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Center-stabilized SU(N) Yang-Mills theories on R? x S!' are QCD-like theories that can be engineered
to remain weakly-coupled at all energy scales by taking the S' circle length L to be sufficiently small. In
this regime, these theories admit effective long-distance descriptions as Abelian U(1)¥~! gauge theories on
R3, and semiclassics can be reliably employed to study nonperturbative phenomena such as color
confinement and the generation of mass gaps in an analytical setting. At the perturbative tree level, the
long-distance effective theory contains (N — 1) free photons with identical gauge couplings g% =g¢*/L.
Vacuum-polarization effects, from integrating out heavy charged fields, lift this degeneracy to give L%J
distinct values, ¢*() < g3 L < ¢*(3%). In this work, we calculate these corrections to one-loop order in
theories where the center-symmetric vacuum is stabilized by 2 < n; < 5 massive adjoint Weyl fermions
with masses of order m; ~ 1\2,—” (also known as “deformed Yang-Mills,”) and show that our results agree with
those found in previous studies in the m; — O limit. Then, we show that our result has an intuitive
interpretation as the running of the coupling in a “lattice momentum” in the context of the nonperturbative

“emergent latticized fourth dimension” in the N — oo, fixed-NL limit.
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I. INTRODUCTION

Analytical methods to study the long-distance properties
of four-dimensional asymptotically free non-Abelian gauge
theories are few and far between; broadly speaking, it is a
difficult problem to handle because the flow to strong
coupling causes theoretical control over the system to be
lost at low-energy scales. While there are known models
that are well-behaved enough to be studied analytically,
(e.g., Seiberg-Witten theory [1]) these typically require
special structures such as supersymmetry, or otherwise
make use of gauge-gravity duality arguments and string-
inspired tools (such as in Ref. [2]).

Over the past years, studies performed on ‘“center-
stabilized” gauge theories on R® x S' have been remark-
ably fruitful for providing insight into the nonperturbative
dynamics of four-dimensional gauge theories. These mod-
els are distinguished from the few known analytically-
calculable models in four dimensions by the fact that they
can be engineered to remain weakly coupled at all energy
scales, so that a semiclassical expansion in terms of objects
defined in the UV theory is reliable and self-consistent.

“jlai @physics.utoronto.ca

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2023/107(4)/045013(20)

045013-1

The basic idea behind these models is as follows: By
compactifying R* to R* x S', and “deforming” the pure
Yang-Mills (YM) theory by adding a nonlocal and non-
renormalizable potential to the Lagrangian, the well-known
deconfining phase transition (cf. thermal Yang-Mills [3]) at
small circle lengths L can be circumvented, and the theory
remains in the color-confining phase for all values of L.
Adiabatic continuity to the full R* theory of ultimate
interest can therefore be argued on grounds that the theories
share identical (nonspacetime) global symmetries for all
L € [0, o0]. That is, they belong in the same “universality
class” [4,5].

To be certain, the nonrenormalizable “deformed” theory
that we are describing can be viewed as a lattice theory with
a fixed finite lattice spacing [6]. On the other hand, it is also
possible to define a UV-complete continuum theory with
the same desired properties by introducing ny S I_periodic
adjoint-representation fermion fields to the pure YM
Lagrangian: The desired deformation potential is realized
as the fermionic contribution to the dynamically-generated
Gross-Pisarski-Yaffe (GPY) effective potential at energy
scales below ~Li [4,5,7,8]. If the fermions are massless,1
this class of theories is referred to as QCD(adj) if
2 <ny <5, and super Yang-Mills (SYM) if n, = 1. It is

't should be noted that QCD(adj) with ny massless fermions
in its spectrum has a global chiral symmetry not shared by the R*
pure Yang-Mills and is therefore not covered by the aforemen-
tioned “universality class argument”.
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called “deformed Yang-Mills” (dYM), when the 2<n,<5
fermions are massive, or if the deformation potential is
added “by hand,” as in the lattice formulation.

From the theorist’s perspective, one of the most alluring
features of these admittedly artificial setups is that they
admit a “weak-coupling regime” at ANL < 2z, (where A
is the strong-coupling scale) in which the gauge coupling g>
(and more pertinently, g’N) remains small at all energy
scales. Thus, in this regime, the semiclassical expansion
over high-energy monopole-instanton configurations is
trustworthy, and can be reliably employed to study the
effects of the nonperturbative physics on the low-energy
theory. The result is a theoretical laboratory in which a wide
variety of nonperturbative low-energy phenomena can be
studied analytically. For example, color confinement, the
generation of a nonperturbative mass gap [4,8], a deconfin-
ing phase transition [9,10], and certain aspects of chiral
symmetry breaking [6]. For this reason, ANL < 27 is
sometimes also called the “calculable regime” in the
context of center-stabilized R* x S' theories. For compre-
hensive reviews, see Refs. [11-13].

At leading perturbative order and finite N, the IR
effective theory of SU(N) dYM and QCD(adj) in the
calculable regime is sometimes described as being “rather
boring” [11], because the gauge sector describes (N — 1)
free, massless photons in R?. When vacuum polarization
effects are accounted for, the photons acquire |§|. These
corrections have been calculated to one-loop order by
various methods when the fermions are assumed to be
massless; for N =2, 3 QCD(adj) in Ref. [14], for SYM
(i.e.,ny = 1) with arbitrary N in Ref. [10], and in QCD(adj)
with arbitrary N in Ref. [15].

In this study, we derive a more general expression for
these corrections that in particular covers the massive
fermion case, for generic masses m;, c My such that the
theory remains in the center-symmetric and weak-coupling
regime. The final result is contained in Eq. (2.13), and the
bulk of our exposition explains how we arrive at this result.
Our motivating aim is to confirm that the perturbative
corrections to finite-N SU(N) dYM theory yield no
unpleasant surprises even when the stabilizer fermions
are assumed to be heavy. This is a very reasonable
assumption to make, since ultimately we are interested
in obtaining insight on pure Yang-Mills on R*, and a
continuum QCD-like theory that continues smoothly to
pure YM should not contain light adjoint fermions in its IR
spectrum.

Nevertheless, our results are not entirely devoid of
novelty. Reference [16] showed that in the N — oo,
L — 0, fixed-NL limit of SYM, an emergent latticized
fourth dimension appears, emerging out of the space of
fields—even though we should expect that taking L — 0
ought to result in a 3d theory. In particular, this emergent
dimension exhibits z = 2 Lifschitz scaling invariance in
SYM. In other words, the action is quartic, rather than

quadratic, in the momentum, ~|d}®|*, where 9, is the
partial derivative in the emergent latticized dimension.
Simply put, this is because in SYM, there is a discrete
Zy chiral symmetry (not to be confused with the Z, center
symmetry) that forbids monopole-instantons from con-
tributing a bosonic potential of the form ~[d,®[* in the
semiclassical expansion. Such a potential is permitted,
however, when the chiral symmetry is explicitly broken
by a nonzero fermion mass, as is in the case we study here.
We find a satisfying and intuitive interpretation of our
massive correction in this emergent dimension as the flow
towards strong coupling for large values of the “lattice
momentum.”

The rest of this paper is structured as follows: Section 11
contains an overview of the essentials of dYM theory in
an effort to make this paper more self-contained. For the
benefit of the impatient reader, we have placed our main
result, Eq. (2.13) and its accompanying discussion, in
Sec. IIA 1. A discussion of this result in the context of
the emergent latticized dimension of Ref. [16] is contained
in Sec. [IB 1.

Section III covers the derivation of Eq. (2.13) in detail,
starting from the very beginning with the UV dYM
Lagrangian. Since this calculation is fairly long and
convoluted, we briefly summarize what we have done at
the end of Secs. III A and I1I B to help the reader keep track
of our progress. The main “meat” of the calculation, and
therefore of this paper, is mostly contained in Sec. III C,
especially Sec. III C 2.

In our calculation, we use the Mellin transform to
rewrite certain infinite sums in a form that allows their
asymptotic behavior to be more easily seen. The details of
this manipulation, which is mostly just complex analysis in
one variable, is given in the Appendix.

