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Primordial black holes (PBHs) within the mass range 1017–1022 g are a favorable candidate for describing
all of the dark matter content. Towards the lower end of this mass range, the Hawking temperature, TH, of
these PBHs is TH ≳ 100 keV, allowing for the creation of electron-positron pairs, thus making their
Hawking radiation a useful constraint for most current and future MeV surveys. This motivates the need for
realistic and rigorous accounts of the distribution and dynamics of emitted particles from Hawking radiation
in order to properly model detected signals from high energy observations. This is the first in a series of
papers to account for the OðαÞ correction to the Hawking radiation spectrum. We begin by the usual
canonical quantization of the photon and spinor (electron/positron) fields on the Schwarzschild geometry.
Then we compute the correction to the rate of emission by standard time-dependent perturbation theory
from the interaction Hamiltonian. We conclude with the analytic expression for the dissipative correction,
i.e., corrections due to the creation and annihilation of electron/positrons in the plasma.
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I. INTRODUCTION

Primoridal black holes (PBHs) are possible relics that
could provide insights into the physics of the earliest
moments of the Universe [1–5]. There are several proposed
formation mechanisms for PBHs, such as collapse of non-
Gaussian fluctuations in the early Universe, tunneling
through some scalar potential, etc. [2,6–10]. Primordial
black holes are an interesting candidate for dark matter
(DM) since, although some new physics at a high energy
scale is required to form them, the PBH scenario does not
require any new long-lived particles to be added to the
Standard Model [11]. A wide range of observational
constraints have removed different mass ranges as candi-
dates for dark matter (see recent summaries [12,13]),
leaving a mass range of about 1017–1022 g as a possible
candidate to describe all of the dark matter content.
There are several probes for detecting PBHs based on

their associated physical properties. From a gravitational
perspective, PBHs could be detected through their lensing
effects on various bright background sources, e.g., micro-
lensing, gravitational wave detection, etc. [12,14–20].

Another method involves quantum processes near the black
hole horizon that were predicted by Hawking [21] known as
Hawking radiation. This is the predicted effect that black
holes would radiate away (“evaporation”) by the emission
of radiation and other particles. The foundation of this
argument lies in how we define the vacuum state; prior
to the formation of the black hole (flat spacetime) we define
a vacuum state with zero occupation of particles, but after a
black hole forms, the vacuum near the horizon becomes a
thermal state (due to the existence of an accelerating frame
of reference near the horizon, i.e., Unruh effect) from which
particles can arise and escape to infinity [21–24]. The
Hawking radiation of a black hole is dependent on its mass,
TH ¼ 1=ð8πMÞ, where TH is the Hawking temperature of
the radiation in units where G ¼ kB ¼ c ¼ ℏ ¼ 1, showing
that lower mass black holes radiate at higher temperatures
than more massive ones. This process places constraints on
the lower mass range of PBHs due to a lifetime of PBHs
with MPBH ≲ 5 × 1014 g being comparable to the age of
the Universe, i.e., evaporated away [4,25]. For PBHs of
MPBH ≲ 1017 g, their Hawking radiation would be in the
γ-ray regime, making it a novel and effective probe for direct
detection [26,27].
This particular mass range (“asteroid mass”) and lower

would have a Hawking temperature TH ≳ 100 keV
(TH ∼ ð1016 g=MPBHÞ MeV), well within the γ-ray regime
of the electromagnetic spectrum, making their Hawking
radiation a point of interest for observations by MeV
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observatories such as AMEGO or SMILE [28–31]. For the
higher regime of TH (i.e., lower end of the asteroid mass
regime), PBHs are able to emit electron-positron (eþe−)
pairs, making them the dominate contributor to the detect-
able Hawking radiation and allowing for constraints on
PBH mass distributions. Since the emission of eþe− would
lead to the increase of flux of 511 keV lines in any MeV
survey and PBHs occupy spherical halos around galaxies,
the 511 keV emission line near and away from the Galactic
center would be an ideal method of constraint [32].
DeRocco and Graham [33] were able to place constraints
on PBH abundance as a DM candidate by using 511 keV
lines from MeV surveys of the galactic bulge from
INTEGRAL [34], though the underlying assumption was
the rate of production of eþe− was not enough to form a
plasma around a PBH (similar to [35]), thus allowing for the
escape of positrons to be annihilated at some further
distance. This extended travel of the positron requires
knowledge of its propagation through the interstellar
medium in order to carefully account for excess 511 keV
lines in various regions of the galactic bulge. Recently,
Coogan et al. [26] showed that upcoming MeV telescopes
could directly detect asteroid mass PBHs within dark matter
halos. The dependence of the particles created by PBHs at
TH ≳ 100 keV motivates the need to have careful and
rigorous models of the distributions of particles in order
to use intermediate-energy leptons [36] and the 511 keV
positron annihilation line [33,37,38] to constrain PBH
models of DM.
Although Hawking radiation is often described as a

blackbody, the emission spectrum is modified by a “gray-
body” factor related to the energy-dependent cross section
for the black hole to absorb a particle. The standard
calculation treats this by the partial wave expansion for
noninteracting particles [39,40]. Since then, there have
been many investigations into the case of interactions and
secondary particles in various approximations. Page [41]
showed that when charged particles are emitted, the black
hole develops an opposite charge, leading to an electric
potential that alters the emission of further charged
particles, and an OðαÞ change to the charged particle
emission rate, where α ≈ 1=137 is the fine structure
constant. At TH ≳ 20 MeV, strongly interacting particles
can be produced, and there have been investigations of
hadronization [42,43]. Also most of the particles produced
at these higher energies are unstable, leading to secondary
particles from their decay; in some regimes, these proc-
esses can even dominate the neutrino spectrum [44].
Several papers have discussed the possibility that at very
high TH, the density of emitted particles might result in a
high optical depth and form a “photosphere” or a region of
relativistic fluid flow followed by decoupling [45–49],
although subsequent work incorporating the special rela-
tivistic kinematics of the outgoing particles showed a
much smaller optical depth and no photosphere [35]. Page

et al. [50] considered the OðαÞ inner bremsstrahlung
emission accompanying the emission of charged particles
and showed that this process could be a significant con-
tribution to the low-energy spectrum. Coogan et al. [26]
specifically show that the secondary spectrum (lower energy
photons) of Hawking radiation from PBHs in the MeV
range would be the most significant contributor to the
detection of this spectrum of radiation, showing that the
discovery reach for upcoming MeV surveys will increase by
an order of magnitude by including the secondary spectrum.
This shows that understanding the secondary spectrum is
vital for any sort of MeV survey that hopes to make direct
detection of Hawking radiation from PBHs. This has also
motivated study of other quantum electrodynamics (QED)
contributions to the emitted spectrum such as annihilation of
eþe− pairs [51].
This is the first in a series of papers whose ultimate goal

is to compute theOðαÞ correction to the Hawking radiation
from a Schwarzschild black hole. The current analysis of
the photon spectrum from PBHs was investigated to OðαÞ
in Coogan et al. [26] showing at lower photon energies, the
secondary spectrum becomes the dominant contributor to
the total spectrum (see Fig. 2 in Coogan et al. [26]).
However, this photon emission calculation was performed
using flat spacetime inner bremsstrahlung formulas [52],
leading to the purpose and motivation of this series of
papers: to compute the OðαÞ correction to the Hawking
radiation but on a curved spacetime, i.e., the Schwarzschild
metric. Given the historical challenges and controversies in
understanding interacting particles resulting from Hawking
radiation, we believe that a full quantum treatment on the
curved background is a necessary step in order to put the
calculation of inner bremsstrahlung and related OðαÞ
effects on a rigorous foundation.
This paper is organized as follows. In Sec. II we lay out

our conventions for the spacetime metric and spinor
algebra used in the quantization of the electromagnetic
and spinor fields (electron and positrons). In Secs. III
and IV, we work through the canonical quantization of the
electromagnetic and spinor fields. In Sec. V, we compute
the interaction Hamiltonian between spinors and photons
in terms of annihilation and creation operators and mode
overlap integrals. In Sec. VI, we reexpress our results in
the interaction picture as appropriate for a time-dependent
perturbation theory treatment, and arrive at our expressions
for the dissipative OðαÞ contribution to the photon emis-
sion of the Hawking radiation. Finally, we conclude and
discuss follow up works in Sec. VII.

II. CONVENTIONS

We use the þþþ− signature for the metric. We use
Greek indices αβ to indicate any spacetime index, Latin
indices ijk to select only spatial indices, and Latin indices
ABC to denote Dirac spinor indices.

SILVA, VASQUEZ, KOIVU, DAS, and HIRATA PHYS. REV. D 107, 045004 (2023)

045004-2



We use the tortoise coordinate r⋆ to write the
Schwarzschild metric:

ds2¼
�
1−

2M
r

�
dr2⋆þr2dθ2þr2sin2θdϕ2−

�
1−

2M
r

�
dt2;

ð1Þ

where r and r⋆ are related by

r⋆ ¼ rþ 2M ln
r − 2M
2M

and
dr
dr⋆

¼ 1 −
2M
r

: ð2Þ

We have r⋆ ≈ r at large radius, but at the horizon r → 2M
whereas r⋆ → −∞. In general r appears in most of our
expressions, but r⋆ is a better choice of independent
variable for numerical calculations near the horizon since
one can avoid cancellations in the expression 1 − 2M=r.
We use the overdot symbol _ to indicate partial deriva-

tives with respect to t, and the prime 0 to indicate partial
derivatives with respect to r⋆.
The electron mass is μ and the black hole mass isM. The

speed of light, Newton’s gravitational constant, the reduced
Planck’s constant (“ℏ”), and the permittivity of the vacuum
(“ϵ0”) are set equal to unity.
The Dirac matrices written in an orthonormal basis are

denoted by γ̃μ, and satisfy the usual anticommutation
relation fγ̃μ; γ̃νg ¼ 2ημνI4×4. We use the representation of
the Dirac matrices, in 2 × 2 form,

γ̃i ¼
�

0 σi
σi 0

�
and γ̃4 ¼

�
iI2×2 0

0 −iI2×2

�
; ð3Þ

where σi are the Pauli matrices and I2×2 is the 2 × 2 identity.
This follows the convention of Brill and Wheeler [53]; note
that due to the signature, γ̃4 is anti-Hermitian whereas γ̃i is
Hermitian. We define the usual adjoint spinor appearing in
the Dirac Lagrangian ψ̄ ¼ ψ†β, where

β ¼ −iγ̃4 ¼
�
I2×2 0

0 −I2×2

�
: ð4Þ

In this convention, the action of quantum electrodynam-
ics is

SQED ¼
Z �

ψ̄ð−γμDμ − μÞψ −
1

4
FμνFμν

� ffiffiffiffiffiffi
−g

p
d4x; ð5Þ

where γμ ¼ aμαγ̃α is the Dirac γ-matrix in covariant
notation, aμα is the 4 × 4 matrix of vierbein components,
and the covariant derivative acting on the electron spinor is

Dμ ¼ ∂μ − Γμ − ieAμ: ð6Þ

This expression contains two corrections to the partial
derivative: the 4 × 4 Γμ matrix, which encodes the rotation
of the vierbein when we move in direction μ (Eq. (8) of
Ref. [53]), and the Uð1Þ gauge transformation term −ieAμ

for electron charge e. The electromagnetic term includes
the field strength tensor, Fμν ¼ ∂μAν − ∂νAμ.
We denote quantum numbers of modes as follows:
(i) For photon modes, the energy is denoted ω and the

angular quantum numbers are denoted by l and m.
Parity is denoted by ðpÞ ∈ fðeÞ; ðoÞg (“even” or
“odd” sector, also described as “electric” or “mag-
netic”when discussing atomic or nuclear transitions,
or “polar” or “axial” sectors [54]).

(2) For electron modes, the energy is denoted by h and
the total (orbitalþ spin) angular momentum and
parity are denoted by j, m, and p ¼ �1. We may for
shorthand use the combination k ¼ sðjþ 1

2
Þ instead

of writing both j and p, where the sign of k is
s ¼ ð−1Þj−1=2p.

(3) For both types of modes, we use X to denote a mode
associated with the “in from ∞” (“in”) channel, or
“up from the horizon” (“up”) channel, as depicted in
Fig. 1. We may also use the alternative basis of the
“out” or “down” modes.

(4) Since we will be doing nonlinear interactions, we
will often work with multiple electron or photon
modes. Mode indices may be primed or subscripted
to distinguish them.

We define the triangle inequality condition:

Δðj1; j2; j3Þ ¼
�
1 j1 þ j2 ≥ j3 and j3 þ j1 ≥ j2 and j2 þ j3 ≥ j1
0 otherwise

; ð7Þ

FIG. 1. Representation of the different scattering states from the
effective potential [curve labeled Vðr�Þ] coming from the black
hole (BH) horizon (“up”) and coming in from∞ (“in”) as well as
the equivalent scattering basis for radiation falling towards the
BH near the horizon (“down”) and radiation leaving the black
hole to ∞ (“out”).
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and define ð−1Þp ¼ þ1 for ðpÞ ¼ ðeÞ and ð−1Þp ¼ −1 for
ðpÞ ¼ ðoÞ.

III. THE ELECTROMAGNETIC FIELD

We first review the electromagnetic field in the
Schwarzschild spacetime. This is described by an
Schrödinger-like equation with a Regge-Wheeler potential
[55,56], which is implemented in commonly used tools
such as BLACKHAWK to compute Hawking radiation for
spin 1 massless particles (see Eq. (3.33) of [57]). We work
through the derivation here, both for completeness and to
make explicit our gauge choice and the expression for
potentials in terms of annihilation and creation operators.
Because we want to write an interaction Hamiltonian, we

will follow the canonical quantization method, and we also
work in terms of the vector potential Aμ rather than the field
components Fμν (or the closely related Newman-Penrose
variablesΦ0 andΦ2 [58–61]). This approach has been used

for some problems in black hole spacetimes, although with
a different gauge choice than we will take here—e.g., the
modified Feynman gauge [62], the gauge choices based
on null vectors [63,64] (which extend naturally to the
Kerr case), or the zero scalar potential gauge At ¼ 0 [65]
(although this leads to the same mode functions for the
vector potential because it is the same as the Coulomb
gauge in the case where there are no charges). It is also used
for the Proca equation [66,67] (but in that case the Lorenz
condition Aμ

;μ ¼ 0 holds and we cannot impose a different
gauge choice).

