2
3
logð m

mW
Þ mW ≪ m:

ð2:30Þ

This result is consistent with our interpretation of py as a
momentum, with the mass correction behaving as we
should expect in the R4 theory, albeit with opposite
momentum-scaling behavior in py.

III. PERTURBATIVE ANALYSIS:
THEORY AND PRACTICE

The remainder of this paper mainly focuses on deriving
and calculating loop integrals and Matsubara sums. Our
approach is extremely straightforward—essentially identi-
cal to the analysis of a thermal gauge theory at temperatures
T ¼ 1=L, but for the fact that our S1 is spacelike rather than
timelike. This means, in particular for the fermions, that the
S1 momenta ωn assume integer values ωn ¼ 2πn

L , rather than
half-integer ωn ¼ 2π

L ðnþ 1
2
Þ. As the calculation is rather

involved, our presentation will try to go into as much detail
as we can without being overly cumbersome. For the
convenience of the reader, we will summarise the contents
of Secs. III A and III B at the end of their respective
sections.
Let us start by defining our notation. We will useM;N ∈

f1; 2; 3; 4g for Euclidean indices on R3 × S1, (with x4 the
coordinate on S1) and μ; ν ∈ f1; 2; 3g for indices on theR3.
We will use a; b; c; i; j; k ∈ f1;…Ng to denote Lie algebra
indices.

We also define the (over-complete) Cartan-Weyl basis
on suðNÞ,

ðHiÞab¼δiaδib¼diagð0;…; 1
z}|{i’th

;…;0Þ 1≤ i≤N; ð3:1aÞ

which span the Cartan subalgebra t. These are accompa-
nied by the raising and lowering operators spanning t⊥, the
orthogonal complement of t,

ðEβijÞab ¼ δaiδbj; ð3:1bÞ

for N-component vectors βij in the root lattice of suðNÞ,
which in our basis are written

βaij≡δai −δaj

¼ð0;… 1
z}|{i’th

;…; −1
z}|{j’th

;…;0Þ; 1≤ i≤ j≤N: ð3:1cÞ

Perhaps a bit idiosyncratically, we say that the subscripts on
βij are a set of antisymmetric indices labeling the roots of
suðNÞ: βij ¼ −βji, and the superscript a denotes its ath
vector component.
Eβij ; E−βij are respectively raising and lowering operators

for the suð2Þ subalgebra associated with the root βij,

½Hi;Hj�¼0; ½Hk;Eβij �¼βkijEβij ; ½Eβij ;E−βij �¼
X
k

βkijHk;

ð3:2aÞ

(no sums over i, j). We also have

E†
βij

¼ E−βij ¼ Eβji ; H†
k ¼ Hk: ð3:2bÞ

These generators are normalized as

tr½HiHj� ¼ δij; tr½EβE−β0 � ¼ δββ0 : ð3:2cÞ

In the interest of brevity, we will frequently abuse
notation and treat β as though it were the index on the
root space and omit the subscripts ij, as we have just done
above. To avoid confusion, there will be no implicit sum
over suðNÞ indices unless otherwise specified.
As a matter of convenience, we normalize the compo-

nents of suðNÞ-valued fields ψ as

ψðxμ; x4Þ ¼ 1

2

X
k

ψkðxμ; x4ÞHk þ
1ffiffiffi
2

p
X
β

ψβðxμ; x4ÞEβ;

ð3:3aÞ

obeying Hermiticity conditions,

ðψkÞ� ¼ ψk; ðψβÞ� ¼ ψ−β; ð3:3bÞ
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and constrained by a trace-free condition,

X
k

ψkðxμ; x4Þ ¼ 0; ð3:3cÞ

so that the expansion (3.3a) is unique although it is written
in terms of an overcomplete basis.

A. Formal setup: Beginnings

Let us start with a four-dimensional Euclidean SUðNÞ
gauge theory with non-Abelian field strength FMN and nf
two-component massive adjoint fermions λI . As we are
performing a perturbative calculation, the vacuum angle is
“invisible” to us, so we might as well set the fermion
masses to be real and the topological angle θ ¼ 0,

L4d ¼ tr

�
1

2g2
ðFMNÞ2 þ 2i

Xnf
I¼1

�
λ̄I _ασ̄

M _ααð∇MλIÞα

þmI

2
λIαλIβε

αβ þmI

2
λ̄I

_αλ̄I
_βε _α _β

��
: ð3:4Þ

∇M is the covariant derivative on adjoint-representation
fields

∇M ≡ ∂M þ i½AM; ·�; ð3:5Þ

and σ̄M ¼ ðiσ⃗; 12Þ are the Euclidean sigma matrices.
Formally integrating out the high-energy (≳mW) degrees

of freedom around the center-symmetric Ω gives us the
effective 3d Lagrangian, (2.10a).
We want to explicitly integrate out the high-energy

(≳mW) degrees of freedom to obtain the effective 3d
Lagrangian, (2.10a) to find the one-loop corrections to
κab, the photon-coupling matrix. The methods we use can
also be applied almost verbatim to find ρab, the corrected
scalar couplings, as well as Mab the scalar masses. Since
these are not as interesting to us, we simply quote their
Fourier-transformed results in Eqs. (3.55) and (3.56).
Following Abbott’s approach, (e.g., Ref. [25],) we use

an adapted background field gauge method to calculate
vacuum polarization. This is fairly standard textbook
material, but to review, first, we treat the suðNÞ-valued
gauge field AM as the sum of a “classical” background field
and a “quantum” high-frequency field,

AM ¼ AM|{z}
classical

þ gaM|{z}
quantum

: ð3:6Þ

The normalization is for convenience. We say that these
fields have two complementary expressions of gauge
symmetry for U; Ũ;R3 × S1 → SUðNÞ,

AM → UðAM þ i∂MÞU−1; aM → UaMU−1

ðgauge transformation underUÞ; ð3:7aÞ

aM → ŨðaM þ i∂MÞŨ−1; AM → ŨAMŨ−1

ðgauge transformation under ŨÞ: ð3:7bÞ

Anticipating a 3d and Abelian theory, we take AM to be
Abelian and trivial over x4, and call its field strength FMN ,

∂4AM ¼ 0; ½AM; AN � ¼ 0; ð3:8aÞ

FMN ≡ ∂MAN − ∂NAM: ð3:8bÞ

We want to fix the gauge under Ũ in order to integrate
out aM, which, as we will see, are basically W-bosons. To
do this, we would impose the condition