II. BACKGROUND, RESULTS AND DISCUSSION

A. Review of dYM: Perturbative aspects

Consider pure SU(N) Yang-Mills theory on compacti-
fied R3 x S!, where the S! is a circle of circumference L,

Syl A, F] = / L. 2.1)

Rixs' 207

This theory enjoys a global Zy = Z(SU(N)) center sym-
metry, as it only contains fields transforming in the adjoint
representation of the gauge group. The action of this
symmetry may be thought of as a “gauge”2 transformation
g(x#, x*):R3 x S' — SU(N) that is periodic over the S!
modulo a Zy factor,

ZThough, of course, the g(x*, x*) so defined is not a true gauge
transformation by any means. That is, it iS not a transition
function between local trivializations of the principle bundle.
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g(x*,0) = wg(x*, L), w = /N, (2.2)
This acts on the fundamental representation Polyakov loop
Q, the gauge holonomy along the S',

L
Q= Pexpi/ dx* A, (2.3)
0

3
as.

Zy: trQ — wtrQ, (2.4)
where A, is the S' part of the gauge field A.

At large L, the center symmetry is unbroken. That is to
say, (trQ") = 0 in the ground state for all n # 0 mod N. On
the other hand, it is a well-known fact [3] that in the small-L
limit, the theory undergoes a deconfining phase transition
associated with the breaking of center symmetry. In this
regime, where perturbative analyses can be trusted because
of asymptotic freedom, Ref. [3] showed that the theory
produces a (GPY) effective potential, V. [Q],

2 X | Qr)?
Vpert.[g} = _W; }’l4 (1 + O(gz))

(2.5)

This result can be found by integrating out the Kaluza-
Klein modes at one-loop order. This potential is minimized
by Q of the form Q = "1, for any integer k, suggesting
that the theory has N degenerate vacua related by the Z
symmetry and describes a gluon plasma phase.

The basic idea behind R* x S theories such as dYM is
to reenforce the stability of the Z, at small L by “flipping”
the shape of the GPY potential, so to speak. This can be
done in the most direct way by simply adding a “double-
trace” term to the YM action,

Laym = Lym + Vietormea |2 (2.6a)
where
1 [v/2]
Vdeformed [Q] = F Z an|tr9n|2' (26b)
n=1

But such a term is manifestly nonlocal, being defined in
terms of a nonlocal operator. It is also nonrenormalizable,
as it contains infinitely many irrelevant operators which
blow up uncontrollably in the UV. As such, such a
deformation of the theory may be considered problematic
to those with a philosophical preference for continuum

According to the modern viewpoint, this Z, belongs to a
class of “generalized” global symmetries, which act on operators
with nontrivial spatial extent. In this context, Eq. (2.4) defines the
symmetry [17].

theories. We will return to address this objection later, and
focus on the effects of the double-trace deformation
potential on the IR theory for now.

The Zy symmetry is said to be preserved if and only if
the vacuum state of the theory satisfies (trQ") = 0 for all
n # 0 mod N, so the coefficients a,, > 0 in Eq. (2.6b) must
each be chosen so as to dominate the dynamically gen-
erated V. [Q]. With the center symmetry stabilized, we
can remove the gauge redundancy of Q by choosing a
diagonal representative from the class of physically equiv-
alent minima,

Q = 0"V 2diag(1, @, ..., 0" ). (2.7)
This choice is in fact unique, up to permutations of the
coefficients corresponding to Weyl reflections that can
also be gauged-fixed away by working in the (affine)
Weyl chamber. This allows us to write (Q) as a physically
meaningful expectation value despite its uncontracted
matrix indices.”

This vacuum expectation value (VEV) precipitates
a simulacrum of the Higgs mechanism in which the
A, field plays the role of an adjoint Higgs field. The
gauge group generators left unbroken by (Q) form a
Cartan subalgebra t C su(N), generating the maximal torus
U(1)¥=! ¢ SU(N). The Higgs mechanism endows fields in
tt [i.e., fields that carry charge under the U(1)¥~!] with an
effective mass > % = myy, the so-called Abelianization
scale.

We can now perform the path integral around the center-
symmetric vacuum. Working perturbatively, (the treatment
of the nonperturbative physics is left to Sec. II B) weak-
coupling ensures that the A4 fluctuations around (Q), of

mass =>+/¢°Nmy,, can only effect small corrections to the
effective action. Weak coupling, in turn, is guaranteed by
the weak-coupling assumption my, > A—meaning that all
dynamic charged fields can be safely integrated out before
the onset of strong coupling as we carry the theory towards
the infrared. When the dust settles, we are left with a
weakly-coupled U(1)N~=! gauge theory containing no light
charged fields in its spectrum. In fewer words, everything
works out fine.

In settings where it is desirable to have a theory that
respects both locality and UV-completeness, and yet
preserve center symmetry at all scales, we can opt to have
Vgeformea|©2] generated dynamically as well, by adding

“To be certain, the action of the center Z in this gauge is, with
Q, denoting the ith diagonal of Q [13],

NPT ey =1 '

The cyclic permutation is necessitated by gauge-fixing to the
Weyl chamber.
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sufficiently light, or massless, S'-periodic adjoint fermions
A; to the theory [8], rather than inserting the deformation
potential “by hand.” In such a setting, the periodicity
requirement A; (x*, x*) = +4;(x*, x* + L) prohibits a ther-
mal interpretation for the S', which must therefore be taken
to be a spatial circle.

For the theory with 1 <n, <5 Weyl fields® of masses
m; indexed by 1 <1 <ny, the dynamically generated
(GPY) effective potential is [5,10,18]

- 2L4Z [

Z nLm;)?K,(nLm;)||wQ"|?,
=1

(2.9)

where K, is the modified Bessel function of order 2. It is
not hard to find constraints on the m, for each value n that
stabilize the center-symmetric Q in Eq. (2.7); see e.g.,
Ref. [18]. We also note in passing that the ny = 1 potential
vanishes (in fact, to all perturbative orders) in the massless
case, and is center-unstable otherwise. This particular case
is known as super Yang-Mills (SYM), in which the UV
theory enjoys an exact N/ =1 supersymmetry, which
allows many aspects of its rich nonperturbative physics
to be calculated exactly. But SYM is outside of the scope
of this study, along with the massless QCD(adj), and we
henceforth only consider 2 < n; <5 and m; > 0.
Assuming the fermion masses to be roughly equal, it
turns out that center stability requires m; < my. In par-
ticular, this means that we can assume that the m; are
O(myy) so that the fermions disappear from the low-energy
theory, and the effective action can be written on R3 as

N
Sz = / Z KapF4,F5, 4+ (A4 and higher-order terms)
R’ a,b=1
(2.10a)

for Abelian field strengths F¢, and R® indices p,v €
{1,2,3} and Lie algebra indices a,b € {1...N}. There
is also a a neutral scalar field A§ in the IR theory, which
descends from the Abelian part of .4, and corresponds to
the oscillations of the eigenvalues of Q around the center-
symmetric VEV. But this field receives a (mass)? ~ g*Nm?,
correction from the GPY potential and can be integrated out
by moving the theory to still lower energies.

The quantity «,;, in Eq. (2.10a) is the quantum-corrected
photon coupling matrix,

o<t (s 00)

>The theory loses asymptotic freedom for ng>35.

=¢*(4x/L), (2.10b)

where in Eq. (2.10b), the gauge coupling is normalized
with respect to the L — oo, m; — 0 limit

m bp=——g—". (211)

Abo = ybo exp(

and b, is the one-loop coefficient of the beta function of
(¢?N)~! in that limit. As stated before, these corrections
have been calculated in previous studies for arbitrary N and
1<n < 5 in the limit m; = 0. Our calculation generalizes
to the massive case, and is a new result. We also believe it to
be a nontrivial problem in terms of significance (as we will
argue in this section), as well as difficulty (which we will
demonstrate in the next section).

