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We study the properties of chiral anomalies in a wide class of spacetimes that possess a principal Killing-
Yano tensor. This class includes metrics of charged rotating black holes as a special physically important
case. The spacetimes that admit a principal Killing-Yano tensor possess a number of remarkable properties.
In particular, such spacetimes have two commuting Killing vectors and a Killing tensor responsible for their
hidden symmetries. We calculate the gravitational and electromagnetic contributions to the axial anomaly
currents in the spacetime of a charged rotating black hole, and we demonstrate that the equation for the
chiral anomaly current has special solutions which respect both explicit and hidden symmetries. Two of
these solutions have the form of currents propagating along two principal null directions, which are null
eigenvectors of the Riemann tensor. These solutions describe chiral currents for the incoming and outgoing
polarization fluxes. It is demonstrated that these principal chiral currents can be written explicitly in the
form which contains the off-shell metric coefficients and their derivatives. We discuss conditions where the
principle chiral anomaly current is regular at the horizon and the axes of symmetry. We demonstrate that for
states where the current vanishes at the past horizon and at the past null infinity, there exist chirality fluxes
at both the future horizon and future infinity. The latter is directly related to the polarization asymmetry of
Hawking radiation for massless spinning particles. We also calculate the Chern-Simons currents for both
gravitational and electromagnetic chiral anomalies in the black hole spacetime, and we discuss the
properties of the chirality fluxes associated with these currents.
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I. INTRODUCTION

There exists a well-known correspondence between
gravitation and electromagnetism. This correspondence
becomes quite transparent when a linearized version of
Einstein gravity is considered (a comprehensive review of
this subject can be found, e.g., in [1]). For example, the
gravitational interaction of a spin with a gravitational field
is similar to the interaction of a magnetic dipole with an
electromagnetic field. Both the spinning particle in a
gravitational field of a massive rotating object and the
magnetic dipole in a static magnetic field undergo pre-
cession. The equations describing the motion of massive
spinning objects in a gravitational field are known as the
Mathisson-Papapetrou-Dixon equations [2–4]. Using this

equation, Wald [5] evaluated the force on a spinning test
body at rest in the exterior field of an arbitrary stationary,
rotating source. In particular, he demonstrated that this
force acting on a particle with spin s⃗ in the gravitational
field of a massive object with angular momentum L⃗
depends on the relative orientation of vectors s⃗ and L⃗.
For example, for a spinning particle on the symmetry axis
of a rotating black hole, this force is repulsive if vectors s⃗
and L⃗ are parallel, and attractive if the vectors are
antiparallel.
When a spinning particle is brought into the vicinity of a

spinning black hole along the black hole’s symmetry axis,
the energy of a particle with an antiparallel spin orientation
will be larger than that of a particle with a parallel spin
orientation. The additional dependence of this energy on
spin makes the quantum creation of particles with spin
directed along the black hole’s angular momentum more
favorable. For the Hawking quantum flux of neutrinos,
antineutrinos are predominantly emitted in the direction of
L⃗, while neutrinos are mainly emitted in the opposite
direction [6–9]. This effect has an analog in the quantum
radiation of photons and gravitons by a rotating black hole.
Namely, there exists an asymmetry in the emission of left-
and right-hand-polarized quanta of these fields in a given
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direction. As a result, the electromagnetic and gravitational
quantum radiation of rotating black holes are polarized
[8,10]. A similar effect is expected for higher-dimensional
rotating black holes [11]. This effect, as well as the
connected property of asymmetry in Hawking radiation,
might be important for the search of a decay of mini black
holes if such black holes could be produced in colliders.
Dolgov and collaborators made an interesting observa-

tion. They pointed out that the effect of asymmetrical
radiation of massless spinning particles by a rotating black
hole is related to a so-called “gravitational chiral anomaly”
[12–14].
An anomaly in quantum field theory is a well-known

phenomenon that arises from a conflict between sym-
metries of the classical theory and its quantization (for a
general discussion of this subject see, e.g., [15,16] and
references therein). A chiral anomaly occurs when a chiral
current is not conserved in quantum theory, in spite of its
classical conservation.1 One of the most “dramatic” con-
sequences of the axial anomaly is the possible production
of fermions whose quantum numbers violate classical laws.
An axial-current anomaly for the massless Dirac field ψ
with electric charge e in external electromagnetic and
gravitational fields was calculated in papers [19–22].
Namely, if aμ ¼ ψ̄γμγ5ψ is the axial current, then the
quantum average of its divergence does not vanish. It has
the form2

h∇μaμi ¼
e2

8π2
Fμν

�Fμν −
1

192π2
Rμναβ

�Rμναβ; ð1:1Þ

where

�Fμν ¼ 1

2
eμναβFαβ;

�Rμναβ ¼ 1

2
eμνκλRκλ

αβ: ð1:2Þ

Dolgov and collaborators demonstrated that a similar
chiral anomaly exists for an Abelian vector field Aμ [12–
14,25,26]. Namely, they considered the current

Kμ ¼ eμναβAν∂αAβ ð1:3Þ

and showed that

h∇μKμi ¼ −
1

96π2
Rμναβ

�Rμναβ: ð1:4Þ

An approximate evaluation of the chiral current for the
Riemann curvature tensor in the Kerr metric was performed
in [12,27]. The physical interpretation of the currents aμ

and Kμ comes from the observation that integral over all
space for components a0 and K0 has the dimensionality of
an angular momentum, and is proportional to the difference
between the right and left circularly polarized components,
i.e., the net helicity [26]. Chiral anomalies for other fields
and further references can be found in [22]. Calculations of
chiral anomalies in four dimensions and higher can be
found in the book [28].
There exist a number of publications devoted to the study

of chiral and other anomalies in black hole spacetimes. A
long time ago, Christensen and Fulling [29] discussed
conformal anomalies for a conformal massless field in the
Schwarzschild geometry. For such a theory, the classical
trace of the stress-energy tensor vanishes, while its quan-
tum average does not. The authors showed that in two
dimensions, the conformal anomaly uniquely determines
the stress-energy tensor itself, up to two arbitrary functions
of one variable that depends on the choice of state. In
particular, for the Unruh vacuum, the flux of Hawking
radiation at infinity is uniquely determined by the con-
formal anomaly. In four dimensions for a similar state, the
expression for the quantum average of the stress-energy
tensor, in addition to the known conformal anomaly,
contains an unknown arbitrary function of one variable.
An interesting approach in connecting Hawking radia-

tion from black holes to quantum anomalies was proposed
and developed in the papers [30–33]. In this approach, one
considers a free quantum field in the black hole background
and focuses on its properties in a narrow strip near the
horizon. After decomposition of the four-dimensional field
into modes, one reduces the problem to an infinite set of
two-dimensional fields with an effective potential that
vanishes in the near-horizon domain. In this regime, one
effectively has a free two-dimensional massless field with
two kinds of modes: “left movers” describing particles
moving toward the horizon, and “right movers” describing
particles propagating toward the black hole exterior.
By studying the gravitational anomalies in such a two-
dimensional chiral model, Robinson and Wilczek [30]
demonstrated that the existence of the Hawking radiation
is necessary for cancellation of this anomaly. The papers
[31–33] contain a generalization of these results to charged
and rotating black holes3 [34].
Let us emphasize that the above approach only allows

one to obtain information about the quantum average of the

1Similar effects of anomalous transport phenomena in chiral
liquids [17,18] are of great interest in condensed matter physics.

2In this relation we use the sign convention of [23]. The
coefficient of the electromagnetic field contribution depends on
the choice of units. In Heaviside units, this coefficient is e2=ð2πÞ
(see, e.g., [24]). Let us also note that for a Weyl neutrino, the
coefficient of the gravitational anomaly is twice as small and is
1=ð384π2Þ.

3Let us note that this approach is similar to the case where one
interprets the production of charged massless fermions by a one-
dimensional electric potential step-function as an anomalous
fermion production.
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stress-energy tensor of the field in the region very close to
the horizon. To find the Hawking radiation at infinity, one
needs to first figure out how each mode’s contribution to
the stress-energy tensor is affected by the effective potential
in the domain where the adopted approximation is not
valid, and then one needs to sum over all modes.
In the present paper, we follow the basic ideas of Dolgov

and collaborators [12–14], and we study the contribution of
chiral anomalies to the asymmetry in the net helicity of
Hawking radiation from massless spinning particles.
Namely, we consider the equation

∇μJμ ¼ P; ð1:5Þ

for two cases: P ¼ − 1
2
Rμναβ

�Rμναβ andP ¼ Pe ¼ Fμν
�Fμν.

Currents haμi and hKμi can be obtained as linear combi-
nations of the currents Jμ with an appropriate choice of the
constant coefficients. We study solutions of these equations
in a wide class of spacetimes, including the case of charged
rotating black holes. This class is singled out by the
property that they admit a special object called the principal
Killing-Yano tensor, which is a generator of hidden
symmetries [35,36]. The principal Killing-Yano tensor
determines a preferable (Darboux) frame and a system
of canonical coordinates. Such a metric admits two
commuting Killing vectors. When written in canonical
coordinates, this spacetime metric contains two arbitrary
single-variable functions. If the Ricci scalar vanishes, these
functions are second order polynomials of their arguments.
The Kerr and Kerr-Newman metrics, describing a rotating
black hole in an asymptotically flat spacetime, belong to
this subclass of metrics.
We impose natural conditions on the current Jμ. Namely,

we assume that it respects the spacetime symmetries and is
regular at the horizon and symmetry axes. To incorporate
these properties, we use a formalism developed by Geroch
[37,38]. He demonstrated that in the presence of two
commuting Killing vectors, one can introduce a two-
dimensional space S, the points of which are orbits of
the Killing vectors. In other words, our spacetime can be
decomposed into a bundle of such two-dimensional (2D)
Killing vector surfaces over S. In such a description, vectors
and tensors respecting the spacetime symmetries can be
identified with corresponding 2D fields on S. One can use
such a representation to reduce 4D equations to 2D
equations on S. We apply this method to the spacetime
of an eternal black hole. In this case, we impose an
additional condition that there are no initial fluxes of the
polarization, and we require that the current Jμ vanishes
both at the past null infinity J −, and at the past horizon.
We describe a method of obtaining exact solutions to

(1.5) that satisfy the imposed symmetry and regularity
conditions. Such a solution is found in explicit analytical
form. We use these results to obtain an analytic expression
for the flux of the current at the infinity. In the second part

of the paper, we repeat this analysis for the chiral anomaly
generated by the F�F term in (1.1) in the background of a
charged rotating black hole.
It should be emphasized that there exists a freedom in the

choice of a solution for (1.5). Namely, one can add a
solution of the homogeneous equation, i.e., a solution of
(1.5), with P ¼ 0. We analyze this freedom and discuss
constraints imposed on it by the regularity conditions on the
horizon and symmetry axes.
The paper is organized as follows. In Sec. II we remind

the reader of the main points from Geroch’s approach, and
collect some useful formulas related with this formalism. In
Sec. III we describe the main properties of spacetimes that
admit a principal Killing-Yano tensor, and specify regu-
larity conditions at both the horizon and the symmetry axes
in such spacetimes. In Sec. IV we study solutions of the
equation for the chiral anomaly in the off-shell metric. We
demonstrate that there exist solutions for the current which
respect both explicit and hidden symmetries of the space-
time, and we find their explicit form. In this section we also
describe principal chiral currents which are collinear with
the principal null directions of the spacetime. In Sec. V we
study the Chern-Simons form of the chiral current and
discuss its relation to the principal chiral currents.
Section VI is devoted to studying the contribution of the
electromagnetic field to the chiral current anomaly in a
spacetime of the charged rotating black hole. Section VII
contains discussion of the obtained results.
In this paperwe use natural units inwhichG ¼ c ¼ ℏ ¼ 1

and the signature conventions of the book [23].