A. Angular decomposition

The electromagnetic field action is SEM ¼ R
− 1

4
FμνFμνffiffiffiffiffiffi−gp

d4x, where the field tensor is Fμν ¼ ∂μAν − ∂νAμ.
Written in terms of components, the Lagrangian LEM ¼
dSEM=dt is

LEM ¼
Z

∞

−∞

Z
2π

0

Z
π

0

�
1

2
ðΦ0 þ _Ar⋆Þ2 þ

1 − 2M=r
2r2

�
ð∂θΦþ _AθÞ2 þ

1

sin2θ
ð∂ϕΦþ _AϕÞ2

�

−
1 − 2M=r

2r2

�
ð∂θAr⋆ − A0

θÞ2 þ
1

sin2θ
ð∂ϕAr⋆ − A0

ϕÞ2
�
−
ð1 − 2M=rÞ2
2r4sin2θ

ð∂θAϕ − ∂ϕAθÞ2
�
sin θ dθ dϕ

r2dr⋆
1 − 2M=r

; ð8Þ

where Φ≡ −At. It is convenient to break down the vector potential in a multipole expansion: we write

Φðt; r⋆; θ;ϕÞ ¼
X∞
l¼0

Xl
m¼−l

Φl;mðt; r⋆ÞYl;mðθ;ϕÞ;

Ar⋆ðt; r⋆; θ;ϕÞ ¼
X∞
l¼0

Xl
m¼−l

AðrÞ;l;mðt; r⋆ÞYl;mðθ;ϕÞ;

Aθðt; r⋆; θ;ϕÞ ¼
X∞
l¼1

Xl
m¼−l

�
AðeÞ;l;mðt; r⋆Þ∂θYl;mðθ;ϕÞ − AðoÞ;l;mðt; r⋆Þ

1

sin θ
∂ϕYl;mðθ;ϕÞ

�
; and

Aϕðt; r⋆; θ;ϕÞ ¼
X∞
l¼1

Xl
m¼−l

½AðeÞ;l;mðt; r⋆Þ∂ϕYl;mðθ;ϕÞ þ AðoÞ;l;mðt; r⋆Þ sin θ∂θYl;mðθ;ϕÞ�: ð9Þ

Here Φl;m and AðrÞ;l;m are the usual multipole moments of the scalar potential and radial part of the vector potential. The
components in the angular (θ and ϕ) directions form a vector on the 2-sphere of constant ðt; r⋆Þ and have to be described
with two sets of multipole moments: an AðeÞ;l;m component with the same parity as Yl;m (since the coefficient multiplies
∇Yl;m); and an AðoÞ;l;m component with the opposite parity (since the coefficient multiplies êr⋆ ×∇Yl;m). An equivalent
description of the angular components is

Aθðt; r⋆; θ;ϕÞ �
i

sin θ
Aϕðt; r⋆; θ;ϕÞ ¼∓ X∞

l¼1

Xl
m¼−l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
½AðeÞ;l;mðt; r⋆Þ � iAðoÞ;l;mðt; r⋆Þ��1Yl;mðθ;ϕÞ: ð10Þ

The Lagrangian of Eq. (8) can be rewritten in terms of these components; with some simplification, we find

LEM ¼
X
l;m

Z
∞

−∞

�
r2

1− 2M=r

�
1

2
jΦ0

l;mj2 þReΦ0�
l;m

_AðrÞ;l;m þ 1

2
j _AðrÞ;l;mj2

�
þ lðlþ 1Þ

�
1

2
jΦl;mj2 þReΦ�

l;m
_AðeÞ;l;m

þ 1

2
j _AðeÞ;l;mj2 þ

1

2
j _AðoÞ;l;mj2 −

1

2
jAðrÞ;l;m −A0

ðeÞ;l;mj2 −
1

2
jA0

ðoÞ;l;mj2
�
− ½lðlþ 1Þ�2 1− 2M=r

r2
1

2
jAðoÞ;l;mj2

�
dr⋆: ð11Þ
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B. Gauge fixing

To continue the quantization program, we impose a
gauge condition. A particularly convenient choice is a
generalization of the Coulomb gauge, which eliminates the
cross terms between the scalar and vector potentials. In
Minkowski spacetime the Coulomb gauge has the disad-
vantage of breaking Lorentz invariance, but on a
Schwarzschild background this is not a concern. In our
case, we choose

Klm≡−
�

r2

1−2M=r
AðrÞ;l;m

�0
þlðlþ1ÞAðeÞ;l;m¼0; ð12Þ

which turns the combination of the RefΦ0g�l;m _AðrÞ;l;m and

ReΦ�
l;m

_AðeÞ;l;m terms in Eq. (11) into a total derivative.
The gauge choice of Eq. (12) can always be achieved by

the gauge transformation Aμ → Aμ þ ∂μχ, where χ ¼
−H̃−1

l KlmYl;mðθ;ϕÞ and we define the radial operator

H̃lf ¼ −
�

r2

1 − 2M=r
f0
�0

þ lðlþ 1Þf; ð13Þ

which is positive definite and Hermitian with respect to the
standard inner product ðf1jf2Þr⋆ ¼

R
∞
−∞ f�1f2dr⋆.

C. Sectors of the theory and the radial wave equations

The Lagrangian of Eq. (11) can then be broken down
into three parts:

LEM ¼ LEM;Φ þ LEM;ðeÞ þ LEM;ðoÞ; ð14Þ

where the scalar potential, even-parity vector potential, and
odd-parity vector potential parts are

LEM;Φ ¼
X
l;m

Z
∞

−∞

�
1

2

r2

1 − 2M=r
jΦ0

l;mj2 þ
1

2
lðlþ 1ÞjΦl;mj2

�
dr⋆;

LEM;ðeÞ ¼
X
l;m

Z
∞

−∞

�
r2

1 − 2M=r
1

2
j _AðrÞ;l;mj2 þ lðlþ 1Þ

�
1

2
j _AðeÞ;l;mj2 −

1

2
jAðrÞ;l;m − A0

ðeÞ;l;mj2
��

dr⋆; and

LEM;ðoÞ ¼
X
l;m

lðlþ 1Þ
Z

∞

−∞

�
1

2
j _AðoÞ;l;mj2 −

1

2
jA0

ðoÞ;l;mj2 −
lðlþ 1Þð1 − 2M=rÞ

2r2
jAðoÞ;l;mj2

�
dr⋆: ð15Þ

The scalar potential part has no dynamics; when coupled to
charges it will give rise to an instantaneous Coulomb-like
interaction energy, just as happens in the Coulomb gauge in
Minkowski space. The odd-parity vector potential part can
be simplified by introducing the positive definite Hermitian
operator

Hlf ¼ −f00 þ lðlþ 1Þð1 − 2M=rÞ
r2

f; ð16Þ

so that

LEM;ðoÞ ¼
X
l;m

lðlþ 1Þ
Z

∞

−∞

�
1

2
j _AðoÞ;l;mj2

−
1

2
A�
ðoÞ;l;mHlAðoÞ;l;m

�
dr⋆: ð17Þ

It turns out that the even-parity potential part can be
written in a similar form. This is not surprising, since we
know that the electromagnetic field equations in vacuum do

not distinguish electric vs magnetic fields. We define the
new variable Zl;mðt; r⋆Þ by

Zl;m ≡ AðrÞ;l;m − A0
ðeÞ;l;m

¼ AðrÞ;l;m −
1

lðlþ 1Þ
�

r2

1 − 2M=r
AðrÞ;l;m

�00
; ð18Þ

where the second equality comes from Eq. (12). Thus
AðrÞ;l;m is related to Zl;m by a second-order differential
equation; one can straightforwardly verify that the solution is

AðrÞ;l;m ¼ lðlþ 1Þð1 − 2M=rÞ
r2

H−1
l Zl;m; ð19Þ

where H−1
l Zl;m denotes the inverse operation, i.e., the

solution f to Hlf ¼ Zl;m. It follows that

AðeÞ;l;m ¼ ðH−1
l Zl;mÞ0: ð20Þ

The even-parity vector potential Lagrangian then simpli-
fies to
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LEM;ðeÞ ¼
X
l;m

lðlþ 1Þ
Z

∞

−∞

�
lðlþ 1Þð1 − 2M=rÞ

2r2
jH−1

l
_Zl;mj2 þ

1

2
jðH−1

l
_Zl;mÞ0j2 −

1

2
jZl;mj2

�
dr⋆

¼
X
l;m

lðlþ 1Þ
Z

∞

−∞

�
1

2
ðH−1

l
_Zl;mÞ�

�
−∂2r⋆ þ

lðlþ 1Þð1 − 2M=rÞ
r2

�
ðH−1

l
_Zl;mÞ −

1

2
jZl;mj2

�
dr⋆

¼
X
l;m

lðlþ 1Þ
Z

∞

−∞

�
1

2
_Z�
l;mH

−1
l

_Zl;m −
1

2
jZl;mj2

�
dr⋆; ð21Þ

where the second line requires us to use integration by parts
on jðH−1

l
_Zl;mÞ0j2 and combine the first two terms, and then

in the last line we recognized that the operator in brackets is
Hl, and then used H−1†

l HlH−1
l ¼ H−1

l .
For both the even- and odd-parity sectors, the key is to

find the eigenfunctions of the Hl operator. These are the
usual mode functions of the electromagnetic field. The
eigenfunctions are denoted Ψl;ωðr⋆Þ, satisfying HlΨl;ω ¼
ω2Ψl;ω. Since Hl is a second-order differential operator,
there are actually two solutions; we can see that at r⋆ → �∞
these must be linear combinations of eiωr⋆ and e−iωr⋆ . We
choose the basis of scattering solutions

Ψin;l;ωðr⋆Þ →
�
T1;l;ωe−iωr⋆ r⋆ → −∞
e−iωr⋆ þ R1;l;ωeiωr⋆ r⋆ → ∞

ð22Þ

and

Ψup;l;ωðr⋆Þ→
(
eiωr⋆ −R�

1;l;ωe
2i arg T1;l;ωe−iωr⋆ r⋆ →−∞

T1;l;ωeiωr⋆ r⋆ →∞
;

ð23Þ

where jR1;l;ωj2 þ jT1;l;ωj2 ¼ 1 (by matching of the
Wronskian relation for fΨin;l;ω;Ψ�

in;l;ωg) and the coeffi-
cients in Eq. (22) come from the matching of the Wronskian
relations for fΨup;l;ω;Ψin;l;ωg and fΨup;l;ω;Ψ�

in;l;ωg. One
recognizes R1;l;ω and T1;l;ω as the usual reflection and
transmission coefficients from 1D scattering theory. These
satisfy the inner product relations

ðΨX;l;ωjΨX0;l;ω0 Þr⋆ ¼ 2πδðω − ω0ÞδXX0 ; ð24Þ

where X and X0 represent either “in” or “up.” To compute
emission as seen by a distant observer, we will also need the
“out” and “down” basis, which is related to the fin; upg
basis as described in Appendix C.

D. The quantized electromagnetic potentials
in the generalized Coulomb gauge

The usual quantization procedure can then be used for
Eq. (17):

AðoÞ;l;mðr⋆Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp Z
∞

0

dω
2π

1ffiffiffiffiffiffi
2ω

p

×
X

X∈fin;upg

h
ΨX;l;ωðr⋆ÞâX;l;m;ω;ðoÞ

þ ð−1ÞmΨ�
X;l;ωðr⋆Þâ†X;l;−m;ω;ðoÞ

i
; ð25Þ

with the commutation relations

h
âX;l;m;ω;ðoÞ; â

†
X0;l;m;ω0;ðoÞ

i
¼ 2πδðω − ω0ÞδXX0 ; ð26Þ

and the Hamiltonian

HEM;ðoÞ ¼
X
l;m

Z
∞

0

dω
2π

ω
X

X∈fin;upg
â†X;l;m;ω;ðoÞâX;l;m;ω;ðoÞ: ð27Þ

The ð−1Þm and the −m in Eq. (25) result from the relation
for a real variable expressed in complex spherical harmon-
ics: if f is real, then fl;m ¼ ð−1Þmf�l;−m. A similar
procedure applies to Eq. (21) for the even parity sector:

Zl;mðr⋆Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp Z
∞

0

dω
2π

ffiffiffiffi
ω

2

r

×
X

X∈fin;upg

h
ΨX;l;ωðr⋆ÞâX;l;m;ω;ðeÞ

þ ð−1ÞmΨ�
X;l;ωðr⋆Þâ†X;l;−m;ω;ðeÞ

i
; ð28Þ

note that the normalization has an extra ω is in the
numerator because this time there is an H−1

l in the kinetic
term instead of an Hl in the potential term. Finally we
arrive at the expressions for the vector potential:
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Ar⋆ ¼
1 − 2M=r

r2
X∞
l¼1

Xl
m¼−l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p Z
∞

0

dω
2π

1ffiffiffiffiffiffiffiffi
2ω3

p

×
X

X∈fin;upg

h
ΨX;l;ωðr⋆ÞâX;l;m;ω;ðeÞ þ ð−1ÞmΨ�

X;l;ωðr⋆Þâ†X;l;−m;ω;ðeÞ
i
Yl;mðθ;ϕÞ and

Aθ �
i

sin θ
Aϕ ¼∓ X∞

l¼1

Xl
m¼−l

Z
∞

0

dω
2π

1ffiffiffiffiffiffi
2ω

p
X

X∈fin;upg

�
1

ω
Ψ0

X;l;ωðr⋆ÞâX;l;m;ω;ðeÞ þ ð−1Þm 1

ω
Ψ0�

X;l;ωðr⋆Þâ†X;l;−m;ω;ðeÞ

� i½ΨX;l;ωðr⋆ÞâX;l;m;ω;ðoÞ þ ð−1ÞmΨ�
X;l;ωðr⋆Þâ†X;l;−m;ω;ðoÞ�

�
�1

Yl;mðθ;ϕÞ: ð29Þ

IV. THE ELECTRON FIELD

We now investigate the electron field. We follow the
classical solution to the Dirac equation by Brill and
Wheeler [53]. The Dirac field was quantized on the
Schwarzschild spacetime by Boulware [68], although there
the mode operators are not explicitly written in terms of
annihilation and creation operators. Casals et al. [69]
performed a quantization similar to what is done here,
but for the massless case.

A. Angular operator

The angular operator in the separation of the Dirac
equation (Eq. (35) of [53]) is

K ¼

0
BBBB@
−i 0 0 0

0 i 0 0

0 0 i 0

0 0 0 −i

1
CCCCA∂θ þ

0
BBBB@

0 1 0 0

−1 0 0 0

0 0 0 −1
0 0 1 0

1
CCCCA

∂ϕ

sinθ
: ð30Þ

It has eigenvalues k ¼ �1;�2;�3;…, each of which is
repeated. We express the eigenfunctions in modern notation
using the spin-weighted spherical harmonics [70]:

ΘðFÞ
k;m ¼

ffiffiffiffiffiffiffiffiffi
sin θ

p

2

0
BBBB@

1
2

Yj;mðθ;ϕÞ − is−1
2

Yj;mðθ;ϕÞ
−1

2

Yj;mðθ;ϕÞ − is−1
2

Yj;mðθ;ϕÞ
0

0

1
CCCCA and

ΘðGÞ
k;m ¼

ffiffiffiffiffiffiffiffiffi
sin θ

p

2

0
BBBB@

0

0

−1
2

Yj;mðθ;ϕÞ − is−1
2

Yj;mðθ;ϕÞ
1
2

Yj;mðθ;ϕÞ − is−1
2

Yj;mðθ;ϕÞ

1
CCCCA; ð31Þ

where j ¼ jkj − 1
2
, m ranges from −j…þ j, s ¼ k=jkj is

the sign of k, and (F) or (G) indicates which of the two
eigenfunctions is under consideration. There are two

linearly independent eigenfunctions for each j and m,
which is expected since the K operator breaks into two
equivalent 2 × 2 blocks. This form of the angular eigen-
functions can be verified directly using the spin raising and
lowering operators:

∂θ

h ffiffiffiffiffiffiffiffiffi
sin θ

p
�1

2
Yj;mðθ;ϕÞ

i
∓ i

∂ϕ

sin θ

h ffiffiffiffiffiffiffiffiffi
sin θ

p
�1

2
Yj;mðθ;ϕÞ

i
¼ �

�
jþ 1

2

� ffiffiffiffiffiffiffiffiffi
sin θ

p
∓1

2
Yj;mðθ;ϕÞ: ð32Þ

These eigenfunctions satisfy the orthonormality relation

Z
2π

0

Z
π

0

ΘðFÞ†
km ðθ;ϕÞΘðFÞ

k0m0 ðθ;ϕÞdθdϕ ¼ δkk0δmm0 ;Z
2π

0

Z
π

0

ΘðGÞ†
km ðθ;ϕÞΘðGÞ

k0m0 ðθ;ϕÞdθdϕ ¼ δkk0δmm0 ; andZ
2π

0

Z
π

0

ΘðFÞ†
km ðθ;ϕÞΘðGÞ

k0m0 ðθ;ϕÞdθdϕ ¼ 0: ð33Þ

B. The radial modes

The solutions of the Dirac equation ðγ̃μ∇μ −mÞψ ¼ 0
are of the form

ψðr; θ;ϕ; tÞ ¼ 1

rð1 − 2M=rÞ1=4 ffiffiffiffiffiffiffiffiffi
sin θ

p ½FðrÞΘðFÞ
k;mðθ;ϕÞ

þGðrÞΘðGÞ
k;mðθ;ϕÞ�e−iht; ð34Þ

where h is the energy at r → ∞ and the radial functions
F and G satisfy Eq. (39) of Brill and Wheeler [53]1:

h

�
F

G

�
¼

0
B@ μ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

r

q
k
r

ffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

r

q
þ∂r⋆

k
r

ffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

r

q
−∂r⋆ −μ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

r

q
1
CA�

F

G

�
ð35Þ

1We have corrected a sign error in μ in the original reference.
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(we have rewritten this in terms of derivatives with respect
to r⋆). Note that the 2 × 2 matrix is a Hermitian operator
with respect to the usual inner product. Since this is a
coupled system of two first-order ordinary differential
equations, there are two linearly independent solutions.
Note that these are real equations, so if ðF;GÞ is a complex
solution then so is ðF�; G�Þ. Also we note that if one flips
the sign of h and k and swaps F ↔ G, then one again has a
solution, so we need only construct the solutions for h > 0.
We are interested in the limiting solutions of this near the

horizon and at spatial infinity. Near the horizon (r⋆ →
−∞), the terms without

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
are dominant and we

have the two linearly independent solutions

�
F

G

�
∝
� ffiffiffi

h
p

−i
ffiffiffi
h

p
�
eihr⋆ and

�
F

G

�
∝
� ffiffiffi

h
p

i
ffiffiffi
h

p
�
e−ihr⋆ : ð36Þ

At spatial infinity (r⋆ → ∞), the k=r terms drop out, and
1 − 2M=r → 1. The wave number in the Wentzel-Kramers-
Brillouin approximation is p ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 − μ2

p
þ ζ=r⋆ þ…,

where the coefficient of the leading-order correction is

ζ ¼ μ2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 − μ2

p : ð37Þ

The phase of the wave function is
R
pdr⋆ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 − μ2
p

r⋆ þ ζ lnðr⋆=2MÞ þ…; note that there is a
logarithmically divergent phase due to the gravitational
potential, which is analogous to the similar phenomenon in
the Coulomb wave functions and generically occurs with
long-range 1=r potentials (see, e.g., Sec. 14.5 of Ref. [71]).
Including this phase in the large-r limit, we get

�
F

G

�
∝
� ffiffiffiffiffiffiffiffiffiffiffi

hþ μ
p

−i
ffiffiffiffiffiffiffiffiffiffiffi
h − μ

p
�
eiζ lnðr⋆=2MÞei

ffiffiffiffiffiffiffiffiffi
h2−μ2

p
r⋆ and

�
F

G

�
∝
� ffiffiffiffiffiffiffiffiffiffiffi

hþ μ
p

i
ffiffiffiffiffiffiffiffiffiffiffi
h − μ

p
�
e−iζ lnðr⋆=2MÞe−i

ffiffiffiffiffiffiffiffiffi
h2−μ2

p
r⋆ : ð38Þ

Note that there is an oscillatory solution here only if jhj > μ; otherwise the solutions become evanescent.
We now construct scattering solutions, constrained by the Wronskian relation for Eq. (35), i.e., that if there are two

solutions ðF1; G1Þ and ðF2; G2Þ then F1G2 − F2G1 is independent of r⋆. For h > μ, there is an “ingoing” solution

�
Fin

Gin

�
→

8>>>>>>>><
>>>>>>>>:

v−1=2
� ffiffiffiffiffiffiffiffiffiffiffi

hþ μ
p

i
ffiffiffiffiffiffiffiffiffiffiffi
h − μ

p
�
e−iζ lnðr⋆=2MÞe−i

ffiffiffiffiffiffiffiffiffi
h2−μ2

p
r⋆

þ v−1=2R1
2
;k;h

� ffiffiffiffiffiffiffiffiffiffiffi
hþ μ

p

−i
ffiffiffiffiffiffiffiffiffiffiffi
h − μ

p
�
eiζ lnðr⋆=2MÞei

ffiffiffiffiffiffiffiffiffi
h2−μ2

p
r⋆ r⋆ → þ∞

T1
2
;k;h

�
c

ffiffiffi
h

p

i
ffiffiffi
h

p
�
e−ihr⋆ r⋆ → −∞

ðh > μÞ; ð39Þ

with jR1
2
;k;hj2 þ jT1

2
;k;hj2 ¼ 1 since ðFin; GinÞ and ðF�

in; G
�
inÞ satisfy the Wronskian relations. We have defined

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 − μ2

p
h

; ð40Þ

which is also equal to the velocity of the electron at ∞. There is also an “upgoing” solution,

�
Fup

Gup

�
→

8>>>><
>>>>:

� ffiffiffi
h

p

−i
ffiffiffi
h

p
�
eihr⋆ − R�

1
2
;k;h

e2i arg T1=2;k;h

� ffiffiffi
h

p

i
ffiffiffi
h

p
�
e−ihr⋆ r⋆ → −∞

T1
2
;k;hv

−1=2
� ffiffiffiffiffiffiffiffiffiffiffi

hþ μ
p

−i
ffiffiffiffiffiffiffiffiffiffiffi
h − μ

p
�
eiζ lnðr⋆=2MÞei

ffiffiffiffiffiffiffiffiffi
h2−μ2

p
r⋆ r⋆ → þ∞

ðh > μÞ; ð41Þ

where the Wronskian rules have been used to find the coefficients. For the case of h < μ, there are only “up”modes (there is
no “in”):

�
Fup

Gup

�
→

8<
:

� ffiffiffi
h

p

−i
ffiffiffi
h

p
�
eihr⋆ þ e2iδ1=2;k;h

� ffiffiffi
h

p

i
ffiffiffi
h

p
�
e−ihr⋆ r⋆ → −∞

exponentially decaying r⋆ → þ∞
ð0 < h < μÞ; ð42Þ
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where the reflection coefficient must have unit modulus, and the phase is contained in δ1=2;k;h. We can further define the
negative energy modes by FX;−k;−h ¼ G�

X;k;h and GX;−k;−h ¼ F�
X;k;h, which satisfy the same scattering wave boundary

conditions. These modes satisfyZ
∞

−∞
ðF⋆

X;k;hFX0;kh0 þ G⋆
X;k;hGX0;k;h0 Þdr⋆ ¼ 4πjhjδXX0δðh − h0Þ; ð43Þ

where X;X0 ∈ fin; upg (one proves this using v−1dh ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 − μ2

p
).

C. Quantization

The next step is to find the canonical normalization of the modes. The Dirac Lagrangian is

LDirac ¼
dSDirac
dt

¼ −
Z

ψ†β

�
−iβ∇t þ γ̃1∇r⋆ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M=r
p þ 1

r

�
γ̃2∇θ þ

1

sin θ
γ̃3∇ϕ

�
þ μ

�
ψr2

�
1 −

2M
r

�
dr⋆ sin θdθdϕ; ð44Þ

and it follows from the time-derivative term that the canonical anticommutation relation is

fψAðr⋆; θ;ϕÞ;ψ†
Bðr0⋆; θ0;ϕ0Þg ¼ δABδðr⋆ − r0⋆Þδðθ − θ0Þδðϕ − ϕ0Þ

r2ð1 − 2M=rÞ1=2 sin θ : ð45Þ

Using the radial mode normalization, Eq. (43), and the angular mode normalization of Eq. (33), we conclude that the proper
normalization is

ψðr; θ;ϕÞ ¼
Z

∞

0

dh
2π

1ffiffiffiffiffiffi
2h

p
X
Xkm

1

rð1 − 2M=rÞ1=4 ffiffiffiffiffiffiffiffiffi
sin θ

p
n
½FX;k;hðrÞΘðFÞ

k;mðθ;ϕÞ þ GX;k;hðrÞΘðGÞ
k;mðθ;ϕÞ�b̂X;k;m;h

þ ½G�
X;−k;hðrÞΘðFÞ

k;mðθ;ϕÞ þ F�
X;−k;hðrÞΘðGÞ

k;mðθ;ϕÞ�d̂†X;k;m;h

o
ð46Þ

with the anticommutation relation

fb̂X;k;m;h; b̂
†
X0;k0;m0;h0 g ¼ fd̂X;k;m;h; d̂

†
X0;k0;m0;h0g ¼ 2πδðh − h0ÞδXX0δkk0δmm0 : ð47Þ

The Hamiltonian, as per the usual procedure, is

HDirac ¼
Z

∞

0

dh
2π

h
X
Xkm

ðb̂†X;k;m;hb̂X;k;m;h þ d̂†X;k;m;hd̂X;k;m;hÞ: ð48Þ

V. INTERACTION HAMILTONIAN

We are now interested in the interaction Hamiltonian,
Hint. There are two steps to this: the canonical construction
of the interaction Hamiltonian and evaluation of the angular
integrals (Sec. VA), and the expression in terms of overlap
integrals and operators that is useful for time-dependent
perturbation theory (Sec. V B).

A. Canonical construction of Hint

Since no time derivatives of the fields appear explicitly in
the action, we have Hint ¼ −Lint ¼ −dSint=dt. Just like in
flat spacetime QED, the interaction comes from the −ieAμ

term in the covariant derivative [Eq. (6)] substituted into

the action [Eq. (5)]. We can thus write the interaction
Hamiltonian between the electron and photon vertices as

Hint ¼ −ie
Z ffiffiffiffiffiffi

−g
p

d3xψ̄ðxÞγμAμðxÞψðxÞ; ð49Þ

where the −i is needed since this convention for a metric
implies that the space components of γi and β are Hermitian,
the volume element

ffiffiffiffiffiffi−gp
of the Schwarzschild metric in the

tortoise coordinate system is given by ð1 − 2M=rÞr2 sin θ,
and the functions for AμðxÞ and ψðxÞ are given by Eqs. (29)
and (46), respectively.
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We can expand the interaction Hamiltonian to give

Hint ¼ −ie
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
2M
r

r
dr�dθ dϕ

Z
dh dh0

ð2πÞ22
ffiffiffiffiffiffiffi
hh0

p
X
Xs

X
Xs0

�
ðFX;k;hðrÞΘðFÞ

k;mðθ;ϕÞ þ GX;k;hðrÞΘðGÞ
k;mðθ;ϕÞÞb̂†X;k;m;h

þ ðG�
X;−k;hðrÞΘðFÞ

k;mðθ;ϕÞ þ F�
X;−k;hðrÞΘðGÞ

k;mðθ;ϕÞÞd̂X;k;m;h

�

×

��
1 −

2M
r

�
−1=2

γ̃1Ar� þ
1

2r
ðγ̃2 þ iγ̃3Þ

�
Aθ −

i
sin θ

Aϕ

�
þ 1

2r
ðγ̃2 − iγ̃3Þ

�
Aθ þ

i
sin θ

Aϕ

��

×
h
ðFX0;k0;h0 ðrÞΘðFÞ

k0;m0 ðθ;ϕÞ þGX0;k0;h0 ðrÞΘðGÞ
k0;m0 ðθ;ϕÞÞb̂X0;k0;m0;h0 þ ðG�

X0;−k0;h0 ðrÞΘðFÞ
k0;m0 ðθ;ϕÞ

þ F�
X0;−k0;h0 ðrÞΘðGÞ

k0;m0 ðθ;ϕÞÞd̂†X0;k0;m0;h0

i
; ð50Þ

where the overbar terms are the usual quantities Hermitian conjugated and multiplied from the right by β. The matrices γi

correspond to the flat spacetime matrices, γ̃i in Eq. (3) with the appropriate tetrad transformation. The first term in this
expansion (Ar� term) can be simplified as

Hr�
int ¼ −ie

Z
dr�

dhdh0dω

ð2πÞ32
ffiffiffiffiffiffiffi
hh0

p 1ffiffiffiffiffiffiffiffi
2ω3

p 1 − 2M=r
r2

X
Xγlmγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p X
Xkm

X
X0k0m0

× ½ðF�
XkhF

�
X0−k0h0 − G�

XkhG
�
X0−k0h0 ÞΨXγlωΔ

kk0l
mm0mγ

b̂†XkmhâXγlmω;ðeÞd̂
†
X0k0m0h0

þ ðGX−khF�
X0−k0h0 − FX−khG�

X0−k0h0 ÞΨXγlωΔ
kk0l
mm0mγ

d̂XkmhâXγlmω;ðeÞd̂
†
X0k0m0h0

þ ðF�
XkhGX0k0h0 −G�

XkhFX0k0h0 ÞΨXγlωΔ
kk0l
mm0mγ

b̂†XkmhâXγlmω;ðeÞb̂X0k0m0h0

þ ðGX−khGX0k0h0 − FX−khFX0k0h0 ÞΨXγlωΔ
kk0l
mm0mγ

d̂XkmhâXγlmω;ðeÞb̂X0k0m0h0 � þ H:c:; ð51Þ

where the angular integral is

Δkk0l
mm0mγ

≡ ð−1Þmþ1=2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þð2j0 þ 1Þð2lþ 1Þ

4π

r �
j j0 l

−m m0 mγ

��
j j0 l
1
2

− 1
2

0

�
ð1þ ss0ð−1Þj−j0þlÞ: ð52Þ

The angular expression in Eq. (52) has a set of selection rules between the transition of spinor from j → j0 with emission/
absorption of a photon of angular momentum l. We can see Eq. (52) is nonzero for two cases: (i) when the sign of the
angular momentum of the two spinor states are the same (s ¼ s0) then only even transitions are allowed i.e., j − j0 and l
must be either even or odd, and (ii) when the signs of the angular momentum are different s ≠ s0, then j − j0 and l must
have different types i.e., odd transitions.
We then compute the Hθ�iϕ

int terms corresponding to the second and third term in the expansion of γμAμ:

Hθ;ϕ
int ¼ −ie

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M=r

p
r

dr�
dhdh0dω

4ð2πÞ3 ffiffiffiffiffiffi
2ω

p ffiffiffiffiffiffiffi
hh0

p
X
Xγlmγ

X
Xkm

X
X0k0m0

×

�
ðF�

XkhGX0k0h0 þG�
XkhFX0k0h0 ÞΠkk0l−

mm0mγ

1

ω
Ψ0

Xγlω
b̂†XkmhâXγ ;l;ω;m;ðeÞb̂X0k0m0h0 − iωðe↔ o;Π−↔þ; n∂r� Þ

þ ðGX−khGX0k0h0 þFX−khFX0k0h0 ÞΠkk0l−
mm0mγ

1

ω
Ψ0

Xγlω
d̂XkmhâXγ ;l;ω;m;ðeÞb̂X0k0m0h0 − iωðe↔ o;Π−↔þ; n∂r� Þ

þ ðF�
XkhF

�
X0−k0h0 þG�

XkhG
�
X0−k0h0 ÞΠkk0l−

mm0mγ

1

ω
Ψ0

Xγlω
b̂†XkmhâXγ ;l;ω;m;ðeÞd̂

†
X0k0m0h0 − iωðe↔ o;Π−↔þ; n∂r� Þ

þ ðGX−khF�
X0−k0h0 þFX−khG�

X0−k0h0 ÞΠkk0l−
mm0mγ

1

ω
Ψ0

Xγlω
d̂XkmhâXγ ;l;ω;m;ðeÞd̂

†
X0k0m0h0 − iωðe↔ o;Π−↔þ; n∂r�Þ

�
þH:c:; ð53Þ

where the angular integral is
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Πkk0l�
mm0mγ

≡ sð−1Þm−1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þð2j0 þ 1Þð2lþ 1Þ

4π

r �
j j0 l

−m m0 mγ

��
j j0 l

− 1
2

− 1
2

1

�
ð1 ∓ ss0ð−1Þj−j0þlÞ; ð54Þ

Here the terms labeled −iωðe ↔ o;Π−↔þ; n∂r� Þ are the odd
parity sectors of the Aθ � iAϕ= sin θ with the r� derivative
of the ΨXγlω removed, the angular quantity switches signs,
and the prefactors of F and G are the same in either
swapped case.
Similarly to Eq. (52), there is a set of selection rules for

Eq. (54). For the Πkk0l−
mm0mγ

, these have the same selection
rules as Eq. (52) but have the opposite set of rules for
Πkk0lþ

mm0mγ
. This is because the angular part of the vector

potentials have both even and odd contributions from the
spherical basis vectors. So the radial part of the vector
potential (even symmetry) and the even sector of the
angular part of the interaction Hamiltonian should have
the same set of selection rules.