1. The one-loop corrections to x,,
Compared to the writing out the matrix entries of
explicitly in the Cartan-Weyl basis, [given in Eq. (3.46)] it
is more enlightening to present its eigenvalues, x,,

Z Ko F o, O = zN:KfF,fDFfﬂ", (2.12a)
ab=1 =1
where
F ZLEN:(Q_K“F“ K El i wf a0k (2.12b)
W= N s Ke N2~ abs

where again o = e¢'¥, so Eq. (2.12) are really just discrete
Fourier transforms in the indices a, b. Then, assuming
center-stabilizing fermion masses m 0

1
=505

mW1 82 11 —2n; 1
5 —+ log——
167 [Ng*(mye™) 3 sin 7 §;
m
32%( ’)} for I</<N—-1. (2.13)

W, = Wy_, is an O(1) pure function of the masses m; in
units of my, which enjoys the following properties:

W,(0)=0 for all integers ¢, (2.14a)

SPlease note that the # = N mode must be excluded from the
spectrum as it corresponds to the trace of Fj,, (as can be seen
from the definition,) which is unphysical in our theory; it would
have been a physical mode if we had instead chosen our gauge
group to be U(N).
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_08 e =

FIG. 1. A numerical plot of W, as a function of 1% for some
select values of m, in units of my,. The graphs were plotted with
Eq. (2.15b) for m = 1.0my and m = 1.2my, and with (2.15a)
otherwise.

m mye™’
Wf —_— ] = log 7
My msinzy

monotonically, as m/my — oo, (2.14b)
4
W, <i> S0 as = =01, (2.14c)
My N
We(t) < Wy(r) <0 for0<z<7, (2.14d)
Winja (1) < We(r) < We(r) <0
for ¢ < ¢ < |N/2|, 7> 0. (2.14e)

A plot of W, as a function 0f§ for a few select values of
m is given in Fig. 1.

Equation (2.13) is written so that all the information
about the one-loop corrections due to the fermion masses is
encoded in the pure function W,. In particular, Eq. (2.14d)
implies that the £ = 1 mode receives a vanishingly-small
mass correction in the N — oo limit; conversely,
Eq. (2.14¢) implies the |[N/2| mode receives the largest
mass correction. Equations (2.14a) and (2.14b) together
imply that k; > k, > k|2 for all m; and £. Note that in
order for our results to make sense, we must require
K|n/2) > 0; we will discuss the conditions that fulfill this
requirement later.

We present two analytic expressions for W, with
different convergence properties; one expression holds
for m < my, and the other, for m 2 my,. The former of
these is

Vel =3 T (o)

n=1

x [£(2n+ 1) = Re(Lig, 1 (€2))]

for (m/my) < 1, (2.15a)

where { is the Riemann zeta function, and Li, is the
polylogarithm function of order s. This expression fails to
converge when m > mW7; it is in this regime where our
second expression is more useful,

'
W () = g (e
My msinz g

+ i{zz(o <2ﬂ,’p n%)

p=1

\ m
—K0<2ﬂ'(p— 1 +N> ’nW)
(o))
Ky is the modified Bessel function of order O.
Equation (2.15b) is one-loop exact for all m, but it is
more useful at large m 2 my,, where it may be very well-
approximated by the first term of the series, as K(7) ~ e~
at large r. Conversely, Eq. (2.15b) is less useful at small
m/my as Ky(t) ~logt at small 7.
Since W, < 0, the massive correction competes against
the massless-limit corrections encoded in the log-sine term.

Indeed, by taking m; > my,, the Ith fermion decouples
from the theory,® n ¢ = (ny—1), up to an overall renorm-

(2.15¢)

alization of ¢’N, or, equivalently, a redefinition of the
strong-coupling scale A.

We can also use Eq. (2.11) to define a “lattice-renor-
malized” 't Hooft coupling 4,,

1 e
~ = bolog<m> for |l<Z<N-1. (2.16a)

P
Ag Asinzg

Then assuming for convenience equal fermion masses
m;=my, forall I=1...n;, and abbreviating Wf(’;"—jv) = W,,
Eq. (2.13) can be written in a neater form,

-1 1 2
k=W (2 Ty ) for 1 <f<N—1. (2.16b)
AV

The dependence of k, on % is illustrated in Fig. 2 for a few
sample values of m,, for fixed ny = 4 and my, = e’A. Given
2z

a fixed value of my /A = ;37 > 1, it is a straightforward

"Observing that the terms in the square brackets of (2.15a) are
absolutely bounded for all n > 1, and that

(2n)! _
(}’l!)222"

1 T(n+3)
v T(n) °
the root test gives a radius of convergence of (m/my) < 1.

Assuming, of course, that the theory still remains in the
center-symmetric regime.

(2.15b)
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m,=0.0

02 04 0.6 08 1.0

FIG. 2. A numerical plot of k, in units of 2. g as a function of 4
for some select values of m;, for n; = 4 and my, = e3A. The plot
diverges at /N — 0, 1 (not depicted) due to the log-sine running
o1
in -

Ae

exercise in numerical analysis to find constraints on m; so
that k|y/2; >0 in order for our result to make sense.
Conversely, Zy-stability requires that e.g., m; < 1.08my
for ny = 4, and this bound can in particular be saturated by
taking my /A X, 3. On the other hand, Zyy stability requires
m; 5 1.2my, for n; = 5, and saturation of that bound would
require my /A %, €°, which is substantially larger.

Equations (2.13), (2.15a), and (2.15b) comprise the main
results of this paper; they are derived in detail in Sec. III,
with reference to some results from Appendix. The rest of
this section discusses how to interpret these results in the
context of the nonperturbative physics of dYM theory,
particularly with regards to the “emergent latticized dimen-
sion” of Ref. [16].

B. Review of dYM: Nonperturbative aspects

Let us now very quickly summarize the derivation of the
low-energy effective Lagrangian in dYM theory at leading
order in the semiclassical expansion. The basic idea is
essentially the same as Polyakov’s version of confinement
in the Georgi-Glashow (GG) model in (2 + 1) dimensions
[19], although there are crucial differences due to the
intrinsically four-dimensional nature of dYM theory. The
reader interested in a more detailed exposition is referred to
Refs. [4,20,21].

The contribution of the nonperturbative physics to the
path integral in a weakly-coupled Euclidean QFT can be
approximated to first exponential order by summing over
classical field configurations that are inundated by a “gas”
of weakly-interacting minimal-action instantons. This is the
so-called dilute-instanton gas approximation, and it is
applicable in dYM because weak coupling can be reliably
assumed to hold at all scales provided that NLA < 2x.

In addition to a topological charge Q ~ [ttF A F =
the instantons of dYM theory carry a magnetic charge
(~ [ F) under the U(1)N~!—they are essentially "t Hooft-
Polyakov monopoles, with A, again standing in for the
adjoint Higgs field. In particular, we call them monopole-
instantons.

Among these, there are (N — 1) “BPS™’ monopoles, each
carrying a magnetic charge corresponding to a simple root
a; of the gauge group. In distinction to the three-dimen-
sional Polyakov model, in R x S! theories there is also an
Nth “twisted,” or Kaluza-Klein, (KK) monopole, which
carries charge > ¥7!(—a;) = ay, the affine root. In addi-
tion to these, there are also the antiparticles carrying charge
—a;. In a sense, the (N — 1) BPS + KK monopole-instan-
tons can be thought of as the “dissociation” of the BPST
instanton in four-dimensional SU(N) Yang-Mills into N
subconstituents [22,23].

We unfortunately do not have exact expressions for
the monopole-instantons outside of the supersymmetric
ny=1,m =0 case, but as it turns out, they will not be
required as far as our presentation is concerned. We need
only know that these charged objects interact with a long-
range Coulombic interaction, and have a nonlinear “A,/
Higgs condensate” core of size ~my; . In addition, there is
also a “medium-range” (~1/gv/Nmy,) Yukawa interaction
arising from A,/Higgs exchange.

Every insertion of a monopole-instanton in the path
integral comes with three translation zero modes and a
Boltzmann suppression factor e ~ (NLA)? < 1, where
SO ~ N—§ x’

g*(my)
typical monopole-instanton separation d ~e is much
greater than the monopole diameter ~my!, allowing us to
ignore the contribution from paths w1th overlapping
monopole-instanton cores. It also means that we can
ignore the effects of A, exchange. The proliferation of
magnetic charges in the vacuum gives rise to a potential for
the photon. This potential which is most conveniently
described in terms of the dual photon ¢¢, defined as

is the one-monopole action. This means the
S0/3

1
2 MvpKabF = Edpab. (217)

Written in terms of ¢, the IR behavior of dYM theory is
described to first order in the semiclassical expansion, by
the 3d Lagrangian L3, qua1.

1
E3d,dual*2<8 E K40,0°0,0" +CZ —cos(a**! — 6k,

(2.18)

— . . 10 .
where 6V ! = 6!, and «} is the inverse "~ of k,, and ¢ is

the monopole fugacity,

This is a common abuse of terminology; outside of the
supersymmetric case, the BPS bound cannot be saturated because
the “Higgs” potential V[Q] cannot be set to zero. So, strictly
speaking we are expanding around “almost-BPS” configurations.