DMaM þ ig½aM; aM� ¼ 0; ð3:9aÞ

where DM is the “covariant derivative with connection
AM”,

DM ≡ ∂M þ i½AM; ·�; ð3:9bÞ

which can be done by adding a Gaussian term to the
Lagrangian,

ΔLa ¼ trð∇MaMÞ2; ð3:10Þ

and a Lagrangian Lc for scalar-yet-Grassmannian suðNÞ-
valued ghost fields c, c̄.
Since A4 has a nonzero VEV, we must write

A4 ≡ ϕ

L
þ A0

4; ð3:11aÞ

where ϕ is the (constant in xμ) VEV,

ϕ≡ −iL logΩ; ð3:11bÞ

and A0
4 represents the fluctuations around the VEV, but we

can mostly ignore A0
4 as it is Uð1ÞN−1-neutral and therefore

not involved in the corrections to κab at one-loop. Gauge-
fixing the center-symmetric Ω as in Eq. (2.7), ϕ has vector
components

ϕk ¼ π

N

X
β>0

βk ¼ 2π

N

�
N þ 1

2
− k

�
; ð3:12Þ

where the sum in Eq. (3.12) is over the positive roots. In
particular, this means
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ϕ · βij ¼
2π

N
ðj − iÞ: ð3:13Þ

All together, the gauge-fixed Lagrangian has the form

L ¼ Lcl|{z}
classical fields

þ La þ ΔLa|fflfflfflfflfflffl{zfflfflfflfflfflffl}
W-bosons

þ Lc|{z}
ghosts

þ Lλ|{z}
fermions

þOðℏ3Þ; ð3:14Þ

where La contains the ∼Aaa, AAaa terms upon expanding
L4d in terms of AM and aM, and similarly for Lc and Lλ.
We observe that by choosing AM to be Abelian, the
Abelian parts of each of the quantum fields a; λ; c; c̄ cannot
contribute to κab at one-loop order, so we may forget about
them altogether for the rest of this analysis.
Let us take any suðNÞ-valued field ψ and simultaneously

expand in the KK modes and the Cartan-Weyl basis,
recalling our convention as in Eq. (3.3a),

ψðxμ; x4Þ ¼ 1

2

X
k;z

ei
2πz
L x4ψk;zðxμÞHk

þ 1ffiffiffi
2

p
X
β;z

ei
2πz
L x4ψβ;kðxμÞEβ;

so that

iD4ψ ¼ 1ffiffiffi
2

p
X
z;β

ei
2πz
L x4

�
2πzþ ϕ · β

L

�
ψβEβ

þ ðAbelian andOðℏ2Þ partsÞ; ð3:15Þ

so asymptotically, the derivative operator iD4 diagonalizes
with eigenvalues

iD4 →
2πzþ ϕ · βij

L
; z integer; ð3:16Þ

so that fields in t⊥ with charge β and circle momentum
2πz=L of a field with mass m obtains an effective 3d
ðmassÞ2,

m2 þm2
W ½Nzþ ði − jÞ�2 ≥ m2

W: ð3:17Þ

Thus only Uð1ÞN−1-neutral and x4-trivial fields survive in
the IR theory at scales ≪ mW , consistent with our hypoth-
eses on AM.

1. Summary of Sec. III A

We outlined the background field approach to perturba-
tion theory. With an eye toward the infrared theory, we set
the background AM to be x4-trivial and Abelian, and
showed that only “quantum fields” proportional to the
broken gauge generators may contribute to the corrections

of κab at one-loop order. We further showed that this
assumption is self-consistent, because all fields with
nonvanishing x4 momentum or carrying charge under
the Uð1ÞN−1 acquire an effective mass ≥ mW through the
Higgs mechanism.

B. The one-loop Wilsonian action

We can write an expression for the Wilsonian effective
action Γ½A� by formally integrating out the quantum fields
under the path integral sign. Setting the vacuum energy
to zero,

Γ½A� ¼ − log

�Z
DaDc̄Dc

Ynf
I

ðDλ̄IDλIÞe−
R

L½A;c;λI ;a�
�

¼
Z
R3

�
L
4g2

ðFk
μνÞ2 þ

L
2g2

ð∂μAk
4Þ2

�
þ

X
s¼0;1

2
;1

X
fs

χðsÞTr logð−D2
ðsÞ þm2

fs;s
Þ

þ ðhigher loop contributionsÞ: ð3:18Þ

There is a lot of notation to define in Eq. (3.18), but it will
make life easier by formatting the problem so that the entire
nontrivial part of the calculation is contained in the single
expression “Tr logð−D2

ðsÞ þm2
fs;s

Þ”, which we will only

have to evaluate once to cover all the relevant cases, rather
than having to work with massive or massless, spinor,
scalar, and vector integrals separately.
“Tr” refers to the trace over the respective Hilbert spaces,

and −D2
ðsÞ is a differential operator defined in Eq. (3.21).

The terms on the third row of Eq. (3.18) are due to the
W-bosons a, (s ¼ 1,) the gauge ghosts c; c̄, (s ¼ 0,) and the
fermions λI (s ¼ 1=2). The s ¼ 1=2 term is obtained by
doubling then halving the trace-log of the massive Weyl
operator,

Xnf
I¼1

1

2
Tr logðiσ̄ ·Dþ imIÞ≡

Xnf
I¼1

1

4
Tr logð−D2

ð1=2Þ þm2
I Þ:

ð3:19Þ
P

fs is a sum over flavor indices I when s ¼ 1=2 and
m2

fs;s
¼ 0 for s ≠ 1=2. χðsÞ is a prefactor determined by the

statistics of each field,

χðsÞ≡
8<
:

−1 ðs ¼ 0Þ;
−1=4 ðs ¼ 1=2Þ;
þ1=2 ðs ¼ 1Þ:

ð3:20Þ

To define −D2
ðsÞ, let A, B denote indices in the spin-s

irrep of the (Euclidean) Lorentz group. Then
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ð−D2
sÞAB ¼ −DMDMδAB þ Fk

MNðHadj
k ÞðσðsÞMNÞAB

¼
�
ði∂μÞ2 þ

�
i∂3 þ

ϕk

L
ðHadj

k Þ
�

2
�
ðδðsÞÞAB

þ ðΣðsÞ
1 ÞAB þ ðΣðsÞ

2 ÞAB þ ðΣðsÞ
F ÞAB; ð3:21Þ

(with an implicit sum over k,) where ðHadj
k Þ≡ ½Hk; ·�, and

ðΣðsÞ
F ÞAB ≡ Fk

MNðHadj
k ÞðσðsÞMNÞAB; ð3:22aÞ

ðΣðsÞ
1 ÞAB ≡ −iAk

M ∂

↔MðHadj
k ÞðδðsÞÞAB; ð3:22bÞ

ðΣðsÞ
2 ÞAB ≡ ½Ak

MðHadj
k Þ�2ðδðsÞÞAB; ð3:22cÞ

(again, with an implicit sum over k). ΣðsÞ
1 and ΣðsÞ

2 are
respectively the 3- and 4-point interactions of a charged

adjoint field, and ΣðsÞ
F is the spin-field coupling term

responsible for asymptotic freedom in non-Abelian theories.