Some useful identities about the angular integrals are
proved in Appendix A.

B. Expression in terms of 3-mode overlap integrals

Now that we have the interaction Hamiltonian, we will
follow a similar set up as laid out in Chap. 6 of Landi
Degl’Innocenti and Landolfi [72]. The first step is to collect
terms involving each of the photon annihilation operators
(the creation operators are in the Hermitian conjugate
term). Following the steps from Landi Degl’Innocenti
and Landolfi [72], we first rewrite the interaction terms
of Eqs. (51) and (53) as

HintðtÞ ¼ e
X

Xγlmγp

Z
dω
2π

âXγ ;l;ω;mγ ;ðpÞ

Z
dhdh0

ð2πÞ2
X

XkmX0k0m0
½b̂†Xkmhd̂

†
X0k0m0h0I

þþ
Xkm;X0k0m0;XγlmγðpÞðh; h0;ωÞ

þ d̂Xkmhb̂X0k0m0h0I−−Xkm;X0k0m0;XγlmγðpÞðh; h0;ωÞ þ b̂†Xkmhb̂X0k0m0h0I
þ−
Xkm;X0k0m0;XγlmγðpÞðh; h0;ωÞ

þ d̂Xkmhd̂
†
X0k0m0h0I

−þ
Xkm;X0k0m0;XγlmγðpÞðh; h0;ωÞÞ� þ H:c:; ð55Þ

where symbols such as Iþþ
Xkm;X0k0m0;XγlmγðpÞðh; h0;ωÞ contain the contributions from both Hr�

int and Hθ;ϕ
int , and are given by

Iþþ
Xkm;X0k0m0;XγlmγðeÞðh; h0;ωÞ ¼

−iffiffiffiffiffiffiffiffiffi
4hh0

p Δkk0l
mm0mγ

Z
∞

−∞

�
ðF�

XkhF
�
X0−k0h0 − G�

XkhG
�
X0−k0h0 ÞΨXγlω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p 1 − 2M=r

r2
ffiffiffiffiffiffiffiffi
2ω3

p

þ ðF�
XkhF

�
X0−k0h0 þG�

XkhG
�
X0−k0h0 Þ

k − k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp 1

ω
Ψ0

Xγlω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
r

ffiffiffiffiffiffi
2ω

p
#
dr⋆;

I−−Xkm;X0k0m0;XγlmγðeÞðh; h0;ωÞ ¼
−iffiffiffiffiffiffiffiffiffi
4hh0

p Δkk0l
mm0mγ

Z
∞

−∞

�
ðGX−khGX0k0h0 − FX−khFX0k0h0 ÞΨXγlω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p 1 − 2M=r

r2
ffiffiffiffiffiffiffiffi
2ω3

p

þ ðGX−khGX0k0h0 þ FX−khFX0k0h0 Þ
k − k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp 1

ω
Ψ0

Xγlω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
r

ffiffiffiffiffiffi
2ω

p
#
dr⋆;

Iþ−
Xkm;X0k0m0;XγlmγðeÞðh; h0;ωÞ ¼

−iffiffiffiffiffiffiffiffiffi
4hh0

p Δkk0l
mm0mγ

Z
∞

−∞

�
ðF�

XkhGX0k0h0 −G�
XkhFX0k0h0 ÞΨXγlω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p 1 − 2M=r

r2
ffiffiffiffiffiffiffiffi
2ω3

p

þ ðF�
XkhGX0k0h0 þG�

XkhFX0k0h0 Þ
k − k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp 1

ω
Ψ0

Xγlω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
r

ffiffiffiffiffiffi
2ω

p
#
dr⋆;

I−þXkm;X0k0m0;XγlmγðeÞðh; h0;ωÞ ¼
−iffiffiffiffiffiffiffiffiffi
4hh0

p Δkk0l
mm0mγ

Z
∞

−∞

�
ðGX−khF�

X0−k0h0 − FX−khG�
X0−k0h0 ÞΨXγlω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p 1 − 2M=r

r2
ffiffiffiffiffiffiffiffi
2ω3

p

þ ðGX−khF�
X0−k0h0 þ FX−khG�

X0−k0h0 Þ
k − k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp 1

ω
Ψ0

Xγlω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
r

ffiffiffiffiffiffi
2ω

p
#
dr⋆;
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Iþþ
Xkm;X0k0m0;XγlmγðoÞðh; h0;ωÞ ¼

−1ffiffiffiffiffiffiffiffiffi
4hh0

p Πkk0lþ
mm0mγ

Z
∞

−∞

"
ðF�

XkhF
�
X0−k0h0 þ G�

XkhG
�
X0−k0h0 ÞΨXγlω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
2r

ffiffiffiffiffiffi
2ω

p
#
dr⋆;

I−−Xkm;X0k0m0;XγlmγðoÞðh; h0;ωÞ ¼
−1ffiffiffiffiffiffiffiffiffi
4hh0

p Πkk0lþ
mm0mγ

Z
∞

−∞

"
ðGX−khGX0k0h0 þ FX−khFX0k0h0 ÞΨXγlω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
2r

ffiffiffiffiffiffi
2ω

p
#
dr⋆;

Iþ−
Xkm;X0k0m0;XγlmγðoÞðh; h0;ωÞ ¼

−1ffiffiffiffiffiffiffiffiffi
4hh0

p Πkk0lþ
mm0mγ

Z
∞

−∞

"
ðF�

XkhGX0k0h0 þ G�
XkhFX0k0h0 ÞΨXγlω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
2r

ffiffiffiffiffiffi
2ω

p
#
dr⋆; and

I−þXkm;X0k0m0;XγlmγðoÞðh; h0;ωÞ ¼
−1ffiffiffiffiffiffiffiffiffi
4hh0

p Πkk0lþ
mm0mγ

Z
∞

−∞

"
ðGX−khF�

X0−k0h0 þ FX−khG�
X0−k0h0 ÞΨXγlω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
2r

ffiffiffiffiffiffi
2ω

p
#
dr⋆: ð56Þ

where we used the identities in Appendix A to relate the
angular quantities in the even sector. The interactions
associated with the coupling integrals in Eq. (56) are on
a curved spacetime, but we show in Appendix D these
expressions converge to the standard electric and magnetic
dipole transitions.
All of these integrals depend on the m;m0; mγ quantum

numbers only through the 3j symbols in Δkk0l
mm0mγ

and Πkk0l�
mm0γ

and the ð−1Þm; thus we define “double-barred” versions of
the I’s,

Iττ
0

Xkm;X0k0m0;XγlmγðpÞðh; h0;ωÞ

¼ ⟦Iττ
0

Xk;X0k0;XγlðpÞðh; h0;ωÞ⟧ð−1Þl−j
0−m

�
j j0 l

−m m0 mγ

�

ð57Þ

[where τ; τ0 ∈ fþ;−g and the phase ð−1Þl−j0−m is a
standard convention] in analogy to the double-barred
matrix elements of the Wigner-Eckart theorem.

VI. EVOLUTION OF THE PHOTON
DENSITY MATRIX

Our ultimate aim is to determine the statistical properties
of the emitted radiation. In this section, we will define the
initial conditions for the phase space densities of the spinors
and radiation of a black hole in vacuum, i.e., no external
spinor or radiation fields. Then we follow by expressing the
interaction Hamiltonian in Eq. (49) in the interaction
picture, in order to compute the evolution of the phase
space density for the emitted radiation (following a similar
procedure as laid out in Chap. 6 of Landi Degl’Innocenti
and Landolfi [72]).

A. Occupation functions and outgoing radiation

We define the occupation function for the photons (phase
space densities) as

hâ†XγlmγðpÞωâX0
γl0m0

γðpÞω0 i
¼ fγXγX0

γlðpÞðωÞ2πδðω − ω0Þδll0δmγ ;m0
γ
; ð58Þ

and similarly for the electron and positron. Note that this
expectation value is diagonal in l, mγ , and p, and
independent of mγ, due to spherical symmetry and parity.
For free fields, it is diagonal in ω due to time translation
invariance. (We will address the subtleties with interacting
fields below.) The symmetries of the problem allow the “in”
and “up” modes to become correlated, so fγXγX0

γlðpÞðωÞ is a
2 × 2 Hermitian matrix for each l, p, and ω.
To take into account stimulated emission (for photons)

and Pauli blocking (for fermions), we need to define the
enhanced occupation function (for photons) or unoccupa-
tion functions (for fermions):

hâXγlmγ ωðpÞâ
†
X0
γl0m0

γ
ω0ðpÞi ¼ 2πgγXγX0

γlðpÞðωÞδðω − ω0Þδll0δmγm0
γ

where gγXγX0
γlðpÞðωÞ≡ δXγX0

γ
þ fγ�XγX0

γlðpÞðωÞ: ð59Þ

The definition for g has aþ sign for bosonic operators and a
− sign for fermionic operators due to the commutation/
anticommutation relations for either operator type:

ge
−

XX0kðhÞ≡ δXX0 − fe
−�
XX0kðhÞ: ð60Þ

For the noninteracting fields, the phase space densities
are given by the usual formulas:

fγup;up;lðpÞðωÞ ¼
1

e8πMω − 1
; fe

−or eþ
up;up;k ðhÞ ¼

1

e8πMh þ 1
; ð61Þ

and 0 for the other (in,in; in,up; or up,in) components. Here
1=ð8πMÞ is the Hawking temperature of the black hole.
The outgoing phase space density, from Eq. (C5), is

fγout;out;lðpÞðωÞ ¼
jT1;l;ωj2
e8πMω − 1

; ð62Þ
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and then the spectrum of outgoing photons in noninteracting theory [39] is

dNð0Þ
γ

dω dt
¼ 1

2π

X
lmγp

fγout;out;lðpÞðωÞ ¼
1

π

X∞
l¼1

ð2lþ 1Þ jT1;l;ωj2
e8πMω − 1

: ð63Þ

Note that here we have taken the spectrum per unitω, so
R
dω=ð2πÞ → 1=ð2πÞ, and we have performed the trivial sums over

mγ and p to get a factor of 2ð2lþ 1Þ. The correction to the emitted radiation due to interactions is [by comparison to
Eq. (27), and recognizing that photon number differs from energy by a factor of ω]

dNð1Þ
γ

dωdt
¼ 1

2π

X
lmγp

d
dt

hâ†out;l;mγ ;ωðpÞâout;l;mγ ;ωðpÞi: ð64Þ

Our principal aim in this series of papers is to evaluate Eq. (64).

B. Evolution due to the interaction Hamiltonian

We now compute the evolution of the photon density matrix, following the procedure in Landi Degl’Innocenti and
Landolfi [72]. We will simplify our task by working only to order e2.
We will define the interaction picture operators via ÔI ¼ eiHDiracþγt Ôe−iHDiracþγt , where HDiracþγ ¼ HDirac þHγ is the free-

field Hamiltonian for the noninteracting electron and photon fields. We will need the usual commutation relations for the
photon and electron operators:

½Hγ; âXγ ;l;mγ ;ω;ðpÞ� ¼ −ωâXγ ;l;mγ ;ω;ðpÞ; ½Hγ; â
†
Xγ ;l;mγ ;ω;ðpÞ� ¼ ωâ†Xγ ;l;mγ ;ω;ðpÞ;

½HDirac; b̂Xkmh� ¼ −hb̂Xkmh; ½HDirac; b̂
†
Xkmh� ¼ hb̂†Xkmh;

½HDirac; d̂Xkmh� ¼ −hd̂Xkmh; and ½HDirac; d̂
†
Xkmh� ¼ hd̂†Xkmh:

ð65Þ

Now we can write the interaction picture operators:

Hint;IðtÞ≡ eiHDiracþγtHinte
−iHDiracþγt ¼ BðtÞ þ B†ðtÞ; ð66Þ

where

BðtÞ ¼ e
X

Xγlmγp

Z
dω
2π

âXγ ;l;mγ ;ω;ðpÞe
−iωtQðpÞ

Xγlmγ ;ω
: ð67Þ

The factors with the photon operators removed from them are denoted QðtÞ such that we have the form Hint ∝ âQðtÞ. This
form explicitly separates the electromagnetic operators from electron/positron operators:

QðpÞ
Xγlmγ ;ω

¼
Z

dhdh0

ð2πÞ2
X

XkmX0k0m0

h
b̂†Xkmhd̂

†
X0k0m0h0e

iðhþh0ÞtIþþ
Xkm;X0k0m0;XγlmγðpÞ

þ d̂Xkmhb̂X0k0m0h0e−iðhþh0ÞtI−−X−km;X0k0m0;XγlmγðpÞ þ b̂†Xkmhb̂X0k0m0h0eiðh−h
0ÞtIþ−

Xkm;X0k0m0;XγlmγðpÞ

þ d̂Xkmhd̂
†
X0k0m0h0e

−iðh−h0ÞtI−þXkm;X0k0m0;XγlmγðpÞ
i
: ð68Þ

Here we used Eq. (65) to rewrite terms such as eiHDiractb̂†s d̂
†
s0e

−iHDiract ¼ eiðhþh0Þtb̂†s d̂
†
s0 .