Actually, it should be the pseudoinverse since the eigenvalue
corresponding to the £ = N mode diverges, but the difference is
immaterial since the £ = N mode is unphysical.
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FIG. 3. A numerical plot of m ,/m  , as a function of £, for
ny =4 and my = e*A.

{ = Amjy(PN)2e =87 /NG (mw), (2.19)

A({m;}.ns) is an O(l) preexponential factor.'" In the
Fourier basis, the 3d dual photon Lagrangian is, to
quadratic accuracy in the fields,

N—-1 —1
K . . AT -
£3d,dua1:Z[ £510,8°|? + Csin® (”N> |5f’2] +0(5),

‘— (87)?
(2.20)
where &7 is the discrete Fourier transform of ¢,
¢ R ¢
6l =—— w %Y. (2.21)
P>

From this expression we can read off the dual-photon
masses squared,

4
m? , ~ ¢ sin? <7z > Ky. (2.22)
: N
Let us take ANL to be sufficiently small so that
%nf/lfo <1 can be treated as a small correction for
all 7. In that case, we can write a mass-corrected expres-

sion for the scaling behavior of the k-wall thicknesses.
Recalling (2.16a),

ok 1/2
Mok sH.lﬂN (ﬁ) {1 + "t (MW =Wl (2.23)
m sin % 3

0,1l N /1k

The multiplicative sine factor is the expected tree-level
scaling behavior; the factor of (4,/4;)"/? is due to the
one-loop corrections in the massless limit, and the factor
in the square brackets gives the massive correction.

"As an aside, let us note that calculating the prefactor
A({m;}.n;) is a highly nontrivial open calculation, and has
only been performed in the SYM case, first in [24], and later
corrected in [9,10]. This is because it involves matrix determi-
nants in a monopole-instanton background, for which we do not
even have an exact analytic expression, as mentioned. We make
no attempt to calculate A here.

The dependence of m, on £ in units of m] , is
graphically depicted in Fig. 3.

1. Emergent dimension at large N: A 4d interpretation
of the mass correction

Let us now consider the large-N limit. To do this, we
simultaneously take N — oo and L — 0 whilst keeping NL
constant so as to stay inside the weak-coupling regime.'”
This is known as the “Abelian large-N limit” [11]. In this
setup, we can treat £ € [0,1] as though it were on a
continuum, and the potential in Eq. (2.20) has an inter-
pretation as the kinetic energy on a latticized and compact
fourth dimension, with a quadratic (as opposed to quartic,
as is the case in SYM) dependence on a lattice momentum
py- But what is the scale of this momentum? Since the mass
gap for the dual photon m? | vanishes in the large-N limit,
the only remaining mass scale to characterize the low-
energy theory is mﬁ N/2 = My, the (Debye) mass of the
heaviest dual photon,

My o ~ myd=32e=1/2, (2.24a)
where
N 2
A= % ~ Ao, (2.24b)
b

up to small corrections. This allows us to define p, , as an
honest-to-goodness lattice momentum,

4
Py.c = My psin (71' ]T]> . (2.25)

We can also read off the two-point function directly from
(2.20). Defining x* = (X, y), py = (P, p,), and momen-
tarily disregarding the massive correction,

/ d*xe ™ (6(x))0(0)) ~ (AeP? + Ap2)~L. (2.26)

We observe that there is a restored Lorentz symmetry which
is broken by an anomalous scaling dimension A = byA
as Ay ~ pfoi.

Put another way, the dual-photon coupling 4, exhibits

logarithmic running in the lattice momentum p* ~ sin(z %),

N
d (1 d 1

pyv—\— 1 =p,— | bylog— + const)

}dpy <AK> ydpy< 0 gpy ( )

= —by. (2.27)

"The *t Hooft coupling ¢?N is under control in this limit, as
can be seen from Eq. (2.11).
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In particular, the scaling behavior is opposite to that of the
R* theory [cf. Eq. (2.11)],

4

We can also show how this analogy can be extended to
encompass the mass-correction terms ~W,. The one-loop
correction to the coupling due to a single adjoint fermion
with mass m in an SU(N) theory on R*, renormalized at
some scale y in the MS scheme is [cf. Eq. (3.38)]

Migmion(p) = —2/l dx x(1 — x)log (sz(l——;c)—i—mz)
0 H

—3log (%)

i { ~2log(")

where x is a Feynman parameter. We can compare this with

our result of the contribution in the R x S' theory, which
can be read off from (2.13),

2 . L m
M, = 3 {log (sm ﬂ'ﬁ) + W, <m_w)}
+2logsin(7 £)

—3log(;2)

(2.28)

P?>> m?,
P2 < m? (2.29)

myy >m,
(2.30)
myy < m.

This result is consistent with our interpretation of p, as a
momentum, with the mass correction behaving as we
should expect in the R* theory, albeit with opposite
momentum-scaling behavior in p,.

III. PERTURBATIVE ANALYSIS:
THEORY AND PRACTICE

The remainder of this paper mainly focuses on deriving
and calculating loop integrals and Matsubara sums. Our
approach is extremely straightforward—essentially identi-
cal to the analysis of a thermal gauge theory at temperatures
T = 1/L, but for the fact that our S' is spacelike rather than
timelike. This means, in particular for the fermions, that the
S' momenta w,, assume integer values w, = 2”" , rather than
half-integer , =22 (n +1). As the calculatlon is rather
involved, our presentation will try to go into as much detail
as we can without being overly cumbersome. For the
convenience of the reader, we will summarise the contents
of Secs. Il A and IIIB at the end of their respective
sections.

Let us start by defining our notation. We will use M, N €
{1,2,3,4} for Euclidean indices on R? x S!, (with x* the
coordinate on S') and p, v € {1, 2, 3} for indices on the R?.
We will use a, b, ¢, 1, j, k € {1,...N} to denote Lie algebra
indices.

We also define the (over-complete) Cartan-Weyl basis
on su(N),

i’th

. =~

(H;)p =06ia0ip =diag(0,..., 1 ,...,0) 1<i<N, (3.1a)
which span the Cartan subalgebra t. These are accompa-
nied by the raising and lowering operators spanning t*, the
orthogonal complement of t,

(Eﬂ[,->ab = 5al5b]’ (3'1b)
for N-component vectors f;; in the root lattice of su(N),
which in our basis are written

?].55?—5;?
i’th Jj'th
=~ =~
=0,...71 .. =1,...,0), 1<i<j<N. (3.l¢)

Perhaps a bit idiosyncratically, we say that the subscripts on
fi; are a set of antisymmetric indices labeling the roots of
su(N): p;; = —p;» and the superscript a denotes its ath
vector component.

Ep . E_p, are respectively raising and lowering operators
for the su(2) subalgebra associated with the root f;;,

Zﬂz/Hk’

_ _pk
[Hi,Hj]—(), [HkvEﬁ,-j]_ﬂijE/f,-jf Eﬁ” —ﬁ,,

(3.2a)
(no sums over i, j). We also have
Ey =Ejy =E;. H =H. (32b)
These generators are normalized as
tr[H;H ] = &;;, tr[EsE_g| = 6pp.  (3.2¢)

In the interest of brevity, we will frequently abuse
notation and treat # as though it were the index on the
root space and omit the subscripts ij, as we have just done
above. To avoid confusion, there will be no implicit sum
over su(N) indices unless otherwise specified.

As a matter of convenience, we normalize the compo-
nents of su(N)-valued fields y as

w (o, x* Zw (x, x*)H, +—Zwﬂ (', x*)Ey,
(3.3a)
obeying Hermiticity conditions,
W =yt W) = (3.3b)
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and constrained by a trace-free condition,

> wk(ex*) =0, (3.3¢)
k

so that the expansion (3.3a) is unique although it is written
in terms of an overcomplete basis.

A. Formal setup: Beginnings

Let us start with a four-dimensional Euclidean SU(N)
gauge theory with non-Abelian field strength ),y and ns
two-component massive adjoint fermions 4;. As we are
performing a perturbative calculation, the vacuum angle is
“invisible” to us, so we might as well set the fermion
masses to be real and the topological angle 6 = 0,

1 Ay
Lyg=tr [2—92 (Fun)? +2i Z (baﬁMaa(vama

I=1

m my- .-
+7111a11ﬁ8aﬂ +71/11a11ﬂ8{1[}):| . (34)

V) is the covariant derivative on adjoint-representation
fields

and 6™ = (is, 1,) are the Euclidean sigma matrices.