δðsÞ and σðsÞMN are respectively the identity matrix and the
generators of rotations in the spin-s representation.
Explicitly, (and abusing notation slightly by mixing indices)

ðσðsÞMNÞAB ¼

8>><
>>:

0 ðs¼ 0Þ;
i
4
ðσ̄½MσN�ÞAB ðs¼ 1=2Þ;

−iðδAMδNB−δANδMBÞ ðs¼ 1Þ:
ð3:23Þ

so the one-loop correction to the Wilsonian can be written,
to quadratic order in AM, as

Trlog

�
−D2

sþm2
s

−∂2þm2
s

�
¼Tr

�
ΣðsÞ
2

−∂2þm2
s

�

−
1

2
Tr

��
ΣðsÞ
1

−∂2þm2
s

�
2

þ
�

ΣðsÞ
F

−∂2þm2
s

�
2
�

þOðA3Þ: ð3:24Þ

There is no ∼ΣFΣ1 cross-term because the trace of σðsÞMN
vanishes. Expanding in a Fourier basis to quadratic order in
the fields, Eq. (3.18) becomes

Γ½Ak
M;μ� ¼ 2

X
a;b

Z
d3p
ð2πÞ3

�
Aμaκabðp2δμν−pμpνÞAνb

þAa
4

�
p2ρabþ

L
2g2

M2
ab

�
Ab
4

�
þOðA3Þ: ð3:25Þ

We note in passing that the GPY potential V½Ω� still appears
in Eq. (3.25) through M2

ab, its second derivative.
Now we are ready to draw some Feynman diagrams. Let

pM ¼ ðpμ; 0Þ denote the external momentum of AM, and
for convenience, define an effective loop-momentumKM

ðβ;zÞ,

KM ≡ KM
ðβ;zÞ ≡

�
kμ;

2πzþ ϕ · β
L

�
: ð3:26Þ

Using Equations (3.22a), (3.22b), (3.22c), and (3.24) and
reading off from (3.25), we can write down the corrections
to the ∼Aa

MA
b
N term in the action,

ðΠðsÞ
2 ÞabMN ≡ 1

2

δ2

δAa
MδA

b
N
Tr

�
ΣðsÞ
2

−∂2 þm2
s

�

¼ 1

L

X
z;β

Z
d3k
ð2πÞ3 dðsÞβ

aβbδMN

×

�
1

ðK2 þ Δ2
sÞ

þ ð1 − 2xÞ2p2

2ðK2 þ Δ2
sÞ2

�
; ð3:27aÞ

ðΠðsÞ
1 ÞabMN ≡1

2

δ2

δAa
MδA

b
N

�
−
1

2
Tr

�
ΣðsÞ
1

−∂2þm2
s

�
2
�

¼−
1

L

X
z;β

Z
d3k
ð2πÞ3

1

2
dðsÞβaβb

×
Z

1

0

dx
4KMKN þð1−2xÞ2pMpN

ðK2þΔsÞ2
; ð3:27bÞ

ðΠðsÞ
F ÞabMN ≡ 1

2

δ2

δAa
MδA

b
N

�
−
1

2
Tr

�
ΣðsÞ
F

−∂2 þm2
s

�
2
�

¼ −
1

L

X
z;β

Z
d3k
ð2πÞ3 cðsÞβ

aβb

×
Z

1

0

dx
2ðp2δMN − pMpNÞ

ðK2 þ ΔsÞ2
: ð3:27cÞ

FIG. 4. Representations of the loop integrals in Eq. (3.27) in terms of Feynman diagrams (a–c). The ΣF vertex is distinguished from the
Σ1 vertex with a (red) dot.
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These integrals are pictorially represented by the
Feynman diagrams in Fig. 4. In each of the integrals above
we have employed a Feynman parameter x, and shifted our
loop momentum KM → KM − xpM. We have also defined
an effective ðmassÞ2, Δs [not to be confused with the 3d
effective ðmassÞ2 in Eq. (3.17)]

Δs ≡m2
s þ p2xð1 − xÞ; ð3:28Þ

We have further defined dðsÞ, the number of spin states
in the spin-s representation, and cðsÞ, the spin-field
coupling coefficient,13

dðsÞ≡ trðδðsÞÞ ¼
8<
:

1 ðs ¼ 0Þ;
4 ðs ¼ 1=2Þ;
4 ðs ¼ 1Þ;

cðsÞ≡ trðσðsÞMNσ
ðsÞMNÞ ¼

8<
:

0 ðs ¼ 0Þ;
1 ðs ¼ 1=2Þ;
2 ðs ¼ 1Þ;

ð3:29Þ

where the traces are over the spin indices, which we have
omitted. The rest of our report will be largely concerned
with evaluating these three integrals.

1. Summary of Sec. III B

We introduced some formal notation to write down
the one-loop effective action in a more compact form,

Eq. (3.18). This allowed us to write the integrals of each of

a, λ, c in terms of the loop integrals ΠðsÞ
2 , [Eq. (3.27a)] ΠðsÞ

1 ,

[Eq. (3.27b)], and ΠðsÞ
F [Eq. (3.27c)]. As we will see, the

evaluation of these integrals are by no means a trivial task,
but we will make them much more tractable with a handful
of clever manipulations.