Now that we have the interaction Hamilitonian in the interaction picture, Eq. (66), we now follow the procedure that led
to Eq. (6.74) of Landi Degl’Innocenti and Landolfi [72] to arrive at

d
dt

hâ†lmγωðpÞXγ
âlmγωðpÞX0

γ
i ¼ −Tr

�Z
t

0

dt0½½â†XγlmγωðpÞâX0
γlmγωðpÞ; BðtÞ�; B†ðt0Þ�ρIðt0Þ

�
þ ðc:c:; Xγ ⇔ X0

γÞ; ð69Þ
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where ρIðt0Þ is the interaction picture density matrix at time t0. Since the initial conditions for the photon (Hawking
radiation) are an incoherent state, the same removal of terms that do not have both a B and a B† (Eqs. (6-45)–(6-47) of Landi
Degl’Innocenti and Landolfi [72]) is valid here. We may now write the pieces of this expression. We start with the inner
commutator,

½â†XγlmγωðpÞâX0
γlmγωðpÞ; BðtÞ� ¼ −e

X
p

ðâX0
γlmγωðpÞe

−iωtQðpÞ
Xγlmγω

Þ; ð70Þ

then proceed to the outer commutator,

½½â†lmγωðpÞXγ
âlmγωðpÞX0

γ
; BðtÞ�; B†ðt0Þ� ¼ e2

Z
dω00

2π

X
X00
γl00m00

γp00
½ðâX0

γlmγðpÞωâ
†
X00
γl00m00

γ ðp00Þω00Q
ðpÞ
Xγlmγω

Qðp00Þ†
X00
γl00m00

γ ω
00

− â†X00
γl00m00

γ ðp00Þω00 âX0
γlmγðpÞωQ

ðp00Þ†
X00
γl00m00

γ ω
00Q

ðpÞ
Xγlmγω

Þe−iðωt−ω00t0Þ�; ð71Þ

and then proceed to the statistical average:

Trð½½â†lmγωðpÞXγ
âlmγωðpÞX0

γ
; BðtÞ�; B†ðt0Þ�ρIðt0ÞÞ ¼ e2

�
hQðpÞ

Xγlmγω
QðpÞ†

X0
γlmγω

i þ
X
X00
γ

fγ�X0
γX00

γlmγ
ðωÞh½QðpÞ

Xγlmγω
; QðpÞ†

X00
γlmγω

�i
�
e−iωðt−t0Þ:

ð72Þ

We can further simplify this expression using the occupation functions (phase space densities) as given in Eqs. (58)
and (59). This, combined with the expectation values of the different fermionic operators (see Appendix B for details of how
to simplify the expectation values of the 4-fermion operators), gives

d
dt

hâ†lmγωðpÞXγ
âlmγωðpÞX0

γ
i

¼ e2
Z

dh dh0

ð2πÞ2
X

XkmX0k0m0X00X000
π

�
fe

−

XX000kðhÞfe
þ
X0X00k0 ðh0ÞIþþ

Xkm;X0k0m0;XγlmγðpÞðh; h0;ωÞI
þþ�
X000km;X00k0m0;X0

γlmγðpÞðh; h0;ωÞΦðω − h − h0Þ

þ ge
þ
XX000kðhÞge

−

X0X00k0 ðh0ÞI−−Xkm;X0k0m0;XγlmγðpÞðh; h0;ωÞI−−�X000km;X00k0m0;X0
γlmγðpÞðh; h0;ωÞΦðωþ hþ h0Þ

þ fe
−

XX000kðhÞge
−

X0X00k0 ðh0ÞIþ−
Xkm;X0k0m0;XγlmγðpÞðh; h0;ωÞI

þ−�
X000km;X00k0m0;X0

γlmγðpÞðh; h0;ωÞΦðωþ h0 − hÞ
þ ge

þ
XX000kðhÞfe

þ
X0X00k0 ðh0ÞI−þXkm;X0k0m0;XγlmγðpÞðh; h0;ωÞI

−þ�
X000km;X00k0m0;X0

γlmγðpÞðh; h0;ωÞΦðh − h0 þ ωÞ

þ
X
X00
γ

fγ�X0
γX00

γlðpÞðωÞ
�
½fe−XX000kðhÞfe

þ
X0X00k0 ðh0Þ − ge

þ
X00X0k0 ðh0Þge

−

X000XkðhÞ�

× Iþþ
Xkm;X0k0m0;XγlmγðpÞðh; h0;ωÞI

þþ�
X000km;X00k0m0;X00

γlmγðpÞðh; h0;ωÞΦðω − h − h0Þ
þ ½geþXX000kðhÞge

−

X0X00k0 ðh0Þ − fe
−

X00X0k0 ðh0Þfe
þ
X000XkðhÞ�

× I−−Xkm;X0k0m0;XγlmγðpÞðh; h0;ωÞI−−�X000km;X00k0m0;X00
γlmγðpÞðh; h0;ωÞΦðωþ hþ h0Þ

þ ½fe−XX000kðhÞge
−

X0X00k0 ðh0Þ − ge
−

X000XkðhÞfe
−

X00X0k0 ðh0Þ�
× Iþ−

Xkm;X0k0m0;XγlmγðpÞðh; h0;ωÞI
þ−�
X000km;X00k0m0;X00

γlmγðpÞðh; h0;ωÞΦðωþ h0 − hÞ
þ ½geþXX000kðhÞfe

þ
X0X00k0 ðh0Þ − fe

þ
X000XkðhÞge

þ
X00X0k0 ðh0Þ�

× I−þXkm;X0k0m0;XγlmγðpÞðh; h0;ωÞI
−þ�
X000km;X00k0m0;X00

γlmγðpÞðh; h0;ωÞΦðh − h0 þ ωÞ
��

þ ðc:c:; Xγ ⇔ X0
γÞ; ð73Þ

In arriving at Eq. (73), we used the simplification for coupling integrals with the same m-index for different spinor state,
e.g., Iττ

0
Xkm;X0km;XγlmγðpÞðh; h;ωÞ, the sum over m will simplify this to zero by symmetry of the 3j symbols:
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Xj

m¼−j
ð−1Þm−1=2

�
j j l

−m m mγ

�
¼ 0 for l ≥ 1: ð74Þ

This eliminates several of the possible contractions that arise
from simplification of the 4-fermion operators. Physically,
this corresponds to the suppression of transitions with
fermions of angular momentum j,m of state X transitioning
to the state X0 with the same j, m during the emission or
absorption a photon of angular momentum l ≥ 1 since this
transition would violate conservation of angular momentum
(or stated in terms of Feynman diagrams, tadpole diagrams
are disallowed). So only terms with coupling integrals over
different k, m-indices will contribute to the evolution of the
photon density matrix.
We have also substituted ΦðΩÞ for the time integral

defined in Eq. (6.57) of Landi Degl’Innocenti and Landolfi
[72]. The ΦðΩÞ is defined as the improper integral of a
complex exponential:

ΦðΩÞ ¼ 1

π
lim
t→∞

Z
t

0

eiΩðt−t0Þdt0 ¼ δðΩÞ þ i
π
P
1

Ω
; ð75Þ

where Pð1=ΩÞ is the principal part in the distribution sense
(improper integral sense). Equation (75) has two parts that
contribute to different types of interactions: a dissipative part
[δðΩÞ] and a conservative part [Pð1=ΩÞ]. The dissipative
part is related to processes involving the emission and
absorption of photons from the different spinor fields (pair
production, pair annihilation, and bound-bound, bound-free,
and free-free transitions of the electrons and positrons). The
conservative part (which includes plasma frequency and
vacuum polarization effects) does not change the total
number or energy of photons, but will affect the barrier
transmission probability and hence the emitted Hawking
radiation. We can therefore break Eq. (69) into dissipative
and conservative pieces:

d
dt

hâ†XγβðpÞâX0
γβðpÞi ¼

d
dt

hâ†XγβðpÞâX0
γβðpÞidiss

þ d
dt

hâ†XγβðpÞâX0
γβðpÞicons; ð76Þ

where the dissipative terms come from the δðΩÞ and the
conservative terms come from the Pð1=ΩÞ in Eq. (75).

C. Dissipative part of the photon density evolution

The remainder of this calculation will deal with the
dissipative part of Eq. (75), and a later paper in this series
will handle the contribution due to the conservative part.
If we consider only the dissipative part, we can

further simplify Eq. (73) by the following sequence of
simplifications:
(1) We collapse the energy integral

R
dh0 using the

δ-function.
(2) We drop the I−− terms since the δ-function condition

h0 ¼ −ðωþ hÞ does not contribute to the integrals
over positive energies (physically, we cannot have an
on-shell photon, electron, and positron appear out of
the vacuum or disappear into it).

(3) We simplify the
P

mm0 over products of the 3j
symbols in Eq. (57) using Eq. (3.7.8) of Edmonds
[73], giving an overall factor ofΔðj; j0;lÞ=ð2lþ 1Þ.

(4) We combine the terms with coupling integrals
⟦Iþ−

Xk;X0k0;XγlðpÞ⟧⟦I
þ−�
Xk;X0k0;X0

γlðpÞ⟧ (corresponding to

the process e− þ γ ↔ e−) and ⟦I−þXk;X0k0;XγlðpÞ⟧

⟦I−þ�
Xk;X0k0;X0

γlðpÞ⟧ (corresponding to eþ þ γ ↔ eþ)
since they are the same under charge conjugation
(Ĉ symmetry). Physically, emission and absorption
from electron levels and positron levels give the
same contribution, so we have a factor of 2. The Ĉ
symmetry is explored in Appendix E, leading spe-
cifically to the result that allows us to combine the
terms, Eq. (E7).

(5) Wework in the fin; upg basis, where the phase space
densities fX0X00 and gX0X00 are diagonal.

This gives us

d
dt

hâ†XγlmγωðpÞâX0
γlmγωðpÞidiss ¼

e2

2ð2lþ 1Þ
Z

dh
2π

X
X;X0∈fin;upg

X
kk0

Δðj; j0;lÞδss0ð−1Þkþk0þl;ð−1Þp

× ðfe−XXðhÞfeþX0X0 ðh0Þ⟦Iþþ
Xk;X0k0;XγlðpÞðh; h0;ωÞ⟧⟦I

þþ�
Xk;X0k0;X0

γlðpÞðh; h0;ωÞ⟧jh0¼ω−h

þ 2fe
þ
X0X0 ðh0ÞgeþXXðhÞ⟦I−þXk;X0k0;XγlðpÞðh; h0;ωÞ⟧⟦I

−þ�
Xk;X0k0;X0

γlðpÞðh; h0;ωÞ⟧jh0¼hþω

þ fγ�X0
γX0

γl
ðωÞfðfe−XXðhÞfeþX0X0 ðh0Þ − ge

þ
X0X0 ðh0Þge−XXðhÞÞ × ⟦Iþþ

Xk;X0k0;XγlðpÞðh; h0;ωÞ⟧
× ⟦Iþþ�

Xk;X0k0;X0
γlðpÞðh; h0;ωÞ⟧jh0¼ω−h þ 2ðfeþX0X0 ðh0ÞgeþXXðhÞ − ge

þ
X0X0 ðh0ÞfeþXXðhÞÞ

× ⟦I−þXk;X0k0;XγlðpÞðh; h0;ωÞ⟧⟦I
−þ�
Xk;X0k0;X0

γlðpÞðh; h0;ωÞ⟧jh0¼hþωgÞ þ ðc:c:; Xγ ⇔ X0
γÞ; ð77Þ
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where we define one of the energy index for the spinor fields h0 to depend on some combination of the other spinor field
energy h and photon energy ω, and Δðj; j0;lÞδss0ð−1Þkþk0þl;ð−1Þp encodes the angular momentum and parity selection rules.

We can further simplify Eq. (77) by using the phase space densities for the electrons and positrons in Eq. (61) to give

d
dt

hâ†XγlmγωðpÞâX0
γlmγωðpÞidiss ¼

e2

2ð2lþ 1Þ
Z

dh
2π

X
kk0

Δðj; j0;lÞδss0ð−1Þkþk0þl;ð−1Þp

×

�
−fγ�X0

γX0
γl
ðωÞ⟦Iþþ

ink;ink0;XγlðpÞðh;ω − h;ωÞ⟧⟦Iþþ�
ink;ink0;X0

γlðpÞðh;ω − h;ωÞ⟧

− fγ�X0
γX0

γl
ðωÞ e8πMðω−hÞ

e8πMðω−hÞ þ 1
⟦Iþþ

ink;upk0;XγlðpÞðh;ω − h;ωÞ⟧⟦Iþþ�
ink;upk0;X0

γlðpÞðh;ω − h;ωÞ⟧

þ ð1þ fγ�X0
γX0

γl
ðωÞÞ 2

e8πMðωþhÞ þ 1
⟦I−þink;upk0;XγlðpÞðh;ωþ h;ωÞ⟧⟦I−þ�

ink;upk0;X0
γlðpÞðh;ωþ h;ωÞ⟧

− fγ�X0
γX0

γl
ðωÞ

�
e8πMh

e8πMh þ 1
⟦Iþþ

upk;ink0;XγlðpÞðh;ω − h;ωÞ⟧⟦Iþþ�
upk;ink0;X0

γlðpÞðh;ω − h;ωÞ⟧

þ 2

e8πMh þ 1
⟦I−þupk;ink0;XγlðpÞðh;ωþ h;ωÞ⟧⟦I−þ�

upk;ink0;X0
γlðpÞðh;ωþ h;ωÞ⟧

�

þ ½1þ ð1 − e8πMωÞfγ�X0
γX0

γl
ðωÞ�

�
1

ðe8πMh þ 1Þðe8πMðω−hÞ þ 1Þ ⟦I
þþ
upk;upk0;XγlðpÞðh;ω − h;ωÞ⟧

× ⟦Iþþ�
upk;upk0;X0

γlðpÞðh;ω − h;ωÞ⟧þ 2e8πMh

ðe8πMh þ 1Þðe8πMðωþhÞ þ 1Þ

× ⟦I−þupk;upk0;XγlðpÞðh;ωþ h;ωÞ⟧⟦I−þ�
upk;upk0;X0

γlðpÞðh;ωþ h;ωÞ⟧
��

þ ðc:c:; Xγ ⇔ X0
γÞ; ð78Þ

where we grouped terms of the same X, X0 type together
with the appropriate prefactors of photon phase space
density, fγðωÞ. The ðX;X0Þ ¼ ðin; inÞ terms are grouped
first, then the (in,up) terms, then the (up,in) terms, and
lastly the (up,up) terms. We can see after simplifications,
there are three terms that contribute to the spontaneous
emission [that exist even when fγ�ðωÞ ¼ 0] coming from
the set of scattering solutions ðX;X0Þ ¼ ðin; upÞ and
ðup; upÞ. These spontaneous emission terms correspond
to the following:

(i) the production of photons from electron-positron
annihilation, eþ þ e− → γ, described by the Iþþ
term with fermion indices (up,up), and where the
energies of the electron and positron sum to ω; and

(ii) the braking radiation (inner bremsstrahlung) of the
electron or positron, e∓ → e∓ þ γ, and where the
energies of the two fermion states have a difference
of ω. This is associated with the I−þ terms with

fermion indices (up,up) and (in,up). The factor of 2
comes from inclusion of both signs of charge.