Formally integrating out the high-energy (Zmy,) degrees
of freedom around the center-symmetric € gives us the
effective 3d Lagrangian, (2.10a).

We want to explicitly integrate out the high-energy
(Zmy) degrees of freedom to obtain the effective 3d
Lagrangian, (2.10a) to find the one-loop corrections to
K> the photon-coupling matrix. The methods we use can
also be applied almost verbatim to find p,,,, the corrected
scalar couplings, as well as M, the scalar masses. Since
these are not as interesting to us, we simply quote their
Fourier-transformed results in Egs. (3.55) and (3.56).

Following Abbott’s approach, (e.g., Ref. [25],) we use
an adapted background field gauge method to calculate
vacuum polarization. This is fairly standard textbook
material, but to review, first, we treat the su(N)-valued
gauge field A, as the sum of a “classical” background field
and a “quantum” high-frequency field,

~~~ ~~~

quantum

(3.6)

classical

The normalization is for convenience. We say that these
fields have two complementary expressions of gauge
symmetry for U, U;R3 x §' — SU(N),

AM—>U(AM+laM)U_1, aM—>UaMU_1

(gauge transformation under U), (3.7a)
ay — U(aM—f‘iaM)[]_l, AM—) 0AMl~]_1
(gauge transformation under U/). (3.7b)

Anticipating a 3d and Abelian theory, we take A;; to be
Abelian and trivial over x*, and call its field strength F,y,
64AM — O,

[Ay,Ayx] =0, (3.8a)

We want to fix the gauge under U in order to integrate
out a,,, which, as we will see, are basically W-bosons. To
do this, we would impose the condition

DMay, + igla™, ay) =0,

(3.9a)

where D), is the “covariant derivative with connection
AM’?,
which can be done by adding a Gaussian term to the
Lagrangian,

AL, =t (VMay,)?, (3.10)
and a Lagrangian L. for scalar-yet-Grassmannian su(N)-

valued ghost fields c, c.
Since A, has a nonzero VEV, we must write

A= a0 (3.11a)
L
where ¢ is the (constant in x*) VEV,
¢ =—iLlogQ, (3.11b)

and AY represents the fluctuations around the VEV, but we
can mostly ignore A9 as it is U(1)"~!-neutral and therefore
not involved in the corrections to k,;, at one-loop. Gauge-
fixing the center-symmetric Q as in Eq. (2.7), ¢ has vector
components

/2 27 (N +1
¢k:NZﬂk:W<—2 —k), (3.12)

p>0

where the sum in Eq. (3.12) is over the positive roots. In
particular, this means
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2

&-Pij= (]—l) (3.13)

All together, the gauge-fixed Lagrangian has the form

L= L, +L,+AL,+ L. + L,
~~ — =~ ~~
classical fields W-bosons ghosts  fermions
o), (3.14)

where £, contains the ~Aaa, AAaa terms upon expanding
L4, in terms of Ay, and a,,, and similarly for £. and £;.
We observe that by choosing A, to be Abelian, the
Abelian parts of each of the quantum fields a, 4, ¢, ¢ cannot
contribute to x,;, at one-loop order, so we may forget about
them altogether for the rest of this analysis.

Let us take any su(N)-valued field y and simultaneously
expand in the KK modes and the Cartan-Weyl basis,
recalling our convention as in Eq. (3.3a),

Z e l—x
Z By P () E

x”)Hk

so that

iDyy =

Z (27:2 +¢- ﬂ) l//ﬁE/;

(Abehan and O(h?) parts), (3.15)
so asymptotically, the derivative operator iD, diagonalizes
with eigenvalues

o) . B..
iD, ﬁ%"sﬂ’ (3.16)

zinteger,

so that fields in t* with charge # and circle momentum
2zz/L of a field with mass m obtains an effective 3d

(mass)?,

m* + my [Nz + (i — j)]* = mj,. (3.17)
Thus only U(1)¥~!-neutral and x*-trivial fields survive in
the IR theory at scales < my,, consistent with our hypoth-
eses on Ay,.

1. Summary of Sec. Il A

We outlined the background field approach to perturba-
tion theory. With an eye toward the infrared theory, we set
the background A, to be x*-trivial and Abelian, and
showed that only “quantum fields” proportional to the
broken gauge generators may contribute to the corrections

of k,, at one-loop order. We further showed that this
assumption is self-consistent, because all fields with
nonvanishing x* momentum or carrying charge under
the U(1)N=! acquire an effective mass > my, through the
Higgs mechanism.

B. The one-loop Wilsonian action

We can write an expression for the Wilsonian effective
action I'[A] by formally integrating out the quantum fields
under the path integral sign. Setting the vacuum energy
to zero,

F[A] = —log {/ DaDchH D/llDzl fE[AL A a]:|

A{% [41;2 (FK,)? +@(6 Af)? }
+ Z Z;( s)Trlog —D<2S) +m3 )

-0l
s=011 fy

+ (higher loop contributions). (3.18)

There is a lot of notation to define in Eq. (3.18), but it will
make life easier by formatting the problem so that the entire
nontrivial part of the calculation is contained in the single
expression “Tr log(—D%s) + mzf‘_’s)”, which we will only
have to evaluate once to cover all the relevant cases, rather
than having to work with massive or massless, spinor,
scalar, and vector integrals separately.

“Tr” refers to the trace over the respective Hilbert spaces,
and D is a differential operator defined in Eq. (3.21).
The terms on the third row of Eq. (3.18) are due to the
W-bosons a, (s = 1,) the gauge ghosts ¢, ¢, (s = 0,) and the
fermions A; (s = 1/2). The s = 1/2 term is obtained by
doubling then halving the trace-log of the massive Weyl
operator,

nr nr

1 1
ZETrlog(i(} D +im;) = ZZTrlog(—Dfl/z) +m3).
=1 I=1

(3.19)

> s is a sum over flavor indices / when s = 1/2 and
m;-ys = 0 for s # 1/2. y(s) is a prefactor determined by the
statistics of each field,

-1 (s=0),
x(s)=<¢ -1/4 (s=1/2), (3.20)
+1/2 (s=1).
To define —D%X), let A, B denote indices in the spin-s

irrep of the (Euclidean) Lorentz group. Then
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(b) ()4
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FIG. 4. Representations of the loop integrals in Eq. (3.27) in terms of Feynman diagrams (a—c). The X vertex is distinguished from the

2, vertex with a (red) dot.

(=D2) 45 = =Dy DM + Fhin (H) (650 a5

_ {(iaﬂ) <za3+¢k( ad]))? (8

+ s+ Vg + Eap (3:21)
(with an implicit sum over k,) where (H:) = [H,, ], and
(Z) a5 = Fiun (HE) (0hih) as- (3.22a)
()5 = =ity 0 (HO)(6Y),5.  (3.220)
(257) 5 = (Al (HP(60)) 15, (3.22¢)

(again, with an implicit sum over k). X\ and X" are
respectively the 3- and 4-point interactions of a charged

adjoint field, and ZS;S) is the spin-field coupling term
responsible for asymptotic freedom in non-Abelian theories.

5©) and 61(‘2\, are respectively the identity matrix and the
generators of rotations in the spin-s representation.
Explicitly, (and abusing notation slightly by mixing indices)

0 (s=0),
(s=1/2),
(s=1).

(f’"z(tfz}v)AB = 5(5[M0N] )aB (3.23)

_i(éAMéNB - 5AN5MB)

so the one-loop correction to the Wilsonian can be written,
to quadratic order in A, as

() ()
() ()|

(3.24)

There is no ~XpX; cross-term because the trace of 61(12\/

vanishes. Expanding in a Fourier basis to quadratic order in
the fields, Eq. (3.18) becomes

(A ;4] 22/

L
+ A4 <p pah+2 M§b>Ab}+O(A3) (3.25)