II. BASIC EQUATIONS

A. Geroch’s formalism

LetM be a four-dimensional spacetime with a metric gμν,
which admits two commuting linearly independent Killing

vectors ξ
0

and ξ
1

. Geroch [38] demonstrated that if additional
natural conditions are imposed on these Killing vector
fields (which we also assume to be valid), there exists a
projection ψ of the spacetime M onto a smooth two-
dimensional space S.
We denote

λ00 ¼ ξ
0μ

ξ
0

μ; λ11 ¼ ξ
1μ

ξ
1

μ; λ01 ¼ ξ
0μ

ξ
1

μ;

γμν ¼ −
1

γ

�
λ11ξ

0

μξ
0

ν þ λ00ξ
1

μξ
1

ν − 2λ01ξ
0

ðμξ
1

νÞ

�
;

ρμν ¼ 2ξ
0

½μξ
1

ν�: ð2:1Þ

In what follows we also assume that the following so-
called “circularity conditions” are satisfied (see, e.g., [39])

eαβγδξ
0

αξ
1

βξ
0

γ;δ ¼ 0; eαβγδξ
0

αξ
1

βξ
1

γ;δ ¼ 0: ð2:2Þ
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These relations are necessary and sufficient conditions for
the two-flats orthogonal to ξ

0

and ξ
1

to be integrable. Let us
denote by Γ the two-dimensional span of the Killing

vectors ξ
0

and ξ
1

. Then, the circularity condition implies
that Γ is orthogonal to S. The circularity conditions are met
for stationary axisymmetric vacuum and electrovac solu-
tions of the Einstein equations [40,41]. These conditions
are also valid for the off-shell metrics (3.5), which we shall
discuss in the next section.
It is easy to check that

γ ≡ −
1

2
ρμνρ

μν ¼ ðλ01Þ2 − λ00λ11: ð2:3Þ

If one of the Killing vectors vanishes, then the scalar γ
vanishes as well. For example, this happens in an axisym-
metric spacetime at the axis of symmetry. We assume that
outside of these points, the Killing vectors are linearly
independent, so that they stretch a 2D plane. If γ > 0, this
2D plane is timelike. For γ < 0, such a 2D plane is
spacelike. When γ ¼ 0 and the Killing vectors remain
finite, the 2D plane stretched by these vectors is null. Carter
[42] showed that if the circularity conditions are satisfied,
the event horizon of an arbitrary stationary axially sym-
metric black hole coincides with the set of points at which
ρ ¼ 0.
For the case of a stationary axisymmetric black hole in an

asymptotically flat spacetime, which is the object of the
main interest for us, the region with γ > 0 coincides with
the black hole exterior. In this domain there exists a natural
metric q and alternating tensor ϵ on S

qμν ¼ gμν − γμν; ð2:4Þ

ϵμν ¼
1ffiffiffi
γ

p eμναβξ
0α

ξ
1β

: ð2:5Þ

Let za, a, b ¼ 2; 3 be coordinates in S. Then its 2D line
element is

dq2 ¼ qμνdxμdxν ¼ qabdzadzb: ð2:6Þ

Let pi, i, j ¼ 0; 1 be coordinates in Γ, and then

dγ2 ¼ γμνdxμdxν ¼ γijdpidpj: ð2:7Þ

Denote

g ¼ − detðgμνÞ; γ ¼ − detðγijÞ; q ¼ detðqabÞ;
ð2:8Þ

and then one has

g ¼ γq: ð2:9Þ

Let us note that γ is a scalar function on S.
The inverse 2D metric qab is defined by the relation

qabqbc ¼ δac: ð2:10Þ

One also has

qνμ ¼ δνμ þ
1

γ

�
λ11ξ

0

μξ
0ν

þ λ00ξ
1

μξ
1ν

− 2λ01gνκξ
0

ðμξ
1

κÞ

�
: ð2:11Þ

This tensor is a projector on S which has the following
property:

qμνξ
0ν

¼ qμνξ
1μ

¼ 0: ð2:12Þ

Let us consider a tensor T in M with components T ���β������α���.
We say that this tensor respects the symmetry of M if

L
ξ
0T ¼ L

ξ
1T ¼ 0: ð2:13Þ

Here L is the Lie derivative. We say that a tensor T which
respects the symmetry is an S-tensor if, in addition to
(2.13), it has the following property:

γαμT
���β������α��� ¼ 0; γμβT

���β������α��� ¼ 0: ð2:14Þ

Such tensors have nonvanishing components only in the
directions tangent to S. Geroch [38] showed that they can
be identified with tensors on S, and the covariant derivative
∇μ acting on S-tensors in M is related to the covariant
derivative Da for the reduced 2D metric dq2 on S.

B. Conserved and nonconserved currents

In what follows we discuss solutions of Eq. (1.5) for the
chiral current in the presence of a chiral anomaly. Let us
make comments concerning properties of an arbitrary
vector field J inM which respects the spacetime symmetry
and therefore obeys the equations

L
ξ
0J ¼ L

ξ
1J ¼ 0: ð2:15Þ

Let us write such a vector J in the form

Jμ ¼ JμK þ JμS ;

JμK ¼ j0ξ
0μ

þ j1ξ
1μ

; JμS ¼ qμνJν: ð2:16Þ

Since the Killing vectors commute, conditions (2.15)
imposed on the vector JK imply

ξ
0μ

∂μj0 ¼ ξ
1μ

∂μj0 ¼ ξ
0μ

∂μj1 ¼ ξ
1μ

∂μj1 ¼ 0: ð2:17Þ
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This means that the component JμK of the vector Jμ is
uniquely determined by two scalar functions j0 and j1 on S.
It is easy to check that

∇μðj0ξ
0μ

Þ ¼ ∇μðj1ξ
1μ

Þ ¼ 0: ð2:18Þ

This means that the current JK satisfies the homogeneous
equation

JμK;μ ¼ 0: ð2:19Þ

The other component JS of the vector J is an S-vector. If
the vector J satisfies Eq. (1.5), then JS should satisfy this
equation as well. If one finds any special solution of such
an inhomogeneous equation, one can obtain a general
solution by adding the special solution to solutions of the
homogeneous equation

Jμ;μ ¼ 0: ð2:20Þ

For the S-vector Jμ ¼ ð0; Jr; Jy; 0Þ, this equation takes the
form

∂rð
ffiffiffi
g

p
JrÞ þ ∂yð

ffiffiffi
g

p
JyÞ ¼ 0: ð2:21Þ

Let J be an S-vector obeying Eq. (2.20). Denote

ωα ¼ eαβγδJβξ
0γ

ξ
1δ

: ð2:22Þ

Here eαβγδ ¼ ffiffiffi
g

p
ϵαβγδ, and ϵαβγδ is the totally antisymmetric

Levi-Civita symbol, ϵτryψ ¼ 1. It is easy to check that ω is
an S-covector and its components are

ωμ ¼ ð0;ωr;ωy; 0Þ; ωr ¼
ffiffiffi
g

p
Jy; ωy ¼ −

ffiffiffi
g

p
Jr:

If the S-current satisfies the conservation law (2.21), then
one has

ωr;y ¼ ωy;r: ð2:23Þ

This means that for a conserved S-current J, the 1-formω is
closed and (at least locally) is a gradient of some function
Ψ ¼ Ψðr; yÞ

ωμ ¼ Ψ;μ: ð2:24Þ

We call Ψ the potential. The conserved S-current itself can
be expressed in terms of its potential as follows:

Jμ ¼ −
1

γ
eμνρσΨ;νξ

0

ρξ
1

σ: ð2:25Þ

III. HIDDEN SYMMETRY AND CANONICAL
FORM OF THE METRIC

A. Principal Killing-Yano tensor and off-shell metric

Consider a nondegenerate rank-2 skew-symmetric tensor
hμν obeying the equation

hμν;λ ¼ gλνξμ − gλμξν: ð3:1Þ

It is a closed conformal Killing-Yano tensor, and it is called
a principal Killing-Yano tensor. The 2-form h is closed and
(at least locally) it can be written as

h ¼ db; ð3:2Þ

where b is a 1-form. If h is a principal Killing-Yano
tensor, then

(i) The Hodge-dual of h, k ¼ ⋆h, is a Killing-Yano
tensor

kμðν;λÞ ¼ 0: ð3:3Þ

(ii) The following two symmetric tensors Kμν ¼ kμλkλν
and Hμν ¼ hμλhλν are Killing and conformal Killing
tensors, respectively:

Kðμν;λÞ ¼ 0; Hðμν;λÞ ¼ 2gðμνhλÞσξσ: ð3:4Þ

In the general case, the metric of a spacetime admitting
the principal Killing-Yano tensor can be written in the
following form (see, e.g., [35,36]):

ds2 ¼ dγ2 þ dq2;

dγ2 ¼ γijdpidpj ¼ Δy

Σ
ðdτ − r2dψÞ2 − Δr

Σ
ðdτ þ y2dψÞ2:

dq2 ¼ qabdzadzb ¼ Σ
�
dr2

Δr
þ dy2

Δy

�
: ð3:5Þ

Here pi ¼ ðτ;ψÞ, za ¼ ðr; yÞ, Σ ¼ r2 þ y2, Δr ¼ ΔrðrÞ,
and Δy ¼ ΔyðyÞ. This metric is called “off-shell” if the
functions Δr and Δy are not specified. For this metric, one
has

ffiffiffi
g

p ¼ Σ;
ffiffiffi
γ

p ¼ ffiffiffiffiffiffiffiffiffiffiffi
ΔrΔy

p
;

ffiffiffi
q

p ¼ Σffiffiffiffiffiffiffiffiffiffiffi
ΔrΔy

p ;

using the conventions adopted in (2.8). In the coordinates
ðτ; r; y;ψÞ, the 1-form b is of the form

b ¼ 1

2
½ðr2 − y2Þdτ þ r2y2dψ �: ð3:6Þ
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The metric (3.5) has two commuting Killing vectors ξ
0

¼
∂τ and ξ

1

¼ ∂ψ . The first one ξ
0

coincides with the vector ξ
which enters the definition (3.1) of the principal Killing-

Yano tensor, while the second Killing vector ξ
1

satisfies the

equation ξ
1

μ ¼ Kμνξ
0ν

. The metric (3.5) is invariant under a
discrete transformation τ → −τ, ψ → −ψ .
Consider the following equation:

Hμ
νuν ¼ λuμ: ð3:7Þ

The eigenvalues λ are r2 and −y2. These parameters ðr; yÞ
together with Killing parameters ðτ;ψÞ enter in the metric
(3.5) as its coordinates. The full metric (3.5) evidently
belongs to the class of the metrics discussed in [38]. The
Darboux coordinates ðr; yÞ define standard coordinates in
the 2D space S.
For the metric (3.5) there exists a so-called “Darboux

basis” of normalized vectors eA ¼ fe1; e1̄; e2; e2̄g in which

gμν ¼ ηABeAμeBν; ηAB ¼ diagð−1; 1; 1; 1Þ;
hμν ¼ 2ðre1½μe1̄ν� þ ye2½μe2̄ν�Þ: ð3:8Þ

We use capital letters such as A and B to enumerate the
Darboux basis vectors. These indices take the val-
ues ð1; 1̄; 2; 2̄Þ.
The vectors of the Darboux basis are

eμ1∂μ ¼
1

Σ

�
Σ
Δr

�
1=2

ðr2∂τ þ ∂ψÞ;

eμ
1̄
∂μ ¼

�
Δr

Σ

�
1=2

∂r;

eμ2∂μ ¼
1

Σ

�
Σ
Δy

�
1=2

ðy2∂τ − ∂ψÞ;

eμ
2̄
∂μ ¼

�
Δy

Σ

�
1=2

∂y; ð3:9Þ

e1μdxμ ¼ −
�
Δr

Σ

�
1=2

ðdτ þ y2dψÞ;

e1̄μdx
μ ¼

�
Σ
Δr

�
1=2

dr;

e2μdxμ ¼
�
Δy

Σ

�
1=2

ðdτ − r2dψÞ;

e2̄μdx
μ ¼

�
Σ
Δy

�
1=2

dy: ð3:10Þ

Here we choose eμ1 to be a future-directed timelike vector,
and we choose the orientation of the tetrad such that

eαβγδeα1e
β
1̄
eγ2e

δ
2̄
¼ þ1: ð3:11Þ

It is easy to show that

eμ1 ¼
1ffiffiffiffiffiffiffijλ1j

p hμνeν1̄; eμ2 ¼
1ffiffiffiffiffiffiffijλ2j

p hμνeν2̄; ð3:12Þ

where λ1 ¼ r2 and λ2 ¼ −y2 are the eigenvalues of
Eq. (3.7).
The principal Killing-Yano tensor and the vectors of the

Darboux basis obey the following relations:

L
ξ
0h ¼ L

ξ
1h ¼ 0;

L
ξ
0eA ¼ L

ξ
1eA ¼ 0: ð3:13Þ

The vectors e1̄ and e2̄ lie in S, while the vectors e1 and e2 are

linear combinations of the Killing vectors 0
ξ
and 1

ξ
with

coefficients depending on r and y. We denote by Π1 a two-
plane spanned by the vectors e1 and e1̄ and by Π2 a two-
plane spanned by the vectors e2 and e2̄. (See Fig. 1.) Vectors
of Π1 are eigenvectors of the tensors H and K with
eigenvalues λ ¼ r2 and λ ¼ y2, respectively. Similarly,
vectors of Π2 are eigenvectors of the tensors H and K
with eigenvalues λ ¼ −y2 and λ ¼ −r2, respectively.
Using the Darboux basis vectors, we define

k� ¼ e1 ∓ e1̄; l� ¼
ffiffiffiffiffiffi
Σ
Δr

s
k�; ð3:14Þ

lμ�∂μ ¼
r2

Δr
∂τ þ

1

Δr
∂ψ ∓ ∂r: ð3:15Þ

The vectors k� and l� are null. The vectors k� obey the
following normalization condition:

ðkþ; k−Þ ¼ −2: ð3:16Þ

The vectors l� satisfy the relation

FIG. 1. The geometry of spacetime for the off-shell metric
(3.5).

FROLOV, KOEK, SOTO, and ZELNIKOV PHYS. REV. D 107, 045009 (2023)

045009-6



lν�l
μ
�;ν ¼ 0: ð3:17Þ

This relation shows that the integral lines of l� are geo-
desics, and that r is an affine parameter along them. These
vectors are called principal null vectors.

B. Black hole metrics

Functions ΔrðrÞ and ΔyðyÞ which enter the off-shell
metric (3.5) are arbitrary. They are specified if one requires
that this metric is a solution of the Einstein equations. For
the vacuum, such a solution is the Kerr metric, while for the
electrovacuum it is the Kerr-Newman metric. It is instruc-
tive to work initially with a general form of the metric and
specify the functions ΔrðrÞ and ΔyðyÞ later. However, we
assume that the function Δr obeys special boundary
conditions:

(i) Δr is positive in the interval rH < r < ∞.
(ii) At r → ∞, Δr has the following asymptotic

form Δr ∼ r2 − 2mrþ � � �.
(iii) The metric function ΔrðrÞ vanishes at r ¼ rH, and

near this point it has the following expan-
sion: Δr ∼ Δ0

rðrHÞðr − rHÞ þOððr − rHÞ2Þ.
To reproduce the standard formulas in the Boyer-

Lindquist coordinates, we introduce two new Killing
coordinates ðt;ϕÞ

τ ¼ t − aϕ; ψ ¼ ϕ=a: ð3:18Þ

We denote by ξðtÞ ¼ ∂t and ξðϕÞ ¼ ∂ϕ their corresponding
Killing vectors. Then, one has

ξðtÞ ¼ ξ
0

¼ ∂τ; ξðϕÞ ¼
1

a
ξ
1

− aξ
0

: ð3:19Þ

The Killing vector ξðtÞ is singled out by the property that its
norm at infinity is finite and equal to −1. The other Killing
vector ξðϕÞ has the property that its integral lines are closed.
The axes of symmetry are defined by the condition
ξ2ðϕÞ ¼ 0. This condition implies that Δy vanishes at the

symmetry axis.
For

Δy ¼ a2 − y2 ð3:20Þ

the asymptotic form of the metric at infinity is

ds2 ≈ −dt2 þ dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ þ � � � : ð3:21Þ

A condition for regularity at the symmetry axes (absence of
conical singularities) implies that ϕ is an angle variable and
its period is 2π.
In what follows we assume that relation (3.20), as well as

the imposed conditions on Δr, are satisfied. Such a metric
describes a rotating black hole in an asymptotically flat

spacetime. Let us emphasize that in the presence of matter
in the black hole exterior, the metric function Δr should be
obtained by solving the Einstein equations.
The angular velocity of a black hole described by the

metric (3.5) can be defined as follows. Denote

η ¼ ξðtÞ þ ΩξðϕÞ ¼ ð1 − aΩÞξ
0

þ Ω
a
ξ
1

: ð3:22Þ

In the black hole exterior, the condition η2 ¼ 0 specifies
two values of Ω. The two corresponding null vectors
coincide at the horizon. In this limit

Ω ¼ ΩH ¼ a
r2H þ a2

: ð3:23Þ

Here,ΩH is the angular velocity of the black hole. Inserting
this value of Ω into the definition of η, one can check that
the following relation is valid at the horizon:

ðη2Þ;μ ¼ −2κημ; ð3:24Þ

where κ is the surface gravity. The validity of this vector
equation should be checked in coordinates that are regular
at the horizon. One can also compute κ using the following
representation:

κ2 ¼ −
1

2
ηα;βηα;βjH: ð3:25Þ

This gives the following expression for the surface gravity:

κ ¼ Δ0
rjH

2ðr2H þ a2Þ : ð3:26Þ

Here prime denotes the derivative with respect to r.

C. Vacuum and electrovac metrics

For a given matter distribution, the Einstein equations
impose restrictions on the functions ΔrðrÞ and ΔyðyÞ. For
example, let us assume that the scalar curvature vanishes.
Then, one has

R ¼ −
1

Σ

�
d2Δr

dr2
þ d2Δy

dy2

�
¼ 0: ð3:27Þ

This relation implies that both functions Δr and Δy are
quadratic polynomials of their arguments. A term inΔy that
is linear in y is connected with the NUT parameter. In the
presence of this parameter, the metric has at least one
conical singularity at the poles of the axis of rotation (north
or south). We assume that this singularity is absent and
write

Δy ¼ a2 − y2: ð3:28Þ
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This is the form of the metric function Δy that we
postulated earlier.
We assume that the quadratic equation Δr ¼ 0 has two

positive roots r− < rþ. It is convenient to write Δr in the
form

Δr ¼ ðr −mÞ2 − b2; r� ¼ m� b: ð3:29Þ

The location of the black hole horizon coincides with rþ;
thus one has rH ¼ rþ. For the vacuum solution,
b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
, and one obtains the Kerr metric. For the

electrovac metric, the scalar curvature vanishes and the
expression (3.29) is valid where

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 −Q2 − P2

p
: ð3:30Þ

This is the metric of a charged rotating black hole in an
asymptotically flat spacetime. The parameters m, ma, Q,
and P are its mass, angular momentum, electric monopole
charge, and magnetic monopole charge, respectively. For
Q ¼ P ¼ 0 one reproduces the Kerr metric.