There are also absorption terms, which contain a−fγ�X0
γX0

γ
ðωÞ,

as well as stimulated emission terms. For the specific
case where both Xγ ¼ X0

γ ¼ up, the ðX;X0Þ ¼ ðup; upÞ
terms completely cancel, since then 1þ ð1 − e8πMωÞ
fγ�X0

γX0
γl
ðωÞ ¼ 0. Physically, this is a result of thermodynamic

equilibrium: the Hawking radiation coming up from the
horizon has the same temperature TH ¼ 1=ð8πMÞ for all
particle species, so the net rate of change of occupation
numbers due to interactions of the “up” particles is zero.
The OðαÞ correction to the emitted radiation spectrum,

Eq. (64), is related to this phase space density evolution via
Eq. (C5). We separate Eq. (78) into the “direct” terms
(written explicitly) and the “c.c.s.” (complex conjugate with
swap) terms. We see that

d
dt

hâ†out;lmγωðpÞâout;lmγωðpÞidiss ¼ 2fjR1;lωj2½direct term in; in� þ jT1;lωj2½direct term up; up�
þ ReR�

1;lωT1;lωð½direct term in; up� þ ½direct term up; in��Þg: ð79Þ
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We are now able to now write the dissipative correction to the emitted radiation to order e2:

dNð1Þ
γ

dtdω

				
diss

¼ 1

2π

X
lmγp

d
dt

hâ†out;lmγωðpÞâout;lmγωðpÞidiss

¼ e2

2π

X∞
l¼1

X
p

Z
dh
2π

X
kk0

Δðj; j0;lÞδss0ð−1Þkþk0þl;ð−1Þp
�
jR1;l;ωj2

�
2

e8πMðωþhÞ þ 1
j⟦I−þin;k;up;k0;in;l;ðpÞðh;ωþ h;ωÞ⟧j2

þ 1

ðe8πMh þ 1Þðe8πMðω−hÞ þ 1Þ j⟦I
þþ
up;k;up;k0;in;l;ðpÞðh;ω − h;ωÞ⟧j2

þ 2e8πMh

ðe8πMh þ 1Þðe8πMðωþhÞ þ 1Þ j⟦I
−þ
up;k;up;k0;in;l;ðpÞðh;ωþ h;ωÞ⟧j2

�

þ jT1;l;ωj2
e8πMω − 1

�
−j⟦Iþþ

in;k;in;k0;up;l;ðpÞðh;ω − h;ωÞ⟧j2 þ 2e8πMω

e8πMðωþhÞ þ 1
j⟦I−þin;k;up;k0;up;l;ðpÞðh;ωþ h;ωÞ⟧j2

−
2

e8πMh þ 1

�
e8πMhj⟦Iþþ

up;k;in;k0;up;l;ðpÞðh;ω − h;ωÞ⟧j2 þ j⟦I−þup;k;in;k0;up;l;ðpÞðh;ωþ h;ωÞ⟧j2
��

þ ReT�
1;l;ωR1;l;ω

�
2ð2e8πMω − 1Þ

ðe8πMðωþhÞ þ 1Þðe8πMω − 1Þ ⟦I
−þ
in;k;up;k0;up;l;ðpÞðh;ωþ h;ωÞ⟧⟦I−þ�

in;k;up;k0;in;l;ðpÞðh;ωþ h;ωÞ⟧

þ 1

ðe8πMh þ 1Þðe8πMðω−hÞ þ 1Þ ⟦I
þþ
up;k;up;k0;up;l;ðpÞðh;ω − h;ωÞ⟧⟦Iþþ�

up;k;up;k0;in;l;ðpÞðh;ω − h;ωÞ⟧

þ 2e8πMh

ðe8πMh þ 1Þðe8πMðωþhÞ þ 1Þ ⟦I
−þ
up;k;up;k0;up;l;ðpÞðh;ωþ h;ωÞ⟧⟦I−þ�

up;k;up;k0;in;l;ðpÞðh;ωþ h;ωÞ⟧

−
1

e8πMω − 1

�
⟦Iþþ

in;k;in;k0;up;l;ðpÞðh;ω − h;ωÞ⟧⟦Iþþ�
in;k;in;k0;in;l;ðpÞðh;ω − h;ωÞ⟧

þ 2e8πMh

e8πMh þ 1
⟦Iþþ

up;k;in;k0;up;l;ðpÞðh;ω − h;ωÞ⟧⟦Iþþ�
up;k;in;k0;in;l;ðpÞðh;ω − h;ωÞ⟧

þ 2

e8πMh þ 1
⟦I−þup;k;in;k0;up;l;ðpÞðh;ωþ h;ωÞ⟧⟦I−þ�

up;k;in;k0;in;l;ðpÞðh;ωþ h;ωÞ⟧
���

; ð80Þ

where the energy integral for each term is implied to be
over the legal range for all arguments in the I-integrals
(energies positive, and > μ in the case of the fermion “in”
modes). In this expression, we have made several algebraic
simplifications:

(i) The
P

mγ
cancels the factor of 1=ð2lþ 1Þ since

there is no mγ dependence on a spherically sym-
metric background.

(ii) We combined the X;X0 ¼ up; in terms containing
⟦Iþþ

up;k;in;k0;up;l;ðpÞðh;ω−h;ωÞ⟧⟦Iþþ�
up;k;in;k0;in;l;ðpÞðh;ω−

h;ωÞ⟧ with the in,up terms containing
⟦Iþþ

in;k;up;k0;up;l;ðpÞðh;ω−h;ωÞ⟧⟦Iþþ�
in;k;up;k0;in;l;ðpÞðh;ω−

h;ωÞ⟧ using the symmetry relation [straightfor-
wardly verified from Eq. (56)]:

⟦Iþþ
X;k;X0;k0;l;ðpÞðh; h0;ωÞ⟧

¼ ð−1Þj−j0⟦Iþþ
X0;−k0;X;−k;l;ðpÞðh0; h;ωÞ⟧: ð81Þ

These terms are equivalent after we take the
P

kk0

over both positive and negative values, and perform
the fermion energy integral over the allowed
range,

R
ω
0 dh=ð2πÞ.

(iii) The two terms that have the same set of indices are in
the interference term, ReT�

1;l;ωR1;l;ω, corresponding
to the coupling ⟦I−þin;k;up;k0;up;l;ðpÞðh;ωþ h;ωÞ⟧
⟦I−þ�

in;k;up;k0;in;l;ðpÞðh;ωþ h;ωÞ⟧. They have been
combined. Physically, this is because the interaction
being described is of the form eup → γup=in þ ein,
where the e can be either electron or position by
C—symmetry. However, the transition with γin
corresponds to a process where the photon is
reflected back to the horizon and the process with
γup corresponds to the transmission of a photon out
to infinity. Since these two processes are identical in
the electron/positron states, the photons will inter-
fere, as expected by the combining of these
two terms.
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Each of the 13 coupling integral terms in Eq. (80)
corresponds to a physical process involving a single-vertex
interaction of e−, eþ, and γ, with each particle in either the
“up” or “in” mode. The channel the photon is in can be
understood from the prefactor of either T1;l;ω or R1;l;ω. For
interactions with jR1;l;ωj2, the three terms describe the
processes:

eup → ein þ γin; eup þ eup → γin; and

eup → eup þ γin; ð82Þ

respectively. In these interactions, the factor of jR1;l;ωj2
indicates these are the amplitudes processes that result in
radiation emitted in the “in” mode (hence the label γin) and
reflected from the effective potential barrier so that the
photons propagate out. (We label “e” here to denote
particles of either sign charge.) Only emission terms are
allowed here since there are no initial photons in the
“in” modes.
Similar considerations apply to the four terms with

jT1;l;ωj2. These describe processes involving photons in
the “up” mode (γup) interacting with e−eþ. These photons
can be transmitted through the barrier and propagate out.
Both emission and absorption processes are allowed here
since there are initially photons in the “up”mode: the terms
correspond respectively to

γup → ein þ ein; eup → ein þ γup;

γup → eup þ ein; and eup þ γup → ein: ð83Þ

The process eup þ eup ↔ γup is allowed, but the net rate is
zero since it is in thermodynamic equilibrium and so it does
not appear in Eq. (80).
Finally, we have the terms with ReT�

1;l;ωR1;l;ω, corre-
sponding to the interference of the “in,reflected” and “out,
transmitted” processes since the initial and final state for
the fermions are the same but with different photon modes.
This is analogous to the familiar interference pattern
created by a dipole antenna over a ground plane, in which
the amplitude radiation pattern includes both the radiation
emitted directly upward by the antenna and the radiation
emitted into the ground plane and reflected back up. The
power radiation pattern then contains an interference
pattern. Each of the seven terms in Eqs. (82) and (83)
has a corresponding interference term, but there are only
six terms with ReT�

1;l;ωR1;l;ω because the process eup →
ein þ γin or up appears in both Eqs. (82) and (83), hence the
interference terms can be combined.
Equation (80) is our final expression for the dissipative

OðαÞ correction to the Hawking radiation on a
Schwarzschild metric.

VII. DISCUSSION

Primordial black holes are novel objects that are both a
dark matter candidate and a potential probe of epochs in the
early Universe such as the late stages of inflation or phase
transitions, which are difficult to probe with the “standard”
measurements in cosmology. One point of observational
interest is the Hawking radiation emitted from PBHs, since
the lower end of the allowed mass range should emit in the
γ-ray regime. This—combined with reports that the for-
mallyOðαÞ internal bremsstrahlung effect can qualitatively
change the spectrum of Hawking radiation and impact
detectability [26]—motivates accurate calculation of the
emitted radiation in order to place constraints on PBHs. We
are particularly interested in whether at order OðαÞ there
are any other qualitatively new features in the Hawking
radiation.
This paper is the first in a series that aims to compute the

full suite of corrections to the emitted radiation spectrum
first order in the fine structure constant, α, for a
Schwarzschild black hole in a mass range where electrons
become important (TH=me of order unity). This requires
performing a perturbative QED calculation with photon,
electron, and positron interactions on a curved background.
We follow the canonical quantization procedure starting
from the QED action [Eq. (5)], then describe the vector
potential and electron fields as sums over the creation and
annihilation operators in Eqs. (29) and (46). Then we
compute the interaction Hamiltonian, Eq. (49), and rewrite
it such that it can be easily translated to time-dependent
perturbative techniques for computing evolution of oper-
ators [Eq. (69)] using the initial conditions with no radiation
coming “in” from ∞ (black hole placed in vacuum) and
thermal Hawking radiation coming up from the horizon
[Eq. (61)]. We also tested our expressions for the interaction
Hamiltonian, specifically Eq. (56), with limiting cases of
bound-state (h < μ) electric and magnetic dipole transitions
in the nonrelativistic limit in flat spacetime (jh − μj ≪ μ and
r ≫ M) in Appendix D, and found both cases to agree with
standard relations from atomic physics. The evolution of the
photon field is captured to OðαÞ in Eq. (73), but we can see
that there are two different mechanisms that can affect the
Hawking radiation up to this order:
(1) The emission/absorption of photons from inter-

actions with the spinor fields. These are dissipative
effects, associated with the real and even function
δðΩÞ in Eq. (75). Here Ω is the net energy change in
the reactions of Eqs. (82) and (83), and the δ-function
enforces conservation of energy.

(2) The processes that do not change the total number of
photons but rather change the barrier penetration
probability, i.e., vacuum polarization and plasma
frequency effects. These are conservative effects,
associated with the imaginary and odd function
ði=πÞPð1=ΩÞ in Eq. (75). Here Ω is the amount of
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energy that must be “borrowed” to go to a vir-
tual state.

This paper is concerned with the analytic form of the
dissipative sector of the evolution. We arrive ultimately at
the final expression for the dissipative correction to the
emitted radiation, Eq. (80). This is expressed as a mode sum
(or integral, for the one continuous variable), with each term
containing the square norm or complex product of the I-
integrals, which describe the overlap of the Schwarzschild
wave functions of the fermions and photons.
This paper focuses on the analytic formulation of

Eq. (80), after using rotation, time translation, and parity
symmetries to completely simplify the result. A forth-
coming paper will focus on the numerical implementation
of Eq. (80). The implementation is numerically challenging
—in addition to the large number of nested sums and
integrals, the I-integrals converge slowly at large r⋆ (the
integrands scale as an oscillatory function with logarithmi-
cally divergent phase corrections times 1=r). Furthermore,
at large M, massive fermions such as e� can be in
classically stable orbits around the black hole. In wave
mechanics, the classical turning points become a cavity,
and there are resonances at energies where a half-integer
number of fermion waves (in the WKB sense) fit across the
cavity. The resonances must be properly sampled in the
integration over energies h and h0 (see, e.g., Bain and
Bardsley [74] for a discussion of similar problems in
radiative formation of molecules). We plan to present a
treatment of these issues in an upcoming paper.
This concludes the analytic part of the dissipative OðαÞ

correction to the Hawking radiation, but begins the start of
several other avenues of work that will encapsulate differ-
ent perturbative effects to improve the distribution of
Hawking radiation from PBHs. The next OðαÞ correction
that was mentioned, but not taken into account in this
analysis, is the conservative effect that affects the trans-
mission coefficient. This includes both plasma effects and
the vacuum polarization effect in the Schwarzschild space-
time. In flat spacetime, the OðαÞ or one-loop correction to
the photon propagator due to vacuum polarization is
divergent, requiring renormalization to produce finite
results [75–77]. The same thing should happen here: the
conservative correction includes an integral with the
principal part of 1=Ω, and the energy integral and sum
over angular momentum modes together will give an
infinite contribution. We intend to explore renormalization
approaches in future work.
Other possible future works could extend these tech-

niques to more complicated systems of interacting particles
on black hole spacetimes. One such example is the
production of pions at TH ≳ 20 MeV; these have strong
self-interactions, and are a favorable mode of producing
radiation since they are spin 0 (which leads to an l ¼ 0
channel with no angular momentum barrier) and their decay
can lead to secondary gamma rays and positrons [42,43].

Additionally, including the spin of the PBH—that is, going
from a Schwarzschild spacetime to a Kerr spacetime—could
be an interesting avenue for future work as this enhances
production of higher spin particles [78,79]. The Kerr
background introduces several novel effects due to the lack
of spherical symmetry (so we cannot simplify the problem
using the Wigner-Eckart theorem) and the lack of time-
reversal symmetry (which results in the “out+down” vac-
uum being different from the “in+up” vacuum [69]). These
effects are all necessary for a complete and accurate
description of radiative processes from PBHs, which is
imperative for future interpretations of PBH-related impli-
cations on cosmology.
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APPENDIX A: SOME USEFUL IDENTITIES
FOR THE ANGULAR INTEGRALS

Here we tabulate some identities for the angular integrals
Δkk0l

mm0mγ
and Πkk0l�

mm0mγ
defined in Eqs. (52) and (54).