|:Alw Kab p 5/4v_p/4pu)Abb

We note in passing that the GPY potential V[Q] still appears
in Eq. (3.25) through M?2,, its second derivative.
Now we are ready to draw some Feynman diagrams. Let

pM = ( p*,0) denote the external momentum of A,;, and

for convenience, define an effective loop-momentum K % 2

2 .
KMEKM )E <kﬂ’w)

", . (3.26)

Using Equations (3.22a), (3.22b), (3.22c¢), and (3.24) and
reading off from (3.25), we can write down the corrections
to the ~A%,A% term in the action,

s 1 52 Z(S)
(Hg)aMbNE_ Tr<_ : 2>

25A4,5A% 0’ + m?
d’%
/ (V6B Sy
(1 —2x)2p?
3.27
{(K%A%) A 27
(s) 2
oy 1O 1 =

niyer == S\ e B
()5 26795640 | 2 \—@ +m?

3
Z/dkl ()58

x/ dx4KMKN+(1_2x)2pMPN’
0 (K2+AS)2

(3.27b)

oy = ! & Lo (2 Y
:_7 —_—— I‘ —_—
FIMN =2 5A4,6A% | 27 \=0* + m?

1 2(p2s _
x/ dx (P MN PMPN) (3.270)
0

(K> + A,)?
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These integrals are pictorially represented by the
Feynman diagrams in Fig. 4. In each of the integrals above
we have employed a Feynman parameter x, and shifted our
loop momentum K — K™ — xpM. We have also defined
an effective (mass)Q, A, [not to be confused with the 3d
effective (mass)? in Eq. (3.17)]

Ay =m? + p*x(1 —x), (3.28)
We have further defined d(s), the number of spin states

in the spin-s representatlon and c(s), the spin-field
coupling coefficient,’

1 (s=0),
dis)=u(¥))={ 4 (s=1/2),
4 (s=1),
0 (s=0),
o(s) =tr(ohoMNy =1 (s=1/2),  (3.29)
2 (s=1),

where the traces are over the spin indices, which we have
omitted. The rest of our report will be largely concerned
with evaluating these three integrals.

1. Summary of Sec. 111 B

We introduced some formal notation to write down
the one-loop effective action in a more compact form,
|

Hv
I=21F

= ;ﬁﬂ/}b / dx /

d(s)

w5

+ 2 Ow [So(b, ;L) _g(kL)ZSl (b’wsL)] }

Eq. (3.18). This allowed us to write the integrals of each of
a, A, c in terms of the loop integrals 25 , [Eq. (3.27a)] Hls ,

[Eq. (3.27b)], and H [Eq. (3.27¢)]. As we will see, the
evaluation of these 1ntegrals are by no means a trivial task,
but we will make them much more tractable with a handful
of clever manipulations.

C. Outline of the calculation

We have written the integrals in (3.27) to superficially
respect the Euclidean Lorentz group SO(4), but to evaluate
them we must rewrite (3.27) to reflect the broken rotational
symmetry SO(4) — SO(3). Symmetry considerations tell
us that averaging K,,K, must give

(KuKn) s ];2 8, Phin (W)z 44 (3.30a)
where P}, and P37y are projection operators to R and S',
respectively
Phin = SuSi- (3.30b)
Piin = 510 (3.30c)

Integrating over the angular coordinates and summing the
three graphs in Eq. (3.27), we get

w pppv)sl (bv a)sL)

d(s) - 2c<s>] (p

(3.31a)

We also write out the (44) part, which are needed to renormalize

() = >y )g:
z

B . ! o« d(kL)
_%}:ﬁ ﬁ”/) dx/) o (kL

L 46)

LZ

where (I14)4% and (IT¢

() = ()

{2 a0

Su(b ) = 25:(b. L) .
$))4b are defined in the obvious way

Py + [ 2Py,

—2¢(s) | p*S; (b, w,L)

(3.31b)

(3.31¢)

BNote that d (1/2) = 4 for us, because we doubled the number of polarizations in Eq. (3.19); this is already compensated for by an
additional factor of 1/2 in front of the fermion determinant in Eq. (3.18).
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and we have also defined

a)YE\/k2+AS, b=¢-p,

and dimensionless sums over the KK modes, S »,

(3.31d)

1
Sib.ol) = nezz [(27n + b)? + (@L)?
27n + b)?
Sy(b.wL) = ; [(2;m(+ b)2++ ng)zP _ (3.31e)

The third sum, Sy, is a standard result. It can be evaluated
exactly by e.g., Matsubara summation,

1
So(b,wL) =
o(b L) nezz(zzm+b)2+(wL)2
1 . 1 R 1
e c "
2wl 2oL elotib _
= I}*(wL) + 61y(b.wL). (3.31f)
where we have defined a function I = 2(1) 7 that

falls off as a negatlve power in wL, and another,

8lo =57 Re(- — —=r—7)» that falls off exponentially.

Since the summand of S is monotone decreasing in |n/,
differentiation commutes with summation, so S;, can
be trivially evaluated by taking derivatives of both sides
of Eq. (3.311),

S (b,wL) = — L) So(b,wL)
= 17*°(wL) + 61, (b, wL). (3.32a)
Sa(b.aL) = 50 (L PSy(b. L)
= I¥°(wL) + 81, (b, wL), (3.32b)

where I7%5. and 61, , are defined in terms of derivatives of
Iy and 61, respectively, in the obvious ways as suggested
by the notation. The point is that we can split the integrals
in Eq. (3.31a),

(H(S))ab — (H(S) vac)

nv

+ (SI1(9))ab (3.33)

Hv?

by collecting the I} ,. terms into (IT¢) V"‘C)I‘jf ,and the 6/ »
terms into (ST1¢))4*, and similarly for (II*))¢2. We will call
these the vacuum integral and pseudothermal integral
contributions respectively, and we consider them separately

in the following.

The basic idea is this. We can see by the asymptotics that
the (I10)-va)4b integrals remain unchanged in the L — oo
limit. This means we can evaluate those integrals in terms
of the familiar loop integrals in R*, in a way we show
explicitly. Obviously these integrals are UV divergent, but
they can be renormalized in the MS scheme in the usual
way. On the other hand, the SO(4)-breaking, L- dependent
parts of (IT**))4? are contained entirely within (STI**))¢7,;
the exponential decay of the 6/;;, means that the inte-
grands of (SIT )) are uniformly convergent in kL. Then
we may use the identities (3.32a) and (3.32b) to integrate
by parts in kL and obtain a much more tractable expression.

1. The vacuum integrals

We can evaluate the loop integrals in I1()V* by
“undoing” an integral over an auxiliary continuous variable

ky. For example, (defining @ = v'k* + A for positive A)

[ S [ L

2z} 7 ) (27) 2w
[ Bk [ dk, 1
/W/_wﬁ(kn%kzw’

thus mapping the integral over k € R> to one over k € R*,
Then we regulate the expression by taking the analytic
continuation to d = 4 — ¢ dimensions. In summary,

vac —S dd]} 1
/—kzLI /—< 2T 4 A (3.34a)
2 vac ue d'k (k4)2
/ S RLATY / RN (3.34b)
27 yvac —& dd]; 1
/ — K2LIY — p /(2ﬂ)d Tra) (3.34¢)

The expressions on the lhs are the relevant R? integrals, and
u is the MS scale of the theory. “—” means “analytically
continues to”. On the other hand, we also have the
following series of relations under the integral sign,

k2 STV —_— "
E5MN|R0' = (kMkN)\Rd « [(k”ky)Pl&N + <k4)2PﬁN]|R3xS1

P 5;41/ + (k4>2PMN |R“xsl (3-35)

where Py and P}y are the projectors defined in (3.30b)
and (3.30c). Combining these expressions, the vacuum
integrals can be rewritten as integrals in d = (4 —¢)
dimensions by restoring the SO(4) symmetry,
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(H(s).vac)iz/[bN = Z(H(IS),vac. %,N

Zﬁaﬁb/ dx/

T+ Ay)?

" d(s) - 2c<s>] (026, = pup Py + P

—d _— ~
i { [d . yn As} d(s)Syy

i} (3.36)

Expanding in powers of 1 > ¢ > 0, it is easy to regulate the k integral to get a convergent result. The (Abelian part of the)
UV counterterm, 8Z,trFy;, FMV, contributes diagrammatically,

CT,(s)

Ay ~rern AG,

So, for each s we choose

%(ﬂ_

and the sum of the three regulated vacuum integrals is