D. Regularity conditions

1. Coordinates regular at the horizon

The metric (3.5) is singular at the points where either Δr
or Δy vanishes. The surface where Δr ¼ 0 is a Killing
horizon, while the condition Δy ¼ 0 defines an axis of
rotation. In what follows, we assume that the surface
gravity κ defined by (3.24) is finite, so that the horizon
is nondegenerate. In this case, the singularity of the metric
at Δr ¼ 0 is a coordinate singularity. To obtain coordinates
that are regular either at the future or the past horizon, one
can introduce coordinates similar to Kerr’s Eddington-
Finkelstein retarded and advanced time coordinates. For
this purpose, let us denote

dσ� ¼ dτ þ a2dψ � r2 þ a2

Δr
dr;

dϕ� ¼ a

�
dψ � 1

Δr
dr

�
: ð3:31Þ

Then one has

dτ ¼ dσ� − adϕ� ∓ r2

Δr
dr;

dψ ¼ 1

a
dϕ� ∓ 1

Δr
dr: ð3:32Þ

In the vicinity of the horizon, one has

Δr ¼
dΔr

dr

����
r¼rþ

ðr − rþÞ þOððr − rþÞ2Þ

¼ 2κðr2H þ a2Þðr − rþÞ þOððr − rþÞ2Þ;

where κ is the horizon surface gravity.
In ðσ�;ϕ�Þ coordinates, the metric (3.5) near the horizon

takes the following form:

ds2 ¼ Δy

Σ

�
dσ� −

r2 þ a2

a
dϕ�

�
2

� 2

�
dσ� −

a2 − y2

a
dϕ�

�
drþ Σ

Δy
dy2 þ � � � :

ð3:33Þ

Here ð� � �Þ denotes terms that vanish on the horizon. This
expression demonstrates the regularity of the metric at the
horizon in these new coordinates σ� and ϕ�. Namely,
the advanced time coordinates σþ and ϕþ are regular at the
future horizon Hþ, while σ− and ϕ− are regular at the past
horizon H−.

2. Regular vectors

A tensor is regular at the horizonH� if its components in
ðσ�;ϕ�Þ coordinates are finite and smooth atH�. It is easy
to show that in the regular coordinates ðσ�;ϕ�Þ the
components of l� are

l�μdxμ ¼ −dσ� þ a2 − y2

a
dϕ�: ð3:34Þ

This means that the principal null vector lþ is regular atHþ,
while l− is regular at H−. Let us denote

n� ¼
ffiffiffiffiffiffi
Δr

Σ

r
k∓: ð3:35Þ

One has

ðl�;n�Þ ¼ −2: ð3:36Þ

The null vectors nþ and n− are regular at the futureHþ and
at the past H− horizons, respectively. Their components in
ðσ�;ϕ�Þ coordinates are

n�μdxμ ¼ −
Δr

Σ

�
dσ� −

a2 − y2

a
dϕ�

�
� 2dr: ð3:37Þ

At the horizons H�, the vectors n� coincide with the null
generators of the horizon. Figure 2 shows vectors l�
and n�.
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3. Regularity at the symmetry axes

Consider an S-vector J, and let Jy be its y-component.
Let us denote

Z ¼ Jy

Δy
: ð3:38Þ

A condition for the vector current J to be regular at the axis
of symmetry is that the limit of the ratio on the right-hand
side of (3.38) at y ¼ �a exists, and that the function Z is
well-defined. This condition follows from the requirement
that for fixed t and r, a 2D section is a locally flat 2-plane,
and J is regular in its 2D Cartesian coordinates.

IV. SOLVING THE CHIRAL
ANOMALY EQUATION

A. Chiral currents respecting explicit
and hidden symmetries

We now study solutions of the chiral anomaly equa-
tion (1.5) with the right-hand side equal to the Pontryagin
pseudoscalar P ¼ − 1

2
Rμναβ

�Rμναβ. We consider first a
general case where the spacetime geometry is described
by an off-shell metric (3.5), and we specify these solutions
for particular black hole metrics later.
Calculations give the following expression for the

Pontryagin invariant in the off-shell metric (3.5):

P ¼ 2

Σ6
f½Σðr _Δy − yΔ0

rÞ þ 4ryðΔr − ΔyÞ�
× ½−Σ2ðΔ00

r þ Δ̈yÞ þ 6ΣðrΔ0
r þ y _ΔyÞ

− 12ðr2 − y2ÞðΔr − ΔyÞ�g: ð4:1Þ

Here and later on we use a prime and a dot to denote the
derivatives with respect to r and y, respectively.

First we focus on the solutions of the chiral anomaly
equation that respect the spacetime symmetry. As it was
demonstrated in Sec. II, such current vectors can be written
in the form (2.16)

Jμ ¼ JμK þ JμS: ð4:2Þ

The chiral current JμK is a solution of the homogeneous
equation and has nonvanishing components only in ðτ;ψÞ
directions. The other current JμS is an S-vector, and it has
components JμS ¼ ð0; Jr; Jy; 0Þ, where Jr and Jy are func-
tions of ðr; yÞ. Hence, Eq. (1.5) takes the form

∂rðΣJrSÞ þ ∂yðΣJySÞ ¼ ΣP: ð4:3Þ

Let us assume that the S-vector of the chiral current JS
satisfies an additional property. Namely, it is an eigenvector
of the Killing tensor Kμν,

Kμ
νJνS ¼ λJμS: ð4:4Þ

This condition implies that either the Jr or Jy component of
the current vanishes. There exist two linearly independent
S-currents that obey this property. We denote them by JðrÞ
and JðyÞ. The eigenvector JðrÞ has components ð0; Jr; 0; 0Þ,
and the corresponding eigenvalue is λ ¼ y2. The other
eigenvector JðyÞ has components ð0; 0; Jy; 0Þ, and the
corresponding eigenvalue is λ ¼ −r2. We say that the
current respects the hidden symmetry if it satisfies con-
dition (4.4).
To distinguish between the currents JðrÞ and JðyÞ, we call

them R-current and Y-current, respectively. Both currents
are S-vectors and, hence, they are spacelike. This implies
that in the Darboux reference frame, their temporal com-
ponents vanish, and hence, the net chiral charge density
vanishes as well.
The currents JðrÞ and JðyÞ can be found by integration of

the following equations:

∂rðΣJrðrÞÞ ¼ ΣP; ∂yðΣJyðyÞÞ ¼ ΣP: ð4:5Þ

We write these solutions in the form

JμðrÞ ¼
R − R0ðyÞ

Σ
δμr ; R ¼

Z
drΣP;

JμðyÞ ¼
Y − Y0ðrÞ

Σ
δμy; Y ¼

Z
dyΣP: ð4:6Þ

FIG. 2. Vectors l� and n�.
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Calculations give

Rðr; yÞ ¼ 1

Σ4
fyΣ2ðΔ0

rÞ2 − 3yΣ2ð _ΔyÞ2 − 2rΣ2Δ0
r
_Δy − 8ryΣðΔr − ΔyÞΔ0

r þ ð6Σ − 16y2ÞΣðΔr − ΔyÞ _Δy

þ Σ2½2yðΔr − ΔyÞ þ Σ _Δy�Δ̈y þ 8yðΔr − ΔyÞ2ð2Σ − 3y2Þg;

Yðr; yÞ ¼ 1

Σ4
f−rΣ2ð _ΔyÞ2 þ 3rΣ2ðΔ0

rÞ2 þ 2yΣ2Δ0
r
_Δy − 8ryΣðΔr − ΔyÞ _Δy − ð10Σ − 16y2ÞΣðΔr − ΔyÞΔ0

r

þ Σ2½2rðΔr − ΔyÞ − ΣΔ0
r�Δ00

r þ 8rðΔr − ΔyÞ2ðΣ − 3y2Þg: ð4:7Þ

It is easy to check that for Δy ¼ a2 − y2, the functions R
and Y have the following properties:

Rðr;−yÞ ¼ −Rðr; yÞ; Yðr;−yÞ ¼ Yðr; yÞ: ð4:8Þ

The solutions (4.6) contain two arbitrary functions of one
variable, R0ðyÞ and Y0ðrÞ, which arise as the corresponding
“integration constants.” It is easy to check that any current
of the form

Jμ0 ¼ ð0; R0ðyÞ=Σ; Y0ðrÞ=Σ; 0Þ ð4:9Þ

is a solution of the homogeneous equation Jμ0;μ ¼ 0. We call
such solutions “zero modes.” In Sec. II, it was shown that a
conserved S-current has a potential Ψ and can be written in
the form (2.25). The corresponding potential for zero
modes (4.9) is

Ψ ¼
Z

Y0ðrÞdr −
Z

R0ðyÞdy: ð4:10Þ

Let us note that functions R and Y which enter solutions
(4.7) are finite at both the horizon, where Δr ¼ 0, and the
symmetry axes, where Δy ¼ 0. However, this does not
guarantee that the corresponding solutions JμðrÞ and JμðyÞ are
regular. Zero modes determined by functions R0ðrÞ and
Y0ðrÞ can be used to “improve” the properties of the
solutions (4.7) and to make them regular both at the horizon
and at the symmetry axes.
Let r ¼ rH be a solution of the equationΔrðrHÞ ¼ 0, and

let y ¼ �a be a solution of the equation Δyðy ¼ �aÞ ¼ 0.
Let us choose

R0 ¼ RH ≡ Rðr ¼ rH; yÞ; Y0 ¼ YA ≡ Yðr; y ¼ �aÞ:
ð4:11Þ

Then the current JðrÞ is regular at the horizon where r ¼ rH,
and the current JðyÞ is regular at the axes of the rotation
where y ¼ �a. Let us note that Yðr;−yÞ ¼ Yðr; yÞ, so it is
sufficient to make the current JðyÞ regular at one of the axes,
say y ¼ −a, and it will automatically be regular at the
other, y ¼ a.