Our first identity follows from the recursion relation for
Clebsch-Gordan coefficients, Eq. (2.2.4) of [73]. If one
writes this recursion relation for m1 ¼ m2 ¼ 1=2 and
m ¼ 0, and expresses the result in terms of 3j symbols,
then one obtains

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j3ðj3 þ 1Þ

p �
j1 j2 j3
1
2

1
2

−1

�
¼ −

�
j1 þ

1

2

��
j1 j2 j3
− 1

2
1
2

0

�

−
�
j2 þ

1

2

��
j1 j2 j3
1
2

− 1
2

0

�
:

ðA1Þ

Using the symmetry relation that one may interchange any
two columns of a 3j symbol, with a factor of ð−1Þj1þj2þj3 ,
we may combine the 3j symbols on the right-hand side. We
may also use the symmetry relation that all of the m’s can
flip sign with a factor of ð−1Þj1þj2þj3 . This results in

�
j1 j2 j3
− 1

2
− 1

2
1

�
¼ −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j3ðj3 þ 1Þp Wj1j2j3

�
j1 j2 j3
1
2

− 1
2

0

�
;

Wj1j2j3 ¼ j1 þ
1

2
þ ð−1Þj1þj2þj3

�
j2 þ

1

2

�
: ðA2Þ
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Comparing this to Eqs. (52) and (54), we find that Πkk0l−
mm0mγ

and Δkk0l
mm0mγ

are only nonzero if ð−1Þjþj0þl ¼ −ss0. We

therefore have Wjj0l ¼ jkj þ ss0jk0j ¼ sðk − k0Þ. Noting
that the difference between Πkk0l−

mm0mγ
and Δkk0l

mm0mγ
is this 3j

symbol, a prefactor of −s, and the factor of 2, we find
that

Πkk0l−
mm0mγ

¼ 2
k − k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp Δkk0l

mm0mγ
: ðA3Þ

Thus the two angular integrals for the (e) harmonics—the
Δkk0l

mm0mγ
integrals that come from the radial parts of the

vector potential and theΠkk0l−
mm0mγ

integrals that come from the

angular parts—in fact are closely related.
A corollary to Eq. (A2) is that Πkk0lþ

mm0mγ
can be expressed

in terms of the 3j symbols withm-values 1
2
;− 1

2
; 0. We note

that Πkk0lþ
mm0mγ

has a selection rule that ð−1Þjþj0þl ¼ ss0, so

that Wjj0l ¼ jkj þ ss0jk0j ¼ sðkþ k0Þ. Therefore,

Πkk0lþ
mm0mγ

¼ ð−1Þmþ1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þð2j0 þ 1Þð2lþ 1Þ

4πlðlþ 1Þ

s

× ðkþ k0Þ
�

j j0 l

−m m0 mγ

��
j j0 l
1
2

− 1
2

0

�

× ð1 − ss0ð−1Þj−j0þlÞ: ðA4Þ

APPENDIX B: EXPECTATION VALUES
OF FOUR FERMION OPERATORS

We need the expectation values of different combinations
of four fermion operators that appear in Eq. (69) from

products of the form hQðpÞ
Xγβ

QðpÞ†
X0
γβ
i. These are needed only in

the unperturbed case where all of the modes are indepen-
dent. These are the following:

hb̂†Xkmhd̂
†
X0k0m0h0 d̂X00k00m00h00 b̂X000k000m000h000 i ¼ 2πfe

−

XX000kmðh000Þδðh − h000Þδkk000δmm0002πfe
þ
X0X00k0m0 ðh00Þδðh0 − h00Þδk0k00δm0m00 ;

hd̂Xkmhb̂X0k0m0h0 b̂
†
X00k00m00h00 d̂

†
X000k000m000h000 i ¼ 2πgeþXX000kmðh000Þδðh − h000Þδkk000δmm0002πge

þ
X0X00k0m0 ðh00Þδðh0 − h00Þδk0k00δm0m00 ;

hb̂†Xkmhb̂X0k0m0h0 d̂X00k00m00h00 d̂
†
X000k000m000h000 i ¼ 2πfe

−

XX0kmhðh0Þδðh − h0Þδkk0δmm02πgeþX00X000k00m00 ðh000Þδðh00 − h000Þδk00k000δm00m000 ;

hd̂Xkmhd̂
†
X0k0m0h0 b̂

†
X00k00m00h00 b̂X000k000m000h000 i ¼ 2πge

þ
XX0kmðh0Þδðh − h0Þδkk0δmm02πfe

−

X00X000k00m00 ðh000Þδðh00 − h000Þδk00k000δm00m000 ;

hb̂†Xkmhb̂X0k0m0h0 b̂
†
X00k00m00h00 b̂X000k000m000h000 i ¼ 2πfe

−

XX0kmðh0Þδðh − h0Þδkk0δmm02πfe
−

X00X000k00m00 ðh000Þδðh00 − h000Þδk00k000δm00m000

þ 2πfe
−

XX000kmðh000Þδðh − h000Þδkk000δmm0002πge
−

X0X00kmðh00Þδðh0 − h00Þδk0k00δm0m00 ; and

hd̂Xkmhd̂
†
X0k0m0h0 d̂X00k00m00h00 d̂

†
X000k000m000h000 i ¼ 2πge

þ
XX0kmðh0Þδðh − h0Þδkk0δmm02πge

þ
X00X000k00m00 ðh000Þδðh00 − h000Þδk00k000δm00m000

× 2πge
þ
XX000kmðh000Þδðh − h000Þδkk000δmm0002πfe

þ
X0X00k0m0 ðh00Þδðh0 − h00Þδk0k00δm0m00 : ðB1Þ

We can derive the first four expressions in Eq. (B1) by
assuming that the electron and positron fields are uncorre-
lated, i.e., one can group and separate expectation values of
combinations of b̂ and d̂ (note that this grouping produces an
even number of − signs from fermion operator anticommu-
tation). For the last two expressions—the expectation values
with four electron or four positron operators—we can
directly verify the results if the density matrix is diagonal
in the Fock space. Since the two sides of these equations
transform the same way under unitary transformations on
the X;X0;… indices, they remain valid in another choice
of basis.

APPENDIX C: RELATING THE “IN/UP”
SCATTERING BASIS TO THE “OUT/DOWN”
SCATTERING BASIS FOR THE PHOTON

We wish to relate the current basis set of solutions,
Eqs. (22) and (23), of the photon radial equation to the set

of solutions that describes the radiation going “down/out”
of the black hole. We will also assume that the black hole is
in a vacuum and there is no infalling radiation from an
external source.
Since Eq. (16) is a second-order ordinary differential

equation, it will have two independent solutions. Therefore,
we can define any other set of solutions as linear combi-
nations of the original two independent solutions. This
allows us to define the asymptotic “out/down” solutions as

� Ψl;ω;out

Ψl;ω;down

�
¼

�
A B

C D

��Ψl;ω;up

Ψl;ω;in

�
ðC1Þ

where
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Ψl;ω;ðout;downÞðr⋆Þ →
� ðA;CÞeiωr� þ ððB;DÞT1;l;ω − ðA;CÞR�

1;l;ωe
2i argT1;l;ωÞe−iωr� r⋆ → −∞

ððA;CÞT1;l;ω þ ðB;DÞR1;l;ωÞeiωr� þ ðB;DÞe−iωr� r⋆ → ∞
ðC2Þ

where A, B, C, and D are coefficients relating the two
different sets of solutions.
In order to preserve the same normalizations used in the

“up/in” solutions, we can constrain the coefficients that
appear in the linear transformation Eq. (C1). For the
outgoing solution (Ψout), we want the boundary condition
similar to the Ψup: a purely outgoing wave coming from
the black hole and a superposition of outgoing and ingoing
waves far from the horizon. Similarly for the down going
solution (Ψdown): a purely ingoing wave far from the black
hole and a superposition of ingoing and outgoing waves
near the horizon. Thus, the linear transformation that
satisfies these boundary conditions (normalization con-
ventions) are

� Ψl;ω;out

Ψl;ω;down

�
¼
� T�

1;l;ω R�
1;l;ω

−R1;l;ωe−2i argT1;l;ω T�
1;l;ω

��Ψl;ω;up

Ψl;ω;in

�
;

ðC3Þ

where the transformation matrix is unitary, which we
expected due to conservation of probability, and has
determinant e−2i argT1;l;ω .
Now with this transformation, we can compute the

intensity of radiation leaving the black hole i.e.,
fγout;out;lmγðpÞðωÞ. Since the vector potentials, Eq. (29),

are sums over the solutions to the radial photon equation
(sums over “in/up” states), we can expand the ΨXγlω into
“out/down” states using Eq. (C3) and then collecting the
operators corresponding to the Ψout=down. This leads to the
expressions

âout;lmγωðpÞ ¼R1;l;ωâin;lmγωðpÞ þT1;l;ωâup;lmγωðpÞ and

âdown;lmγωðpÞ ¼T1;l;ωâin;lmγωðpÞ−e2iargT1;l;ωR�
1;l;ωâup;lmγωðpÞ:

ðC4Þ

Now the outgoing phase space density is

2πδðω − ω0Þfγout;out;lmγðpÞðωÞ ¼ hâ†out;lmγωðpÞâout;lmγω
0ðpÞi

¼ hðR�
1;l;ωâ

†
in;lmγωðpÞ þ T�

1;l;ωâ
†
up;lmγωðpÞÞðR1;l;ωâin;lmγω

0ðpÞ þ T1;l;ωâup;lmγω
0ðpÞÞi

¼ jR1;l;ωj2hâ†in;lmγωðpÞain;lmγω
0ðpÞi þ jT1;l;ωj2hâ†up;lmγωðpÞâup;lmγω

0ðpÞi
þ T1;l;ωR�

1;l;ωhâ†in;lmγωðpÞâup;lmγω
0ðpÞi þ T�

1;l;ωR1;l;ωhâ†up;lmγωðpÞâin;lmγω
0ðpÞi: ðC5Þ

APPENDIX D: TEST CASE: ELECTRIC
DIPOLE EMISSION FROM NONRELATIVISTIC

BOUND ELECTRONS

This appendix considers the emission of photons from
nonrelativistic bound electrons emitted from the black hole
as a test case to check the normalization factors in Eq. (77).
This is analogous to the case of dipole radiation from a
hydrogenic atom, since both the gravitational and electro-
static interactions have a 1=r potential (so Mμ replaces
the Z=137 of atomic physics). In the case of the black hole,
the occupation probability of each “orbital” is given by the
Hawking blackbody factor 1=ðe8πMh þ 1Þ (although this
turns out not to matter for this test). The approximations
involved are as follows:

(i) Nonrelativistic: jh − μj ≪ μ. (We focus on the
bound case, h < μ.)

(ii) Emission far enough from the black hole (r ≫ M).
(iii) Low-frequency dipole radiation, ω ≪ 1=r.

We consider both electric and magnetic dipole radiation.

1. Electric dipole transitions: l= 1 & ðpÞ= ðeÞ
Since we work far from the black hole, we neglect the

difference between ∂r⋆ and ∂r. We focus on the leading
(electric dipole) emission, i.e., l ¼ 1 and even (p ¼ e)
parity. The bound case (h < μ) implies that there are only
“up” modes for the electron, no “in” modes.
The electron wave equation in this case simplifies to

hF ¼ μ

�
1 −

M
r

�
F þ k

r
Gþ ∂rG and

hG ¼ k
r
F − ∂rF − μ

�
1 −

M
r

�
G: ðD1Þ

The latter equation simplifies to
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G ¼ 1

2μ

�
k
r
− ∂r

�
F; ðD2Þ

which, plugged into the first equation, gives

1

2
μv2F ¼ −

μM
r

F þ kðk − 1Þ
2μr2

F −
1

2μ
∂
2
rF: ðD3Þ

Following standard atomic physics notation, we describe F
as the “large component” and G as the “small component.”
We see that F satisfies the usual Schrödinger equation, with
the usual orbital angular momentum L ¼ j − 1

2
s so

that LðLþ 1Þ ¼ kðk − 1Þ.
The photon wave function in this limit is the solution

with only the angular momentum barrier,

Ψin;1;ωðrÞ ¼ −2ωrj1ðωrÞ → −
2

3
ω2r2 þOðr4Þ; ðD4Þ

where j1 is the spherical Bessel function. The barrier
transmission coefficient T1;1;ω can be neglected since
ωM ≪ 1.
For the 3j symbol that will appear in the overlap integral,

we have

X
mm0

jΔkk01
mm0mγ

j2 ¼ ð2jþ 1Þð2j0 þ 1Þ
4π

�
j j0 1

1
2

− 1
2

0

�
2

δ−ss0;ð−1Þj−j0 :

ðD5Þ

We then compute the integral in Iþ−
up;k;m;up;k0;m0;in;1;mγ ;ðeÞ

ðh;h0;ωÞ (in this equation, the “in” and “up” subscripts are
implied, and we have used two integrations by parts, and
used the boundary condition that the wave function goes to
zero at r ¼ ∞):

Z
∞

0

�
ðF�

khGk0h0 − G�
khFk0h0 ÞΨ1ω

1

r2ω3=2 þ ðF�
khGk0h0 þ G�

khFk0h0 ÞΨ0
1ω

k − k0

2rω3=2

�
dr

¼ −
2

3
ω1=2

Z
∞

0

�
F�
khGk0h0 −G�

khFk0h0 þ ðk − k0ÞðF�
khGk0h0 þ G�

khFk0h0 Þ
�
dr

¼ −
ω1=2

3μ

Z
∞

0

�
k0 − k
r

F�
khFk0h0 þ

k2 − k02

r
F�
khFk0h0 þ ðk0 − kÞ∂rðF�

khFk0h0 Þ − ½F�
kh∂rFk0h0 − ð∂rF�

khÞFk0h0 �
�
dr

¼ −
ω1=2

3μ

Z
∞

0

�ðk0 − kÞð1 − k0 − kÞ
r

F�
khFk0h0 þ r∂r½F�

kh∂rFk0h0 − ð∂rF�
khÞFk0h0 �

�
dr

¼ −
ω1=2

3μ

Z
∞

0

�ðk0 − kÞð1 − k0 − kÞ
r

F�
khFk0h0 þ r½F�

kh∂
2
rFk0h0 − ð∂2rF�

khÞFk0h0 �
�
dr

¼ −
ω1=2

3μ

Z
∞

0

�ðk0 − kÞð1 − k0 − kÞ
r

F�
khFk0h0 þ r

�
2μðh − h0Þ þ k0ðk0 − 1Þ − kðk − 1Þ

r2

�
F�
khFk0h0

�
dr

¼ −
2

3
ðh − h0Þω1=2

Z
∞

0

rF�
khFk0h0dr: ðD6Þ

Now the overlap integral corresponding to an electron dropping to a lower-energy state is

X
mm0

jIþ−
up;k;m;up;k0;m0;in;1;mγ ;ðeÞðh;h0;ωÞj2 ¼

ðh−h0Þ2ω
9μ2

ð2jþ 1Þð2j0 þ 1Þ
4π

�
j j0 1

1
2

− 1
2

0

�
2

δ−ss0;ð−1Þj−j0
				
Z

∞

0

rF�
khFk0h0dr

				2: ðD7Þ

The 3j symbols can be evaluated in each case (see the tables in Edmonds [73]):

X
mm0

jIþ−
up;k;m;up;k0;m0;in;1;mγ ;ðeÞðh; h0;ωÞj2 ¼

ðh − h0Þ2ω
144πμ2

×

8>>>>>>><
>>>>>>>:

ð2jþ1Þð2jþ3Þ
jþ1

j0 ¼ jþ 1

2jþ1
jðjþ1Þ j0 ¼ j

ð2j−1Þð2jþ1Þ
j j0 ¼ j − 1

0 otherwise

9>>>>>>>=
>>>>>>>;
δ−ss0;ð−1Þj−j0

				
Z

∞

0

rF�
khFk0h0dr

				2: ðD8Þ
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If we sum over the final value of s0 at fixed L0, and average over initial states (so dividing by 2jþ 1), we get

1

2jþ 1

X
mm0s0

jIþ−
up;k;m;up;k0;m0;in;1;mγ ;ðeÞðh; h0;ωÞj2 ¼

ðh − h0Þ2ω
36πμ2

8>><
>>:

Lþ1
2Lþ1

L0 ¼ Lþ 1

L
2Lþ1

L0 ¼ L − 1

0 otherwise

9>>=
>>;
				
Z

∞

0

rF�
khFk0h0dr

				2: ðD9Þ

The total emitted photon rate if T1;1;ω ≈ 0 and jR1;1;ωj ≈ 1 is then 2lþ 1 ¼ 3 times Eq. (64), including the relevant
contribution from Eq. (73):

dNð1Þ
γ

dωdt
∋

3

2π
e2
Z

dhdh0

ð2πÞ2
X
kmk0

fe
−

up;up;k;hg
e−
up;up;k0;h0

ðh−h0Þ2ω
36πμ2

8>><
>>:

Lþ1
2Lþ1

L0 ¼Lþ1

L
2Lþ1

L0 ¼L−1

0 otherwise

9>>=
>>;
				