therefore

—6Z, = c(s )) (% —y+log 4;:), (3.37b)

(M1l vaeyab = (T1(s)va)ab 1 (counterterms)

- ﬂuﬁh 1
7;3%2 A dx[d(s)(1 = 2x)% — 4c(s)]

2
. u
X [(P*8, = Pupy) Py + P*Piiy]10g (A—) :

N

(3.38)

2. The pseudothermal integrals

Now we consider the pseudothermal integrals. Using
Egs. (3.32a) and (3.32b), we can simplify the loop integrals
immensely by integrating by parts by changing variables

d(a?L) 2kL a(kL) We find that all boundary terms vanish,

and the results are, in summary,

/ * (kL) (KL)251, (b, wL) — % / * d(kL)51o(b, L),

0 0
(3.39a)

/ ood(kL)(kL)“cSIl(b,a)L):% / " d(kL)(KL)?61,(b.oL),

0
(3.39b)

/ " d(kL)(KL)2515(b, L)
0

1 [ 2
- A d(KL)(@L)?SIy(b,wL).  (3.39)

=02,y 88" |(*
g

O = PPl +1* it (337)

Plugging into Eqgs. (3.31a) and (3.31b), the pseudothermal
integrals may be written

a b
Zﬂ 4 / d(s)(1 = 2x)? — 4c(s)]
X (P28, — Pup,)RE(V/AL), (3.40)

14
where we have defined

RE(VAL) = / d(kL)- 510(19, (kL)2+AL2)

0

o d(kL) ( 1 )
B \/(kL)Z-|—AL2Re oV (LY +ALZ+ib _
Ko(nVAL)cos(ne-B;;),

(3.41)

”MS

where K, is the modified Bessel function of order 0. This
represents the only remaining nontrivial sum, as far as the
corrections to k,, are concerned. We have not given an
expression for (SIT° )) as it is not needed to find «,.
Summing the result w1th the vacuum contribution,

()-vacyab 4 (5T1))eb + (counterterms)

= PO Pa) [ ) (1 - 20 — )
x (Rg”(\/?sL) + 8N log fr)

S

(3.42)

where we have defined

"“The integral in the second line can be carried out by
expanding in series in e~V (KL FALZ=ib| < ]
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Zﬁ bR¢ﬁu \/_L)

= S0 D KolnVBL) cos(n ).
i,j n=l1

(3.43)
In Appendix A 1 we explicitly show that
1 AL
RY(VAL) = 5log ‘/_ S+ RO(VAL), (3.44)

where RJ(¢) is a pure function that has a power series
expansion around 7 = 0 for fixed b € (0,27). We know
that Eq. (3.44) must be true because the running of
the coupling ¢> must freeze out at scales below my.
Equation (3.44) allows us to disregard the p> dependence
in RY(v/AL) as higher-derivative corrections, and inte-
grate over the Feynman parameter x trivially. Recalling
Egs. (3.29) and (3.20),

SZO;;((S) <4c(s) — dgs)) = % (3.45a)
and
2(1/2) <4c(1 /2) - M) - —é, (3.45b)
we have
o = e [y S (5 RO
_ % ; RO (m,L)ﬂ _ (3.46)

An expression for Rg'ﬁ “(t) is derived in Eq. (A17). All that
remains now is to diagonalize Eq. (3.46).

D. The sums over f§: Linear algebra
on the root lattice

Let us consider the sums over the root vectors f. It is not
hard to show by standard Fourier analysis that, for any
integer n,

Cyb o= Zﬂ cos( (z—j))
= 2(NSy—p5® — 1) cos (%’fn(a - b)), (3.47)

where

PHYS. REV. D 107, 045013 (2023)
n=k,

1
5}15](:{
0 n#k

The relation “=" is to be understood here as equality in the
mod N sense (we instead use “:=" to denote “is defined to
be” for this subsection).

The matrix in Eq. (3.47) is diagonalized by the (trace-
free) eigenvectors u, with vector components

(3.48)

(uy)b == idd 1<Z<N-1, (3.49)
and have eigenvalues indexed by 7,
N
Z Czb(uf)b - N(25nEN - 5nzf - 5nEN—f)(uf)a' (350)
b=1

Plugging Eq. (3.50) into Eq. (3.43), and recalling
my = %, we can read off the eigenvalues R, of REP,

N;{ZK" (2”1’—) - Ko {2,,<p_ %) mﬂw}

w2

When m Z my, this series is very well-approximated by
the p = 1 term. However, some extra work is needed to
extract information about the m << my case. In
Appendix A 2, we perform the sum over p by taking the
Mellin transform and find [cf. Eq. (A24)]

Ros(mL)

(3.51)

4
Roe(mL) :N[}/+log—sm7r—+ Wf< " ﬂ (3.52a)
My N My

where, as mentioned before, W, is an O(1) function such
that W,(0) =0, and has a power series expansion for
= (m/my) < 1,

9=

n=1

2n
(1) £(2n + 1) = Re(Liny, %)),

(3.52b)

T<1.

This is exactly Eq. (2.15a), and Eq. (2.15b) follows directly
from Eqgs. (3.51) and (3.52a). Putting everything together,
we finally obtain Eq. (2.13),

-1 2 ny
my &

AT Ngz(mwe_y)+ % Z < )]
1</<N-1. (3.53)

Note that although heretofore the fermion masses only
appeared in the combination mL, Egs. (3.52a) and (3.53)
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suggest that they are in fact more naturally measured in
units of myy, as we should expect.

On the other hand, the 44 parts of the integrals also give
us M2, the scalar (mass)? matrix. Omitting the intermedi-
ate steps,

ny

pp 2
M2, = 9222 55 Z (miL)*Ky(nm;L) — =
4z L n
X cos(nﬁ ), (3.54)
where K, is the modified Bessel function of order 2. This
matches the result from taking the second derivative of
the GPY potential, (2.9), which serves as a “sanity check”
on our calculations. For completeness, we present M2, the
physical scalar (masses)?,

- f§r,2) 0]

where

a5 el

LK, [m (p - ;) T} - 21<2(2ﬂp7>}. (3.55b)

(3.55a)

We also present p,, the eigenvalues of p,,
my} i m;
= —|1- X/l — )|,
o= [5G

where X, is an O(1) function defined in terms of W,

(3.56a)

d

Xf(’[) = 1 +472FWK<T). (356]))
T

Equations (3.55) and (3.56) are only presented for

completeness, although they may be found without too
much difficulty using the methods described in this paper.

IV. FUTURE DIRECTIONS

In this study we have derived an explicit one-loop
expression for the eigenvalues of k,,, the polarization
operator of the SU(N) dYM theory with massive fermions,
and provisionally surveyed some properties of the emergent
fourth dimension. It would be interesting to numerically
examine the effect of these one-loop corrections on the
k-string tensions, (as was done for SYM in Ref. [26],) but
to do so would require us to compute the matrix determi-
nants in the monopole measure, {—a daunting task (see the
discussion in Footnote 11).

Additionally, the topological angle 6 dependence in
Yang-Mills theory has been the subject of much attention
[27-31]; we should also like to examine the dependence of
the k-string tensions on the topological angle 8 as well as on
the circle length L, at the tree-order level, to compare
against results on the lattice.

Finally, we would also like to further study the confining
properties of dYM outside of the calculable regime,
NLA > 1 and its conjectured continuity with the small
NLA regime, on the lattice.
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APPENDIX: THE MELLIN TRANSFORM,
AND SOME RESULTS

In this appendix we explicitly evaluate the sums over p
in (3.51) to obtain an expression for k, in terms of analytic
functions. To this end, we introduce the Mellin transform,
an integral transform on real-valued functions.

Definition A.1. The Mellin transform M is an integral
transform defined on the space of real integrable functions
f: RT > R as

o) =MIF0) = [Tan 0. (A
In particular, for each 2 > 0,
MFG] = M) (AT
The inverse transform M~ is, formally,
70 = Mgl = o [ dsrats). (At

where c is some real number chosen so that the integral in
(Alc) converges (see Sec. 2.5 of [32]). Usually what this
means is to take the sum over the residues of the poles of