Using expressions for functions Rðr; yÞ and Yðr; yÞ for the currents (4.7) one finds

RH ¼ 1

Σ4
fyΣ2ðΔ0

rÞ2 − 3yΣ2ð _ΔyÞ2 − 2rΣ2Δ0
r
_Δy þ 8ryΣΔyΔ0

r − ð6Σ − 16y2ÞΣΔy
_Δy

þ Σ2½−2yΔy þ Σ _Δy�Δ̈y þ 8yðΔyÞ2ð2Σ − 3y2Þgjr¼rH ;

YA ¼ 1

Σ4
f−rΣ2ð _ΔyÞ2 þ 3rΣ2ðΔ0

rÞ2 þ 2yΣ2Δ0
r
_Δy − 8ryΣΔr

_Δy þ ð10Σ − 16y2ÞΣΔrΔ0
r

− Σ2½2rΔr þ ΣΔ0
r�Δ00

r þ 8rΔ2
rðΣ − 3y2Þgjy¼a; ð4:12Þ

B. Principal chiral current

Using relation (4.6), one can write

JðrÞ ¼ J1̄e1̄: ð4:13Þ

It is easy to check that for an arbitrary function f ¼ fðr; yÞ,
one has

ðfeμ1Þ;μ ¼ 0: ð4:14Þ

Using this property one can modify the current JðrÞ by
adding a term proportional to e1. Such a new current is not
an S-vector; however, it belongs to the Π1 plane, and hence
it is still an eigenvector of the Killing tensor K (see Fig. 1).
The plane Π1 contains two principal null vectors l�,
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Eq. (3.14), and by proper choice of coefficients in the linear
combinations of JðrÞ and e1, one can construct chiral
currents that are parallel to the principal null vectors.
For this purpose, let us note that e1̄ � e1 are null vectors.
We define

J� ¼∓ R − R�ðyÞ
Σ

l�: ð4:15Þ

Here Rðr; yÞ is a function defined by (4.7), and R�ðyÞ are
arbitrary functions of y. We call J� principal chiral
currents. These currents are solutions of the chiral anomaly
equation (1.5) that respect explicit and hidden spacetime
symmetries.
At the infinity r → ∞, Rðr; yÞ vanishes quite fast while

Σ ≈ r2, and so one has

J� ≈�R�ðyÞ
r2

l�: ð4:16Þ

Let us consider this chirality current far away from the
black hole, in the asymptotically flat domain where

l� ¼ ∂t ∓ ∂r: ð4:17Þ

Let us write the current J� in the form Jμ� ¼ ð−ρ�; j⃗�Þ,
where

ρ� ¼ −J�μξ
μ
ðtÞ ð4:18Þ

is the chirality density, which for the current (4.16) is

ρ� ¼ �R�
r2

: ð4:19Þ

The spatial components of the chiral currents (4.16) are

j⃗� ¼ −
R�
r2

∂r ¼∓ ρ�∂r: ð4:20Þ

Hence, for a principal chiral current Jþ, the function RþðyÞ
describes the intensity of the incoming chirality flux at J −,
while −R−ðyÞ is the intensity of the outgoing chirality flux
at J þ. When R� ¼ 0 the corresponding fluxes vanish.
This property illustrates the main difference between the

principal chiral currents and theR- and Y-currents described
above. Namely, the principal currents can describe fluxes of
the chirality at infinity. For example, for Hawking radiation
there exists a spatial separation of created particles with
different chirality (see e.g., [6–8,10,11]). Let us note that the
principal current Jþ vanishes at the future horizonHþ when
Rþ ¼ RH, and the principal current J− vanishes at the past
horizon H− when R− ¼ RH.
As we already mentioned, there exists a wide ambiguity

in the choice of a solution to the chiral anomaly equa-
tion (1.5). This reflects an ambiguity in the choice of the

system’s state. The choice of a special state imposes
restrictions on the initial and/or boundary conditions for
the chiral currents. Let us consider three important cases.

1. B-state

Let us put Rþ ¼ R− ¼ 0, and consider a current

JμB ¼ 1

2
ðJþ þ J−Þ ¼ JðrÞ: ð4:21Þ

For this state there are no fluxes at the infinities J �.
However, the corresponding current is singular at both (past
and future) horizons. Principal chiral currents for the B-
state are schematically shown in Fig. 3.

2. H-state

Let us put Rþ ¼ R− ¼ RH and consider a current

JH ¼ 1

2
ðJþ þ J−Þ ¼

R − RHffiffiffiffiffiffiffiffiffi
ΣΔr

p e1̄: ð4:22Þ

For this state there exists an incoming chirality flux
proportional to RH at J −, which is accompanied by an
outgoing chirality flux proportional to RH at J þ. At both
future and past horizons the chirality fluxes vanish.
Principal chiral currents for the H-state are schematically
shown in Fig. 4.

3. U-state

Let us put R− ¼ RH and Rþ ¼ 0 and consider a current

JU ¼ 1

2
ðJþ þ J−Þ: ð4:23Þ

For this state there is no incoming chirality flux from the
past infinity J −, and the current vanishes at H−. For these
initial conditions, the principal chiral current contains an
outgoing null flux at J þ. The chiral flux at J þ is given by

FIG. 3. Principal chiral currents for B-state.
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JU ∼ −
RH

2r2
l−: ð4:24Þ

For this state there also exists a chirality flux through the
horizon Hþ,

JUjHþ ¼ −
RH

2ðr2H þ y2Þ lþ: ð4:25Þ

Principal chiral currents for the U-state are schematically
shown in Fig. 5.
The described choices of state resemble well-known

Boulware, Hartle-Hawking, and Unruh states for quantum
evaporating black holes (see, e.g., [9,43,44]). This explains
our notations for the states.
The property (4.8) of the function R implies that the

chiral currents at infinity and at the horizons are antisym-
metric functions of y. This implies that the total flux of the
chirality through a 2D spherical surface at infinity vanishes.
This means that the total number of particles with opposite
chirality emitted by the black hole are the same. However,

the integral of the flux over a northern or a southern
semisphere does not vanish. This reflects the angular
asymmetry in the emission of particles with opposite
chirality, i.e., a chiral anomaly.

C. Special cases

1. Kerr black hole

General expressions (4.6) and (4.7) for the currents JðrÞ
and JðyÞ are greatly simplified for on-shell metrics. Let us
consider the case of an isolated rotating black hole in an
asymptotically flat spacetime. In this case, the metric (3.5)
reduces to the Kerr metric, which has two parameters: mass
m and angular momentum ma. One has

Δr ¼ r2 − 2mrþ a2; Δy ¼ a2 − y2: ð4:26Þ

The Pontryagin invariant and functions R and Y, which
enter the expression (4.6) for the chiral currents, take the
form

P ¼ −
48m2ry

ðr2 þ y2Þ6 ðr
2 − 3y2Þð3r2 − y2Þ;

R ¼ Rm ≡ 4m2y
ðr2 þ y2Þ4 ð9r

4 − 14r2y2 þ y4Þ;

Y ¼ Ym ≡ 4m2r
ðr2 þ y2Þ4 ðr

4 − 14r2y2 þ 9y4Þ: ð4:27Þ

It is interesting that the mass m enters all of these
expressions only in the form of prefactors proportional
tom2. The expression forP is invariant under the change of
the coordinates r → y, y → r. Under this transformation,
Rm → Ym and Ym → Rm.
To characterize properties of the Pontryagin invariant, it

is instructive to consider its value at the horizon

PH ¼ −
48m2rHy
ðr2H þ y2Þ6 ðr

2
H − 3y2Þð3r2H − y2Þ: ð4:28Þ

It is easy to check that the sign of PH is determined by the
factor −yðr2H − 3y2Þ. In the northern hemisphere, where
y > 0, it anticorrelates with the sign of the Gaussian
curvature K of the 2D surface of the horizon. K has the
form [36,45]

K ¼ r2H þ a2

ðr2H þ y2Þ3 ðr
2
H − 3y2Þ: ð4:29Þ

Evidently in the southern hemisphere, the sign of PH
correlates with that of K. By comparing (4.28) and (4.29),
one can conclude that the Pontryagin invariant on the
horizon changes its sign at the equator y ¼ 0, and for
rapidly rotating black holes it also changes sign atFIG. 5. Principal chiral currents for U-state.

FIG. 4. Principal chiral currents for H-state.
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jyj ¼ rH=
ffiffiffi
3

p
, where the Gaussian curvature K vanishes.

The domains with negative Gaussian curvature exist on the
horizon near the poles for rapidly rotating black holes.
Specifically, this occurs when their rotation parameter
satisfies the inequality a >

ffiffiffi
3

p
m=2 [45].

The Pontryagin invariant has dimensions of ½length�−4. It
is convenient to define the following dimensionless version
of this invariant, calculated at the horizon:

PjH ¼ 1

r4H
P̂;

P̂ ¼ −
48αρ5 cosθ

ðρ2 þ α2cos2θÞ6 ð3ρ
2 − α2cos2θÞðρ2 − 3α2cos2θÞ;

α¼ a=m; ρ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1− α2

p
; y¼mα cosθ:

ð4:30Þ

The dimensionless invariant P̂ depends on two parameters:
the dimensionless rotation parameter 0 ≤ α < 1, and the
angle θ, which changes in the interval from θ ¼ 0 (at the
“north pole”) to θ ¼ π (at the “south pole”). Figure 6 shows
the value of the dimensionless Pontryagin invariant P̂ at the
horizon of the Kerr black hole as a function of the angle θ.
Taking the function Rm at the horizon r ¼ rH ¼
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
and the function Ym at the symmetry axes

y ¼ �a, one gets

Rm
H ¼ 4m2y

ðr2H þ y2Þ4 ð9r
4
H − 14r2Hy

2 þ y4Þ;

Ym
A ¼ 4m2r

ðr2 þ a2Þ4 ðr
4 − 14r2a2 þ 9a4Þ: ð4:31Þ

For the Kerr black hole, the chiral current in the U-state at
infinity is

JU ∼
1

m
RU

r2
l−;

RU ¼ −
2α cos θð9ρ4 − 14ρ2α2cos2θ þ α4cos4θÞ

ðρ2 þ α2cos2θÞ4 : ð4:32Þ

Note that this current was normalized to satisfy Eq. (1.5),
while the quantum average of the current for the massless
Dirac neutrino field (with the spin s ¼ 1=2) obeys
Eq. (1.1), which differs from JU by a factor of
ð96π2Þ−1. In the case of electromagnetic field (spin
s ¼ 1) this factor would be ð48π2Þ−1. Thus, the chirality
flux density for the quantum field of the spin s is obtained
by the substitution RU → R, where

R ¼ nðsÞ
96π2

RU ð4:33Þ

and the coefficient nðsÞ depends on the spin of the quantum
field, so that nð1=2Þ ¼ 1 and nð1Þ ¼ 2.
Figure 7 shows plots of the dimensionless quantity R as

a function of the angle θ for different values of the
dimensionless rotation parameter.
Since the gravitational Pontryagin density P is an

antisymmetric function of the angle variable y, the corre-
sponding total flux of the chiral current calculated for a 2D
spherical surface surrounding the black hole vanishes. One
can define a quantity that characterizes the current flux,
which takes into account this asymmetry. This can be done
as follows. Let us write the current JU in the U-state in the
(3þ 1)-form JμU ¼ ð−ρ; j⃗Þ. The component of the current
that lies in the direction of the black hole’s axis of rotation
is jz ¼ jr cos θ. Using the relation y ¼ a cos θ, and after
rescaling (4.33) and taking the integral of jz over the
surface of a sphere (r ¼ const) as r → ∞, one gets

_Lm ¼ nðsÞ
96π2

lim
r→∞

�
r2

a2

Z
2π

0

dϕ
Z

a

−a
dyyjr

�
: ð4:34Þ

FIG. 6. Dimensionless Pontryagin invariant P̂ at the horizon of
the Kerr black hole as a function of the angle θ for the values of
the rotation parameter α ¼ 0.1, 0.3, 0.8, and 0.999.