C. Outline of the calculation

We have written the integrals in (3.27) to superficially
respect the Euclidean Lorentz group SOð4Þ, but to evaluate
them we must rewrite (3.27) to reflect the broken rotational
symmetry SOð4Þ → SOð3Þ. Symmetry considerations tell
us that averaging KMKN must give

ðKMKNÞðβ;zÞ ¼
k2

3
δμνP

μν
MNþ

�
2πzþϕ ·β

L

�
2

P44
MN; ð3:30aÞ

where Pμν
MN and P44

MN are projection operators toR3 and S1,
respectively

Pμν
MN ≡ δμMδ

ν
N; ð3:30bÞ

P44
MN ≡ δ4Mδ

4
N: ð3:30cÞ

Integrating over the angular coordinates and summing the
three graphs in Eq. (3.27), we get

ðΠðsÞÞabμν ≡
X

I¼2;1;F

ðΠðsÞ
I Þabμν

¼
X
z;β

βaβb
Z

1

0

dx
Z

∞

0

dðkLÞ
2π2

ðkLÞ2
��ð1 − 2xÞ2

2
dðsÞ − 2cðsÞ

�
ðp2δμν − pμpνÞS1ðb;ωsLÞ

þ dðsÞ
L2

δμν

�
S0ðb;ωsLÞ −

2

3
ðkLÞ2S1ðb;ωsLÞ

��
: ð3:31aÞ

We also write out the (44) part, which are needed to renormalize

ðΠðsÞÞab44 ≡
X
I

ðΠðsÞ
I Þab44

¼
X
z;β

βaβb
Z

1

0

dx
Z

∞

0

dðkLÞ
2π2

ðkLÞ2
��ð1 − 2xÞ2

2
dðsÞ − 2cðsÞ

�
p2S1ðb;ωsLÞ

þ dðsÞ
L2

½S0ðb;ωsLÞ − 2S2ðb;ωsLÞ�
�
; ð3:31bÞ

where ðΠðsÞÞabμν and ðΠðsÞÞab44 are defined in the obvious way

ðΠðsÞÞabMN ≡ ðΠðsÞÞabμνPμν
MN þ ðΠðsÞÞab44P44

MN; ð3:31cÞ

13Note that dð1=2Þ ¼ 4 for us, because we doubled the number of polarizations in Eq. (3.19); this is already compensated for by an
additional factor of 1=2 in front of the fermion determinant in Eq. (3.18).
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and we have also defined

ωs ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ Δs

q
; b≡ ϕ · β; ð3:31dÞ

and dimensionless sums over the KK modes, S0;1;2,

S1ðb;ωLÞ≡
X
n∈Z

1

½ð2πnþ bÞ2 þ ðωLÞ2�2 ;

S2ðb;ωLÞ≡
X
n∈Z

ð2πnþ bÞ2
½ð2πnþ bÞ2 þ ðωLÞ2�2 : ð3:31eÞ

The third sum, S0, is a standard result. It can be evaluated
exactly by e.g., Matsubara summation,

S0ðb;ωLÞ≡
X
n∈Z

1

ð2πnþ bÞ2 þ ðωLÞ2

¼ 1

2ωL
þ 1

2ωL
Re

�
1

eLωþib − 1

�
≡ Ivac0 ðωLÞ þ δI0ðb;ωLÞ: ð3:31fÞ

where we have defined a function Ivac0 ≡ 1
2ωL that

falls off as a negative power in ωL, and another,
δI0 ≡ 1

2ωLReð 1
eLωþib−1Þ, that falls off exponentially.

Since the summand of S0 is monotone decreasing in jnj,
differentiation commutes with summation, so S1;2 can
be trivially evaluated by taking derivatives of both sides
of Eq. (3.31f),

S1ðb;ωLÞ ¼ −
∂

∂ðωLÞ2 S0ðb;ωLÞ

≡ Ivac1 ðωLÞ þ δI1ðb;ωLÞ; ð3:32aÞ

S2ðb;ωLÞ ¼
∂

∂ðωLÞ2 ½ðωLÞ
2S0ðb;ωLÞ�

≡ Ivac2 ðωLÞ þ δI2ðb;ωLÞ; ð3:32bÞ

where Ivac1;2 . and δI1;2 are defined in terms of derivatives of
Ivac0 . and δI0, respectively, in the obvious ways as suggested
by the notation. The point is that we can split the integrals
in Eq. (3.31a),

ðΠðsÞÞabμν ¼ ðΠðsÞ;vacÞabμν þ ðδΠðsÞÞabμν ; ð3:33Þ

by collecting the Ivac0;1;2. terms into ðΠðsÞ;vacÞabμν , and the δI0;1;2
terms into ðδΠðsÞÞabμν , and similarly for ðΠðsÞÞab44. We will call
these the vacuum integral and pseudothermal integral
contributions respectively, and we consider them separately
in the following.

The basic idea is this. We can see by the asymptotics that
the ðΠðsÞ;vacÞabMN integrals remain unchanged in the L → ∞
limit. This means we can evaluate those integrals in terms
of the familiar loop integrals in R4, in a way we show
explicitly. Obviously these integrals are UV divergent, but
they can be renormalized in the MS scheme in the usual
way. On the other hand, the SOð4Þ-breaking, L-dependent
parts of ðΠðsÞÞabMN are contained entirely within ðδΠðsÞÞabMN ;
the exponential decay of the δI0;1;2 means that the inte-
grands of ðδΠðsÞÞabμν are uniformly convergent in kL. Then
we may use the identities (3.32a) and (3.32b) to integrate
by parts in kL and obtain a much more tractable expression.

1. The vacuum integrals

We can evaluate the loop integrals in ΠðsÞ;vac. by
“undoing” an integral over an auxiliary continuous variable
k4. For example, (defining ω≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ Δ
p

for positive Δ)

Z
d3k
ð2πÞ3 LI

vac
0 ¼

Z
d3k
ð2πÞ3

1

2ω

¼
Z

d3k
ð2πÞ3

Z
∞

−∞

dk4
2π

1

ðk4Þ2 þ k2 þ Δ
;

thus mapping the integral over k ∈ R3 to one over k̃ ∈ R4.
Then we regulate the expression by taking the analytic
continuation to d≡ 4 − ε dimensions. In summary,