¢(s) on the real half-line, s € (—o0, ¢]. To illustrate with a
simple example, let us compute the Mellin transform of
f(t) = e, and its inverse.

Example A.1. Directly from the definition,

M,[e] = A T dirle = T(s). (A2)

Now consider the inverse transform. Since T'(s) has
poles at s =0,—1,-2..., we evaluate the integral by
limiting the integration contour ¢ — 0" and closing the
contour over the Re(s) < 0 half-plane. The integral over
the arc goes to zero at large radius, so
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1 c+ico ©
CIL%TMK_M dst™T'(s) = nz:;r%s(fsl"(s), —n)
4 (20)"
~nl
=e, (A3)

I'(s) = (_nly)n [(s+ 1)~ +yO(1 +n)] + O(s +n).
n=0,1,2... (A4)

where w9 (z) = d% log(T'(z)) is the polygamma function (of
order 0).

1. Proof of equation (3.44)

We are now prepared to prove Eq. (3.44) and derive a
series expression for Rg. The idea is to perform the sums
over n in “Mellin space,” then transform back to “mass
space” to obtain a series expansion in ¢. Like in Example
A.1, the inverse transform involves evaluating the residue
of a chain of poles on the real axis.

To begin, we observe the Mellin transform of the
modified Bessel function of order v, K,, is known to
be [33,35]

MK, (1)] = 2572 <S ; ”) r <s > ”) . (AS)

Plugging this into Eq. (3.41),

(5]

MR ()] = M, [Ko(nt)] cos(nb)

n=1

2
A:1b 25—31—* (%) ; n—S(einb + e—inb)

2
AT s=3p (%) (Lise™ + Lijei), (A6)
where Li; is the polylogarithm function of order s,
®_ ,ikb _
= Li,e, b real, s>0. (A7)
= K

Changing back to the original variable z,

RG(1) = M M [RG(1)]
| [icot 2 |
— [T dgreosr <s> (Li,e® + Li,ei®).
2ri —icotc 2

(A8)

Note that the integral in Eq. (A8) is over the order s of the
polylogarithm, rather than its argument. As in Example A.1,
we can evaluate this integral by letting the integration contour
approach the imaginary axis from the right, ¢ — 0", and
close the contour over the half-plane Re(s) < 0. The poly-
logarithm terms are regular for all s for real 0 < b < 2z, so
we are left with the residues from the chain of poles at
s = 0,-2,—4..., where the gamma function diverges.
Unfortunately, the poles of I'(s/2)? are of order 2, so
evaluating the residues with the integrand of (AS), as is,
would involve the expression %Liseib , which produces a
result that is even more opaque than our original expression.
However, a known identity [see Eq. (25.13.3) in [32]]
relates the polylogarithms to the Hurwitz zeta function, ¢,

O T(s) 2n
0<b<2nx.

S (e?) + #Li, (i) = 22 C(l - s,ﬁ),
(A9)

Where {(z, x) satisfies,

C(z,x):io:(n—&—x)‘z, Re(s)>1 and x#0,1,2....

n=1

(A10)

We can sum the expression in Eq. (A9) with b — 27 — b
and divide by (i* + i~*) to rewrite the integrand of (A8) as

S M[RE()] 2'3F<;>2(Lis(e”’) + Li,(ei?)) (;) -
92—‘41“(%)2 <,_;> -s
(1+i72)T(s) \4=

[r-e2)ss(r-na-2)

(A11)

>

This is helpful because the factor of I'(s)~! in Eq. (A9)
reduces the order of the poles by one, and the zetas in the
parentheses in Eq. (A11) are regular except at s = 0, so the
poles at s = —2,—4, —6... are simple.

a. The residue at s =0

Near s = 0, the zeta terms diverge like 1/s,

_ _% 0 (%) 0 <1 _ %) L0(s).  (A12)

So we must also look at the series expansion of the regular
terms in (A1l) near s = 0,
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(1+i2)"! (’—t> L LT N E)

4n 2 2 Tarn

Combining Egs. (A12), (A13), and (A4), we find our
famous logarithmic term

res(t~* M[R],0)
to1 b b
e L0 of_L
21g47r 4[ <2n>+"' <1 2;:)} (A14)

b. The residues at s=-2,—-4,-6...

Since the poles at s = —2, —4, —6... can only contribute
terms ~2" forn = 1,2, 3...., we have proven our claim in
(3.44), so we are actually done, but since we have already
done most of the work,

res( =S M, [RE],—2n)

o (an) e vm) we(12n1 )]
sy i) (@) v (1))

n:1,2,3... (A15)

A6 —1

where (>"), the polygamma function of order 2n, is related
to ¢ by [32,36]
() = —(2n)1(2n + 1.2),

n=123... (Al6)

Putting our results together,

X {w@'ﬂ (%) +w<2”)<1 —%ﬂ. (A17)

Plugging this result into Eq. (3.46) and taking the massless
limit, ¢ = 0, the correction to the photon coupling matches
that of the SYM result derived in Ref. [10].

2. Derivation of Eq. (3.52)

Now, consider our expression for R, the eigenvalues of
Rgb, Eq. (3.51). Let us define

=S ] (Gr-1)] +h[ (-G o)e)

(Al8a)
&(r) = i 2K(p7), (A18b)
=220 = NLm. (A18¢)

my

Starting with v,: the intermediate steps are largely the same
as in the preceding subsection,

ve(T) EM;IMS{ pilKo [T(p -1+ %)] + Ko Hp - %)} }
o [ (G -1 £) "+ (- 5) ]

I
—

poles

~y) ()]

4207 1= (2n)! fiT\2n omit omi L
= — 4+ Z (*) (Lign_HB TN 4 Lign+167 mﬁ),
n=
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The expression in the third line has order-2 poles at s =
0,—-2,—4... (from the gammas) and a simple pole at s = 1,
(from the zetas) and {'(s,x) = 4 (s, x).

The striked out term in the fourth line vanishes because
[32,37]

_Boui1(x) _ By (—X)
2n+ 1 2n+1
n=0,1,2...

¢(=2n,x) =

’

x real,

(A19)
where B (x) is the Bernoulli polynomial of order k, which
has parity (—1)* under x - 1 — x.

Lastly, the final line follows from [see Eq. (13) in [34]]

¢'(=2n,1—=x) + ' (-2n,x)

2n)! . . . o
= 7(2”1.))2" (Lig,1€*™ + Liy, 1 e72™¥),
xreal, n=0,1,2... (A20)

and since Li;(z) = —log(1 — z),

/4
ve(7) =—+log

2sin7z§
+l§: (2n)!
24~ (n!)?

n=1

; 2n
143 . il . i
<_> (Ligy 41 €% + Lig, 1 e727).

4z
(A21)

To solve for & we observe that, for the plain (Riemann)

zetas {(z,0) = ¢(z) [33,38],

(2n)!

§(=2n) = (2xi)"

Z2n+1), (A22)

and the sum over p goes through almost verbatim. The
result is

(0= res| 271 (3) (o). pote}|

poles

p3 T = (it\?(2n)!
=T ytog 4 > (5) T p2n 1),
T+y+ 0g47r+n:1 <4J‘[> (n!)QC( ntl1)

As before, the poles are located at s = 0,—-2,—4.... and
s = 1. So together,

(A23)

N'"Ry =&-v,

4
=y +log (SinﬂN’F) + Wy(z), (A24)

where W, has a power series expansion in 7,

W= 20 (5) [en

(Liy 1€ + Lig, 1e7)|. (A250)

As mentioned in Footnote 7, the root test shows that this
infinite series diverges for m > my,. In that case, W, can be
approximated by

4
W,(z) =y +log sinﬂﬁr + 2Ky (277)

Aoy (ot

+ O(e™). (A25b)

Manipulating the series expansions for {(2n + 1) and
Liy,. 1, Egs. (A7) and (A10), we can also write W,(7)
purely in terms of elementary functions,

[Se]

W,(t) = 22[(1{2 +172)71/2 — k1] sin? <ﬂ§k> . (A25¢)

k=1

We note that Eq. (A25¢) converges much more slowly than
the previous ones, but on the other hand, it clearly shows
that W, is strictly negative, and goes to zero as §—> 0.
Observing that

d2

g Liy,((e™) = —Lij,_; (™), (A26)

a similar argument shows that W, is strictly concave up in ¢
forall 1 <¢ < |N/2|.

Finally, Eq. (3.51) shows that Ry, — O rapidly as
7 — 00, S0 (A24) demands

e_}/

W,(7) = log——, T > 00, (A27)
Tslnﬂﬁ

which concludes the proofs for the statements we made
about W, in Eq. (2.14).
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