FIG. 7. Dimensionless chiral current flux at infinity R for the
Kerr black hole as a function of the angle θ for the values of the
rotation parameter α ¼ 0.1, 0.3, 0.8, and 0.999.
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The quantity _Lm describes the loss of angular momentum in
the rotating black hole due to the spin of radiated chiral
particles.
Calculating the integral in (4.34), we obtain

_Lm ¼ −nðsÞ am
2ð3r2H − a2Þ

12πðr2H þ a2Þ3

¼ −nðsÞ 1

12
AHT2

HΩH
m2ð3r2H − a2Þ

ðrH −mÞ2ðr2H þ a2Þ ; ð4:35Þ

where we took into account that the angular velocity of the
Kerr black hole ΩH, the surface area of the horizon AH, and
the Hawking temperature are

ΩH ¼ a
r2H þ a2

; AH ¼ 4πðr2H þ a2Þ;

TH ¼ rH −m
2πðr2H þ a2Þ : ð4:36Þ

In the limit of a slowly rotating black hole α ¼ a=m ≪ 1,
we get

_Lm ≃ −nðsÞ ΩH

16π
: ð4:37Þ

It is convenient to write the expression (4.35) in the
dimensionless form

_Lm ¼ 1

m
Lm;

Lm ¼ −nðsÞ αð3ρ2 − α2Þ
12πðρ2 þ α2Þ3 : ð4:38Þ

Here Lm is a dimensionless function of the dimensionless
rotation parameter α. A plot of Lm as a function of the
dimensionless rotation parameter α is given in Fig. 8.

2. Kerr-Newman black hole

If a rotating black hole has either electric charge Q or
magnetic monopole charge P, or both, then the off-shell
metric (3.5) takes the Kerr-Newman form for which Δy

remains the same as in the uncharged case, while Δr
becomes

Δr ¼ r2 − 2mrþ a2 þ Q̃2; Q̃2 ¼ Q2 þ P2: ð4:39Þ

The Pontryagin invariant for this metric is

P ¼ 48y
ðr2 þ y2Þ6 ½mrðr2 − 3y2Þ − Q̃2ðr2 − y2Þ�

× ½mðy2 − 3r2Þ þ 2rQ̃2�: ð4:40Þ

Substituting the expressions for Δr and Δy into (4.6) gives
the corresponding expressions for the functions R and Y. It
is interesting that both of these functions can be written as
the sum of two terms,

R ¼ Rm þ RQ; Y ¼ Ym þ YQ; ð4:41Þ

where Rm and Ym are the functions R and Y calculated
above for the Kerr metric, while RQ and YQ depend on
charge, and are of the form

RQ ¼ 8yQ̃2

ðr2 þ y2Þ4 ½Q̃
2ð2r2 − y2Þ − 6mrðr2 − y2Þ�;

YQ ¼ 4Q̃2

ðr2 þ y2Þ4 ½2Q̃
2rðr2 − 2y2Þ

− 3mðr4 − 6r2y2 þ y4Þ�: ð4:42Þ

For the Kerr-Newman metric

rH ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 − Q̃2

q
: ð4:43Þ

Using the above expressions (4.41), one can find RH and
YA. Calculating the integral (4.34), one obtains the follow-
ing expression

_L ¼ _Lm þ _LQ;

_LQ ¼ nðsÞ Q̃2

96πr3Ha
2

�
32ma3r4H
ða2 þ r2HÞ3

− Q̃2

�
arctan

�
a
rH

�
þ arHða4 þ 8a2r2H − r4HÞ

ða2 þ r2HÞ3
�	

:

ð4:44Þ

Here _Lm is given by (4.35).
FIG. 8. Lm as a function of the dimensionless rotation param-
eter α.
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V. CHERN-SIMONS CHIRAL CURRENT

A. General expression of the Chern-Simons current for
the off-shell metric

In the previous section, we discussed special solutions of
the chiral anomaly equations. We obtained an explicit form
of the solutions for the chiral currents, which have special
symmetry properties. Let us now discuss another quite
general approach for solving the chiral anomaly equations.
Let eA be a normalized basis, and let the index A enumerate
the basic vectors. Let us use it to define the Chern-Simons
current I

Iα ¼ −
1

2
eαβμν

�
RβμABων

AB þ 2

3
ωβ

A
Bωμ

B
Cων

C
A

�
: ð5:1Þ

Here

ωAB
μ ¼ eAν∇μeνB;

RμνAB ¼ RμναβeαAe
β
B: ð5:2Þ

One can show that this current obeys the equation

Iμ;μ ¼ P; ð5:3Þ

where P is the Pontryagin invariant. (For details and
general discussion see, e.g., [46].) In the general case,
the Chern-Simons current depends on the choice of basis.
In the case we discussed in this paper, explicit and hidden

symmetries of the off-shell metric (3.5) single out a special
Darboux tetrad, for which properties of the metric are
greatly simplified. Using the Darboux basis eαA ¼
ðeα1; eα1̄; eα2; eα2̄Þ defined by (3.9), and after quite long but
straightforward calculations, one obtains4

Iμ ¼ ð0; Ir; Iy; 0Þ;

Ir ¼ 1

Σ5
fyΣ2½ΔrΔ̈y þ ðΔ0

rÞ2� − rΣΔ0
r½Σ _Δy þ 4yð2Δr − ΔyÞ� þ Σð3Σ − 8y2ÞΔr

_Δy þ 8yð2Σ − 3y2ÞΔrðΔr − ΔyÞg;

Iy ¼ 1

Σ5
f−rΣ2½ΔyΔ00

r þ ð _ΔyÞ2� þ yΣ _Δy½ΣΔ0
r − 4rðΔr − 2ΔyÞ� þ Σð5Σ − 8y2ÞΔyΔ0

r − 8rðΣ − 3y2ÞΔyðΔr − ΔyÞg: ð5:4Þ

Using these general expressions, one can calculate the
functions RH on the horizon and YA on the axis of
symmetry. One has

RH ¼ Δ0
r

Σ3
ðΣðyΔ0

r − r _ΔyÞ þ 4ryΔyÞjr¼rH ;

YA ¼
_Δy

Σ3
ðΣðyΔ0

r − r _ΔyÞ − 4ryΔrÞjy¼a: ð5:5Þ

B. Chern-Simons current in the Kerr spacetime

For the on-shell Kerr metric, the functions RH and YA
take the form

RH ¼ 4myðrH −mÞð3r2H − y2Þ
ðr2H þ y2Þ3 ;

YA ¼ −
4ma2ð3r2 − a2Þ

ðr2 þ a2Þ3 : ð5:6Þ

The Chern-Simons chiral anomaly current I is an S-
vector, and its temporal component vanishes. One can
“upgrade” this current to include fluxes at infinity and the
horizon by adding a corresponding homogeneous solution,
as it was done in the previous subsection for the principal
current. Namely, we define two currents I�,

Iμ� ¼∓
�
Ir −

R�
Σ

�
lμ� þ

�
Iy −

YA

Σ

�
δμy: ð5:7Þ

The term R� depends on the choice of the state. For the
U-state, one has

IμU ¼ 1

2

��
Ir −

RH

Σ

�
lμ− − Irlμþ

�
þ
�
Iy −

YA

Σ

�
δμy: ð5:8Þ

For the U-state, the upgraded Chern-Simons current
describes the following chirality flux at spatial infinity:

IU ∼
1

m
RU

r2
l−;

RU ¼ −
2α cos θ

ðρ2 þ α2cos2θÞ3 ðρ − 1Þð3ρ2 − α2cos2θÞ: ð5:9Þ

Calculating the integral in (4.34) for the Chern-Simons
current, we obtain the flux

_Lm ¼ −nðsÞ amðrH −mÞ
12πðr2H þ a2Þ2 : ð5:10Þ

4The current I for the off-shell metric in Darboux coordinates
also has the following explicit form in terms of Christoffel
symbols: Iα ¼ eαβμνðΓσ

βλ∂μΓλ
νσ þ 2

3
Γσ
βλΓλ

μϵΓϵ
νσÞ [47].
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It is instructive to rewrite this result in terms of the black
hole angular velocity, the surface area of the horizon, and
the Hawking temperature (4.36)

_Lm ¼ −nðsÞ 1

12
AHT2

HΩH

�
m

rH −m

�
: ð5:11Þ

In the limit of a slowly rotating black hole, we get

_Lm ≃ −nðsÞ ΩH

48π
: ð5:12Þ

Figure 9 shows plots for the dimensionless quantityR as
a function of the angle θ for different values of the
dimensionless rotation parameter 0 ≤ α < 1.

Let us note that in paper [48], the authors suggested
using the Chern-Simons current for evaluating the chiral
current of a slowly rotating black hole with angular velocity
Ω. They arrived at the conclusion that the leading-order in
Ω contribution to the chirality flux vanishes quickly at a
large distance, and it does not contribute to the flux at
infinity. This result can be explained as follows. The
expression for the chiral current, which was used by these
authors, does not satisfy the regularity condition at the
horizon, and in this sense it is similar to the choice of the
Boulware vacuum state.