Z
dk
2π2

k2LIvac1 → μ−ε
Z

ddk̃
ð2πÞd

1

ðk̃2 þ ΔÞ2 ; ð3:34aÞ

Z
dk
2π2

k2L3Ivac2 → μ−ε
Z

ddk̃
ð2πÞd

ðk4Þ2
ðk̃2 þ ΔÞ2 ; ð3:34bÞ

Z
dk
2π2

k2LIvac0 → μ−ε
Z

ddk̃
ð2πÞd

1

ðk̃2 þ ΔÞ : ð3:34cÞ

The expressions on the lhs are the relevantR3 integrals, and
μ is the MS scale of the theory. “→” means “analytically
continues to”. On the other hand, we also have the
following series of relations under the integral sign,

k̃2

d
δMN jRd ≡ ðk̃Mk̃NÞjRd ← ½ðkμkνÞPμν

MN þ ðk4Þ2P44
MN �jR3×S1

¼
�
k2

3
Pμν

MNδμν þ ðk4Þ2P44
MN

�
jR3×S1 ; ð3:35Þ

where P44
MN and Pμν

MN are the projectors defined in (3.30b)
and (3.30c). Combining these expressions, the vacuum
integrals can be rewritten as integrals in d ¼ ð4 − εÞ
dimensions by restoring the SOð4Þ symmetry,
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ðΠðsÞ;vacÞabMN ≡X
I

ðΠðsÞ;vac:
I ÞabMN

¼
X
β

βaβb
Z

1

0

dx
Z

ddk̃
ð2πÞd

μ4−d

ðk̃2 þ ΔsÞ2
��

d − 2

2
k̃2 þ Δs

�
dðsÞδMN

þ
�ð1 − 2xÞ2

2
dðsÞ − 2cðsÞ

�
½ðp2δμν − pμpνÞPμν

MN þ p2P44
MN �

�
: ð3:36Þ

Expanding in powers of 1 ≫ ε > 0, it is easy to regulate the k̃ integral to get a convergent result. The (Abelian part of the)
UV counterterm, δZstrFMNFMN , contributes diagrammatically,

ð3:37aÞ

So, for each s we choose

−δZs ≡ 1

32π2

�
dðsÞ
3

− 4cðsÞ
��

2

ε
− γ þ log 4π

�
; ð3:37bÞ

and the sum of the three regulated vacuum integrals is
therefore

ðΠ̃ðsÞ;vacÞabMN ≡ ðΠðsÞ;vacÞabMN þ ðcountertermsÞ

¼
X
β

βaβb

32π2

Z
1

0

dx½dðsÞð1− 2xÞ2 − 4cðsÞ�

× ½ðp2δμν −pμpνÞPμν
MN þp2P44

MN � log
�
μ2

Δs

�
:

ð3:38Þ
2. The pseudothermal integrals

Now we consider the pseudothermal integrals. Using
Eqs. (3.32a) and (3.32b), we can simplify the loop integrals
immensely by integrating by parts by changing variables

∂

∂ðωLÞ2 ¼ 1
2kL

∂

∂ðkLÞ. We find that all boundary terms vanish,

and the results are, in summary,Z
∞

0

dðkLÞðkLÞ2δI1ðb;ωLÞ ¼
1

2

Z
∞

0

dðkLÞδI0ðb;ωLÞ;

ð3:39aÞ
Z

∞

0

dðkLÞðkLÞ4δI1ðb;ωLÞ¼
3

2

Z
∞

0

dðkLÞðkLÞ2δI0ðb;ωLÞ;

ð3:39bÞ
Z

∞

0

dðkLÞðkLÞ2δI2ðb;ωLÞ

¼ −
1

2

Z
∞

0

dðkLÞðωLÞ2δI0ðb;ωLÞ: ð3:39cÞ

Plugging into Eqs. (3.31a) and (3.31b), the pseudothermal
integrals may be written

ðδΠðsÞÞabμν ¼
X
β

βaβb

8π2

Z
1

0

dx½dðsÞð1 − 2xÞ2 − 4cðsÞ�

× ðp2δμν − pμpνÞRb
0ð

ffiffiffiffiffiffi
Δs

p
LÞ; ð3:40Þ

where we have defined14

Rb
0ð

ffiffiffiffi
Δ

p
LÞ≡

Z
∞

0

dðkLÞ ·δI0


b;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkLÞ2þΔL2

q �
¼
Z

∞

0

dðkLÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkLÞ2þΔL2

p Re

�
1

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkLÞ2þΔL2

p
þib−1

�

¼
X∞
n¼1

K0ðn
ffiffiffiffi
Δ

p
LÞcosðnϕ ·βijÞ; ð3:41Þ

where K0 is the modified Bessel function of order 0. This
represents the only remaining nontrivial sum, as far as the
corrections to κab are concerned. We have not given an
expression for ðδΠðsÞÞab44 as it is not needed to find κab.
Summing the result with the vacuum contribution,

ðΠðsÞ;vacÞabμν þ ðδΠðsÞÞabμν þ ðcountertermsÞ

¼ ðp2δμν − pμpνÞ
8π2

Z
1

0

dx½dðsÞð1 − 2xÞ2 − 4cðsÞ�

×

�
Rab

0 ð
ffiffiffiffiffiffi
Δs

p
LÞ þ δabN log

μffiffiffiffiffiffi
Δs

p
�
; ð3:42Þ

where we have defined

14The integral in the second line can be carried out by

expanding in series in je−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkLÞ2þΔL2

p
−ibj < 1.
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Rab
0 ð

ffiffiffiffi
Δ

p
LÞ≡X

i;j

βaijβ
b
ijR

ϕ·βij
0 ð

ffiffiffiffi
Δ

p
LÞ

¼
X
i;j

βaijβ
b
ij

X∞
n¼1

K0ðn
ffiffiffiffi
Δ

p
LÞ cosðnϕ · βijÞ:

ð3:43Þ

In Appendix A 1 we explicitly show that

Rb
0ð

ffiffiffiffi
Δ

p
LÞ ¼ 1

2
log

ffiffiffiffi
Δ

p
L

4π
þ R̃b

0ð
ffiffiffiffi
Δ

p
LÞ; ð3:44Þ

where R̃b
0ðtÞ is a pure function that has a power series

expansion around t ¼ 0 for fixed b ∈ ð0; 2πÞ. We know
that Eq. (3.44) must be true because the running of
the coupling g2 must freeze out at scales below mW.
Equation (3.44) allows us to disregard the p2 dependence
in Rb

0ð
ffiffiffiffi
Δ

p
LÞ as higher-derivative corrections, and inte-

grate over the Feynman parameter x trivially. Recalling
Eqs. (3.29) and (3.20),

X
s¼0;1

χðsÞ
�
4cðsÞ − dðsÞ

3

�
¼ 11

3
; ð3:45aÞ

and

χð1=2Þ
�
4cð1=2Þ − dð1=2Þ

3

�
¼ −

2

3
; ð3:45bÞ

we have

κab ¼
m−1

W

16π

�
8π2

Ng2ð4πL Þ
δab þ

1

N

X
i;j

βaijβ
b
ij

�
11

3
R̃
ϕ·βij
0 ð0Þ

−
2

3

Xnf
I¼1

R̃
ϕ·βij
0 ðmILÞ

��
: ð3:46Þ

An expression for R̃
ϕ·βij
0 ðtÞ is derived in Eq. (A17). All that

remains now is to diagonalize Eq. (3.46).