Z

∞

0

rF�
khFk0h0dr

				22πδðωþh0−hÞ: ðD10Þ

Here “∋” indicates that the emitted photon rate includes this term; the term includes only spontaneous emission from bound
electron levels to bound electron levels. Stimulated emission, absorption, and any processes involving positrons or unbound
(h > μ) electrons are excluded from Eq. (D10). The photon emission rate can be simplified by integrating over frequency to

dNð1Þ
γ

dt
∋ e2

Z
dh dh0

ð2πÞ2
X
kmk0

fe
−

up;up;hg
e−
up;up;h0

ðh − h0Þ3
12πμ2

8>><
>>:

Lþ1
2Lþ1

L0 ¼ Lþ 1

L
2Lþ1

L0 ¼ L − 1

0 otherwise

9>>=
>>;
				
Z

∞

0

rF�
khFk0h0dr

				2: ðD11Þ

Equation (D11) can be contrasted with the usual rule for the emission rate from the usual dipole formula in nonrelativistic
quantum mechanics (see, e.g., Eq. (10.28b) of Rybicki and Lightman [80], with a factor of 4π in the denominator for
conversion from the Gaussian system to units where ϵ0 ¼ 1):

dNð1Þ
γ

dt
¼ e2

X
LMLMShL0M0

LM
0
Sh

0
δMSM0

S
fe

−

up;up;hg
e−
up;up;h0

ðh − h0Þ3
3π

				
Z

∞

0

rψ�
LMLh

ðrÞψL0M0
Lh

0 ðrÞd3r
				2; ðD12Þ

where the sum is over all upper and lower states, we have expressed this sum in the jML;MSi basis instead of the jjmi basis
(these are related by Clebsch-Gordan coefficients), the f and g represent the probabilities for the upper state to be occupied
and the lower state to be unoccupied, h − h0 is the natural frequency of the emitted photon, and the last object is the usual
electric dipole matrix element. If the wave function is written as ψLMLhðr; θ;ϕÞ ¼ RLhðrÞYLML

ðθ;ϕÞ=r, we may perform
the usual simplification of the spherical harmonic integrals,

XL0

M0
L¼−L0

				
Z
S2
Y�
LML

ðn̂Þn̂YL0M0
L
ðn̂Þd2n̂

				2 ¼ 4π

3

X1
M00¼−1

XL0

M0
L¼−L0

				
Z
S2
Y�
LML

ðn̂ÞY1M00 ðn̂ÞYL0M0
L
ðn̂Þd2n̂

				2 ¼
8>><
>>:

Lþ1
2Lþ1

L0 ¼ Lþ 1

L
2Lþ1

L0 ¼ L − 1

0 otherwise

ðD13Þ

(this follows from the 3-spherical harmonic integral and the 3j symbols in the table in Edmonds [73]). Then we find

dNð1Þ
γ

dt
¼ e2

X
LMLMShL0M0

Lh
0
fe

−

up;up;hg
e−
up;up;h0

ðh − h0Þ3
3π

8>><
>>:

Lþ1
2Lþ1

L0 ¼ Lþ 1

L
2Lþ1

L0 ¼ L − 1

0 otherwise

9>>=
>>;
				
Z

∞

0

rR�
LhðrÞRL0h0 ðrÞdr

				2: ðD14Þ

In order to compare this to Eq. (D11), we recall that the radial wave functions in Eq. (D14) are normalized to
R jR�

Lhj2dr ¼ 1

with discrete energy levels, whereas the F’s are normalized by Eq. (43) with continuous energy levels. We may make a
correspondence between these by defining a small energy level spacing Δε, so Dirac delta functions in energy
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δðh − h0Þ → δhh0=Δε. The conclusion is that to go from
Eq. (D11) to Eq. (D14), we should make the following
replacements:

Z
dhdh0

ð2πÞ2 →
Δε2

ð2πÞ2
X
hh0

and Fkh → eiς
ffiffiffiffiffiffiffiffi
4πμ

Δε

r
RLh; ðD15Þ

where we have used the approximation jhj ≈ μ, and eiς is an
irrelevant phase factor. We see that with these replacements,
Eqs. (D11) and (D14) are equivalent, as expected.

2. Magnetic dipole transitions: l= 1 & ðpÞ = ðoÞ
Similar to the electric dipole transition, we can

compute the limiting case for magnetic dipole transitions.
The electron and photon wave function used above

[Eqs. (D3) and (D4)] apply to this calculation, with
the coupling integral in Eq. (56) using the odd parity
sector for the electron occupying a lower energy state
[Iþ−

up;km;up;k0m0;in;1mγ ;ðoÞðh; h0;ωÞ].
First we will need the square of the angular piece of the

odd sector

X
mm0

jΠkk01þ
mm0mγ

j2 ¼ 4ð2jþ 1Þð2j0 þ 1Þ
4π

×

�
j j0 1

−1=2 −1=2 1

�
2

δss0;ð−1Þj−j0 : ðD16Þ

Then we can expand the coupling integral to give

1

2μ

Z
∞

0

drðF�
khGk0h0 þ G�

khFk0h0 ÞΨ1;ωðrÞ
1

2r
ffiffiffiffiffiffi
2ω

p ¼ −ω3=2

12μ2
ffiffiffi
2

p
Z

∞

0

drr

�
F�
kh

�
k0

r
− ∂r

�
Fk0h0 þ Fk0h0

�
k
r
− ∂r

�
F�
kh

�

¼ −ω3=2

12μ2
ffiffiffi
2

p
Z

∞

0

drðkþ k0 þ 1ÞF�
khFk0h0 : ðD17Þ

We can combine these results to compute

X
mm0

jIþ−
up;km;up;k0m0;in;1mγ ;ðoÞðh;h0;ωÞj2 ¼

ω3

72μ4
ðkþ k0 þ 1Þ2

				
Z

∞

0

drF�
khFk0h0

				2 ð2jþ 1Þð2j0 þ 1Þ
4π

�
j j0 1

−1=2 −1=2 1

�
2

δss0;ð−1Þj−j0 :

ðD18Þ

The 3j symbol can be evaluated using the tables in Edmonds [73] to give

X
mm0

jIþ−
up;km;up;k0m0;in;1mγ ;ðoÞðh; h0;ωÞj2 ¼

ω3

2304πμ4
ðkþ k0 þ 1Þ2

				
Z

∞

0

drF�
khFk0h0

				2
8>>>>>><
>>>>>>:

ð2jþ1Þð2jþ3Þ
jþ1

j0 ¼ jþ 1

ð2jþ1Þ3
jðjþ1Þ j0 ¼ j

ð2j−1Þð2jþ1Þ
j j0 ¼ j − 1

0 otherwise

9>>>>>>=
>>>>>>;
δss0;ð−1Þj−j0 :

ðD19Þ

Like in the electric dipole case, if we sum over the final value of s0 at a fixed L0 ¼ L and note that the only two terms that
contribute are when j0 ¼ j� 1 and which corresponds with s0 ¼ s� 2 and average over initial states, we get

1

2jþ 1

X
mm0s0

jIþ−
up;km;up;k0m0;in;1mγ ;ðoÞðh; h0;ωÞj2 ¼

ω3

144πμ4

8><
>:

L
2Lþ1

s ¼ 1; s0 ¼ −1
Lþ1
2Lþ1

s ¼ −1; s0 ¼ 1

0 otherwise

9>=
>;
				
Z

∞

0

drF�
khFk0h0

				2: ðD20Þ

If we take the total emitted photon rate with the conditions of T1;1;ω ≈ 0 and jR1;1;ωj ≈ 1 along with averaging over the
orientation which will give a factor of 2lþ 1 ¼ 3, then as in the case of the electric dipole we find
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dNð1Þ
γ

dωdt
∋
3e2

2π

Z
dh dh0

ð2πÞ2
X
kmk0

ω3

144πμ4
fe

−

up;up;hg
e−
up;up;h0

8><
>:

L
2Lþ1

s ¼ 1; s0 ¼ −1
Lþ1
2Lþ1

s ¼ −1; s0 ¼ 1

0 otherwise

9>=
>;
				
Z

∞

0

F�
khFk0h0dr

				22πδðωþ h0 − hÞ: ðD21Þ

This term can be classified as a contribution from spontaneous emission. Terms related to stimulated emission, absorption, or
any other process involving positrons or unbound electrons can be excluded. After integrating over frequency, we arrive at

dNð1Þ
γ

dt
∋ e2

Z
dh dh0

ð2πÞ2
X
kmk0

ðh − h0Þ3
48μ4π

fe
−

up;up;hg
e−
up;up;h0

8>><
>>:

L
2Lþ1

s ¼ 1; s0 ¼ −1
Lþ1
2Lþ1

s ¼ −1; s0 ¼ 1

0 otherwise

9>>=
>>;
				
Z

∞

0

F�
khFk0h0dr

				2: ðD22Þ

As in the case of the electric dipole, to gain a physical
intuition towards Eq. (D22) we express the emission rate
due to a magnetic dipole as done in nonrelativistic
quantum mechanics [81,82]. We follow the result in
Shortley [81] for the spontaneous emission coefficient,
which shows that transitions are only possible between
the same L (L ¼ L0) and—in this case where the spin is
1
2
—we have one of J and J0 equal to L − 1

2
and the other

equal to Lþ 1
2
. We write the radial overlap integral

explicitly for ease of comparison to Eq. (D21), even
though it evaluates to a Kronecker delta. Note that there is
an additional factor of 1=4π due to the conversion from
Gaussian units to units where ϵ0 ¼ 1. Noting there is no
radial dependence on the magnetic dipole moment, the
emission rate can written as

dNð1Þ
γ

dt
¼

X
J0MJM0

J

X
hh0

δJ0;J�1fe
−

up;up;hg
e−
up;up;h0

1

3π
ðh − h0Þ3 1

2J þ 1

				hJ;MJj −
e
2μ

ðL⃗þ 2S⃗ÞjJ0;M0
Ji
				2
				
Z

∞

0

R�
LhðrÞRLh0 ðrÞdr

				2

¼ e2
X
hh0

fe
−

up;up;hg
e−
up;up;h0

1

12πμ2
ðh − h0Þ3

(
L

2Lþ1
J0 ¼ J − 1

Lþ1
2Lþ1

J0 ¼ J þ 1

)				
Z

∞

0

R�
LhðrÞRLh0 ðrÞdr

				2: ðD23Þ

Note that the sum across MJ and M0
J gives a factor of

LðLþ 1Þ=ð2Lþ 1Þ which will cancel with the factor of
2J þ 1 ¼ 2L; 2Lþ 2 in the denominator depending on
whether J ¼ L� 1

2
, respectively.

To compare Eq. (D23) with Eq. (D22), we use the
normalization given for the F’s along with treating the
energy levels as a continuous distribution as shown in
Eq. (D15). When we make these replacements we find
Eqs. (D23) and (D22) are equivalent.

APPENDIX E: CHARGE CONJUGATION
IN THE SCHWARZSCHILD SPACETIME

Charge conjugation is the operation that changes all
particles in a given quantum system to their associated
antiparticles. To swap the electron (b̂) operators with
positron (d̂) operators, we must take the Hermitian conjugate
(since ψ contains b̂ and d̂†), swap the upper and lower two
components of the spinor (since the upper components are
larger for electrons and the lower for positrons), and swap
the spin-up and spin-down subcomponents (since we are
swapping creation and annihilation operators). We follow

the standard approach here (e.g., Sec. 5.2 of Bjorken and
Drell [83]), adapted for the Schwarzschild background.
The specific action of the charge conjugation operator Ĉ

on a fermion field ψðxÞ that implements this and has the
correct signs to commute with the Hamiltonian is as
follows. We define Ĉ to act on the creation and annihilation
operators as

Ĉb̂X;k;m;hĈ
−1 ¼ isð−1Þmþ1=2d̂X;−k;−m;h and

Ĉd̂X;k;m;hĈ
−1 ¼ −isð−1Þmþ1=2b̂X;−k;−m;h: ðE1Þ

The complex conjugation rules for the angular modes in
Eq. (31) are

ΘðFÞ�
k;m ðθ;ϕÞ ¼ −isð−1Þmþ1=2iγ̃2βΘ

ðGÞ
−k;−mðθ;ϕÞ and

ΘðGÞ�
k;m ðθ;ϕÞ ¼ −isð−1Þmþ1=2iγ̃2βΘ

ðFÞ
−k;−mðθ;ϕÞ; ðE2Þ

where we have used the matrix
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iγ̃2β ¼

0
B@

0 0 0 −1
0 0 1 0

0 1 0 0

−1 0 0 0

1
CA ðE3Þ

that implements the aforementioned component swaps.
Then one can show that Eq. (46) transforms as

ĈψAðxÞĈ−1 ¼ ½iγ̃2β�ABψ†
BðxÞ: ðE4Þ

Under charge conjugation, we have k → −k and m → −m:
this is because we defined the positron operators in the
“Dirac sea” convention (d̂†X;k;m;h fills in a hole in an orbital
of z-angular momentum m, so it creates a positron of
z-angular momentum −m).
Charge conjugation acts as a simple sign flip on the

electromagnetic field and mode operators, just as in flat
spacetime QED:

ĈAμĈ
−1 ¼ −Aμ and ĈâXγ ;l;mγ ;ω;ðpÞĈ

−1 ¼ −âXγ ;l;mγ ;ω;ðpÞ:

ðE5Þ

With this sign flip included, it is straightforward to show
that Ĉ commutes with all three parts of the Hamiltonian
(HDirac, Hγ, and Hint).
Finally, we consider the Iþ− and I−þ terms in Eq. (77).

The reactions they describe, e.g., e� → γ þ e� are equiv-
alent under charge conjugation, and the fact that Ĉ com-
mutes with the interaction Hamiltonian (ĈHintĈ

−1 ¼ Hint)
then implies that Ĉ symmetry maps the Iþ− term in Eq. (55)
into the I−þ term. Taking into account the factor of
½isð−1Þmþ1=2��is0ð−1Þm0þ1=2 for the mapping of the fermion
operators [Eq. (E1)], the − sign from the photon operator,

and the − sign from fermion anticommutation (the b̂† in the
Iþ− term maps is mapped into the d̂†, and then it has to be
moved to the right of the d̂ to match with the I−þ term as
written), we must have

Iþ−
X0k0m0;Xkm;XγlmγðpÞðh0; h;ωÞ
¼ ss0ð−1Þm−m0

I−þX−k−m;X0−k0−m0;XγlmγðpÞðh; h0;ωÞ: ðE6Þ

Using Eq. (57), the symmetries of the 3j symbols, and
simplifying using the fact that l is an integer whereas j, j0,
m, andm0 are half-integers, we may write these as a relation
among the double-barred coupling coefficients,

⟦Iþ−
X0k0;Xk;XγlðpÞðh0; h;ωÞ⟧

¼ ss0ð−1Þl⟦I−þX−k;X0−k0;XγlðpÞðh; h0;ωÞ⟧: ðE7Þ

This may also be shown directly from Eq. (56) by
comparing the expressions and swapping the fermion
components. To do this, we note that under the swapping
k; h → −k0; h0 and k0h0 → −k, h, the radial integrals in
Eq. (56) stay the same; in particular the coefficient k − k0
stays the same: k − k0 → ð−k0Þ − ð−kÞ ¼ k − k0. For the
angular terms, application of the 3j symbol symmetry rules
to the definitions of Δ and Π� gives

⟦Δ−k0;−k;l⟧ ¼ ð−1Þj−j0⟦Δk;k0;l⟧ and

⟦Π−k0;−k;l�⟧ ¼ ss0ð−1Þl⟦Πk;k0;l�⟧: ðE8Þ

Due to the parity selection rules, Δ is only nonzero if
ss0ð−1Þl ¼ ð−1Þj−j0 . Therefore we conclude that the
explicit expressions for the I-integrals also obey Eq. (E7).
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