C. Relation between Chern-Simons currents and the
principal currents

Let us note that we have already found two special
expressions for the chiral currents JðrÞ and JðyÞ. Each of
these currents is a solution of the inhomogeneous chiral
anomaly equation (1.5) respecting both explicit and hidden
symmetries of the spacetime for metric (3.5). This means
that the Chern-Simons current I can be presented in the
following two forms:

Iμ ¼ JμðrÞ þ Zμ
ðrÞ; Iμ ¼ JμðyÞ þ Zμ

ðyÞ: ð5:13Þ

Both of the vectors ZðrÞ and ZðyÞ are solutions to the
homogeneous equation

Zμ
ðrÞ ;μ ¼ Zμ

ðyÞ ;μ ¼ 0: ð5:14Þ

They are S-vectors, with the following components:

Zμ
ðrÞ ¼ ð0; Zr

ðrÞ; Z
y
ðrÞ; 0Þ;

Zμ
ðyÞ ¼ ð0; Zr

ðyÞ; Z
y
ðyÞ; 0Þ;

Zr
ðrÞ ¼

1

Σ5
fþrΣ2Δ0

r
_Δy − 4ryΣΔ0

rΔy − Σ2Δ̈y½Σ _Δy þ yðΔr − 2ΔyÞ� þ Σð8y2 − 3ΣÞðΔr − 2ΔyÞ _Δy þ 3yΣ2ð _ΔyÞ2

− 8yð3y2 − 2ΣÞðΔr − ΔyÞΔyg;

Zy
ðrÞ ¼

1

Σ5
f½yΣ2 _Δy þ Σð8y2 − 5ΣÞΔy�Δ0

r − rΣ2ð _ΔyÞ2 − 4ryΣðΔr − 2ΔyÞ _Δy − rΣ2ΔyΔ00
r þ 8rð3y2 − ΣÞΔyðΔr − ΔyÞg;

ð5:15Þ

Zr
ðyÞ ¼

1

Σ5
f−rΣ½Σ _Δy þ 4yð2Δr − ΔyÞ�Δ0

r − Σð8y2 − 3ΣÞΔr
_Δy þ yΣ2ΔrΔ̈y − 8yð3y2 − 2ΣÞΔrðΔr − ΔyÞ þ yΣ2ðΔ0

rÞ2g;

Zy
ðyÞ ¼

1

Σ5
fΣ½−Σy _Δy þ Σ2Δ00

r − ð8y2 − 5ΣÞð2Δr − ΔyÞ�Δ0
r þ 4ryΣΔr

_Δy − rΣ2ð2Δr − ΔyÞΔ00
r

þ 8rð3y2 − ΣÞΔrðΔr − ΔyÞ − 3rΣ2ðΔ0
rÞ2g: ð5:16Þ

FIG. 9. Dimensionless Chern-Simons flux at infinity R for the
Kerr black hole as a function of the angle θ for the values of the
rotation parameter α ¼ 0.1, 0.3, 0.8, and 0.999.
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Since the currents ZðrÞ and ZðyÞ are conserved, there exist
scalar potentials ΨðrÞ and ΨðyÞ that generate these currents

Zμ
ðiÞ ¼ −

1

ΔrΔy
eμνρσΨðiÞ;νξ

0

ρξ
1

σ: ð5:17Þ

Here i ¼ r, y. These potentials are

ΨðrÞ ¼
1

2Σ3
½Σ2ð _ΔyÞ2 þ 2yΣðΔr − 2ΔyÞ _Δy

þ 2Δy½−rΣΔ0
r þ 2ðΣ − 2y2ÞðΔr − ΔyÞ��; ð5:18Þ

ΨðyÞ ¼
1

2Σ3
½Σ2ðΔ0

rÞ2 − 2rΣð2Δr − ΔyÞΔ0
r

þ 2Δr½−yΣ _Δy þ 2ðΣ − 2y2ÞðΔr − ΔyÞ��: ð5:19Þ

In the case of the Kerr-Newman black hole, these
potentials become

ΨðrÞ ¼
2

ðr2 þ y2Þ3 f−mr½a2ðr2 − 3y2Þ − y2ð3r2 − y2Þ�

þ Q̃2ða2r2 − a2y2 − 2r2y2Þg; ð5:20Þ

ΨðyÞ ¼
2

ðr2 þ y2Þ3 f−m½a2rðr2 − 3y2Þ − ry2ð3r2 − y2Þ

−mðr4 − 6r2y2 þ y4Þ�
þ Q̃2½Q̃2ðr2 − y2Þ þ ða2r2 − a2y2 − 2r2y2Þ
− 2mrðr2 − 3y2Þ�g: ð5:21Þ

VI. CHIRAL ANOMALY INDUCED BY THE
ELECTROMAGNETIC FIELD

A. Electromagnetic contribution
to the chiral anomaly current

In the presence of an external electromagnetic field, the
axial-current anomaly for a massless Dirac field ψ with
electric charge e (1.1) also contains a contribution from the
invariant Fμν

�Fμν. When a rotating black hole has an
electric and/or magnetic charge, this invariant does not
vanish. Since the equation for the chiral current (1.1) is
linear, one can calculate the contribution from the external
electromagnetic field independently of the curvature con-
tribution. For this purpose, we consider first a homo-
geneous solution of the Maxwell equation on the
background of the off-shell metric (3.5) that respects the
metric’s symmetry. We specify the solution so that it
describes the electromagnetic field generated by an electric
charge Q and magnetic monopole charge P. We perform
these calculations first without specifying the arbitrary
functions ΔrðrÞ and ΔyðyÞ. For a special choice (4.39)

of these functions with b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 −Q2 − P2

p
, one

reproduces the Kerr-Newman solution of the Einstein-
Maxwell equations describing a rotating charged black hole.
Let us consider the following one-form for the 4D

electromagnetic field potential

A ¼ Aμdxμ ¼ −
1

Σ
½Qrðdτ þ y2dψÞ þ Pyðdτ − r2dψÞ�:

ð6:1Þ

It is possible to check that this potential satisfies the
Lorentz gauge condition Aμ

;μ ¼ 0. The nonvanishing
components of the field F ¼ dA are

Fτr ¼ −U; Fτy ¼ −V;

Fψr ¼ −y2U; Fψy ¼ r2V; ð6:2Þ

where

U ¼ 2PryþQðr2 − y2Þ
Σ2

;

V ¼ 2Qry − Pðr2 − y2Þ
Σ2

: ð6:3Þ

It is easy to check that this field satisfies the homogeneous
Maxwell equations

Fμν
;ν ¼ 0: ð6:4Þ

Direct calculations show that the nonvanishing compo-
nents of the dual field �F are

�Fτr ¼ −V; �Fτy ¼ U;
�Fψr ¼ −y2V; �Fψy ¼ −r2U: ð6:5Þ

This field satisfies the equations

�Fμν
;ν ¼ 0: ð6:6Þ

One also has d�F ¼ 0, and so there exists a one-form B
such that

�Fμν ¼ ∂μBν − ∂νBμ: ð6:7Þ

This potential is

Bμdxμ ¼ −
1

Σ
½Qyðdτ − r2dψÞ − Prðdτ þ y2dψÞ�: ð6:8Þ

Let us note that the potential B can be obtained from A by
the following transformation:

Q → −P; P → −Q; y → −y: ð6:9Þ

CHIRAL ANOMALIES IN BLACK HOLE SPACETIMES PHYS. REV. D 107, 045009 (2023)

045009-17



B. Principal chiral current

Let us consider the invariant

Pe ¼ Fμν
�Fμν: ð6:10Þ

For the potential (6.1) it reads

Pe ¼ −
4

Σ4
½2Qry − Pðr2 − y2Þ�½Qðr2 − y2Þ þ 2Pry�

¼ −4UV: ð6:11Þ

We now discuss solutions to the chiral anomaly equa-
tion (1.5) with right-hand side P ¼ Pe. As before, we
first consider S-currents JðrÞ ¼ ð0; JrðrÞ; 0; 0Þ and JðyÞ ¼
ð0; 0; JyðyÞ; 0Þ which respect the hidden symmetry and are

eigenvectors of the Killing tensor K. We call them the R-
current and Y-current, respectively. These currents can be
found by integrating the following equations:

∂rðΣJrðrÞÞ ¼ ΣPe; ∂yðΣJyðyÞÞ ¼ ΣPe: ð6:12Þ

We write these solutions in a form similar to (4.6)

JμðrÞ ¼
R − R0ðyÞ

Σ
δμr ; R ¼

Z
drΣPe;

JμðyÞ ¼
Y − Y0ðrÞ

Σ
δμy; Y ¼

Z
dyΣPe: ð6:13Þ

Here

R ¼ rW; Y ¼ −yW;

W ¼ 4

Σ2
ðQy − PrÞðQrþ PyÞ; ð6:14Þ

and R0ðyÞ and Y0ðrÞ are the corresponding “integration
constants.” Let us emphasize that both R and Y do not
depend on a special form of the metric function Δr, and
hence they are the same for the off-shell and on-shell
metrics.
Let us note that the function W contains both symmetric

and antisymmetric parts with respect to the reflection
y → −y. The symmetric part, which is proportional to
QP, gives an antisymmetric contribution to JμðyÞ. Hence if

QP ≠ 0, it is impossible to choose a function YAðrÞ in
(6.13) that makes the current J̄μðyÞ regular at both axes

y ¼ �a simultaneously. To exclude nonregular currents for
JμðyÞ, one should impose the condition QP ¼ 0.

In what follows, we focus on the R-current JðrÞ. This
current is well-defined for arbitrary values of Q and P.
However, to simplify expressions, in what follows we
assume that the magnetic monopole charge P vanishes.
Thus

W ¼ 4Q2ry
Σ2

: ð6:15Þ

Following the procedure described in Sec. IV B, one can
upgrade the R-current by introducing incoming and out-
going principal null chiral currents

J� ¼∓ R − R�ðyÞ
Σ

l�: ð6:16Þ

Using these currents, one can reconstruct the chiral fluxes
for the B-, H-, and U-states (4.21)–(4.23), and then using
expression (4.16), one can calculate the fluxes at infinity
and at the horizon.
Note that the functions R and Y (6.14) in the principal

currents (6.13) do not depend on the functionsΔr andΔy of
the metric. For this reason, R and Y look the same for both
the on-shell and the off-shell metrics. The parametersm and
a enter the expressions for the currents only via RH and YA.
The chiral current for the U-state is

JU ¼ 1

2
ðJþ þ J−Þ; ð6:17Þ

with R− ¼ RH and Rþ ¼ 0. For this state there is no
incoming chirality flux from the past infinity J −, and the
current vanishes at H−. For these initial conditions, the
principal chiral current contains an outgoing null flux at
J þ. The chiral flux at J þ is given by

JU ∼ −
RH

2r2
l−: ð6:18Þ

For this state there also exists a chirality flux through the
horizon Hþ,

JUjHþ ¼ −
RH

2ðr2H þ y2Þ lþ: ð6:19Þ

1. Special case of the Kerr-Newman black hole

For the Kerr-Newman black hole, the function RH is

RH ¼ 4Q2yr2H
ðr2H þ y2Þ2 ; ð6:20Þ

where rH is the radius of the horizon.
Calculations for the total flux of chirality give the

following expression:

_L ¼ −
4πQ2rH

a2

�
arctan

�
a
rH

�
−

arH
a2 þ r2H

�
: ð6:21Þ

At small a ≪ rH it becomes
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_L ≈ −
8πQ2

3r2H
a: ð6:22Þ

If the chiral anomaly was due to the Dirac fermions (1.1),
then the contribution of the electromagnetic chiral anomaly
would be obtained by multiplying the result (6.22) by a
factor of e2=ð8π2Þ.