D. The sums over β: Linear algebra
on the root lattice

Let us consider the sums over the root vectors β. It is not
hard to show by standard Fourier analysis that, for any
integer n,

Cab
n ≔

X
i;j

βaijβ
b
ij cos

�
2π

N
nði − jÞ

�

¼ 2ðNδN≡nδ
ab − 1Þ cos

�
2π

N
nða − bÞ

�
; ð3:47Þ

where

δn≡k ¼
�
1 n≡ k;

0 n ≢ k:
ð3:48Þ

The relation “≡” is to be understood here as equality in the
mod N sense (we instead use “≔” to denote “is defined to
be” for this subsection).
The matrix in Eq. (3.47) is diagonalized by the (trace-

free) eigenvectors ul with vector components

ðulÞb ≔ ei
2π
Nlb; 1 ≤ l ≤ N − 1; ð3:49Þ

and have eigenvalues indexed by l,

XN
b¼1

Cab
n ðulÞb ¼ Nð2δn≡N − δn≡l − δn≡N−lÞðulÞa: ð3:50Þ

Plugging Eq. (3.50) into Eq. (3.43), and recalling
mW ¼ 2π

NL, we can read off the eigenvalues R0l of Rab
0 ,

R0lðmLÞ¼N
X∞
p¼1

�
2K0

�
2πp

m
mW

�
−K0

�
2π

�
p−

l
N

�
m
mW

�

−K0

�
2π

�
p−1þ l

N

�
m
mW

��
: ð3:51Þ

When m≳mW , this series is very well-approximated by
the p ¼ 1 term. However, some extra work is needed to
extract information about the m ≪ mW case. In
Appendix A 2, we perform the sum over p by taking the
Mellin transform and find [cf. Eq. (A24)]

R0lðmLÞ¼N

�
γþ log

m
mW

sinπ
l
N
þWl

�
m
mW

��
; ð3:52aÞ

where, as mentioned before, Wl is an Oð1Þ function such
that Wlð0Þ ¼ 0, and has a power series expansion for
τ≡ ðm=mWÞ < 1,

WlðτÞ ¼
X∞
n¼1

ð2nÞ!
ðn!Þ2

�
iτ
2

�
2n
½ζð2nþ 1Þ − ReðLi2nþ1e2πi

l
NÞ�;

τ < 1: ð3:52bÞ

This is exactly Eq. (2.15a), and Eq. (2.15b) follows directly
from Eqs. (3.51) and (3.52a). Putting everything together,
we finally obtain Eq. (2.13),

κl¼
m−1

W

16π

�
8π2

Ng2ðmWe−γÞ
þb0 log

1

sinπ l
N

þ2

3

Xnf
I

Wl

�
mI

mW

��
;

1≤l≤N−1: ð3:53Þ

Note that although heretofore the fermion masses only
appeared in the combination mL, Eqs. (3.52a) and (3.53)
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suggest that they are in fact more naturally measured in
units of mW , as we should expect.
On the other hand, the 44 parts of the integrals also give

us M2
ab, the scalar ðmassÞ2 matrix. Omitting the intermedi-

ate steps,

M2
ab ¼ g2

X
β

X∞
n¼1

βaβb

4π2L2

�Xnf
I

ðmILÞ2K2ðnmILÞ −
2

n2

�
× cosðnβ · ϕÞ; ð3:54Þ

where K2 is the modified Bessel function of order 2. This
matches the result from taking the second derivative of
the GPY potential, (2.9), which serves as a “sanity check”
on our calculations. For completeness, we present M2

l, the
physical scalar ðmassesÞ2,

M2
l ¼ g2Nm2

W

�Xnf
I

Fl

�
mI

mW

�
− Flð0Þ

�
; ð3:55aÞ

where

FlðτÞ≡ τ2

4π2
X∞
p¼1

�
K2

�
2π

�
p − 1þ l

N

�
τ

�

þ K2

�
2π

�
p −

l
N

�
τ

�
− 2K2ð2πpτÞ

�
: ð3:55bÞ

We also present ρl, the eigenvalues of ρab,

ρl ¼ κl þ
m−1

W

96π

�
1 −

Xnf
I

Xl

�
mI

mW

��
; ð3:56aÞ

where Xl is an Oð1Þ function defined in terms of Wl,

XlðτÞ ¼ 1þ 4τ2
d
dτ2

WlðτÞ: ð3:56bÞ

Equations (3.55) and (3.56) are only presented for
completeness, although they may be found without too
much difficulty using the methods described in this paper.

IV. FUTURE DIRECTIONS

In this study we have derived an explicit one-loop
expression for the eigenvalues of κab, the polarization
operator of the SUðNÞ dYM theory with massive fermions,
and provisionally surveyed some properties of the emergent
fourth dimension. It would be interesting to numerically
examine the effect of these one-loop corrections on the
k-string tensions, (as was done for SYM in Ref. [26],) but
to do so would require us to compute the matrix determi-
nants in the monopole measure, ζ—a daunting task (see the
discussion in Footnote 11).