C. Current and dual current

Let us now discuss other solutions of the equation for the
chiral anomaly that are generated by the electromagnetic
field. Let us denote

JμA ¼ 2�FμνAν; JμB ¼ 2FμνBν: ð6:23Þ

It is easy to check that both currents describe the same
chiral anomaly

JμA ;μ ¼ JμB ;μ ¼ Pe: ð6:24Þ

When expressed in terms of U and V functions (6.3), they
take the form

JμA ¼ 2QrV
Σ

δμr þ 2PyU
Σ

δμy;

JμB ¼ −
2PrU
Σ

δμr −
2QyV
Σ

δμy: ð6:25Þ

These currents are not gauge invariant. For the gauge
transformation

Aμ → Ãμ ¼ Aμ þ λ;μ; ð6:26Þ

the current JμA gets a supplement

ΔJμA ¼ 2�Fμνλ;ν: ð6:27Þ

Similarly, for

Bμ → B̃μ ¼ Bμ þ σ;μ ð6:28Þ

the current JμB gets a supplement

ΔJμB ¼ 2Fμνσ;ν: ð6:29Þ

As a consequence of source-free Maxwell’s equations, both
ΔJμA and ΔJμB are conserved for arbitrary gauge functions λ
and σ,

ðΔJμAÞ;μ ¼ 2ð�Fμν
;μλ;ν þ �Fμνλ;νμÞ ¼ 0;

ðΔJμBÞ;μ ¼ 2ðFμν
;μσ;ν þ Fμνσ;νμÞ ¼ 0: ð6:30Þ

If the gauge functions λ and σ respect the spacetime
symmetry, then they are functions of r and y. It is easy to

check that the field Fμν for the potential (6.1) possesses the
following property: It does not vanish only if one of its
indices (say μ) takes values in the ðr; yÞ sector, while the
other (say ν) takes values in the ðτ;ψÞ sector. This implies
that the dual tensor �Fμν has the same property. Since the
gradient of λ has nonvanishing components λ;r and λ;y, the
vector ΔJμA has only τ and ψ components. This property is
valid for ΔJμB as well. This means that the gauge trans-
formations that respect the spacetime symmetry will leave
the r and y components of the current invariant.
Denote

Jμs ¼ 1

2
ðJμA þ JμBÞ; Jμa ¼ 1

2
ðJμA − JμBÞ: ð6:31Þ

Then one has

Jμs;μ ¼ Pe; Jμa;μ ¼ 0: ð6:32Þ

The currents Jμs and Jμa can be written in terms of the R-
and Y-currents that we found in the previous subsection.
Namely, one has

Jμs ¼ 1

2Σ
½Rδμr þ Yδμy�;

Jμa ¼ 1

2Σ
½Rδμr − Yδμy� þ 2PU

Σ
½rδμr þ yδμy�; ð6:33Þ

where functions R, Y, and U were defined in (6.14) and
(6.3), respectively. As before, one must require that at least
one of the two charges Q and P vanishes in order to
guarantee regularity at the symmetry axes. The above chiral
currents can be “updated” to describe chirality fluxes at
infinity for the B-, H-, and U-states.

VII. DISCUSSION

In this paper, we discussed solutions to the chiral
anomaly equation in a given spacetime metric. At first,
we considered a wide class of metrics that possess a
principal Killing-Yano tensor. We call such a metric that
contains two arbitrary functions of one variable ΔrðrÞ and
ΔyðyÞ an “off-shell” metric. Off-shell metrics contain two
commuting Killing vector fields. This property allows one
to reduce the study of vector and tensor fields, as well as
equations for the chiral anomaly, to the study of objects and
equations in a special 2D space S. This procedure was
developed by Geroch [38], and we adapted his approach for
our problem. In addition to Killing vectors, the off-shell
metric also possesses a rank-two symmetric Killing tensor
that is connected with a hidden symmetry of the metric. We
obtained an expression for the chiral current, which is a
solution of the chiral anomaly equation, and which respects
both explicit and hidden symmetries of the off-shell metric.
Next, we demonstrated that there exist special chiral
anomaly currents that also respect the symmetries of the
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metric, which are directed along the principal null rays of
the metric. We call such solutions “principal chiral cur-
rents.” These currents describe either incoming or outgoing
polarization fluxes. We demonstrated that such currents can
be chosen so that they satisfy regularity conditions both at
the horizons and at the symmetry axes. We obtained
contributions to the chiral anomaly currents generated by
the Pontryagin invariant P ¼ − 1

2
�RαβμνRαβμν, as well by

the electromagnetic field invariant Pe ¼ �FαβFαβ in the
case where such a field is present.
Next, we obtained expressions for the principal current

for the special cases of Kerr and Kerr-Newman black holes.
For these spacetimes, if the principal chiral current initially
vanishes at the past horizon and at the past null infinity,
then it has nonvanishing components at the future horizon
and at the future null infinity. These components describe
the chirality flux into the black hole and the chirality flux
radiated by the black hole toward infinity, respectively.
Figure 7 shows the chiral flux for the Kerr black hole,

which is computed using the principal chiral current. Its
angular asymmetry is correlated with the asymmetry of the
Pontryagin invariant calculated at the horizon.
Using a general expression for the Chern-Simons non-

conserved chiral current, we calculated its components for
the special choice of the Darboux tetrad associated with the
off-shell metric (3.5), and we used these results to find
fluxes of the chirality at infinity and at the horizon. Figure 9
shows the chirality flux at infinity as a function of the angle
for the Kerr black hole. Comparing this figure with the
similar Fig. 7 for the flux of the principal current, one can
see that both currents have qualitatively the same behavior.
However, the Chern-Simons current is smaller, approxi-
mately by a factor between 3 and 10 depending on the
rotation parameter. This is partly connected with the
following: Both currents correctly reproduce the gravita-
tional chiral anomaly, but the Chern-Simons current also
contains a y-component, which is responsible for a part of
the anomaly. For the principal current, this component is
absent.
It is instructive to compare Figs. 7 and 9 with Fig. 3(a) of

the paper [6] for the emission rate of the number of
neutrinos minus the number of antineutrinos, which was
calculated numerically. One can see a qualitative similarity
between these plots. One can also conclude that the
anomalous Chern-Simons current is numerically closer
to the results of the paper [6].
In the papers [48,49], the authors discussed the axial

current at finite rotation and temperature in curved space-
time. They proposed an expression for the chiral current
component along the axis of rotation of the system, which
for the massless fermions and slow rotation takes the form

Jz ¼ �
�
T2

12
−

R
96π2

�
Ω; ð7:1Þ

where T is the temperature of the system, Ω is its angular
velocity, and R is the scalar curvature. For the Kerr black
hole R ¼ 0, and one has

Jz ¼ �T2

12
Ω: ð7:2Þ

As a rough approximate model, one may consider a rigidly
rotating cylinder with the effective cross section Aeff and
angular velocity ΩH ≈ a=ð4m2Þ. With the proper choice of
sign, and after the substitution of the black hole temperature
TH ≈ 1=ð8πmÞ into (7.2), we estimate the corresponding
rate of chiral emission as

_Leff ¼ −Aeff
T2
H

12
ΩH: ð7:3Þ

In Secs. IV C and V B, we computed the total rate of
chirality emission from the black hole; see relations (4.35)
and (5.11).
There exists a clear similarity between formulas (7.3),

(4.35), and (5.11). They are proportional to the angular
velocity of the black hole with some dimensionless
coefficient. Now we can estimate the effective area of
the cross section for the rotating cylinder in the [48,49]
approach in order to reproduce our results (4.35) and
(5.11). For slowly rotating black holes we get Aeff ≈
3AH in the case of the principal current, and Aeff ≈ AH
in the case of the Chern-Simons current.
In the last section of the paper, the electromagnetic field

contribution of the chiral anomaly current for massless
charged Dirac particles was calculated, and expressions for
the chirality fluxes in the case of the Kerr-Newman black
hole were obtained. It would be interesting to generalize
our approach to the case of accelerating Kerr-Newman
black holes in (A)dS spacetime. The Chern-Pontryagin
invariant for this case was computed and studied in [50].
Certainly, the chiral anomaly equation has a larger

variety of solutions. After one finds a current that correctly
reproduces the chiral anomaly, one still has the freedom to
add to it a solution of the homogeneous equation for a
conserved current. We demonstrated that if such a current
respects the symmetry generated by the Killing vectors,
then it contains three arbitrary functions of two variables, r
and y. This ambiguity is further reduced after imposing the
hidden symmetry constraint.
Let us emphasize that if the current is calculated on the

basis of a microscopic theory as a quantum average for a
quantum state in a spacetime with some symmetry gen-
erated by the Killing vectors, one can impose a corre-
sponding symmetry condition on the quantum state. In such
a case one can expect that the macroscopic averaged current
would respect the spacetime explicit symmetry. It would be
interesting to find restrictions (if any) on the choice of a
state imposed by the existence of the hidden symmetries. At
the moment, it is unclear how to formally implement this
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requirement for a quantum state. For this reason, we
proceeded in a different way in this paper.
The existence of the principal Killing-Yano tensor in the

off-shell geometry implies that it has a very special
property. Namely, this metric belongs to the Petrov type-
D class of metrics, and it has two degenerate principal null
directions that coincide with eigenvectors of the Killing
tensor (for more details, see [35] and references therein).
We demonstrated that there exists a solution of the chiral
anomaly equation for which the corresponding chiral
current is parallel to the principal null direction. Under
this condition, the partial differential equation for the
current reduces to an ordinary differential equation, and
its solution can be found by simple integration of the

gravitational and electromagnetic anomaly invariants along
the principal null geodesics. One can interpret this result by
saying that such a solution describes a free propagation of
the created spinning massless particles along principal null
geodesics without additional scattering by the gravita-
tional field.
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