Additionally, the topological angle θ dependence in
Yang-Mills theory has been the subject of much attention
[27–31]; we should also like to examine the dependence of
the k-string tensions on the topological angle θ as well as on
the circle length L, at the tree-order level, to compare
against results on the lattice.
Finally, we would also like to further study the confining

properties of dYM outside of the calculable regime,
NLΛ ≫ 1 and its conjectured continuity with the small
NLΛ regime, on the lattice.
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APPENDIX: THE MELLIN TRANSFORM,
AND SOME RESULTS

In this appendix we explicitly evaluate the sums over p
in (3.51) to obtain an expression for κl in terms of analytic
functions. To this end, we introduce the Mellin transform,
an integral transform on real-valued functions.
Definition A.1. The Mellin transform M is an integral

transform defined on the space of real integrable functions
f∶ Rþ → R as

φðsÞ≡Ms½fðtÞ�≡
Z

∞

0

dtts−1fðtÞ: ðA1aÞ

In particular, for each λ > 0,

Ms½fðλtÞ� ¼ λ−sMs½fðtÞ�: ðA1bÞ

The inverse transform M−1 is, formally,

fðtÞ ¼ M−1
t ½φðsÞ� ¼ 1

2πi

Z
cþi∞

c−i∞
dst−sφðsÞ; ðA1cÞ

where c is some real number chosen so that the integral in
(A1c) converges (see Sec. 2.5 of [32]). Usually what this
means is to take the sum over the residues of the poles of
φðsÞ on the real half-line, s ∈ ð−∞; c�. To illustrate with a
simple example, let us compute the Mellin transform of
fðtÞ ¼ e−t, and its inverse.
Example A.1. Directly from the definition,

Ms½e−t�≡
Z

∞

0

dtts−1e−t ¼ ΓðsÞ: ðA2Þ

Now consider the inverse transform. Since ΓðsÞ has
poles at s ¼ 0;−1;−2…, we evaluate the integral by
limiting the integration contour c → 0þ and closing the
contour over the ReðsÞ < 0 half-plane. The integral over
the arc goes to zero at large radius, so
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lim
c→0þ

1

2πi

Z
cþi∞

c−i∞
dst−sΓðsÞ ¼

X∞
n¼0

res
s
ðt−sΓðsÞ;−nÞ

¼A:4 ð−tÞ
n

n!
¼ e−t; ðA3Þ

as expected, because near the poles of ΓðsÞ,

ΓðsÞ ¼ ð−1Þn
n!

½ðsþ nÞ−1 þ ψ ð0Þð1þ nÞ� þOðsþ nÞ;
n ¼ 0; 1; 2… ðA4Þ

where ψ ð0ÞðzÞ≡ d
dz logðΓðzÞÞ is the polygamma function (of

order 0).

1. Proof of equation (3.44)

We are now prepared to prove Eq. (3.44) and derive a
series expression for R̃b

0. The idea is to perform the sums
over n in “Mellin space,” then transform back to “mass
space” to obtain a series expansion in t. Like in Example
A.1, the inverse transform involves evaluating the residue
of a chain of poles on the real axis.
To begin, we observe the Mellin transform of the

modified Bessel function of order ν, Kν, is known to
be [33,35]

Ms½KνðtÞ� ¼ 2s−2Γ
�
sþ ν

2

�
Γ
�
s − ν

2

�
: ðA5Þ

Plugging this into Eq. (3.41),

Ms½Rb
0ðtÞ� ¼

X∞
n¼1

Ms½K0ðntÞ� cosðnbÞ

¼A:1b 2s−3Γ
�
s
2

�
2X∞
n¼1

n−sðeinb þ e−inbÞ

¼A:7 2s−3Γ
�
s
2

�
2

ðLiseib þ Lise−ibÞ; ðA6Þ

where Lis is the polylogarithm function of order s,

X∞
k¼1

eikb

ks
¼ Liseib; b real; s > 0: ðA7Þ

Changing back to the original variable t,

Rb
0ðtÞ ¼ M−1

t Ms½Rb
0ðt0Þ�

¼ 1

2πi

Z þi∞þc

−i∞þc
dst−s2s−3Γ

�
s
2

�
2

ðLiseib þ Lise−ibÞ:

ðA8Þ

Note that the integral in Eq. (A8) is over the order s of the
polylogarithm, rather than its argument. As in Example A.1,
we can evaluate this integral by letting the integration contour
approach the imaginary axis from the right, c → 0þ, and
close the contour over the half-plane ReðsÞ ≤ 0. The poly-
logarithm terms are regular for all s for real 0 < b < 2π, so
we are left with the residues from the chain of poles at
s ¼ 0;−2;−4…, where the gamma function diverges.
Unfortunately, the poles of Γðs=2Þ2 are of order 2, so

evaluating the residues with the integrand of (A8), as is,
would involve the expression d

dsLise
ib, which produces a

result that is even more opaque than our original expression.
However, a known identity [see Eq. (25.13.3) in [32]]

relates the polylogarithms to the Hurwitz zeta function, ζ,

i−sLisðeibÞ þ isLisðe−ibÞ ¼
ð2πÞs
ΓðsÞ ζ

�
1 − s;

b
2π

�
;

0 < b < 2π: ðA9Þ

Where ζðz; xÞ satisfies,

ζðz; xÞ ¼
X∞
n¼1

ðnþ xÞ−z; ReðsÞ> 1 and x ≠ 0;1;2.…

ðA10Þ

We can sum the expression in Eq. (A9) with b → 2π − b
and divide by ðis þ i−sÞ to rewrite the integrand of (A8) as

t−sMs½Rb
0ðt0Þ� ¼A:8 2−3Γ

�
s
2

�
2

ðLisðeibÞ þ Lisðe−ibÞÞ
�
t
2

�
−s

¼A:9 2−4

ð1þ i−2sÞ
Γðs

2
Þ2

ΓðsÞ
�
it
4π

�
−s

×

�
ζ

�
1 − s;

b
2π

�
þ ζ

�
1 − s; 1 −

b
2π

��
:

ðA11Þ

This is helpful because the factor of ΓðsÞ−1 in Eq. (A9)
reduces the order of the poles by one, and the zetas in the
parentheses in Eq. (A11) are regular except at s ¼ 0, so the
poles at s ¼ −2;−4;−6… are simple.

a. The residue at s= 0

Near s ¼ 0, the zeta terms diverge like 1=s,

ζ

�
1 − s;

b
2π

�
þ ζ

�
1 − s; 1 −

b
2π

�

¼ −
2

s
− ψ ð0Þ

�
b
2π

�
− ψ ð0Þ

�
1 −

b
2π

�
þOðsÞ: ðA12Þ

So we must also look at the series expansion of the regular
terms in (A11) near s ¼ 0,
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ð1þ i−2sÞ−1
�
it
4π

�
−s

¼ 1

2
−
1

2
log

t
4π

sþOðs2Þ: ðA13Þ

Combining Eqs. (A12), (A13), and (A4), we find our
famous logarithmic term

res
s
ðt−sMs½Rb

0�; 0Þ

¼ 1

2
log

t
4π

−
1

4

�
ψ ð0Þ

�
b
2π

�
þ ψ ð0Þ

�
1 −

b
2π

��
: ðA14Þ

b. The residues at s= − 2;− 4;− 6…
Since the poles at s ¼ −2;−4;−6… can only contribute

terms ∼t2n for n ¼ 1; 2; 3…., we have proven our claim in
(3.44), so we are actually done, but since we have already
done most of the work,

res
s
ðt−sMs½Rb

0�;−2nÞ

¼ 1

4

ð2nÞ!
ðn!Þ2

�
it
4π

�
2n
�
ζ

�
1þ2n;

b
2π

�
þζ

�
1þ2n;1−

b
2π

��

¼A:16 −1
4ðn!Þ2

�
it
4π

�
2n
�
ψ ð2nÞ

�
b
2π

�
þψ ð2nÞ

�
1−

b
2π

��
;

n¼ 1;2;3… ðA15Þ
where ψ ð2nÞ, the polygamma function of order 2n, is related
to ζ by [32,36]

ψ ð2nÞðzÞ ¼ −ð2nÞ!ζð2nþ 1; zÞ; n ¼ 1; 2; 3… ðA16Þ

Putting our results together,

R̃b
0ðtÞ ¼ −

1

4

X∞
n¼0

ð−1Þn
ðn!Þ2

�
t
4π

�
2n

×

�
ψ ð2nÞ

�
b
2π

�
þ ψ ð2nÞ

�
1 −

b
2π

��
: ðA17Þ

Plugging this result into Eq. (3.46) and taking the massless
limit, t ¼ 0, the correction to the photon coupling matches
that of the SYM result derived in Ref. [10].

2. Derivation of Eq. (3.52)

Now, consider our expression forR0l, the eigenvalues of
Rab

0 , Eq. (3.51). Let us define

νlðτÞ≡
X∞
p¼1

K0

��
l
N
þ p − 1

�
τ

�
þ K0

��
−
l
N
þ p

�
τ

�
;

ðA18aÞ

ξðτÞ≡X∞
p¼1

2K0ðpτÞ; ðA18bÞ

τ≡ 2π
m
mW

¼ NLm: ðA18cÞ

Starting with νl: the intermediate steps are largely the same
as in the preceding subsection,
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The expression in the third line has order-2 poles at s ¼
0;−2;−4… (from the gammas) and a simple pole at s ¼ 1,
(from the zetas) and ζ0ðs; xÞ≡ d

ds ζðs; xÞ.
The striked out term in the fourth line vanishes because

[32,37]

ζð−2n; xÞ ¼ −
B2nþ1ðxÞ
2nþ 1

¼ B2nþ1ð−xÞ
2nþ 1

;

x real; n ¼ 0; 1; 2… ðA19Þ

where BkðxÞ is the Bernoulli polynomial of order k, which
has parity ð−1Þk under x → 1 − x.
Lastly, the final line follows from [see Eq. (13) in [34]]

ζ0ð−2n; 1 − xÞ þ ζ0ð−2n; xÞ

¼ ð2nÞ!
ð2πiÞ2n ðLi2nþ1e2πix þ Li2nþ1e−2πixÞ;

x real; n ¼ 0; 1; 2… ðA20Þ

and since Li1ðzÞ ¼ − logð1 − zÞ,

νlðτÞ ¼
π

τ
þ log

1

2 sinπ l
N

þ 1

2

X∞
n¼1

ð2nÞ!
ðn!Þ2

�
iτ
4π

�
2n
ðLi2nþ1e2πi

l
N þLi2nþ1e−2πi

l
NÞ:

ðA21Þ

To solve for ξ, we observe that, for the plain (Riemann)
zetas ζðz; 0Þ≡ ζðzÞ [33,38],

ζ0ð−2nÞ ¼ ð2nÞ!
ð2πiÞn ζð2nþ 1Þ; ðA22Þ

and the sum over p goes through almost verbatim. The
result is

ξðτÞ¼
X
poles

res
s

�
τ−s2s−2Γ

�
s
2

�
2

ζðsÞ;fpoleg
�

¼π

τ
þγþ log

τ

4π
þ
X∞
n¼1

�
iτ
4π

�
2nð2nÞ!
ðn!Þ2 ζð2nþ1Þ: ðA23Þ

As before, the poles are located at s ¼ 0;−2;−4.… and
s ¼ 1. So together,

N−1R0l ¼ ξ − νl

¼ γ þ log

�
sin π

l
N
τ

�
þWlðτÞ; ðA24Þ

where Wl has a power series expansion in τ,

WlðτÞ≡
X∞
n¼1

ð2nÞ!
ðn!Þ2

�
iτ
2

�
2nh

ζð2nþ 1Þ

−
1

2
ðLi2nþ1e2πi

l
N þ Li2nþ1e−2πi

l
NÞ
i
: ðA25aÞ

As mentioned in Footnote 7, the root test shows that this
infinite series diverges form ≥ mW. In that case,Wl can be
approximated by

WlðτÞ ¼ γ þ log sin π
l
N
τ þ 2K0ð2πτÞ

− K0

�
2π

�
1 −

l
N

�
τ

�
− K0

�
2π

l
N
τ

�
þOðe−2πτÞ: ðA25bÞ

Manipulating the series expansions for ζð2nþ 1Þ and
Li2nþ1, Eqs. (A7) and (A10), we can also write WlðτÞ
purely in terms of elementary functions,

WlðτÞ¼ 2
X∞
k¼1

½ðk2þ τ2Þ−1=2−k−1�sin2
�
π
l
N
k

�
: ðA25cÞ

We note that Eq. (A25c) converges much more slowly than
the previous ones, but on the other hand, it clearly shows
that Wl is strictly negative, and goes to zero as l

N → 0.
Observing that

d2

dx2
Li2nþ1ðeixÞ ¼ −Li2n−1ðeixÞ; ðA26Þ

a similar argument shows thatWl is strictly concave up in l
for all 1 ≤ l ≤ bN=2c.
Finally, Eq. (3.51) shows that R0l → 0 rapidly as

τ → ∞, so (A24) demands

WlðτÞ → log
e−γ

τ sin π l
N

; τ → ∞; ðA27Þ

which concludes the proofs for the statements we made
about Wl in Eq. (2.14).
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